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§ 1. Introduction

The aim of integrated optics is to combine discrete miniature components
on a common substrate by means of optical waveguides, much like the
integrated-circuit technology combines electronic devices on a single sub-
strate. In fact, the term integrated optics was coined by Miller [1969] from
this analogy. As an example, Miller proposed a min:ature optical repeater
that would use guided-wave optics to integrate an optical detector, an
amplifier, and a light source on a common substrate. However, there is one
essential difference between optical and electronic technologies. Integrated-
optical circuits usually require a relatively large length-to-width ratio for a
usable device. These are typically a few optical wavelengths in width, but
several millimeters to centimeters in length (Papuchon {1986]). However,
monolithic integration of several optical components requires key devices
like source, detector, modulator, and switch all buiit around a single materiai.
To fulfill these functions simultaneously, the material must

(i) possess a direct band gap,

(ii) exhibit strong absorption at the wavelengths of interest,

(iti) be optically active, and

(iv) have a large electro-optic or acousto-optic coefficient.

Since any such single material was unavailable in the 1970s, research and
development efforts concentrated on a hybrid technology instead of a mono-
lithic technology. In the hybrid technology, several guided-wave components
are built around different materials and then assembled and operated as an
integral system.

Integrated optics is also often generically, although somewhat loosely,
used to refer to any discrete-device-like modulator, ¢.g., a directional coupler,
which has been formed out of optical waveguides. The last two decades have
witnessed demonstrations of a variety of guided-wave optical devices, such
as wavelength division multiplexers/demultiplexers {Aiki, Nakamura and
Umeda {1977]), spectrum analyzers (Mergerian, Malarkey, Pautienus,
Bradiey, Marx, Hutcheson and Keliner [1980], Thylen and Stensland
[1982]), analog-to-digital converters (Taylor [1978], Leonberger, Woodward
and Spears [1979], Chang and Tsai [1983]), digital correlators (Verber,
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Kenan and Busch [1983]), switches and modulators (Schmidt and Alferness
{1979)), directional couplers (Papuchon, Combemale, Mathieu, Ostrowsky,
Reiber, Roy, Sejournc and Werner [1975], Schmidt and Alferness [1979]),
filters (Schmidt and Alferness [1979], Alferness and Buhl [1982])), and signal
samplers (Izutsu, Haga and Sueta [1983]). Those ranged from passive to
active devices and were based on insulators such as LiNbO,, glass, semicon-
ductors like GaAs/AlGaAs, InGaAsP/InP, thin films of silica, or doped silica
on silicon. Out of these, InGaAsP/InP offers a good choice for monolithic
integration of several devices (Merz, Yuan and Vawter [1985]).

During the 1980s much eflort was spent in realizing guided-wave optical
components based on semiconductors, although the technologies based on
LiNbO, (Korotky and Alferness [1987]) and glass (Findalky [1985),
Ramaswamy and Srivastava [1988], Hashizume, Seki and Nakoma [1989],
Nissim, Beguin, Jansen and Laborde [1989]) developed at a much faster
pace. Since high-performance discrete devices are now available from these
technologies, a question about the rationale behind integration is sometimes
raised. The rationale for integration can be appreciated from the following
example. Through a monolithic optoelectronic integrated circuit, a detector-
amplifier can be connected with a capacitance as low as 0.2 pF as opposed
to about | pF required by the combination of a discrete photodiode and a
discrete amplifier (Carney and Hutcheson [1987]). This five-fold decrease in
capacitance would yield a corresponding increase in detector bandwidth,
since the RC time constant related bandwidth of a detector is given by
(2nRC)™', where R and C represent the resistance and the capacitance of
the detector circuit. Thus optical integration of different devices is expected
to yield higher performance due to lower parasitic capacitances and induc-
tances, and fewer interconnecting discrete components.

Furthermore, integration can achieve an increase in the density of func-
tional devices and, often, a lower manufacturing cost. Considerable research
activity in this direction recently has been concerned with integration of
optical and electronic components on a single 111V semiconductor substrate
such as GaAs and InP or ternary/quarternary compounds lattice-matched
to these semiconductors and grown on these substrates. This has led to the
emergence of optoelectronic integrated circuits (Koren [1989]) in which ail
optical and electronic functional components are bu:lt on a single substrate
such as InP, GaAs, Si, Ge, or GaAs on Si.

A second option is a hybrid approach in which different functional units
can be surface-mounted on a common substrate with guided-wave compo-
nents as interconnections between them. Due to the maturity of the silicon
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technology, which is extensively used for forming large-scale and very large-

scale integrated circuits in the arca of microelectronics, silica on silicon is a

good choice for such hybrid integration. The attractive features of ‘;|I|r.0n

include the following:

- An established electronic substrate for integrated circuit technology. Thus,
integrated optics on silicon is synergetic with microelectronics.

- Availability in excellent quality.

- Availability of relatively large silicon walers (up 10 about 16 or 20 cm),
making it suitable for integrating a number of components on a common
substrate,

- Relatively high thermal conductivity (1.6cm ' K '), cnabling surface-
mounting of active components like 111-V compound laser diodes.

— Transparency over infrared wavelengths ranging from 1.2 to 1.6 ym, which
is the lowest loss wavelength transmission window of silica-based optical
fibers. Thus, optical waveguide components on silicon are suitable for
efficient coupling to optical fibers in the important wavelength range.
Furthermore, since the materials are similar, casy design procedures are
allowed to match guided-mode spot sizes between an optical waveguide
and a fiber.

- Amenability to anisotropic etching (Bean [1978]. Kendall [1979].
Peterson [1982], Matsuo [1978], Matsuo [1980]), enabling easy fiber
attachment through ctched mechanical fixtures like V- or U-grooves
(Boyd and Sriram [1978], Grand, Denis and Valette [19917).

- Amenability to dry etching, which aliows flexibility in component integ-
ration technology.

- Highly developed technology for etching, cutting and dicing, polishing,
and photolithography, yielding the potentiat for mass production.

- Availability at lower costs than HI-V compounds.

~ Less toxic than III- V compounds.

~ Well-developed silica deposition technologies for waveguide fabrication
are available.

Despite these attractive features, silicon was not seriously viewed as a
potential candidate for integrated optics until recently (Stutius and Streifer
(1977}, Boyd, Chang, Fan and Ramey [1981], Willander [1983a], Falco.
Botineau, Azema, De Micheli and Ostrowsky [1983]. Willander [1983b],
Kawachi, Yasu and Kobayashi [1983], Boyd, Wu, Zelmon, Neumaan and
Timlin [1984], Yamada, Kawachi, Yasu and Kobayashi [1984a, 1984b],
Kawachi, Yamada, Yasu and Kobayashi [1985], Lee. Henry. Kazarinov and
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Orlowsky [1987], Aarnio, Honkanen and Leppihaime [1987], Hall [19871,
Valette [1987, 1988], Hickernell [1988], Soref and Lorenzo (1988], Valette,
Renard, Denis, Jadot, Fournier, Philippe, Gidon, Grouillet and Desgranges
[1989], Soref and Ritter [1990], Baba, K okubun and Watanabe [1990], Pal,
Singh, Ghatak and Bhattacharya [1990], Kawachi [1990], Valette, Renard,
Jadot, Gidon and Erbeia [1990], Tewari, Singh and Pal [1990], Takagi,
Jinguji and Kawachi {1991), Adams, Shani, Henry, Kistler, Blonder and
Olsson [1991], Kawachi, Miya and Ohmori [1991], Welbourn, Beaumont
and Nield [1991], Kokubun, Tamura and Kondo [1991], Henry [1991],
Okamoto [1991], Kawachi [1991]). The subject is important because future
optical networks will require a large variety of optical components for
switching, branching, combining, and wavelength multiplexing and demul-
tiplexing of optical signals and data. The intense interest in this technology
prompted this attempt to present a unified description of guided-wave optics
on silicon.

§ 2. Physics and Analysis of Optical Waveguides
2.1. PLANAR WAVEGUIDES

The physics of an optical waveguide is best illustrated through a planar
or slab geometry. As shown in fig. 1, it involves a guiding region of refractive
index n, surrounded by a cover and a substrate of refractive indices n, and
n, on each side with n_, n, < n, (Marcuse [1974], Sodha and Ghatak [1977],
Adams [1981], Ghatak [1986], Ghatak and Thyagarajan [1989], Pal

Zr

nix) —m
Cover Mg <Ny, Ne r—————
i dJ Core ny I“E
_t
LT} Substrate ng
ny x T
|

Fig. I. Schematic of a planar optical waveguide in which a core of uniform refractive index ",
is surrounded by a cover of refractive index n. and a substrate of refractive index n,; the
refractive index distribution n(x) is also shown.
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[1987]). Il n =n,, the waveguide is called a symmetric waveguide. We
assume the refractive index to be varying only along x as

n(x)=n? x>d {cover),

=n! O0<x<d (core)

=n? x<0 {substrate). (2.1

The governing wave equation is (Ghatak [1986])
o'y
Ed
where ¢, and g, are the free-space dielectric permittivity and the magnetic
permeability (the media are assumed to be nonmagnetic), respectively. Here
¥ stands for either & or , and it encompasses both the spatial and
temporal variations of the electric and magnetic fields. If we choose the
z-axis as the direction of propagation (fig. 1), without any loss of generality,
spatial variations of the fields will be confined to the xz plane. If the time
dependence is e'”, the solution of eq. (2.2) is

Y (.’C, y.z, [) = EJ{X) ci(m:— gz;‘

i=xy.z

V2¥ 4 gqpign?(x) =0, (2.2)

= Hj(x) civr- 23)

where f§ represents the propagation constant. Values of 8 are dictated by

the waveguide parameters. The boundary conditions allow only a discrete
sct of f’s. The transverse field distributions Ey(x) and H;(x) (which remain
invariant with propagation) corresponding to these discrete §'s constitute
the guided or bound modes of the waveguide. Any arbitrary electromagnetic
field incident at the input end of the waveguide can be expanded into a sum
over the waveguide's allowed discrete {or guided) modes and a continuum
of radiation modes (Marcuse [1974], Ghatak and Thyagarajan [1989]):

Y(x, .z t)=Y a,(x) e P 4 fa(mw,(x) eitwt B g (2.4)
P

In eq.(2.4), ¢ on the right-hand side stands for either £ or H, and p labels
a particular mode; the coefficient a, is such that power in the pth mode is
proportional to ja,|?. Furthermore, these guided modes are mutually ortho-
gonal and are normalized so they satisly the orthonormality condition
(Ghatak and Thyagarajan [1989])

v[ Yox) y (x)dx =6, - (2.5)
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where 4, is the Kronecker delta function:
6,,=0 forp+#gq,
=1 forp=gq. (2.6)
The orthonormality condition normalizes the power carried by each mode
to 1. The radiation modes also form an orthogonal set, aithough the ortho-
normality condition is required to be defined appropriately in terms of the
Dirac delta function (Ghatak and Thyagarajan [1989)).
For the index distribution given by eq.(2.1), the structure (fig. 1) will
support both TE and TM modes. For the TE modes, E,, H,, and H, are
the only nonzero field components, whereas for the TM modes, correspond-

ing nonzero field components are H,, E,, and E,. The TE modes satisfy the
wave equation (Pal [1987])

d?E,(x)
dx?

+ rcf, E(x)=0, 2.7)

where

Kp= /K (x)— B2 (2.8)

represents transverse component of the plane wave vector k(x) (= k,n(x)).
Solutions of eq. (2.7) for the index distribution {eq. (2.1)) can be written as
{Pal [1987])

E,=Aerex x2d,
=Be ™4 Cet™* Q<x<d,
=De"* x <0, (2.9)
where
Ve =By —kin?,  xZ=Ikin? - p2, e =Bt —kink. .10

For a guided mode the field is oscillatory within the core, and is exponentially
decaying in the cover and substrate. Accordingly, Yes Kp, and y,, are all real
and positive. Hence, for a guided mode

kon, > B, > kon, > kon,, (2.11)

where it is assumed that n, is less than n,. The portion of the field outside
the core, which exponentially decays in the cover and the substrate {eq. (2.9)),
is known as the evanescent tail of a guided mode, which is used in practice
to construct a number of waveguide components, such as directional couplers
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and polarizers. The continuity of E, and H, across the film-cover and film-
substrate interfaces leads to the following eigenvalue or characteristic equa-
tion (Pal [1987])

: = Ei’ixﬂ_tl‘_&-_i’ ‘.2.|2)
)= N
or
Kp=(¢p.+ ¢ +pn)d, p=012 ., (2.13)

where tan ¢, =7y./x, and tan ¢, =7 /K, Solutions of eq.(2.13) yeld
Bo. B1. B4, ..., which correspond to the TE,, TE,, TE,, ..., modes of the
waveguide. For a symmetric waveguide, eq.(2.12) is transformed to (Pal
[1987))

M_ (2.14)
L

Since tan(x,d) can be expanded as 2 tan{4x,d)/[1 - tan’(ixd)], eq.(2.}4)
may be recast as a quadratic equation in tan(}x,d), the solution of which
yields (Pal [1987])

ix,d tan(dx,d) = }y,d, (2.15a)

tan{x,d) =

or
4x,d/2 cot(drx,d) = — 4y, d, (2.15b)

where y3 = 2 — k3n}, and n, = n, = n,. The modat field associated with the
propagation constants yielded by solutions of eq. (2.15a) is (Pal {1987])

E,(x)= _b cos[w,(x — 4d)], (2.16)
cos{3n,d)
which is symmetric in x about the mid-plane of the core. The corresponding
modal field associated with the propagation constants yielded by solutions
of eq.(2.15b) is

D .
E(x) = ————sin(x,(}d — x)). (2.17)
in(}x,d)

Thus, in a symmetric waveguide the guided TE modes will, in general,
consist of symmetric (eq. (2.16)) and antisymmetric (eq. (2.17)) modes. For a
quantitative evaluation of the modal fields of a given planar waveguide one

must solve the transcendental equation, eq. (2.15), for fi eithér graphically or
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numerically. We introduce two dimensioniess parameters

Vi=iliy +y3Md? = }kid? (n] — n3) (2.18a)
and

b= ”2/2""2’—_21%. (2.18b)

ni —ns

In view of eq. (2.11),

0<b< . (2.19)
In terms of V and b, eqs. (2.15a) and (2.15b) can be rewritten as

tan(V,/t —b)=/b/(1 —b)  (symmetric modes) (2.20a)

and

tan(V./1 —b)= — /(I — b)/b (antisymmetric modes). (2.20b})

For a given waveguide and operating wavelength, V is known. For that V,
a plot of the left- and right-hand sides of eqs. (2.20) as a function of b in the
range defined by eq. (2.19) on the same figure will yield b (hence f) through
their intersections. The number of intersections also determines the number
of modes. As an example, consider a2 symmetric planar waveguide formed
from silicon nitride (Si3N,) as the core layer with silica (SiO,) as the
surrounding medium. If we assume the operating wavelength to be
0.6328 um, the refractive index of Si; N, is 2014 and that of SiO, is 1.458.
Since 4, n,, and n, are fixed, different values of ¥ correspond to different
widths (d) of the waveguide. For example, for a V=1, d =~ 0.14 um in such
a nitride (Si0,/Si;N,/Si0,) planar waveguide. Figure 2 shows universal
dispersion curves depicting b as a function of V of the TE modes in a
symmetric planar waveguide; values of b at different values of ¥ are obtained
by solving eqs. (2.20a) and (2.20b). We find from fig. 2 that for ¥= 1, which
corresponds to a d = 0.14 um, a silicon nitride waveguide will support only
one TE mode at 0.6328 um wavelength. If d is increased to =~0.73 pm, ¥
increases to =5, and the silicon nitride waveguide will support two symmet-
ric and one antisymmetric TE modes at 0.6823 um wavelength. We may
state that for V= 1, all modes except the TE, mode are cut off in a planar
waveguide. By definition a mode is cut off in a symmetric waveguide when
the propagation constant f, equals kqn,, which implies that b = 0. Thus at
cutoff, eq. (2.13a) becomes (Pal [1987])

chipﬂ:! P=0s li 21--~ - (2.213}
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Fig. 2. Normalized b-V dispersion curve of a symmetric planar waveguide. The full curve

( } corresponds to universal curves for TE modes, and the dashed curve (- - -} corresponds

to TM modes of a $i0,/Si,N,/SiO, symmetric waveguide for which the refractive index of
8i0, and Siy N, are 1.458 and 2.014, respectively, at 0.6328 um.

where V. stands for normalized cutoff frequency, ie.. the V-number at which
a mode is cut off. Even values of p correspond to symmetric TE modes, and
odd values to antisymmetric modes. Equation {2.21a) shows that the TE,
mode is never cut off in a symmetric planar waveguide. For design purposes
the cutoff condition, eq. (2.21a), can be rewritten in a more useful form (Pai
[1987])

A 1 p
(I)c T3y (2.21b)

This condition implies that the smallest ratio (d/2) for the pth mode to be
supported in a waveguide is given by eq. (2.21b). For example, for any d/4
less than 0.35, a silicon nitride planar waveguide will function as a single-

.mode (only TE, mode) waveguide.

These calculations can be repeated for the TM modes of an asymmetric
planar waveguide. The eigenvalue equation is

("_)3’_ + (ﬂ_’)?_
n? x,n‘ ni yx,,' 2.22)
1 cls
- ()

For a symmetric planar waveguide the eigenvalue equations for the TM
modes are

tan(V./1 = b)=(ni/n?)/b/(1 —b)  (symmetric modes) (2.23a)

tan(x,d) =
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TabLE |
TE modes TM modes
Asymmetric Symmetric Asymmetric Symmetric
waveguide waveguide waveguide waveguide
Eigenvalue Egs. (2.12) Eqs. (2.20a) Eq.(2.22) Eqgs. (2.23a)
equation or(213) and (2.20b) and (2.23b)
Cutoff tan ' \/5 +ipn  ipnm S ipn
frequency  (p=0,1,2,..) (p=0.12,..) tan ! n +ipn {p=0,1,2.1
V.
¢ (p=0,1,2,.)
and

tan(V/1 —b)= --(n}/n3)/(} — b)/b (antisymmetric modes).

(2.23b)

The b-¥ dispersion curves for the TM modes of a silicon nitride planar
waveguide are shown in fig. 2 as dashed curves. The ratio of the core-to-
cladding refractive index at 0.6328 pm wavelength is about 1.38 in such a
waveguide. We list important results for the TE and TM modes of a planar
waveguide in table 1. For an asymmetric waveguide, V™ is greater than
VeE. For the lowest order mode (Ghatak [1986]),

Vif=tan"'/a and V™=tan~!(n? /a/n?).

Here a represents the asymmetry parameter, and it is defined as
a={n} —n2)/(n} —n?). Thus, for tan~* . /a < V< tan " (n? \/E/nf ), only the
TE, mode is supported in an asymmetric planar waveguide. Such a wave-
guide, in which all modes except the TE, mode are cut off, is called a single-
polarization, single-mode waveguide (Ghatak [1986], Ghatak and
Thyagarajan [1989]). In the case of weakly guiding waveguides, for which
ny = n,, TE and TM modes are nearly degenerate.

22. POWER CARRIED BY A GUIDED MODE IN A PLANAR WAVEGUIDE

The energy density associated with the electromagnetic field, by definition,
is given by the time average of the corresponding Poynting vector (),
(8> =(& x H) =} Re(& x ), (2.24)

where {...> implies time average. In ¢q.(2.24) both temporal and spatial
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dependences are assumed to have been included in the field components. As
an example, we consider only symmetric TE modes. Simple algebraic manip-
ulations lead to an expression for the net power carried by a symmetric TE
mode along z-direction per unit length along y (Pat [1987))

P,=4}J- Re(f x H#)«idx

2
= —ﬂg“l")*l— ,:d + 3], (2.25)
4eopg cos® £ Y2
where { = 4x,d and : is the unit vector along z. Equation (2.25} shows that
the guided-mode power is confined to an effective guide half-width of
(34 + 1/y,). We can thus ascribe a confinement factor I to each mode by
the following definition (Pal [1987])

__optical power inside the core
B total optical power

_G+sin{cos{ (2.26)
B £+xp/}’2 ' ‘

At mode cutoff, 8 =kqn,, so y, =0, and hence I = 0; the mode, therefore,
ceases to be guided inside the core.

23. WAVEGUIDING IN THREE-DIMENSIONAL STRUCTURES

The density of guided-wave components on a substrate can be greatly
increased by confining the guided optical energy in both the x and y
directions. In contrast to the planar geometry, three-dimensional waveguides
(fig. 3) consist of rectangular or near-rectangular cores, which are difficult to
analyze. Studies of propagation effects in them generally require exlensive

=
(]

(b)

Fig. 3. Some examples of three-dimensional waveguide geometries: (a) raised strip, (b) embedded
str'p, (¢) rib, {d) strip-loaded; in all these geometries the shaded region represents the core.
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numerical analyses (Marcatili {1969], Goell [1969]). Hocker and Burns
[1977] have, however, proposed a relatively simple and approximate
approach, which is called the effective-index method (Knox and Toulios
[1970]). This method can be illustrated through the example of an embedded
strip waveguide (fig. 3b), in which a core that has dimension d, x d, and
refractive index n, and has on its three sides a medium of refractive index
ny. The core is assumed to be covered by a medium of refractive index n,.
The method starts with the assumption that the waveguide extends infinitely
along y. We then find the modes of an asymmetric slab waveguide (fig. 4a)
in the xz plane consisting of a core of width d, that has index n,, and is
sandwiched between two media of refractive indices n, and n,. The analysis
presented in § 2.1 can be extended to obtain the propagation constant B,
from the mode dispersion curve: b versus V of the guided modes for this
asymmetric waveguide. Depending on polarization of the input beam, either
TE (electric field along y) or TM (magnetic field along y) modes will be
excited. An effective index ni'(= f,/ko} can be associated with the pth mode
of this waveguide. At the next step the method assumes that the entire
asymmetric waveguide along x can be replaced by a core material of index
n;". In the yz plane we thus obtain a symmetric planar pseudo-waveguide
of core refractive index ni and of width d, surrounded by a medium of
index n; (fig. 4b). Thus, we can study propagation in such a symmetric
pseudo-waveguide by finding the propagation constants B, of different modes
from the mode dispersion curve (fig. 2). For each value of p there will be ¢
solutions for the effective waveguide structure in the yz plane. Thus, in the
effective-index model, each mode is designated with a pair of subscripts: p
and g. According to Hocker and Burns [1977], the agreement in the values
of B, found for the effective-index method and more nearly exact numerical

X

[

z
q"

y=d,
y=0

*on

® o

{a) (b}

Fig. 4. Effective-index model: {a) an asymmetric planar waveguide of width d, in the xz plane

with a core of refractive index n, sandwiched between a cover and a substrate of refractive

index n, and n;, respectively; (b) a symmetric planar waveguide of width d\, in the yz planc
with a core of refractive index %" surrounded by a medium of refractive index ny.
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methods is quite good for the lowest-order modes and for large aspect ratios
(Marcatili [1969], Goell [1969]). In particular, the agreement is extremely
good far from cutofl. In view of this and the simplicity of the model, the
effective-index method is used extensively in the literature to model propaga-
tion in three-dimensional waveguides.

In the mid-1980s an alternate and relatively simple technigue (Kumar,
Thyagarajan and Ghatak [1983]) based on perturbation theory was pro-
posed to deal with such rectangular geometries. This technique was applied
to 2 number of integrated-optical waveguide geometries and devices (Kumar,
Thyagarajan and Ghatak [1983], Kumar, Kaul and Ghatak [1985],
Varshney and Kumar [19883). The method relies on choosing a fictitious
rectangular optical waveguide, the index profile of which is separable in x
and y coordinates, and which closely resembles the actual waveguide except
at the corners. Since the index profile is separable in x and y, the modal
solution to the fictitious waveguide becomes extremely simple. Furthermore,
since the real index profile differs little from the hypothetical profile, simple
perturbation theory is then applied to obtain the propagation characteristics,
and hence the b-V dispersion curves of the real waveguide. As an example,
consider the ridge waveguide of fig. 5a. It can be upproximated as a fictitious
waveguide of the form shown in fig. 5b, with index profile (Varshney and

a) N

¥
t o
R S o
; S

i Ny

+

(b}

Fig. 5. Perturbation theory model to analyze a three-dimensional waveguide: {(a) real waveguide

(adapted with permission of IEEE from Varshney and Kumar {1988}, © 1988 IEEE);

{b) fictitious waveguide with a diclectric constant profile separable in x and y coordinates; the

dielectric constant profile of the fictitious waveguide differs from the real waveguide only in
the shaded regions.
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Kumar [1988])
n*(x, y) = nl(x) + ni(y) — n, (227
where

ni(x}=ni, |x|<}id,

=n(2]l le>§dls

(2.28a)
and
nlzl(y)= n%, }'> dbi
=n}, —t<y<d,,
=ni y<-—t (2.28b)

The dielectric profile (eq. (2.27)) matches the dielectric profile of the real
waveguide everywhere except at the shaded regions shown in fig. 5b. The
modal solution to the fictitious waveguide is given by a solution of the scalar
wave equation (Kumar, Thyagarajan and Ghatak [1983], Varshney and
Kumar [1988])

GRS
[a_xz + 5y Hkant(x ) - ﬂé)] Y(x, ) =0, (2.29)

where B, is the propagation constant. Equation (2.29) can be converted into
two independent equations in x and y by substituting ¥(x, y) = X(x)}Y(y),
and by using the method of separation of variables,

) _
[dd—xg +(kgnf(x)~B}) | X =0 (2.30)
and
da? ' 7
[a; + (k3mi(y) - ﬁ%)J Y=0, , (2.31)

where 8% = B? + B3 — kin?. The solutions to €q. (2.30) in different regions of
the waveguide are (Varshney and Kumar [19887)

X(x)= A cos(2u, x/d, — 8), |x|<4d,,
= Be~ iy, [x}>4d,, 2.32)

where
Hy =§'le kén% - f»
Ha= A Y V.\zz - ﬂf!
V. =tkod,\/n} —n. ' (2.33)
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Here, 8 = 0 for a mode symmetric in x, and 8 = {x for a mode antisymmetric
in x, and A and B are constants. The solutions to eq.(2.31) in different
regions of the waveguide are )

Y(y) = A; exp(—y,y/1), y>dy,
= A, cos(y, y/t) + B, sin{y, y/t), —t<y<d,
= Ag explyo y/t), y<-—r (2.34)
where
Va=t/Bi~kini, ni=Vi-yi  V,=ike/ni—ni,
(n} ~ n} (ni — nj)
= [yi+ V2 4="—%
Yo rt ¥, 24n% 2n?

The consants #, and B, are determined by satisfying the boundary conditions
for the dominant field vector. For example, the E} -mode will approximate
a TE mode in the x-direction and a TM mode in the y-direction. The
boundary conditions required to be satisfied by y(x, y) { = E}, mode) are
{Varshney and Kumar [1988])

W, g-ii continuous at x = +4d,;

)
nzda,%: continuous at y= —¢ and y = d,. (2.36)
In a similar manner, y(x, y) (= E;, mode) requires continuity of
oy
2, — = +4d,;
n*y ™ at x= t+4d,

Sy
,a at y=—rand y=d,. 2.37)

These boundary conditions lead to eigenvalue equations for 8, and §,
(Varshney and Kumar [1988]):

arctan (c f—l—z) ~i+p-r=0 (2.38)
1
and

arctan(Dm ?—0\ +arctan(D... h\ -, (1 + i"\ dia—-Nmw—0 70
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where ¢ =n} /nf for the E;, mode and c =1 for the EL, mode, D, = n}/n}
for the E}, mode and D,; = 1 for the E;,mode,and i, j= 0, 1, 2. The solutions
of eqs. (2.38) and (2.39) will yield B, and f,, and hence B,, from the relation
$3 =B} + B3 — kin?. Thus, from perturbation theory, the propagation con-
stant § of the real waveguide will be

B? = B3 + (AP, . (2.40)

where Aff represents the first-order perturbation correction to g,

o

_le(x, MI? 8n? dx dy
AP =k ==

o

J.J. I¥(x, y)I* dx dy

- oy

(241)

Here, 3n? is the difference in the dielectric constant distribution between the
real and the fictitious waveguides. From figs. Sa and b, we obtain

dn* =n} —n} for regions (1), )
=0 otherwise. (242)

The perturbation theory yields results that are more accurate than the
effective-index method (Kumar, Thyagarajan and Ghatak [1983)). This per-
turbation technique is useful, in particular, when 8n? is small. However, it
has been shown that even for semiconductor rib waveguides, in which
ny =344 and n, =10 (ic. in which 5n* ~10.8), the perturbation theory
yields results that are in good agreetient with other methods, such as the

... finite-element method or the modcimatching technique (Varshney and

Kumar [1988]), which involve extensive numerical analysis. The perturba-
tion results for the variation of n,, of the scalar fundamental mode (E,,) of
a semiconductor waveguide of width d, is reproduced in fig. 6 from Varshney
and Kumar [1988]. In a realistic silica waveguide the difference &n? is
small, about 1.13 in the case of a silicaclad phosphosilicate waveguide.
Perturbation theory should therefore yield useful results. A comparison
between various theories with regard to the coupling length estimation for
a silica-based waveguide directional coupler is shown in fig. 7 (Takato,
Jinguji, Yasu, Toba and Kawachi [1988]); the agreement between the pertur-
bation results and the experiment is quite good. For a tightly bound mode.
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Fig. 6. Effective index of the scalar fundamental mode (E ) versus width (d.)o!'a rib wgve_]uidc
with ng =1, n, = 344, n, = 3.35, d, = 0.2 um, and ¢ = 0.8 pm. (Reproduced with permission of
1EEE from Varshney and Kumar [1988], ' 1984 IEEE)
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Fig. 7. A comparison of experiments with different theories for the dependence af perfect (i.e..
100%) optical power coupling length in a dircctional coupler with waveguide separation
between iwo silica channel waveguides (dimension of 10 x 8 um? cach with a relative index
difference between the core and cladding of 0.24%) at wavelengths of 1.29 and .55 pm;
(-——) point matching method, (- - -} perturbation analysis (Kumar, Kaul and Ghatak [1985].
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nonzero, Thus, the perturbation technique is more accurate when a mode
is far from cutoff. Furthermore, any stress-induced birefringence, which may
occur in waveguides made of silica on silicon, can be easily incorporated in
the perturbation technique, as Kumar, Shenoy and Thyagarajan [1984]
showed,

24. MULTILAYER WAVEGUIDES

Optical waveguides are difficult to form on silicon due to the lack of
another suitable transparent medium of refractive index higher than that of
silicon (n = 3.5). The difficulty of finding a suitable higher refractive index
material compatible to silicon can be overcome by growing a layer of silica
on silicon before guiding layers such as glass (Boyd, Wu, Zelmon, Neumaan,
Timlin and Jackson [1985]) are deposited; the silica layer acts as a buffer
layer. Thus, the refractive index profile of a typical composite structure will
be as represented in fig. 8. Because of the high-index silicon substrate, the
waveguide behaves as a leaky structure unless the buffer layer is thick
enough. To reduce mode leakage loss in such a waveguide, the silica buffer
layer is grown thick enough to ensure that the evanescent tail of the guided
field will be negligible at the interface between the silica buffer layer and the
silicon substrate. To achieve this, typically the silica layer thickness must be
greater than 4 pm, requiring a long deposition time. The problem of long
deposition time can be overcome in a novel waveguide configuration
(Duguay, Kokubun, Koch and Pfeiffer [1986], Kokubun, Baba, Sasaki and
Iga [1986]). It involves a multilayer planar configuration known as “ARRO

n{x) —

!

1T,

Fig. 8. Schematic of a silicon-based optical waveguide together with its refractive index profile;
a buffer SiQ; layer thick enough to reduce leakage loss of guided light into the silicon substrate
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waveguides”, an acronym for antiresonant reflecting optical waveguide. The
layered structure of the waveguide and the corresponding refractive index
profile are shown in figs. 9a and b, respectively. The bottom silica layer
(~2 pm) is called the second cladding layer, whereas the top silica layer
(=4 um) forms the core of the waveguide. The intermediate high index layer
of about 0.1 um thickness between these two regions is called the first

" cladding.

Two independent physical phenomena are exploited in this waveguide
geometry. The silica-air interface at the top provides a total internal reflect-
ing surface, whereas the high refractive index layer sandwiched between the
two silica regions serves as a highiy reflecting (>99%) interface. Thus an
ARRO waveguide on silicon uses silica as the core like that in an optical
fiber. The initial experiments on ARRO waveguides involved poly-silicon
{poly-Si) as the thin high refractive index layer. However, for experiments at
wavelengths less than 1 pm, poly-Si has becn replaced by titania (TiO;) as
the first cladding layer, since silicon is highly absorptive in this wavelength
range (Kokubun, Baba, Sasaki and Iga [1986], Baba, Kokubun, Sasaki and
Iga [1988]). The thickness of the first cladding layer is chosen to be small
to act as a Fabry-Pérot resonator and closely matched the antiresonant
condition of the resonator. Antiresonances in a Fabry-Pérot etalon are
spectrally broad (Ghatak and Thyagarajan [1989]). From the Fabry-Pérot
analogy the waveguide will work over a wide spectral range. Thus the
fabrication tolerance is comfortable. Under optimum conditions, reflectivity
could be almost 99.96% from the set of two interfaces of poly-Si/TiO, -8i0O,
and SiO,-Si (Duguay, Kokubun, Koch and Pfeiffer [1986]). Approximate
expressions for optimum thicknesses of the two reflecting layers are (Duguay,
Kokubun, Koch and Pfeiffer [1986], Kokubun, Baba, Sasaki and Iga [1986])

oA n\ i\
d% =H(2N+]) 1— = + i , N=0,1,2,... (243
3 3 3&ell

i) olx}— € plg—

o

o) Air {ng)
A -l :
@l | |1 sewndcioadinginy) | |
/m Si-substrate (nq]

Fig. 9. (a} Schematic of an ARRO waveguide geometry; (b) refractive index profile of an ARRO
waveguide; (c) refractive index profile of an ARRO-B waveguide (gee lext).
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and
AP =M+ 1), M=012 ., (2.44)
where
du % { e,
2. /n — ni
and
{=1 for TE modes,
=(ni/n}) for TM modes; (2.45)

M, N stand for order of antiresonances. Here, n,,d, and n,, d,, represent,
respectively, the refractive indices and the widths of the first and second
claddings: n, and d, correspond to refractive index and width of the core;
and n, is the refractive index of the cover, which is usually air. These results
have been derived to yield minimum loss for the fundamental mode in an
ARRO waveguide under antiresonant conditions. In an optimum ARRO
waveguide configuration, as outlined earlier, the effective index (f/k;) and
loss minimum {«3"") of the fundamental TE, mode, respectively, are (Duguay,
Kokubun, Koch and Pfeiffer [1986], Kokubun, Baba, Sasaki and Iga [19861)

i 22
B1lko = "¢[1 - (4"4‘1‘") ] , {2.46)

and (Duguay, Kokubun, Koch and Pfeiffer [1986], Kokubun, Baba, Sasaki
and Iga [1986], Baba, Kokubun, Sasaki and Iga {1988], Baba and Kokubun
[1990, 19917])

; 5428 68(1/d 0 )° 1
= X ) —
N EEs (EmEs)
4 4ﬂ4deff 4d=ff
1
x = {dB/cm), (247)
f2_ .2
ny ny + (4de")
with

X=1 for TE mode,
- =(nin,/n3)* for TM mode, (2.48)

where n, is the substrate refractive index, and 1 and d.;, are measured in
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micrometers (Baba, Kokubun, Sasaki and Iga [1988]). Equation {2.48) shows
that the loss discrepancy between the TE and TM modes is due to the large
difference in refractive index between the core and the first cladding, and
also between the core and the substrate (Baba, Kokubun, Sasaki ahd Iga
[1988], Baba and Kokubun [1991]).

In an alternative method ARRO waveguides were analyzed through an
equivalent transmission line and transverse resonance method (Jiang,
Chrostowski and Fontaine [1989]). Il the thicknesses d, and d, satisfy
antiresonance conditions, the dispersion relation for the propagation con-
stant of the TE modes is

cot(yeds) = —as/74, (249)

where 7, is the imaginary part of the transverse propagation constant in the
core, and ay is the real part of the transverse propagation constant in air.

More recently a novel matrix approach was used to obtain the propagation
characteristics of ARRO waveguides (Tewari, Singh and Pal [1990]). As
shown in fig. 10, we call the refractive index of the silicon substrate, the
second cladding, the first cladding, the core, and the cover (air) ny, Ny, My,
n,, and ns, respectively. The thickness of the corresponding regions are d,,
d,,d,, d,,and ds. The structure has five homogeneous layers, four interfaces,
and five different refractive indices. The recipe of the model involves only a
few computational steps (Ghatak, Thyagarajan and Shenoy [1987]). As a
first step, a plane wave of amplitude E} is allowed to be incident on the
interface between the silicon substrate and the second cladding at some
angle of incidence 6. The corresponding amplitude reflection and transmis-
sion coefficients at the mth interface for TE and TM polarizations are given
by (Ghatak, Thyagarajan and Shenoy [1987], Ghatak and Thyagarajan
[1989])

£3 ANEZ ny
E- L +
4 Eq ny
1
1
- +
Eg ‘: Eg ng

Mo 1A Mdain i nd am mmndal tha msnmnantine ahasanbacintiae af an A D DO wavesuids
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TE polarization:

R €088y, — Ny, cO88,,,
-
Py COS Oy + 0y 058, ,"

. - 2n,, cos 8, )
" nncosB,+n,, cosb,,, (2.50)

TM polarization:

Mys1 Cos @, —n,cosb,,,
PwsyCOS O, +n,co58, .,

Frm=

2n,, cos 8,
Mpsy €050, +n,c086,,, {2.51)

b =
respectively. For individual layers the 6,’s are given by Snell's law at each
interface:

ﬂ= konl Sin Gl = kunz Sin 92 = kon3 Sin 93 = kon.‘ Sin 6‘. (2.52)

For each 6, the values of r,, and t,, are stored for each interface. Appropriate
boundary conditions at each interface lead to the matrix equation

(E‘_) = S(E’_), 2.53)
E; E;

}Vherc + and -- signs correspond to transmitted and reflected fields at each
interface, and S is the product of 2 x 2 matrices: § 1982, ..., Sq, With

1 /el r,, €'
S = 0 (r,.. - e’j o ) _ (2.54)
and
b =kpdy cOs B; k= kon. (2.55)
In view of eq. (2.52), §,, can be expressed in terms of 0, as
8p = kody (% — n sin? 8,). ' (2.56)

Thus, &, 7, f,, 2and S, can be calculated for a given @,. Since the fifth
layer is very thick, the reflected field E5 2 0, and hence from egs. (2.53)(2.55)
the electric fields in every layer can be obtained in terms of the incident
field EY. At the next step the mode excitation efficiency n{f)=|E¥/E}{? is
evaluated for the given 8, (i.e, for the given § = kon, sin 8,). The process is
repeated by scanning the f-space through a variation im 8. A plot of n(B)
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reveals resonant peaks that closely resemble Lorentzian functions in shape.
For a single-mode guide there is only one such peak. The value of § at
which the peak appears corresponds to the real part of the propagation
constant. The full-width-at-half-maximum {FWHM (=2I)] of the
Lorentzian represents the leakage power loss coefficient, where I' is the
imaginary part of the propagation constant {Ghatak, Thyagarajan and
Shenoy [1987], Ghatak and Thyagarajan [1989]). With the derived propaga-
tion constant the fields throughout the system can be computed by evaluating
appropriate matrices (eq. {2.54)). The method can be applied to any multi-
layer structure in which one or more iayers has a complex refractive index
(Thyagarajan, Diggavi and Ghatak [1987]). For lossless waveguides, I' —+ 0.
This method was used to design and fabricate ARRO waveguides (Tewarn,
Singh and Pal [1990], Pal, Singh, Ghatak and Bhattacharya [1990]).
Calculation for TE mode losses for various parameters (e.g., thicknesses of
the individual layers) can be used to optimize an ARRO waveguide. Some
results are shown in figs. Ila,b. An important attribute of this matrix method
is that, in addition to giving leakage loss and propagation constant, it allows
computation of the corresponding modal field distributions. Feasibility of
applying the matrix method to ARRO-B waveguides {Baba and Kokubun
[1989]) was also tested (Tewari, Singh and Pal {1990]). These waveguides
use a layer of lower refractive index between the two silica layers, rather
than a layer of higher refractive index layer (fig. 9¢). In contrast to the ARRO
waveguides, an ARRO-B waveguide is polarization insensitive.

§ 3. Technology of Silicon-Based Optical Waveguides

The technology of silicon-based waveguides before 1985 was reviewed by
Boyd, Wu, Zelmon, Neumaan, Timlin and Jackson {1985]. In the earliest -
attempts to fabricate optical waveguides on silicon, the silicon surface was
first thermally oxidized in order to grow a bufler layer of siiica (refractive
index = 1.46 in the 0.6-0.8 pm wavelength range) before the waveguide core
(inorganic polymers or silicon oxynitrides, for example) was formed (Rand
and Strandiey [1972], Boyd and Chen [1976], Boyd and Chen [1977], Marx,
Gottlieb and Brandt [1977]). This silica buffer layer was thick enough to
prevent leakage of guided light to the high-index silicon substrate, the
complex refractive index of which is about 3.85-10.077 at the He—Ne wave-
length (Stutius and Streifer [1977]). The surface smoothness of the silica
buffer layer was usually of about the same quality as the original silicon
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Fig. 11. (a) Effective index and loss of TE, mode versus second cladding thickness in the
poly-8i ARRO waveguide as obtained by the matrix method (see text). (b) Effective index and

loss of TE; mode versus first cladding thickness in_the poly-Si ARRO waveguide as obtained
by the matrix method (see text).

waler surface (Boyd, Wu, Zelmon, Neumaan, Timlin and Jackson [1985]).
The core layers were derived by deposition, for example, by chemical vapor
deposition (CVD) or radiofrequency (RF) sputtering. In one of the earliest
such waveguides with attenuation less than 0.1 dB/em (for TE, and TM,
modes at 0.6328 pm), silicon nitride waveguiding film (=300 nm thick) of
refractive index ~2.01 was deposited through low pressure CVD (Stutius
and Streifer [1977]). The thickness of the silica buffer layer varied from 275
to 820 nm from sample to sample. Other successful attempts involved RF
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sputtering of 7059 glass® (n = 1.5530) or zinc oxide (ZnO) {n ~ 2.0) as the
guiding layer (Goell and Strandley [19693, Dutta, Jackson and Boyd [1980],
Dutta, Jackson, Boyd, Hickernell and Davis [1981], Dutta, Jackson and
Boyd [19817). Laser annealing of the deposited waveguiding film led 1o a
dramatic reduction of attentuation in such waveguides. Typically, the reduc-
tion was by a factor of 250 in ZnO and 80 in the 7059 glass waveguides
(Boyd, Wu, Zelmon, Neumaan, Timlin and Jackson [1985]). Improvements
in the quality of the interface between the guiding layer and the buffer layer
of silica led to a loss of only 0.01 dBjcm (Dutta, Jackson, Boyd, Hickernell
and Davis [1981], Dutta, Jackson and Boyd [1981], Chen and Boyd [1981],
Dutta, Jackson, Boyd, Davis and Hickernell [1982]). Siuce ZnO is a piezo-
electric material, ZnO-based waveguides enable realization of acousto-optic
devices with silica on silicon as the substrate (Hickernell, Davis and Richard
[1978], Hickernell [1979], Chubachi [1976], Yao, Anderson and August
[1979]). Some success in fabricating spectrum analyzers with ZnO wave-
guides on silicon-based substrates have been reported in § 4. Fabrication of
silicon oxynitride (Si, O, N,) core waveguides was reported recently by Gileine
and Miiller [1991]. The core layer of about 0.25 pm was deposited by low-
pressure CVD (LPCVD) at about 3- 10 Pa atmosphere from vapor-phase
reactions between SiH,Cl, (12-20 mL/min), NH, (0-300 mL/min), and O,
(0-500 mL/min) on top of a 4 um thick silica layer. The core is finally
covered with a silica overlayer. Typically, the losses are less than 0.5 dB/cm
at 0.6328 um. Laser annealing with a pulsed CO, laser reduces the loss to
some tenth of a dB/cm depending on the irradiation time and intensity of
the laser. Laser annealing also led to a decrease in the refractive index of
these near oxide films up to about 2% due to a reduction in the stress of
the deposited films. This laser-induced reduction in the refractive index of the
deposited films can be exploited to trim silicon-based guided-wave compo-
nents (Gleine and Miiller [1991]). '

In one study, temperature-independent operation of a single-rmode wave-
guide having the composite structure 7059 glass/SiO, /Si was demonstrated;
the guiding layer thickness was 0.368 pm (Chen and Boyd [1981]). Such
temperature-independent waveguide operation has potential applications in
interferometric sensors based on optical waveguides.

There is much recent interest in using silica or doped silica as the waveguid-
ing core. Thermal oxidation of silicon for 24-27 hours yielded graded-index

* A proprietory trade name is used to enable the readers to reproduce the experiment; other
glasses might work as well or better.
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silica waveguides with losses of 0.3-0.4 dB/cm (Zelmon, Jackson, Boyd,
Neurnaan and Anderson [1983]). The thickness of the grown SiO, layers
varied from 14.4 to 15.8 pm. For these thicknesses, out-of-plane scattering
was very low, and the measured transmission loss was attributed mostly to
leakage of light to high index silicon substrate (Zelmon, Jackson, Boyd,
Neumaan and Anderson [1983], Boyd, Wu, Zelmon, Neumaan, Timlin and
Jackson [1985)). In subsequent works, phosphosilicate glasses were used to
form the guiding layer, which were deposited by CVD through co-oxidation
of silane and phosphorus at 400 to 500°C under atmospheric pressure
(Neumaan and Boyd [1980, 1981]). By doping with phosphorus, the refrac-
tive index of silica can be increased by a few percent. Since optical fibers
are made from similar host materials (Pal [1979]), it is possible to tailor the
mode-field profile of such waveguides to match closely the LP,,-mode profile
of silica-based optical fibers. This will ensure good power-coupling efficiency
between the waveguide and a single-mode fiber. This advantage of phospho-
silicate waveguides has motivated extensive investigations of fabrication of
low-loss phosphosilicate channel waveguides on silicon (Grand, Jadot, Denis,
Valette, Fournier and Grouillet [1990]). The composite structure of these
waveguides is 8i/8iO, /P doped-Si0, /SiO, (Valette, Gidon and Jadot [1987],
Valette [1987, 1988], Valette, Renard, Denis, Jadot, Fournier, Philippe,
Gidon, Grouillet and Desgranges [1989], Grand, Jadot, Denis, Valette,
Fournier and Grouillet [1990], Valette, Renard, Jadot, Gidon and Erbeia
[1990]). Ali silica and phosphorus-doped silica layers are deposited through
a plasma-enhanced CVD (PECVD) process. Two major attributes of the
PECVD technology are that it is a relatively low-temperature process
(=800°C), compatible with the well-established microelectronics processing,
and that it yields a high average deposition rate of about 40 nm/min (Valette,
Jadot, Gidon, Renard, Grand, Foumnier, Grouillet, Philippe, Denis,
Desgranges, Mulatier and Erbeia [19917). These waveguides exhibited losses
less than 0.2 dB/cm at 0.633, 0.8 and 1.3 um wavelengths. However, to
achieve low loss at 1.55 um, the waveguides require thermal arnealing at an
elevated temperature of about 1000°C for about 3 h. The reproducibility of
the waveguides is achieved by maintaining phosphorus doping (at various
levels) during deposition of all the layers. During deposition of the core,
phosphorus doping level is kept to 5—10%, whereas for the buffer and cover
layers it is between 2 and 3% (Grand, Jadot, Denis, Valette, Fournier and
Grouillet [1990]). Typically, a phosphine flow rate of 4 cm?/min leads to a
phosphorus doping of about 3% by mass in silica (Valette, Renard, Denis,
Jadot, Fournier, Philippe, Gidon, Grouillet and Desgranges [1989]). Dry
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etching of the core layers with CHF, has been used to form low-loss channel
waveguides using this technology. Modal spot size is optimized for coupling
to fibers at 1.55 um; such an optimized waveguide structure is shown in
fig. 12 (Valette, Jadot, Gidon, Renard, Grand, Fournier, Grouillet, Philippe,
Denis, Desgranges, Mulatier and Erbeia [1991]).

Fiber-to-waveguide coupling efficiency also was the motivating factor for
fabrication of phosphosilicate glass waveguides on silicon reported by Henry,
Bionder and Kazarinov [1989]. In their technology a buffer silica layer of
about 15 pm is grown through rapid oxidation of the silicon substrate under
a high pressure steam. The phosphosilicate core layers (4-5 x 7 um?) are
deposited by incorporating 6.5-8% of phosphorus in silica through low-
pressure chemical vapor deposition (LPCVD) at 680°C. The process involves
a chemical reaction between tetraethylorthosilane, ammonia, and phosphine.
The cover (~5pm) consists of phosphorus-doped (~2% P) silica layers,
deposited through LPCVD at about 380°C from the same raw materials.
Eventually, after the depositions are completed, the waveguide is annealed
at about 1000°C to relieve strain and to densily the film. The measured
fiber-to-fiber coupling losses for these phosphosilicate glass core waveguides
at 1.3 and 1.5pm are shown in fig. 13 (Henry, Blonder and Kazarinov
[1989]).

Silicon-based waveguides suitable for optical coupling from laser diodes
are based on silicon nitride core layers (Henry, Kazarinov, Lee, Orlowsky
and Katz [1987], Henry, Blonder and Kazarinov [1989], Shani, Henry,
Kistler, Orlowsky and Ackerman [1989])). These waveguides are charac-
terized by a tightly confined modal field due to a relatively large index
difference (An ~ 0.55) between the core and surrounding medium. A silica
buffer layer of about 5 um thickness, which is sufficient to reduce the leakage

S0,

doped SIO,

SI0,
- \\

Silicon

Fig. 12. Schematic of planar and channel waveguide geometries with phosphosilicate glass for
optiraum coupling to optical fibers. (Reproduced from Valette, Jadot, Gidon, Renard, Qrayd.
Fournier, Grouillet, Philippe, Denis, Desgranges, Mufatier and Erbeia [1991] by permission
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Henry, Blonder and Kazarinov [1989], © 1989 1EEE}

loss, is realized through deposition of phosphorus-doped glass (~8% of P),
followed by annealing at 1000°C or through high-pressure oxidation (about
2.45 x 10° Pa at 950°C). To form the core layers of silicon nitride (n ~ 1.97
at 1.2-1.6 um), LPCVD is employed with dichiorosilane, ammonia, and
oxygen as the raw materials (Henry, Blonder and Kazarinov [1989]). Two-
dimensional confinement of guided light is achieved by chemical etching
with hot (~174°C) phosphoric acid to form a mesa rib waveguide
(~4 x 0.12 um?) on silicon nitride; the etch rate is about 0.1 nm/s {(Henry,
Kazarinov, Lee, Orlowsky and Katz [1987]). The core is covered with a
plasma-deposited, 0.8 pm thick, silica superstrate. With these waveguides,
losses less than 0.3 dB in the 1.3-1.6 pm range were reported. Absorption
peaks at 1.4 and 1.52 ym associated with hydrogen in silica and silicon
nitride layers similar to the ones that occur in optical fibers were identified.
These peaks could be reduced substantially, however, by annealing the
waveguides at 1100-1200°C. The loss spectrum of a 4 pm wide silicon nitride
rib waveguide is shown in fig. 14; the inset shows a Bragg reflector grating
(see §4) on top of the waveguide (Henry, Blonder and Kazarinov [1989],
Henry [19917]). Waveguide refractive indices must often be known to an
accuracy of a few parts in 10*. For example, for a Bragg filter based on a
waveguide with a eore-cladding index difference of about 0.006, a change of

1,431 TECHNOLOGY 3o

124 - =
% s00gk  SO.-7 L7
= 1o 1004 4 F-hum -~
s 1100 SigNg
- 08 .
2 L o000k 0 T
® 06r
2
g
% 04 1.52um r St
*

02f

02848/t m
04 : } 1

VE T i 13
Wavelength(um} —

Fig. 14. Loss spectrum of a SiO,/Si, N, /SiO; rib waveguide of 4 um width. The inset shows
a Bragg reflector grating developed on the cover. (Reproduced with permission of 1EEE from
Henry, Blonder and Kazarinov [1989], © 1989 IEEE)

I nm. Extensive experimental data for the refractive index dispersion of
thermally deposited silica, phosphorus-doped silica, and silicon mtride

. glasses were reported by Lee, Henry, Orlowsky and Kometani [1988).

Fabrication of both planar and channel waveguides based on the compos-
ite structure Si/Si0,/Si;N,/SiO, was also reported from France (Valette,
Renard, Denis, Jadot, Fournier, Philippe, Gidon, Grouillet and Desgranges
[1989], Valette, Jadot, Gidon, Renard, Grand, Fournier, Grouillet, Philippe,
Denis, Desgranges, Mulatier and Erbeia [1991]). The silica buffer layer
{~2 um) is obtained by thermal oxidation of silicon, whereas the overlayer
of silica is obtained through PECVD. The guiding layer of silicon nitride
(n=2.014 at 0.633 um, and n= 1997 at 0.8 pm) is relatively thin (typically,
0.08-0.22 um) and is deposited by LPCVD. The fundamental mode spot
size in these waveguides is small; it typically varies between 0.5 and 2 pm.
The design key behind this technology is to produce a change in the effective
index of the guided mode through a controlled dry ion etching of the silica
overlayer. Figure 15a reproduces from Valetie, Jadot, Gidon, Renard, Grand,
Fournier, Grouillet, Philippe, Denis, Desgranges, Mulatier and Erbeia
[1991] a curve depicting change in n. (= An.), with the thickness of the
silica overlayer as a variable. Physically the nature of the curve can be
understood from the fact that varying thickness of the overlayer induces
modification to the evanescent tail of the modal field distribution. For
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Desgranges, Mulatier and Erbeia [1991] by permission of Xluwer Academic Publisbers.)

exceeds the characteristic penetration depth of the mode’s evanescent tail.
Alternatively, modification of An, can be induced by using another dielectric
of refractive index less than that of silica at the etched region. Futhermore,
the change in n. with respect to a variation in the silicon nitride layer
thickness is polarization sensitive, as shown in fig. 15b. The fundamental
mode spot size in these waveguides is relatively small, and hence these

waveguides are more suitable for coupling-to laser diodes than to single-
mode fibers. }

I.§3] TECHNOLOGY 13

The well-known flame hydrolysis deposition technology of fiber preform
fabrication is the basis of an alternative approach to realize several guided-
wave components on silicon (Kawachi [1990, 1991]). In this method
(Kawachi, Yasu and Edahiro [1983]) a combination of flame hydrolysis
deposition {FHD) and reactive ion etching (RIE) is employed to produce
channel waveguides with modal field profiles matched to optical fibers. Raw
materials in the form of a mixture of silicon tetrachloride (SiCl, ) and titanium
tetrachloride (TiCl,) or germanium tetrachloride (GeCl,) and SiCl, arc
injected into an oxyhydrogen torch and react by flame hydrolysis to produce
doped-silica soots, which get deposited on the silicon walers. A large number
of 7.62 cm silicon wafers (up to about 30) can be placed on a turntable of
about 100 cm diameter to collect doped-silica particles. The refractive index
of these synthesized glass particles can be controlled through variation in
the TiCl,/GeCl, flow rates. Initially, only SiCi, is fed into the flame to
deposit silica soot to form the buffer layer before the core layers of doped
silica are deposited. The deposited porous structure of buffer and core layers
is then consolidated by heating in a separate electric furnace from about
1200 to 1300°C. A planar structure is thus formed. Typicaily, the buffer layer
is about 20 pm thick and the core layer about 8 um.

Various processing steps sequentially involved in this technology are
shown in fig. 16. To form a ridge for channel waveguides, an overlayer of
about 2 um of amorphous silicon (a-Si) is deposited on top of the planar
waveguide through magnetron sputtering. The ridge pattern was defined by
conventicnal photolithography, followed by RIE of the overlayer with CBrF;
gas. Subsequently, RIE with a mixture of CyF, and C,H, is carried out to
¢tch out the deposited layers except the photolithographically defined ridge
region until the buffer layer is exposed. The core ridge is thus lormed and
then covered by depositing a thick overlayer of silica through flame hydroly-

" sis. The final product is a buried waveguide (Kawachi [19903). The thick

overiayer enables easy attachment of optical fiber arrays to the waveguide
and dicing of the waveguide without damaging the core.

Typically, for a single-mode waveguide, core size is 8 x 8 ym? and core-
cladding index difference (An) is 0.25% (Kawachi [1990]). Transmission loss
in these waveguides is about 0.1 dB/cm. For components that require high
resistance to bending, small cores (6 x 6 pm?) with a relatively high An (up
to 0.75%) are also reported (Takato, Jinguji, Yasu, Toba and Kawachi
[1988]). These waveguides exhibit a somewhat larger transmission loss of
about 0.3 dBfcm. These numbers are for the cores made of titania-doped
silica. Germania (GeO, ), whose melting temperature of 1086°C is lower than
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Fig. 16, Schematic of the flame hydrolysis deposition technology and its various intermediate
steps. (After Takato, Jinguji, Yasu, Toba and Kawachi [1988], © 1988 IEEE)

the value of 1850°C for titania, has been used to fabricate a long {~40 cm)
single-mode waveguide having An = 0.75% with fourteen 90° bends, each of
5mm radius on a silicon wafer (Kominato, Ohmori, Okazaki and Yasu
[1990], Kominato, Ohmori and Onose [1991]). Small amounts of phos-
phorus pentoxide (P, Q4) and boron trioxide (B, 0;), if added during depos-
ition of both the core and the cladding, help to reduce the consolidation
temperature of the deposited glass (Kominato, Ohmori, Okazaki and Yasu
[1990]). Transmission loss, including the bend loss, was measured to be
about 0.04dB/cm at 1.55 pm (Kominato, Ohmori and Onose [1991]).
Estimated loss in the straight part of the waveguide was about 0.01 dB/cm.

The FHD technique can be readily scaled up to produce highly multimode
waveguides with cross-sections of about 40 x 40 um? and to realize integ-
ration of various optoelectronic components (Kawachi, Yasu and Edahiro
[1983], Kawachi, Yamada, Yasu and Kobayashi [1985], Terui, Yamada,
Kawachi and Kobayashi [1985]). Since mismatch in the thermal expansion
coefficients between doped silica (~05x10"°K™!) and silicon (=
25x 1075 K ') is large, we might expect crack formation with such thick
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silica layers. However, stress in silica waveguides is compressive, and this
prevents cracking of the waveguides, although it leads to a birefringence of
about 4 x 10°* between the TM and TE modes (Kawachi [19900).

Two different methods have been proposed to control the birefringence
between the TE and TM modes in a silica-based waveguide on silicon. In
one method a pair of grooves is etched {through RIE) symmetrically around
the waveguiding ridge along its length in the cladding (Kawachi, Takato,
Jinguji and Yasu [1987]). These grooves lead to a release of stress on the
ridge; birefringence reduces to 0 as the ridge width decreases from about
500 to 50 pm (Kawachi [1990]). Alternatively, birefringence can be controlled
by depositing 2 magnetron-sputtered 6 pm thick film of a-Si on top of the
overcladding (Kawachi [1990]). The residual stress of the sputtered a-Si film
modifies the birefringence of the waveguide. Once again, the magnitude of
the resultant birefringence is determined by the width of the a-Si film.
Birefringence increases to about 5.5 x 10~ * for an a-Si strip width of 50 pm,
and then decreases to 2.5 x 107* as the strip width increases to about
200 pm (Kawachi [1990]). Microwave (2.45 GHz) plasma-assisted CVD at
about 1000°C was also used to form germania-doped silica and silicon
nitride waveguides on a silica substrate {Nourshargh, Starr and McCormack
[1986], Nourshargh, Starr and Ong [19897). In another recent investigation
{Sun, Myers, Schmidt and Sumida [1991]), a germania-doped silica channel
waveguide formed on silicon through FHD and RIE was transformed to a
circular, cross-sectional channel waveguide by employing a selective etching
of the waveguide in a buffered hydrofivoric acid (HF) solution (containing
a mixture of 49% HF and 40% NH,F solutions). In view of the circular
cross-section of the core, the coupling loss from fiber-to-waveguide-to-fiber
drops to about 0.5 dB from 1.8 dB, which is typical for a fiber-to-rectangular
core-to-fiber coupling (Sun, Myers, Schmidt and Sumida [1991]).

Silicon in combination with silica is used to form multilayer ARRO
waveguides, the functional principle of which was discussed in § 2. A second
cladding of about 2 pm thickness is grown on the silicon wafer by thermal
oxidation (fig. 9a). Subsequently, a thin (~0.1 pm) layer of poly-Si or titania
or silicon nitride is deposited by CVD to form the highly reflecting layer.
The silica core (~4 um) is finally deposited on the top by LPCVD. Loss of
about 0.4 dBjecm at 1.3pm for TE modes has been reported (Duguay,
Kokubun, Koch and Pfeiffer [1986]). The choice of materials for the first
cladding depends on the wavelength. For wavelengths less than 0.9 pm,
titania (n &~ 2.1) is the preferred material because poly-Si is highly absorbing
at these wavelengths, whereas for wavelengths longer than i.1 pm, poly-Si



36 GUIDED-WAYE OPTICS ON SILICON ' [1.§3

10 3 i T | T T

300 *K
Ng=1x10"%cm™

10“5—

1071 3

Optical Absorption, cm!

1072 1 1 ! ]

) i

1.0 12 1.4 1.6
Wavelength, um

Fig. 17. Optical absorption spectrum of n-type crystalline silicon; donor concentration Ny is

10'* cm 3. (Reprinted with permission of Solid State Technology from Soref and Lorenzo
[1988].)

(n ~4.5) is more suitable (Kokubun, Baba, Sasaki and Iga [1986]). On the
other hand, silicon nitride is expected to be useful in both wavelength ranges
(Pal, Singh, Ghatak and Bhattacharya [1990)). In a slightly different config-
uration (fig. 9¢), the first cladding is replaced by a 0.3 um layer of NA4S
glass* of refractive index ~1.54 to provide total internal reflection in contrast
to pure reflection that occurs in a normal ARRO waveguide (Baba and
Kokubun [1989])). In this configuration, which is called an ARRO-B wave-
guide, all the layers are deposited by radiofrequency magnetron sputtering,
and the measured losses for TE, and TM, modes were 0.5 and 0.7 dB/cm,
respectively, at 0.633 um (Baba and Kokubun [1989]).

All the silicon-based waveguides reported to date used silicon only as a
support material. However, due to its high transparency between 1.2 and
1.6 um (fig. 17), low-loss waveguide components in silicon are attractive for
optical fiber systems. Significant work using silicon as a waveguide was

reported by Soref and Lorenzo [1985, 1986, 1988], Soref and Bonnett -

{1987]), exploiting the fact that injection of free carriers reduces the refractive
index of a semiconductor. However, the presence of free carriers also induces
an increase in absorption coefficient. Free-carrier-induced decrease in the
refractive index and increase in the absorption cocfficient are given by (Moss
[1959], Soref and Bonnett [1987], Lubberts, Burkey, Moser and Trabka
{1981))

* A proprictory trade name is used to enable the readers to reproduce the experiment; other
glasses might work as well or better.
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An= —(q* 2*/8r*c’ney) [N /me, + Ny/m¥ ], (3.1)
and
Aa = (@13 /4r2 P ngo ) (N, /mE2 e + No/m&l iy ], (3.2)

where g, A, £, and n are electronic charge, optical wavelength, free-space
permittivity, and refractive index of pure silicon. N,, m,,, and u, represent
freg-clectron concentration, conductivity effective mass of an electron, and
clectron mobility, respectively; the corresponding quantities with h in the
subscript represent the same characteristic quantities for holes. Free-carrier-
induced changes in the real (An) and imaginary (Ak) parts of the refractive
index, as well as the absorption coefficient (Aa), are plotted as a function of
carrier concentration in figs. 18a and b. Thus, optical waveguides can be
formed by the epitaxial growth of a layer of lightly doped silicom on a
heavily doped silicon substrate. The epilayer forms the core of an optical
waveguide suitabie for operation at 1.3 pum (Soref and Lorenzo [1985], Soref
and Bonnett [1987]). To induce a sufficient change in the refractive index

of silicon through carrier doping, carrier concentrations greater than
10' cm ™3 are reaunired Tvnicallv for N ~ 1018 sm~3  Am ic ahant
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—0.9 x 1072 at 1.3 ym (Soref and Bonnett [1987]). Fabrication of several
slab and channel waveguides withnonn*,ponp*,nonp*,andponn*
have been reported. At 1.3 um, these multimode waveguides exhibit loss
ranging from 5 to 13 dB/cm in the slab and from 15 to 10 dB/cm in the rib
channel geometry (Soref and Bonnett [1987), Hall [1987]).

Another method of forming optical waveguides in silicon involves the
separation by implanted oxygen (SIMOX) technique (Hall [1987], Kurdi
and Hall [1988]). Fabrication of planar waveguide by this technique was
recently reported by Weiss, Reed, Toh, Soref and Namavar [1991]. Oxygen
ions at a dose of 1.6 x 108 cm ~? at 160 keV are implanted in silicon followed
by thermal annealing for 6 h at 1300°C. Ion implantation lcads to a 0.4 ym
thick oxide layer buried under a 0.15 pm silicon layer. Subsequently, a 2 ym
thick doped-silicon layer with a carrier concentration of about 10'® cm ™3 is
grown by CVD over the top surface. This layer of doped silicon forms the
cover over the intermediate core of undoped silicon (Weiss, Reed, Toh, Soref
and Namavar [1991]). Thus, the implanted silica layer essentially separates
the core and substrate, both of which are made of silicon to prevent leakage
loss. Loss measurements made at 1.15 and 1.523 um with He-Ne lasers
indicated a loss minimum of 8 dB/cm for the TE, mode at 1.15 pm (Weiss,
Reed, Toh, Soref and Namavar {1991], Weiss and Reed [1991]).

Fabrication of single-mode waveguides in silicon through in-diffusion of
Si-Ge alloys was also reported (Splett, Schmidtchen, Schiipert and
Petermann {1990]). The process involved diffusion of Ge,Si; _, alloy into a
well-defined section of the silicon wafer at 1200°C for 65 h; typically, x = 0.5.
Single-mode ridge waveguides having x =0.01 were fabricated through aniso-
tropic etching with a mixture of 100 g of KOH and 100 mL of H, O at 60°C.
The best transmission loss was about 3dB/em at 1.3 um (Splett,
Schmidtchen, Schiipert and Petermann [1990]).

Fabrication of buried optical waveguides using electron beam irradiation
of silica in a slab geometry was recently reported (Barbier, Green and
Madden [1991]). An electron accelerating voltage of about 25 keV was used
to irradiate the samples, leading to a waveguide depth of 7.5 um. Lowest
measured loss was about 0.3 dB/cm at 0.6328 pm.

§ 4. Guided-Wave Optical Components on Silicon

Although the technology of silicon-based integrated optics is relatively

R . .
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reported. They include Fresnel lenses, beam splitters, dispersive mirrors,
couplers, polarization devices, spectrum analyzers, displacement sensors,
refractive index sensors, wavelength and frequency division multiplexers and
demuitiplexers, Bragg cells, optical switches, Y branches, X crosses, direc-
tional couplers, 8 x 8 star couplers, waveguide arrays, phase shifters, birefrin-
gence conirollers, resonators, Bragg reflector Jasers, and Bragg reflection
filters. By means of photolithography two doped-silica FHD waveguides
separated by only a few micrometers can be designed on silicon to form a
directional coupler (fig. 7) (Kawachi [1990], Okamoto, Takahashi, Suzuki,
Sugita and Ohmori [1991]). The intermediate region between the two cores
is easily filled with cladding glass during the consolidation step of the FHD
process. These couplers are polarization insensitive. Several such guided-
wave optical beam splitters suitable for splitting, redirecting, tapping, and
combining optical signals have been fabricated through FHD waveguides
on silicon (fig. 19) (Kawachi [1990]). The excess loss due to coupling from
fiber-to-waveguide-to-fiber in the Y configuration of the beam splitter is
about 1 +0.5dB in the 1.2 to 1.6 pm wavelength range. In the directional
coupler configuration {fig. [9b), high wavelength selectivity of the directional
couplers allows the beam splitter to operate at 1.3 or 1.55 um with an excess
loss of less than 1 dB. Wavelength division multiplexers and demultiplexers

: 8 Outputs

Directional couplers

8 Outputs

Fig. 19. Schematic of a silica-based, single-mode (1 x 8) optical waveguide beam splitter in two
different configurations: (a) Y-shaped branch, (b) directional couplers. {After Kawachi [1990])
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based on directional couplers can be constructed either in a single coupler
configuration or by combining two directional couplers along the z-direction
in a Mach-Zehnder interferometer on silicon (Kobayashi, Kito, Yasu and
Kawachi [1989], Kawachi [1990], Jinguji, Takato, Sugita and Kawachi
[1990]). In the single-coupler geometry, which is more suitabie for realizing
large wavelength separation (1.3 and 1.5 um), the coupler is designed to have
zero coupling at one wavelength (4,) and 100% coupling at the second
wavelength (4,). Thus, as shown in fig. 20a, light at 4, will exit through the
output port of the first waveguide and 4, will exit through the output port
of the second waveguide. In the second configuration two directional cou-
plers are joined through two intermediate waveguide arms with a small path
difference AL between them (fig. 20b). To obtain good wavelength multi-
plexing and demultiplexing efficiency for arbitrary combinations of 1, and
4, submicrometer accuracy is required in AL. This accuracy is readily
attained through photolithography during the mask preparation (Kawachi
[1990]).

The temperature coefficient of the refractive index of silica, dn/d T, is about
1073 Thus, a temperature increase of 6.5°C will induce a phase shift of =
to the guided mode in a 10 mm silica waveguide. Typically the power
consumption will be only 0.5 W. A thin-film chromium heater can be loaded
on top of a single-mode buried silica waveguide in silicon (as shown in

a) 4

2 Ao

Single directional coupler configuration

b}
i
M= N Ve
) _/m A
Extra Length (aL)
MZ Interferometer configuration

Fig. ?0. Two different directional coupler configurations for realizing wavelength-division
multiplexer or demultiplexer: (a) single directional coupler, (b) Mach—Zehnder interferometer.
(After Kawachi [1990].)
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fig. 21) to realize such an in-line thermo-optic phase shifter. Optical frequency
division multiplexers or demultiplexers have been fabricated by loading a
Mach-Zehnder waveguide interferometer in silica with such a thin-film
chromium heater (Toba, Oda, Nosu and Takato [1989], Takato, Kominato,
Sugita, Jinguji, Toba and Kawachi [1990]). As shown in fig. 21, two 3 dB
waveguide couplers are combined through two waveguide arms with a path
difference of AL between them. A thin-film heater is loaded on one arm to
induce an additional phase shift and, hence, a corresponding additional
optical path length difference between the two arms to obtain frequency
tuning in the demultipiexer. The path length difference AL determines fre-
quency spacing Af through (Kawachi [1990])

c

4.1
2n AL’

Af=

where n is the refractive index of the waveguide and ¢ is the free-space
velocity of light. An optical path difference (AL) of 17 mm will cause Af to
be about 6 GHz;, Af is related to wavelength spacing A/ through

M=—%M. 42)
Thin film heater
1 4

Directional coupler

Thin fitm heater

Fig. 21. Frequenty division multiplexer or demultiplexer with thermo-optic phase shifter on a
milina_harad Afnnakh Toahadas iwavamiids intarfarnmatas (Afar Thlbata oaell Vacie Tabka aed
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A value of Af of 6 GHz amounts to a wavelength spacing of about 0.05 nm
in the 1.55 pm wavelength band. Frequency tuning in these multiplexers or
demultiplexers can be obtained through modulation of the optical path-
length difference between the two arms of the interferometer by means of
the phase shifter. This thermo-optic effect can also be used to perform
switching operations in an otherwise passive silica waveguide, although the
switching time is slow (~ 2 ms) (Takato, Jinguji, Yasu, Toba and Kawachi
[1988], Kawachi [1990]). A thermo-optic switch is configured by combining
two directional couplers through two intermediate waveguide arms as in the
thermo-optic frequency division multiplexer. However, there is one differ-
ence. In contrast to loading one of the waveguides as in a frequency division
multiplexer, both waveguide arms are loaded with thin-film heaters in a
switch, In the absence of any electrical input to the phase shifters, the switch
operates in the cross-state. When electrical power corresponding to a n phase
shift is supplied to either of the phase shifters, the switch operates in the
parallel state.

In an alternative scheme a photo-induced change in the refractive index
of germania-doped silica has been used in an asymmetric Mach-Zehnder
waveguide nterferometer-based frequency division multiplexer to obtain
frequency tuning {Hibino, Kominato and Ohmori [1991]). A 20 W Ar™ ion
laser is used to irradiate the waveguide for about an hour, which leads to a
maximum refractive index change of about 4 x 107 % at 1.3 pum. The frequency
shift (Af) due to laser irradiation relative to free spectral range (f, = 25 GHz)
of the multiplexer is described by {(Hibino, Kominato and Ohmeori [1991]),

%,[ =2 An{L+AL)4, 4.3)
where An is the photo-induced refractive index change in the lower arm of
the asymmetric Mach—Zehnder interferometer, L is the length of the shorter
waveguide between the two 3dB couplers of the interferometer. Photo-
induced change in the refractive index has also been observed in titania-
doped silica waveguides (Hibino, Abe, Kominato and Ohmori [1991]). A
maximum change in the refractive index induced by an Ar* laser was about
1 x 10~ % in a Mach-Zehnder waveguide interferometer in which the concen-
tration of titania in the core was about 0.3 mol%. In another experiment,
the laser-induced change in the refractive index of a silicon oxynitride-silica
waveguide was used to tune the optical power coupling ratio to any arbitrary
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either in parallel or in series to form a variety of devices. Examples include
128 channel selective optical frequency division multiplexed filter (Takato,
Sugita, Onose, Okazaki, Okuno, Kawachi and Oda [19911), 8 x 8" matrix
thermo-optic switch through sixty-four 2 x 2 switching units (Sugita, Okuno,
Matsunagu, Kawachi and Ohmori [1990]), and 8-tap optical transverse filter
(Kawachi [1991], Sasamaya, Okuno and Habara [1991}). Performance char-
acteristics of a wide variety of FHD waveguide components including ring
resonators on silicon were recently reviewed (Kawachi [1990, 1991]).

FHD silica ridge waveguides in which germania and phosphorus pentox-
ide are used as co-dopants have also been reported to generate the second
harmonic of a Q-switched Nd-YAG laser pump at 1.064 pm (Kashyap,
Ainslie and Maxwell [1989]). Frequency doubling is due to a. nonlinearity -
similar to the quadrupole interaction known to occur in silica fibers
(Osterberg and Margulis [1986]). A 200-fold increase in the yield of the
frequency-doubled radiation has been observed when the waveguide is
seeded for about an hour with a 0.532 um light.

Several other guided wave components and devices based on waveguides
on silicon, such as the spectrum analyzer, Fresnel lenses and mirrors, Bragg
cell, displacement sensor, and liquid refractive index sensors were reviewed
by Valette, Jadot, Gidon, Renard, Grand, Fournier, Grouillet, Philippe,
Denis, Desgranges, Mulatier and Erbeia [1991]. In the spectrum analyzer,
1.5 um of ZnO, which is a piezoelectric material, is deposited by magnetron
sputtering from a zinc target on top of a silicon nitride waveguide leading
to the composite structure Si/SiO; /S;N,/SiO,/Zn0. Surface acoustic waves
are generated and propagated through the ZnO film by feeding electrical
signals to an interdigital transducer (IDT) finger laid on it, thereby creating
a phase grating on the waveguide. The guided waves experience Bragg
diffraction by this grating. Scanning the spatial locations of the diffracted
light spot by means of a photodiode array can be correlated to the frequency
content of the electrical signal feeding the ZnO piezotransducer. The theory
of such acousto-optic devices has been described by Ghatak and Thyagarajan
[1989]. Two different versions of such a spectrum analyzer, in-line and folded
types, were reported (Valette, Lizet, Mottier, Jadot, Gidon and Renard
[1984], Mottier, Valette and Jadot [1986], Vaictte, Mottier, Lizet and Gidon
[1986]). Typical characteristics of these devices operating at 0.835 pm are
shown in table 2. The displacement sensor is essentially a Michelson interfer-

ometer in which all the optical components, such as lenses, beam splitter,
mirrare and nhaca chiftare are inteorated nn the cilicon wafer. The interfer-
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TABLE 2
Intcgratgd optical spectrum analyzer: performances of in-line and folded types {From Valetic,
Jadot, Gidon, Renard, Grand, Fournier, Grouillet, Philippe, Denis, Desgranges, Mulatier and
Erbeia [19911)

Device parameter In-line type Folded type
Bandwidth (MHz) 180 480
Resolution (MHz) 6 3(15-2)*
Central freq. (MHz) Acoustic mode 600-700**
Acoustic mode Rayleigh classical Sesawa
Integrated lenses Fresnel lenses Curved Fresnel lenses
Focal length (mm) 10 20
Resolved spots 20 160
Dynamic range (dB) 25 (30) 10-15 (25)
Access time 20 ps S5us(2)
Photodetector array Serial-parallel Serial-parallel

CCD 2 x 10 pixels CCD 16 x 10 pixels
Optical source HLP 1400 HLP 1400

{0.835 pm) (0.835 pm)

* Numbers in parentheses indicate performances possibie in the near future.
** Transducer array with 700 MHz central frequency leads to the generation of a third
acoustic mode beyond 860 MHz.

wafer (Gidon, Valette and Schweizer [1985], Valette, Renard, Jadot, Gidon
and Erbeia (1989], Valette, Renard, Jadot, Gidon and Erbeia [1990]). The
working distance of this sensor is 10 cm, and it can make linear distance
measurements with an accuracy of 0.1 um. Furthermore, if a liquid of refrac-
tive index less than that of the cover silica layer is placed on the sensing
arm of the interferometer, it will induce a phase change in the guided beam.
As a result, a fringe shift in the interference pattern will occur, which can be
correlated with the refractive index of the sample liquid (Valette, Renard,
Jadot, Gidon and Erbeia [1990]). '

Several optical components, such as Fresnel lenses, mirrors (plane, para-

bolic, and elliptical), polarization converters or dividers, and phase shifters,
have been reported on oxidized silicon substrates through partial or compiete
etching of the silicon overlayer (Mottier and Valette [1981], Valette, Morque
and Mottier [1982], Gidon, Valette and Mottier {1985], Valette, Renard,
Denis, Jadot, Fournier, Philippe, Gidon, Grouillet and Desgranges [19897).
U-grooves are etched in silicon to achieve low-loss (<0.7 dB) connection
between single-mode fibers and channel waveguides grown in silicon (Grand,
Denis and Valette [1991]). The process uses. RIE to create a slot of a width
equal to the diameter of the fiber to be connected. This is followed by deep
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to the groove with a glue (Grand, Jadot, Valette, Denis, Fournier and
Grouillet [1990]). A set of four U-grooves are formed to construct a four-
channe! wavelength multiplexer or demultiplexer (fig. 22) (Valette, Gidon
and Jadot [1987]). In this device & waveguide Fresnel mirror is incorporated
on the silicon substrate to disperse and focus the four wavelengths (channel
separation =20 nm around 1.5 pm) to four spatial locations at one edge of
the substrate. The U-grooves are etched on these locations to form micro-
guides and make optical coupling with the four optical fibers. Cross-talk
between the channels is less than —15dB (Grand, Jadot, Valette, Denis,
Fournier and Grouillet [1990]). Recently, fabrication of a ringe resonator

-operating at 0.8 pm was also reported. A finesse of 48 + 1.5 has been achieved

at a propagation loss of 0.028 + 0.009 dB/cm; the effective diameter of the
ring is about 3 cm (Bismuth, Gidon, Revol and Valette [1991]).

A large number of novel components based on phosphosilicate or silicon
nitride—core silica wavcguides on silicon was reviewed by Henry, Blonder
and Kazarinov [1989]). Examples include star couplers (Dragone, Henry,
Kaminow and Kistler [1989], Dragone [1991], Dragone, Edwards and
Kistler [1991)), polarization splitters (Shani, Henry, Kistler, Kazarinov and
Orlowsky (1990]), four-channel Mach-Zehnder multiplexers (Verbeek,
Henry, Olsson, Orlowsky, Kazarinov and Johnson [1988]), Bragg reflector
lasers (Olsson, Henry, Kazarinov, Lee, Orlowsky, Johnson, Scotti, Ackerman
and Anthony [1988]), and Bragg reflection filters (Henry, Shani, Kistler,
Jewell, Pol, Olsson, Kazarinov and Orlowsky [1989a,b]). As shown in fig. 23
in their N x N star coupler geometry (N up to 40), an array of phosphosilicate
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Fig 22. Schematic of a wavelength division multiplexer or demultiplexer integrated with a

waveguide Fresnel mirror. (Reproduced from Valette, Jadot, Gidon, Renard, Grand, Fournier,

Grouillet, Philippe, Denis, Desgranges, Mulatier and Erbeia [1991] by permission of Kluwer
Academic Publishers.) .
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Free-spoce planar Sitica
wave guide wavequide array

Silicon substrote

Fig. 23. Schematic of a N x N star coupler on silicon. {Reproduced with permission of IEEE
from Henry, Blonder and Kazarinov [1989], © 1989 1EEE)

glass cores merges into a free-space slab waveguide formed on the silicon
substrate. The light injected by the array waveguides into the slab is collected
by a corresponding array of waveguides on the other side of the slab. For
a 19 x 19 star coupler, fiber-to-fiber loss was only about 3 dB more than
the excess loss due to division by 19 {Henry, Blonder and Kazarinov [1989]).
The polarization splitter consists of a Mach—Zehnder interferometer formed
with phosphosilicate glass waveguides in which onc of the arms has an
additional 22 nm patch of silicon nitride (fig. 24) (Henry, Blonder and
Kazarinov [1989]). The silicon nitride layer is added before deposition of
the phosphosilicate glass. The silicon nitride layer is highly birefringent, and
induces a phase shift to the TE polarization larger than the TM polarization.

4

SiyN, Layer

Fig. 24. Schematic of a polarization splitter based on a sitica waveguide Mach-Zehnder

interferometer, in which a patch of SiyN, is introduced in onc arm to produce a lincar

birefringence between the TE and TM modes. (Reproduced with permission of 1EEE from
Henry, Blionder and Kazarinov {19893, © 1989 IEEE)}
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The length of the silicon nitride layer is adjusted to induce a 2r phase change
in the upper arm so the TE polarization crosses over to the lower port. The
TM polarization is made to undergo a phase change of n only in the upper
arm by adjusting the additional length AL (fig. 24). Thus, TE polarization
may exit through the lower port while the TM mode exits through the other
output port. The insertion loss is in the range of 1.6 to 2.0dB, whereas
suppression of unwanted polarization is 14 to 21 dB. A polarization splitter
that has an insertion loss of about 1.5dB and uses a Y-branch waveguide
made with phosphosilicate glass and silicon nitride cores was fabricated by
Shani, Henry, Kistler, Kazarinov and Orlowsky [1990]. It is an adiabatic
device based on an asymmetric Y-branch. A 7 um phosphosilicate glass core
is gradually tapered to a 5 um waveguide 5 mm in length, which branches
off adiabatically (over a length of 1 mm) into a pair of waveguides: a 55 nm
silicon nitride core waveguide and a 7 pm phosphosilicate glass core wave-
guide. The TE mode can be made to branch to the nitride guide by an
appropriate choice of the nitride layer thickness, which is birefringent, while
the TM mode exits through the phosphosilicate glass waveguide. The silicon
nitride waveguide eventually makes a transition to a phosphosilicate glass
waveguide. Cross-talk for the unwanted polarization is in the range of —15
to —34 dB at 1.55 um. A four-channel multiplexer with a channel separation
of 7.7 nm was fabricated on silicon by combining three Mach-Zehnder
interferometers formed with phosphosilicate glass waveguides in which fiber-
to-fiber insertion loss is 2.5dB (Verbeek, Henry, Olsson, Orlowsky,
Kazarinov and Johnson [1988]). The multiplexer is almost polarization
insensitive. The additional path length AL, is chosen to yield a channel
spacing of 144 nm between 1, and A, (fig. 25). The other wavelengths A,
and 2, are chosen with the same channel spacing. The third Mach-Zehnder

1|L_\—/A£1L/
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? A

BLy=24L, -2
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Fig. 25. A four-channel wavelength multiplexer based on Mach-Zehnder interferometric
elements in a doped-silica waveguide on silicon. (Reproduced with permission of IEEE from
Verbeck, Henry, Olsson, Orlowsky, Kazarinov and Johnson [1988], © 1988 IEEE))
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interferometer combines all the wavelengths into a single channel. All the
variables AL,, AL,, and ALj;, which are required to a high precision in the
multiplexer design, are controlled at the mask development stage. The fiber-
to-fiber insertion loss is 2.5 dB.

High-resolution Bragg reflection filters that operate at 1.3-1.6 um require
line and spatial features of the grating to be about 0.25 um. A spatial
frequency-doubling lithography (SFDL) technique with an excimer laser in
the deep ultraviolet region is used for patterning such periodic features on
silicon waveguides (Olsson, Henry, Kazarinov, Lee and Orlowsky [1987)],
Henry, Blonder and Kazarinov [1989], Henry, Shani, Kistler, Jewell, Pol,
Olsson, Kazarinov and Oriowsky [1989a,b]). The SFDL technique can be
used to generate a number of gratings simultaneously on the same mask. In
another set of experiments, holographic techniques are employed to pattern
gratings of a period of about 0.5 um on the top surface of a silicon nitride
waveguide to form a silicon chip Bragg reflector (fig. 14) (Ackerman, Kwo,
Silva and Wagner [1988]). When such a reflector is coupled to a laser diode,
single-mode operation of the laser can be attained near the Bragg wavelength
(Henry, Blonder and Kazarinov [1989], Olsson, Henry, Kazarinov, Lee,
Orlowsky, Johnson, Scotti, Ackerman and Anthony [1988]). Under certain
operating conditions, temperature variations ¢an cause a great reduction in
the line width of these lasers. Typically, Av is 1-50 MHz (Henry, Shani,
Kistler, Jewell, Pol, Olsson, Kazarinov and Orlowsky [1989a,b]); in one
experiment, Av was 110 kHz (Ackerman, Kwo, Silva and Wagner [1988]).
In another version a 1.5 pm laser was coupled to an integrated optic quarter-
wave shifted Bragg cavity to realize an ultra-narrow line width
(Av ~ 135 kHz) resonant optical reflection laser (Olsson, Henry, Kazarinov,
Lee, Johnson and Orlowsky [1987]). Such a laser with Av as low as 10 kHz
was reported by Ackerman, Dabura, Shani, Henry, Kistler, Kazarinov and
Kwo [1990]. . ‘

Electrorefraction or carrier-induced refractive index change in silicon has
been used to realize an electro-optic switch in silicon (Soref and Lorenzo
(1986, 1988], Soref and Bonnett [1987)). Electrorefraction, which is related
to the well-known Franz—Keldysh effect of electro-absorption, arises due to
electric field-induced tunneling between the valence and the conduction
bands. On the other hand, a catrier injection of 10'® cm™* can induce a
change of 10”7 in the refractive index of silicon. An infrared light modulator
has been fabricated by using such a carrier-induced change in the refractive
index of silicon (Kanada, Fujisawa and Kikuiri [1986]). Fabrication of an
optical power divider with two epitaxially grown, crossed silicon multimode
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rib waveguides with a donor concentration {np) of about 9 x 10" em™? on

a heavily doped (np ~ 3 x 10'° cm ) silicon substrate to operate at 1.3 pm
has also been reported (Soref and Lorenzo [1986]). .

§5. Active Waveguides on Silicon

Considerable progress has been achieved in recent ycars on rare earth-
doped fiber lasers and amplifiers (Urquhart [1988]). Fiber lasers wifh a
variety of rare earth dopants such as neodymium, erbium, thulium, holmlum,
yiterbium, praseodymium, and samarium, and based on silica and fluorozir-
conate glasses as host, have already been reported (Digonnet [1990, 1993}).
Since the materials involved in silica-based optical waveguides on silicon
are very similar to those of low-loss optical fibers (Pal [1979]), it should be
possible to realize active components like lasers and amplifiers in silica-
based planar waveguides on silicon. Indeed, continuous wave lasing at &
wavelength of 1.0515 um was achicved by fabricating a neodymium-doped
silica core ridge waveguide 20 pm wide on a silicon substrate by FHD and
RIE {Hibino, Kitagawa, Shimizu, Hanawa and Sugita [1989]). Neodymium
is incorporated into the silica waveguide by immersing the FHD soot glass
consisting of a network of silica, boron, and phosphorus in an alcohol
solution of 0.5% of NdCl,+6H,O before the sintering step. Neodymium
jon concentration is estimated to be about 2000 ppm. A 6 um wide ridge
pattern is formed on the sintered core of a neodymium-doped phosphosilicate
glass waveguide by RIE followed by deposition of silica overciadding by the
FHD process. Light from a Ti:Al,O, laser tuned into 0.8 um wavelength
and pumped by an Ar* laser is injected into a single-mode fiber, which is
butt-joined to the neodymium-doped waveguide as the pump source. A
second single-mode fiber is butt-joined to the other end of the waveguide to
collect the guided light. The resonator is formed by depositing dielectric
mirrors onto the fiber end faces. The lasing threshold is about 150 mW and
the slope efficiency is 0.12% (Hibino, Kitagawa, Shimizu, Hanawa and
Sugita [1989]). The FWHM of the emitted lasing peak wavelength of
1.0515 um is about 0.12 nm, and the measured transmission loss at the lasing
wavelength is 0.85 dB/cm.

Fabrication of a neodymium-doped silica waveguide laser with an § pm
wide core was recently reported (Hattori, Kitagawa, Ohmori and Kobayashi
[1991]). A commercially available iaser diode emitting at 0.805 um is used
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end faces. The iasting threshold is only 25 mW at a slope efficiency of 1.2%.
It was made possible by a careful analysis of the scattering loss induced by
neodymium doping and dependence of the lasing threshold on the width of
the core. Lasing (continuous wave) at two wavelengths around 1.589 and
1.604 um were recently demonstrated with an erbium-doped phosphosilicate
glass waveguide fabricated by following the same approach through FHD
and RIE (Kitagawa, Hattori, Shimizu, Ohmon and Kobayashi [1991]).
Erbium ion concentration is estimated to be 8000 ppm. A Ti: Al O, laser
tuned into 0.98 pm and pumped by an Ar”* laser is used as the pump source.
Dielectric mirrors to form the resonator are deposited directly onto the
waveguide end faces. The pump power required for lasing is about 49 mW
with a slope efficiency of (.81%. Transmission loss at 1.54 um is about
0.82 dB/cm. In some earlier experiments, silicon diodes not in a waveguide
configuration, after being implanted with erbium ions, had yielded emission
of 1.54 pm radiation at room temperature (Ennen, Schneider, Pomrenke and
Axmann [1983], Ennen, Pomrenke, Axmann, Eisele, Haydl and Schneider
[1985]). This scheme of erbium ion implanted emission was consolidated in
silica-based waveguides to realize optical emission at the 1.5 um wavelength
region (Polman, Lidgard, Jacobson, Becker, Kistler, Blonder and Poate
f1990], Lidgard, Polman, Jacobson, Blonder, Kistler, Poate and Becker
[1991]). In particular, fluorescence was observed at 1.54 um from phospho-
silicate-core silica glass waveguides on a silicon substrate by implanting
3.5 MeV erbium ions into the waveguide at an implantation fluence in the
range of 10'® to 10'® ions/cm?. Fluorescence lifetime is typically 10 ms, which
is of the same order as that observed in erbium-doped fibers. The radiation
at 488 nm from an Ar* laser is used as the pump. It should be possible to
incorporate optically active rare earths in the silica network of an ARRO
waveguide on silicon. Work is under way in our laboratory to realize a near-
infrared source through such a scheme.

§ 6. Conclusions

Starting from the earliest experiments on silicon-based waveguides in the
1970s, we have described different technologic options and the status of
components realized or reported to date, and the theory of propagation in
optical waveguides, both in planar and rectangular geometries. The review
should provide a comprehensive description for design, fabrication and
estimation of silicon-based optical waveguides and associated passive and
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soots were sintered into a transparent glass by means of a traversing (back-and-forth) burner, which was then coltapsed to form
a solid rod, what is now known as preform, and drawn into a fiber separately in another fiber drawing furnace [4,5]. This
process was, however, inherently slow and typically required ~ 24 hours to form a preform suitable for drawing into a few
kilometer tong fiber; moreover, the process yielded only single-mode fibers. A number of variations of this basic process
of vapour phase oxidation was subsequently developed by several other groups as proprietary process of the respective groups,
including the Coring group. These were called modified chemical vapour deposition (MCVD), outside vapour deposition
(OVD), plasma-enhanced MCVD (PMCVD), plasma-activated CVD (PCVD), vapour phase axial deposition (VAD) and
plasma outside deposition (POD) [5,6]. These process improvements coupled with shift to longer operating wavelengths,
where sitica fibers exhibit inherently lower loss, led to a steady decrease with year in the transmission loss of high-silica fibers
down to 0.2 dB/km at 1.55 um in 1979 [7]. The lowest loss reported to-date was (.154 dB/km in a state-of-the-art fiber 18],
which is almost the theoretically achievabie lowest loss in silica fibers. Simultaneously, life of GaAlAs semiconductor lasers
with respect to cw operation at room temperature had also steadily increased from few hours in 1970 to several thousands of
hours in the next few years. Semiconductor diode lasers have emerged as the most viable lightwave sources for lightwave
communication. Improvements in the performance of these two key components in the 1970s have paved the way for rapid
introduction of fiber optics in the communication networks [9]. However, due to factors like non-availability of fiber splicing
machines suitable for single-mode fibers and apprehensions about high losses in coupling light to small cores of single-mode
fibers, first generation fiber optic telephone links, which went public and operated at bit rates up to ~ 100 Mb/s, were all
based on graded index multimode fibers of core diameter ~ 50 um. Ever since, the applications of lightwave communications
in the telecommunication industry around the world have been wide spread. Optical fibers have become the transmission media
of choice in almost all areas of communication be it undersea cable systems, terrestrial longhaul networks, trunklines linking
switching offices in metropolis or subscriber loop systems serving end customers. More recently CATV industry has been
deploying fibers for trunking and distribution. Fiber based local area networks have been introduced to extend computer
networking capability, Approximately, 60 million kilometers of fibers have been instalied around the world as of 1995. In
North America alone, the market for fiber optic cables has been projected to grow annually @ 17% - from $ 2.2 billion in
1994 to $ 4.8 billion in 1999. In the last nine years, undersea cable suppliers have installed an amount of fiber cables, which
nearly equalled all of the copper cables installed over the 37 years from 1950 to 1987. Rarely since the discovery of
transistors, have we noticed such a fantastic growth rate of a new technology. Double digit growth rate is continuing unabated.
According to Charles Kao[10], three major attributes of fiber optics are its almost infinite BW, nearly zero cost and nearly
zero loss - which make these optical fibers the ideal choice for broadband - ISDN networks. Indeed, these optical fibers have
quietly become the backbone of much-hyped information super-highway information super highway. To meet the demands
of information super highway research continues to explore efficient use of vast information BW of low-loss single-mode
fibers. Although the demand for higher transmission capacity and fonger transmission length was the key driving force for
this phenomenal growth rate, it was improvements in certain fiber characteristics which essentially dictated the technology
development in terms of newer generations of lightwave communication.

FIRST GENERATION SYSTEMS

The first generation lightwave systems operating with AlGaAs semiconductor light sources (LDs and LEDs) emitting at
wavelengths around 0.82 um in conjunction with multimode graded index core fibers and silicon photodiodes were
commercially introduced in 1977-78. They operated at a bit rate ~ 50-100 Mb/s and enabled a bir-rate-distance product [BL
~ 500 (Mb/s)-km] with repeater spacings of the order of 8-10 km. This distance approximately corresponded to spacings
between the exchanges typically encountered within metropolis throughout the world and thus repeaterless metropolitan area
networks (MAN) could be contemplated. This implied immediate decrease in installation and maintenance costs associated
with conventional coaxial systems due to elimination of repeaters, which were otherwise spaced every 2 kilometers or so.
The choice of the operating wavelength (~ .82 pm) was dictated by the ready availability of commercial grade light sources
(which could be directly modulated) and efficient detectors based on silicon. Added to it, the transmission loss around this
wavelength in high-silica fibers also exhibited relatively low loss ~ 3-4 dB/km [11]. However, the bit-rate was limited to
~ 100 Mbit/s in practice due to intermodal dispersion[12,13]. Although theoretical mode! for optimum profiled multimode
fibers, which were fabricated to follow the following so called power-law refractive index profile

(r) = m2[1-2A(r/a) 9], r/a<i
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window. However, commercial introduction of fourth generation systems based on operation at 1.55 pm had to wait almost
another 10 years. This was mainly because conventional fibers optimized for the 1.31 pm window exhibited excessive
chromatic dispersion [~ + 18-20 ps/(pm-km)] at 1.55 pum. Conventional fibers are characterized by a step refractive index
(known as matched index clad) or depressed index cladding (DIC); these are shown in Fig. 6. Typically, chosen A and 24
are < 0.3% and = 8.7 pm, respectively which lead to a resultant mode field diameter (MFD) of 9.5 ym at 1.31 pum (10.5
pm at 1.55 um) and cut-off wavelength (A of 1260 nm, while chromatic dispersion at the wavelength of 1.31 um is targeted
to be < 3.5 ps/(nm-km). DIC fibers, on the otherhand, are characterized by two additional profile variables: A and 25, which
allow greater flexibility in optimising fiber designs. Waveguide dispersion in a DIC fiber can be appropriately tuned by
adjusting A and A’ to yield chromatic dispersion (< 3.2 ps/(nm-km) over the range 1285 < Ao (nm) < 1330 with A, =
1310 + 10 nm {20). Typically, A = 0.37%, A’ = 0.12%, 22 = 8.3 pm, bla = 6.5 and A, is less by about 100 nm from
matched clad fiber having identical core parameters [21). Zero dispersion slope (Sp) it both the fiber varieties are 0.09
ps/(nm2-km). At 1,55 pm, these two differently designed fibers, typically exhibit 0.19 dB/km and 0.2 dB/km transmission

loss, respectively,

In mid-1980s, it was realized that a considerable advantage in terms of pushing repeater spacings to much longer distances
can be achieved if the fiber designs could be so tailored to shift Azp to coincide with the lowest loss wavelength of 1.55 um.
The most common types of laser diodes available for operation at 1.55 um are Fabry-Perot (FP) and Distributed Feedback
(DFB) lasers based on InGaAsP semiconductors. FP lasers are characterized by broader spectral width (FWHM = 2 10 §
um) than DFB lasers (cw spectral width « 1 nom). However, due to chirping and mode hoping etc. at high modulation rates
(= 2 Gb/s) DFB lasers can exhibit dynamic spectral widths ~ 1to 2 nm. Further, DFB lasers can cost anywhere from $
7000 to $ 2000/device depending on volume and features while FP lasers are priced well below $ 1000/device. In view of
these factors, the choice of dispersion-tailored fibers in conjunction with FP lasers seems to be the best neqr-term option for
optimum use of the 1.55 um wavelength window.

Broadly, the dispersion tailored fibers are classified as dispersion-shifted (DS-SM) and dispersion-flattened (DE-SM) fibers
as shown in Fig. 7. Typical dispersion spectra (material and waveguide dispersion) of these fibers along with that of a
conventional dispersion unshifted fiber are shown in Fig. 8. The magnitude of waveguide dispersion can be enhanced to
achieve negligible dispersion at 1.55 um through a variety of alternative designs (shown in Figs. 9 and 10). Typically,
chromatic dispersion coefficient is < 2.7 ps/(nm-km) with So ~ 0.08 ps/(nm?-km) in a DS-SM fibers whereas it is < 2
ps/(nm-km) in a DF-SM fiber over the range 1.3 to 1.55 pm while maintaining inherent scattering loss low (~ 0.21 dB/km
at 1.55 um). Fourth generation systems at 2.4 Gb/s became commercial in 1990 with potentials to work at bit rates in excess
of 10 Gb/s with careful design of sources and receivers and use of dispersion shifted fibers. In a report released by Corning
Glass in late 1994, worldwide use of dispersion-shifted fiber has been estimated to have increased approximately 2.5 times
on a nommalized volume basis (with respect to estimated 1991 DS-SM fiber volume) during the three year period 1991-94,
This trend persisted and is likely to persist even for the coming years. Till recently, optical fibers were primarily meant to
serve the role of transmission media in long-haul and trunk routes, however, with interactive services (c.g. ISDN) and
wideband CATV booming on the horizon, fibers should steadily move closer to the businesses (FTTB) and to the homes
(FTTH).

FIFTH GENERATION SYSTEMS AND NETWORK UPGRADES

The telecommunication industry has all along played a crucial role in stimulating growth in the fiber optics industry. In the
decade (January 1984 - January 1994) since A T & T’s divestiture of its local telephone companies, the number of telephone
cails handled by A T & T on an average business day had jumped from 37.5 million to 150 million, number of calls handled
on the busiest holiday was 42.4 million (X’mas day) in 1984 and went up to 106.2 million in 1994 (Mother's day), and the
transmission facilities have increased from 590 million to 2 billion circuit miles [22]! Optical fibers are now being used in
almost all segments of telecommunications. In this scenario, in the late 1980s typical state-of-the art repeaterless transmission
distances were about 40-50 kms @ 560 Mb/s transmission rate. Since maximum launched optical power was below 100 uW,
it was difficult to improve system lengths beyond this specifications and use of ¢lectronic repeaters became inevitable, Ata
repeater, the so called 3R-regeneration functions (reshaping, retiming, reclocking) arc performed. However, these complex
functions are expensive and require unit replacement in case of network capacity upgradation in terms of higher bit
transmission rates. Since these units are required to convert photons to electrons and back to (regenerated) photons, often at
modulation rates approaching the limits of current electronic switching technology, a bottleneck was encountered in the late
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capacity say, from low data rates (¢.g. 1.5 and 45 Mbit/s) to higher rates (~ 1.7 Gbit/s) through electronic multiplexing will
involve replacement of all regenerative repeaters, which is a costly proposition. Several dual channel 1.31/1.55 ym WDM
systems have been installed notably in the US for capacity upgradation. These systems, though, did not require replacement
of existing regenerators, expensive DFB lasers with low chirp were required to be used because conventional 1.31 um
optimized fibers [D < 3.5 ps/(nm-km)] exhibit a chromatic dispersion of ~ +17-18 ps/(nm-km) at 1.55 gm. A very
important feature of EDFAs is that they exhibit a smooth gain versus wavelength curve (especially in case the fiber is doped
with Al) almost 30-35 nm wide {see Fig. 11(b)]. Thus multichannel operation through WDM within this gain spectrum is
feasible, each wavelength channel being simultaneously amplified by the same EDFA. "Relatively long life time of the excited
state (~ 10 ms) leads to slow gain dynamics and therefore minimal crosstalk between WDM channels [26]." System designers
are now contemplating use of four, eight or more wavelengths per fiber. Pirelli Cable in a receat experiment has demonstrated
a four-fold increase in number of simultancous conversations from 30,000 to 120,000 over a single-fiber through WDM
combined with EDFA at the wavelengths of 1533 nom, 1543 nm, 1550 nm, and 1557 nm. This amounted to almost 300%
increase in simultaneous conversations, Capacity increase by 700% through further innovation is on card! Since cross-talk
is almost absent between the channels, more wavelength channels can be added at a future date thereby offering flexibility to
make the network responsive to future demands. A T & T Bell laboratories have demonstrated a successful laboratory scale
experiment in which 40 Gbit/s repeaterless transmission over 1420 km of single-mode fiber was achieved! This trend setting
experiment of enormous transmission (56.8 terabit/s-km) was made possible by employing WDM with 16 independent laser
diodes, each modulated at 2.5 Gbit/s and with 14 EDFAs located at 96 to 123 km spacings [30]. One important feature of
this experiment with so many channels involved deployment of a Pre-emphasis (also referred to as the Robin-Hood gain)
technique in the system. It was necessitated by the fact that in a long chain of amplifiers, the gain may not be flat with each
wavelength channel. The pre-emphasis technique ensured that signal to noise ratio for all the 16 wavelengths at the receiving
end are same. Input channels ranged between 9 and 0 dBm and the pre-emphasis technique equalized the 17 to 18 dB output
signal-to-noise ratio of ail the 16 channels. Thus bit error rate performance of each of the 2.5 Gbit/s channel remained same.
Transmitters consisted of 8 DFB lasers and 8§ external cavity lasers (wavelengths ~ 1549-1561 nm) with 0.8 nm channel
spacings. Furthermore dispersion compensation technique was exploited to achieve this success. Half of the fiber segments
consisted of conventional single-mode fibers having zero dispersion at 1.31 um while the rest half were of dispersion shifted
fibers with zero dispersion at 1.55 um. When the signal wavelength > Az, it experiences positive dispersion and if it is
< Agp. the signal will experience negative dispersion. Since dispersion is additive, different fiber segments with positive and
negative dispersion leads to effective cancetlation of dispersion over the entire link. All segments having dispersion of identical
sign may lead to excessive dispersion. In practice, a rough balance is required.

At the OFC’96 early this year, several experimental results involving WDM technology and architecture to achieve very high
transmission capacity have been reported during the Post-deadline session. Notable amongst these were the 1.1 Thit/s
transtuission experiment through 55 LD’s, each operating @ 20 Gbit/s and ranging in wavelengths from 1531.70 nm to
1564.07 nm with a channel separation of 75 GHz (0.6 nm) [31]. It involved transmission over 150 km of a 1.31 pm Zero-
dispersion fiber through use of pre-emphasis, wideband EDFAs and a dispersion compensating fiber (DCF’s) to neutralize
the positive chromatic dispersion of ~ 17-18 ps/(nm-km) at the operating wavelengths. In another high capacity transmission
experiment [32], 1 Tbit/s WDM transmission was achieved through 55 km of a non-zero dispersion fiber (50 channels each
at 20 Gbit/s). Fifty channels were generated by polarization multiplexing outputs from 25 LDs ranging in wavelengths from
1542 nm to 1561.2 nm with a channel spacing of 100 GHz.

Considering that most of the already laid fibers were optimized for 1.31 um window, an alternate school of thought explored
the feasibility of having a fiber amplifier which will efficiently work at this window. Such fiber ampiifiers have indeed
become commerciaily available only recently. These are known as Praseodymium-doped fluoride fibers. However, these are
based, not on silica, but on ZBLAN (fluorides of Zn, Ba, La, Al, and Na) as the host materials. These amplifiers are called
PDFFAs. BT laboratory researchers have successfully demonstrated a 5 Gb/s transmission without regeneration with
commercial (HP make) PDFFA through 100 km of 1.3 um optimized fibers [33]. The pump wavelength was 1047 nm based
on a Nd-YLF laser pumping scheme, in which Nd-YLF laser was pumped by a 800 nm GaAs LD. This engineered device
was mounted in a standard rack unit of 42x9.6x38 cm?. On the debit side these amplifiers cost ~ $ 60,000/unit in contrast
to § 20,000 to $ 40,000 cost of an EDFA.

While research and field trials with PDFFA continue, as an alternative route, use of the highly matured EDFA technology
is very attractive to "mine"” the large inherent BW in the already embedded fibers. However, as already stated such 1310 nm
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tepresents total effective length in kilometers. Above inequality sets an upper bound to the number of channels for acceptable
performance.

In SBS, the backward propagating light scattered by acoustic waves in fiber grows at the expense of the forward propagating
signai (27]. SBS is independent of the number of channets. Although, the threshold power for SBS is typically about 10 mW
for singie-span system, SBS is not of much concern in amplified WDM systems.

Most dominant of the three nonlinear effects due to intensity dependent refractive index is the FWM and this is analogous to
intermodulation in electrical systems [27]. Nonlinearity induced mixing of two frequencies w; and w, may modulate the
refractive index at the difference frequency w, - w,, which leads to creation of sidebands at (2w, - ;) and (2w - ;). These
sidebands may grow at the expense of original waves and result in crosstalk between them. FWM effects depend on channel
separation and fiber dispersion [see Fig. (15)]; increase in either of these will reduce FWM efficiency. In a WDM system
containing N channels, the number of sidebands created by the FWM process is NXN - 1)/2 [39]. In case of equispaced
channels, FWM may lead to power transfer between channels and result in intolerable power depletion from certain channels.
If the channel spacings are unequal, the generated frequencies will lie intermediate between the primary channels and may
introduce noise through interchannel interference. An estimate of the limiting power per channel allowed by various nonlinear
phenomena in a multichannel WDM fiber transmission system at 1.55 pm is shown in Fig. 16. It is apparent that to contain
FWM, which is a major trouble shooting nonlinear effect in an amplified multichannel link, launched power per channei should
be limited to below 1| mW.

If we consider nonlinearity and dispersive nature of a fiber together, one can show that under certain conditions an optical
pulse can propagate undistorted in shape and intensity through such a nonlinear dispersive medium. These are called solitary
waves and solitons are special solitary waves, which can exist in a silica fiber due to interplay between SPM and anomalous
dispersion. An important attribute of solitons is that they propagate undistorted through ultra long lengths of fibers. Using
soliton technology, in a recent experiment, researchers from the Lucent Technologies of Bell laboratories bave demonstrated
soliton transmission up o 8 X 20 Gbit/s with BER < 10" over recirculated fiber path lengths ranging from 19 - 9.6 Mm [40].

CONCLUSION

Evolutionary trends over the last 25 years seen in lightwave communication technology is described. Extensive use of 1.55
pm window with multichannel transmission through EDFAs appear to be imminent in high density, high bandwidth longhaul
routes. Repeateriess transmission over transoceanic distances (~ 9000 km) with a chain of EDFAs seems quite feasible and
within the reach of current technology. Dispersion compensation and pre-emphasis techniques are expected to be extensively
exploited by system designers to "mine” and upgrade embedded networks through the WDM technology.
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