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CHAPTER 30
OPTICAL TESTING

Daniel Malacara
Centro de Investigactones en Optica, A
Leon, Gta, Mexico

30.1 GLOSSARY

E electric held strength
k radian wave number

r position

! time
A wavelength
¢ phasc
w radian frequency

30.2 INTRODUCTION

The requirements for high-quality optical surfaces are more demanding every day. Thus,
they should be tested in an easier, faster, and more accurate manner. Optical surfaces
usually bave a flat or a spherical shape, but they also may be toroidal or generally
aspheric. Frequently, an aspherical surface is a conic of revolution. An aspherical surface
can only be made as good as it can be tested. Here, the fNeld of optical testing will be
revicewed. There are some references that the reader may consult for further details
(Malacara, 1991).

30.3 CLASSICAL NONINTERFEROMETRIC TESTS

Some classical tests will never be obsolete, because they are cheap, simple, and provide
almost instantly gualitative results about the shape of the optical surface or wavefront.
These are the Foucault or knife-edge test, the Ronchi test, and the Hartmann test. They
will be described rext.
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30.2 OPTICAL MEASURFMENTS

Foucault Test

The Foucault or knife-cdge test was invented by Leon Foucault (1832) in France, to
evaluate the quality of spherical surfaces. This lest detects the presence of transverse
aberrations hy intercepting the reflected rays deviated from their ideal trajectory, as Fig. {
shows. The observer is hehind the knife, looking at the illuminated optical surlace, with
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FIGURE 1 Optical schematics for the Foucaultl test of a spherical mirror, at several
positions of the knife edge.



Ronchi Test
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FIGURE 2 An oplical surface heing ¢xamined by
the Foucault test. (From Opedu -Caviaricda, 1975)

the reflected rays entering the eye. The regions corresponding to the intercepted rays will
appear dark, as in Fig. 2.

This test is extremely sensitive, If the wavefront is nearly spherical, irregularities as
small as a fraction of the wavelength of the light may be casily detected. This is the
simplest and most powerful qualitative test for observing small irregularities and evaluating
the general smoothness of the spherical surface under test. Any other surface or lens may
be tested, as long as it produces an almost spherical wavefront, otherwise, an aberration
compensator must be used, as will be described later. Very ollen a razor blade makes a
good, straight, sharp edge that is large enough to cover the focal region.

Vasco Ronchi (1923} invented his famous test in Italy in 1923. A coarse ruling (50-100
lines per inch) is placed in the convergent light beam reflected from the surface under tesl,
near its focus. The observer is behind the ruling, as Fig. 3 shows, with the light entering the
eye. The dark bands in the ruling intercept light, forming shadows on the itluminated
optical surface. These shadows will be straight and paratlel only if the reflected wavelront
is perfectly spherical. Otherwise, the [ringes will be curves whose shape and separation
depends on the wavefront deformations. The Ronehi test measures the lransverse
aberrations in the direction perpendicular to the slits on the grating. The wavelront
deformations W{x, y) are related to the transverse aberrations TA (v, y) and TA (v, y) by
the following well-known relations:

133
TA-(‘”'Y):*ra—?E'_L) "
ay
and
TAV("" )’) = —F ﬂlﬂ (2)
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MIRROR UNDER TEST

RONCHI RULING

LIGHT OBSERVER
SOURCE

FIGURE 3 Testing a concave surface hy means of the Ronchi test.

where r is the radius of cucrvature of the wavefront W(x, v). Thus, if we assume a rufing
with period d, the expression describing the mth fringe on the optical surface is given by

Wx, y) _ md (3)
ax r

Each type of aberration wavelront has a characteristic Ronchi pattern. as shown in Fig.
4; thus, the aberrations in the optical systetn may be easily identified, and their magnitude
estimated. We may interpret the Ronchi Iringes not only as gcometrical shadows, bul also
as interferometric fringes, identical with those produced by a lateral shear interferomeler.

Hartmann Test

J. Hartmann (1900) invented his test in Germany. It is one of the most powerful methods
to delermine the figure of a concave spherical or aspherical mirror. Figure S shows the
optical configuration used in this test, where a point light source illumenates the optical
surface, with its Hartmann screen in front of it, The light beams reflected through each
hole on the screen are intercepted on a photographic plate near the focus. Then, the
position of the recorded spots is measured ta find the value of the transversc abetration on
each point, If the screen has a rectangular array of holes, the typical Hartmann plate image
for a parabolic mirror looks like that in Fig. 6. The wavefront W(x, y) may be obtained
from integration of Eqs. (1) and (2) as follows:

Wix, y)= - i[ TA.(x, y) dx )
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(1)

FIGURE 4 Typical Ronchi patterns for a spherical and a parabolic mirror for different positions of the Ronchi ruling.

UIRROR UNDER TEST

FIGURE 5 Onptical arrangement 1o perform the Hartmann test
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FIGURFE &  Array of spots in a Hartmann plate of a
parabalic mirnor,

and

|
Wi, y) = -;f TA(x y) dy (5)

Aller numerical integration of the values of the transverse aberrations, this test
provides the concave surface shape with very high accuracy. If the surface is ro spherical,
the transverse aberrations to he integraled are the difference hetween the measured values
and the ideal values for a perfect surface, Extended, localized errors, as well as asymumetric
errors like astigmatisin, are detected with this test, The two main problems of this test are
that small, locatized defects are not detected if they are nol covered by the holes on the
screen. Not only is this information lost, but the integration resuits will be false if the
tocalized errors are large. The second important problem of the Hartmann test is that it s
very lime consuming, due to the time used in measuring all the data points on the
Hartmann plate. These problems are avoided hy complementing this test with the
Foucault test. using an Offner compensator, in order 1o be sure abowt the smoothness of
the surface (discussed under “Mecasuring Aspherical Wavefronts™). Various stratagems
arc available 1o speed the pracess. These include modulating the light at different
frequencies at each of the holes. Variations also include measuring in front of, behind. or
al the Tocus to get slope information. This technique can be considered an experimental
ray trace.

30.4 INTERFEROMETRIC TESTS

Classical geometrical tests are very simple, but they do not provide the accuracy ol the
interlerometric tests, Quite generally, an interferometric test produces an iterferogram by
producing the interference between two wavefronts. Ono of these two wavefronts is the
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REFERENCE
MIRROR
MONOCHROMATIC BEAM SPLTTER
POINT COLLIMATOR
UGHT SOURCE
'\ A = -
v =
SURFACE
UNDER TEST
INTERFERENCE PATTERN
I rrrrrrrrryirr

FIGURE 7 Twyman-Green imerferometer.

wavelront under test. The other wavelrant is cither a perfectly spherical or lat wavefront,
or a copy of the wavefront under test.

Interferometers with a Reference Wavefront

When the second wavefront is perfectly spherical or flat, this wavelront acts as a reference.
The separation between the (wo wavefronts, or optical path difference OPD(x, y), is a
direct indication of the deformations W (x, y) of the wavefront under test. Then, we may
simply write W(x, y}=OPD(x, y). There are many types of interferometers producing
interferograms of these types, lor example, (he Twyman-Green, Newton, Fizeau, Point
Diffraction, Burch interferomelers, and many others that will not be described. Two of
these interferometers are in Figs. 7 and 8. Figure 9 shows some typical interferograms
made with these interferometers (Malacara, 1991).

Shearing Interferometers

When the second wavelront is not perfectly flat or spherical, but a copy of the waveflront
under test, s relative dimensions or orientation must he changed (sheared) in some way
with respect W the wavefront under test, Othewise, no informaton about the wivefront
deformations is obtamed, because the fringes will always be straight and paralled
independent of any aberrations. There are several kinds of shearing interferometers,
dependiag on the kind of transformation applicd to the reference wavefront.

I'he most popular of these insteuments s the lateral shearing interferometer, with the
reference wavelront laterally displaced with respect to the other, as Fig. 10 shows. The
optical path difference OPD(x, v} and the wavelront deformations W{x, y) are related by

OPD(x, y)=W(r,y) - W(x -5 ) (6)
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‘ INTERFEROGRAM

SURFACE
MONOCHROMATIC COLLIMATOR UNDER TEST
POINT
LIGHT
SOURCE
# |,
BEAM Ll
SPUTTER REFERENCE
FLAT

FIGURE B Tizeau interferometer.

where § is the lateral shear of one wavefronl with respect to the other. If the shear is
smail with respect (o the diameter of the wavelront, this expression may be approximated
by

SHW(L)‘) S

OPIX(x, y) = - Py — TAULxy) (7)

This relation suggests that the parameter being directly measured is the slope in the ¢
direction of the wavelront (x component TA, of the transverse aberration). An exampie of
a lateral shear interferometer is the Murty interferomeler, illustrated in Fig. Lt

There are also radial, rotational, and reversal shearing inlerferonieters, where the
interfering wavefronts are as Fig. 12 shows. A radial shear interferometer with a large
shear approaches an interferometer with a perfect reference wavefront.

30.5 INCREASING THE SENSITIVITY OF INTERFEROMETERS

The sensitivity of interferometess is a small fraction of the wavelenpth heing used {ahout
Af20). There are several methods lo increase this sensitivity, but the most common
methods will now be described.

Multiple-reflection Interferometers

A mcthod fo increase the sensitivily of interferometric methods is Lo use multiple
reflections. as in the Fabry-Perot interferometer, The Newton as well as the Fizeau
interferometers can be made multiple-reflection interferometers by coating the reference
surface and the surface under test with a high-refection film. Then. the fringes are
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DEFOQCUSING DEFOCUSING
AND TILT

NO ABERRATION

AVERAGE FOCUS AVERAGE FOCUS PARAXIAL FOCUS PARAXIAL FOCUS
AND TLY AND TILY

NO TILT DEFOCUSING TILT IN TANGENCIAL TILT IN SAGITTAL
NO DEFOCUSING DIRECTION DIRECTION

ASTIGMATISM

TANGENTIAL FOCUS AVERAGE FOCUS SAGITTAL FOCUS DEFOCUSING
FIGURE ¥ Twyman-Green interferograms. (From D Moalacare, 1978.)

greatly narrowed and their deviations from straightness aie more accurately measured
(Roychoudhurn, 1991).

Multiple-pass Interferometers

Another method to increase the sensitivity of interferometers is by double, or even
multiple, pass. An additional advantage of double-pass interferometry is that the
symmetrical and antisymmetrical parts of the wavefront aberration may be separated. This
makes their identification easier, as Hariharan and Sen (1961) have proved. Several
arrangements have been devised (o use multiple pass {Hariharan, 1991).
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(D).~SPHERICAL AMERRATION
AND DEFOQUSI'NG

(G).COMA AND DEFOCUSING {H).-HIGH ORDER SPHEMCAL {1). -ASTIG MATISM B
(SAGITTAL SHEAR) ABERRATION M
FIGURE 10 Lnlcrally shcared inlcderngramc. {(From D. Malacara, 1988} ‘

Zernike Tests N
The Zemnike phase-contrasy method is anather Way o improve fhe sensitivity of :'11'14f
inlerferometer 1o small aberrations. 1( was sugpested by Zernike as g way o inprove the ]
knife-edge test {(Zernike, 19343). There are several versions of this test. The hasie principle ]
in all of them is the introduction of a phase difference cqual to A/2 hetween the wavefrorll!‘q:
under test and (he relerence wavefrong. To understand why this phase differcnce i
convenient, Jef ys consider two inter[cring beams and irradiances (e v)and L, v) and lﬁ
phase ¢, y) between them, The final irradiance (x, v} in the interferogram is given by ,?

Hep) = 1ey) + Ix y) + 2VEGe pihie yheos i, v {8)

Thus, the irradiance H{x. ¥} of the combination would be a stnusoidal function of th
phase, as illusirated in Fig. 13, If the phase difference is zero for o perfect waveftontd

.
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INTERFEROGRAM

COLLIMATOR 44
LASER UGHT %\
# &

FIGURE 11 Murty's lateral shear interferomeler.

PLANE PARALLEL
GLASS PLATE

deformations of the wavefront smaller than the wavelength of the light will not be casy to
detect, because the slope of the function is zero for a phase near zero. The slope of this
function is larger and linear for a phase value of Y0°. Thus, the small wavefront
deformations are more easily detected if the inlerferometer is adjusted, so that the
wavefronts have a phase difference equal to 90° when the wavefront under test is perfect.

REFERENCE
WAVEFRONT

Ol

RADIALLY ROTATIONALLY
SHEARED SHEARED
WAVEFRONT WAVEFRONT

REVERSALLY
SHEARED
WAVEFRONT

FIGURE 12 Wavefronts in radial, rotational, and reversal shear

interferonielers.



30.12

30.6 INTERFEROGRAM EVALUATION

OFHCAL MEASUREMENTS

IRRADIANCE
Iw -
Iy
lm o
] 1 1 ] L —»
T
/a e PHASE DIFFERENCE

FIGURE 13 lrradiance in an imterference paltern, as a fuaction of the phase
dillerence between the 1wo interlering waves.

An interferogram may be analyzed in scveral manners. One way begins by measuring
several points on the interferagram, on top of the fringes. Then, the wavelront values
between the fringes are interpolated. Another way uses a Fourier analysis of the
interferogram. A third method interprets the fringe deformations as a phase modulation,

Fixed Interferogram Evaluation

Once the interferogram has been formed, a quantitative evaluation of it is a convenient
method to find the wavefront deformations. The fixed interferogram evaluation by fringe
measurements is done by measuring the position of several data points located on top of
the fringes. These measurements are made in many ways, for examplc, with a measuiing
microscope, with a digitizing tablet, or with a video camera connected to a computer.

The [ringe centers can be located cither manually, using a digitizing lablet, or
aulomatically, with the computer directly cxamining a single (ringe image that has heen
captured using a digital frame grabber. Alter localing the fringe centers, fringe order
numbers must be assigned to each point. The wavefront can then he characterized by
direct analysis of the fringe centers. If desired, instead of global interpolation, a local
interpolation procedure may be used.

To analyze the fringes by a computer, they must first be digitized by iocating the fringe
cenlers. and assigning Iringe order numbers to them. The optical path difference (OPD) at
the center of any [ringe is a multiple e of the wavelength A (OPD = mA ), where s the
fringe order. To ohtain the wavefront deformation, only the relative vaiues of the Iringe
order are important, So any value of the fringe order may he assipned o the first fringe
being measured. However, for (he second fringe, it may be increased or decreased hy one.
This choice affects oniy the sign of the OPD. An important disadvantage of the fixed
interferogram analysis is that the sign of the OPI} cannot be obtamed from the
interferogram alone. This information can be retrieved if the sign of any term in the
wavefront deformation expression, like defocusing or tilt, is previously determined when
taking the interferogram.

Fringes have been digitized using scanners (Rosenzweig and Altc. 1978). television
cameras (Womack et al., 1979), photoelectric scanners, and digilizing tahlets. Review
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articles by Reid (1986, 1988) give uscful references for fringe digitizaton using television
CImeras.

Global and Local Interpolation of Interferograms

After the measurements are made, the wavefront is computed with the measured points,
The data densily depends on the density of fringes in the interferogram. Given a wavefront
deformation, the ratio of the [ringe deviations from straightness 1o the separation belween
the {ringes remains a constant, independentdy of the number of fringes introduced by
tilting of the reference wavelront. If the number of fringes is large due to a large tilt, the
fringes look maore straight than il the number of fringes is small. Thus, the [ringe devialions
may more accuralely be measured if there are few fringes in the interferogram. Thus,
information about many large zones is lost. A way to overcome this problem is (o
interpolate intermediate values by any of several existing methods. One method is to fit
the wavefront dmta 1o a (wo-dimensional polynomial with a least-squares fitting, as
described by Loomis (1978) and Malacara et al. (1990) or by using splines as described by
Hayslett and Swantner (1980) and Becker et al. (1982}, Unfortunately, this procedure has
many problems if the wavefront is very irregular. The values obtained with the palynomial
may be wrong, especially near the edge, or between fringes if the wavefront is too
irrcgular,

The main disadvantage ol global fits is that they smooth the measured surface more
than desired. Depending on the degree of the polynomial, there will be only a few degrees
of freedom to fit many data points, [t is even possible that the fitted surface will pass
through none of the measured points, {1 the surface contains irregular features that are not
well described by the chosen polynomial, such as steps or small bumps, the polynomial fit
will smooth these features, Then, they will not be visible in the fitted surface.

Global interpolation is done by least-squares fitting the measured data 10 a (wo-
dimensional polynomial in polar coordinates. The procedure (o make the least-squares
fitting begins by defining the variance o of the diserete wavefront fitting as follows:

| X

u=;}2[w;— Wip., 6] (Y)

where N is the number of data puints, W’ is the measured wavefront deviation for data
point i, and W({p,, 8,} is the functional wavefront deviation after the polynomial fitting. The
only requirement is that this variance or fit error is minimized. 1t is well known that the
normal least-squares procedure leads 1o the inversion of an almost singular matrix. Then,
the round-off errors will be so large that the results will be useless. To avoid this problem,
the normal approach is o fit the measured points to a linear combination of polynomials
that are orthogonal over the discrete set of data points. Thus, the wavefront is represented

by

i
Wip.0)= BV.ip. &) (1)

ao

Vip, 8) are polynomials of degree r and not the monomials «f, These polynomials satisly
the orthogonality condition

N
X Vilp, 00V (p., 8) = 8., ()
'

where £, = 3 V3
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The advantage of using these orthogonal polynomials s that the matrix of the system
becomes diaganal and there is no need 1o invert ir.

The only problem that remains is 10 obain the arthogonal polynomials by means of the
Gram-Schmidt orthogonalizaton procedure. e is inportant 1o notice that the set of
orthogonal polynomials is different for every set of data points. IT only one data point s
removed or added, the orthogonal polynomials are moditied. If the number of data poits
tends Lo infinity and they are uniformly distributed over a circular puptl with unit radeus,
these polynomials V, approach the Zernike polynomtals (Zernike, 1934h),

Several propertics of orthogonal polynomials make them ideal for representing
wavelronts, but the most important of them is that we may add or subtract one or more
polynomial terms without affecting the fit coefMicients of the other terms. Thus, we can
subtract onc or more fitted terms—delocus, for exaniple—withoul having to recaleulate
the least-squares fit. In an interfermmnetric optical testing procedure the main ohjective is to
determine the shape of the wavefront measured with respect to a best-fit sphere. Nearly
always it will be necessary to add or subtract some terms.

The only problem with these arthogonal polynomials over the discrete set of data points
15 that they are different for every set of data points. A betier choice for the wavelront
representation is the set of Zernike polynomials. which are orthogonal on the circle with
unit radius, as foljows,

1 ix
f j Unlp. YU.Lp, 6)p dp d = 1,5, (12)

These polynomials are not exactly orthogonal on the set of data points. but they arc close
to satislying this condition. Therefore, it is common to transform  the wavefront
represcntation in terms of the polynomials V, (o another similar representation in terms of
Zernike polynomials U, as

r
Wip, 8)= 2 A Uip. 8) amn

n-1

Fourier Analysis of Interferograms

A completely different way to analyze an interferogram without having to make any
interpolation between the fringes is by a Fourter analysis of the interferogram. An
interpolation procedure is nol nceded because Lhe irradiance at a fine two-dimensional
array of points is measured and not only at the top of the fringes. The irradiance should be
measured direclly on the interferogram with a two-dimensional detector or television
camera, and not on a photographic picture, Womack {1983, 1984}, Macy (1983), Takeda el
al. (19823, and Roddier and Roddier (1987) have studied in detail the Fourier analysis of
interferograms to obtain the wavelront deformations.

Consider an interferogram praduced by the interference of the wavelront under test
and a Nat reference wavefrant, with a large tilt between them. The il is about the 1 axis.
imcreasing Lhe distance between the wavelronts in the x direction, The picture of this
interferogram may be thought of as a hologram reconstructing the wavefront, Thus. three
wavelronts (images} are generated when this hologram is iltuminated with a flat
wavefront. In order to have complete separation hetween these images, the tili hetween
the wavefronis must be large enough, so that the angle between them is nol zern al any
point over the interferogram. This is equivalent to saying that the fringes must be open,
and never cross any line parallel to the x axis more than once. One image is the wavelront
under test and another is the conjugale of this wavelront.
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It ihe till between the wavefiont s 8, and the wavelront shape is Wy, v}, the
wradiance, from Eyg. 5, is given by

(e, y) = Lx, y) + Ly} + V000G y) cos (d + kxsin B+ AW (G y)) o (14)
where k = 27/4. This expresston may be rewntten as
| = “I + "i + \/‘,I‘.: y.u.\...nqn'] + \/Li_‘(' A wn VAW (&5)

The st term represents the zero order, the second is the teal image, and the third 15 the
virtal image. We akso may say that the Fourier transform of the interferogram s formed
by a Dieac impulse 8(f) al the origin and two terms shilted from the origin, at Irequencies
+f, and —f,. The quantity [ is the spaual frequency, defined by the tilt between the
reference wavefront and the wavefront under test (f =sin 8/4). These lerms may be
found by taking the Fourier teansform of the interferogram. The tcrm at +f, is due Lo the
wavelront under test. This wavelront may he obtained by taking the Fourier transform of
this term, mathematically isolated from the others. Flus method is performed in a
computer by using the fast Fourier transform. The undesired terms are simply eliminated
tefore taking the second fast Fourier tansform i order 1o obtain the wavefront.

Direct Interferometry

This is another methud (o oblain the wavefront from an interferogram without the need of
any interpolation. As m the Fourier method, the image of the interferogram is directly
measured with a two-dimensional detector or television camera, The interferogram must
have many [ringes, produced with a large tilt between the wavefronts, The requirements
for the magnitude of this till are the same as in the Fourier method.

Consider the irradiance in the interferogram along a line parallel o the v axs. This
irradiance plotted versus the coordinate x is a perfectly sinusoidal function only if the
wavefront is perfect, that is, il the [fringes are straight, parallel, and equidistant.
Otherwise, this function appears as a wave with a phasc modulation. The phase-
modulating function is the waveltont shape W{v, ). It the tilt between the wavelronts is 8,
the irradiance function is described by Eq. (14). I ¢, is a multiple of 2, this expression
may be rewrillen as

[=1,+ 1+ 2V1 T, cos (ka sin 8 + kW) (16)

Multiplying this phase-modulated function by a sinusoidal signal with the same
[requency as the carrier sin (kv sin @) a new signal § is obtained. Similarly, multiplying by a
cosinusoidal signal cos (kx sin 8) a new signal C is obtained. 1 all terms in the signals S
and € with frequencies equal to or greater than the carrer [tequency are removed with a
low pass lilter, they becone

Sy = - VILsinkW(v, v) (17)

('{r.\'):\"!_‘Tlcuskl’t’(\,r) {18)
then, the wavefront W(x, v) is given by

S(l,\’)) (19)

[ :
Wik, y)= - tan "f—r s
ep)= o l('(r.yi

which is our desired resull.
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30.7 PHASE-SHIFTING INTERFEROMETRY

OPTICAL MEASUREMENTS

All the methods just described are based on the analysis of a single static interferogram.
Static fringe analysis is gencrally less precise than phase-shifling intetrferometry, by more
than one order of magnitude. However, fringe. analysis has the advantage that a single
image of the (ringes is needed. On the other hand, phasc-shifting interferometry requires
several images, acquired over a fong time span during which the fringes must be siable.
This is the main reason why phase-shilting interlerometry has seldom been used for the
testing of astronomical aptics.

Phasc-shifiing interferometry (Bruning, 1974; Greivenkamp and Bruning, 1991) s
pussible, thanks to modern ols like array detectors and microprocessors. Figure 14 shows
a Twyman-Green interferomeler adapted to perform phase.-shifting interferometry. Most
conventional interferomelers, like the Fizcau and the Twyman-Green, have been used o
do phase shifting. A good review about these techniques may be found in the review
article by Creath (1988).

In phasc-shifting interferometers, the reference wavelront is moved along the direction
ol propagation, with respect to (he wavelront under test, changing in this manner their
phase difference. This phase shifting is made in SIeps of in a continuous manner. Of course
this relative dispiacement of one wavefront with respect to the other may only be achieved
through a momemtary or continuous change in (he frequency of one of the beams, for
cxample. by Doppler shin, moving one of the mircors in the interferometer. {n other
words. this change in the phase is accamplished when the frequency of one of the beans s
modified in order 1o form beats,

By measuring the irradiance changes for different values of the phase shifts, it is
possible Lo determine the initial difference in phase between the wavefront under test and

PIEZ0 ELECTRIC
TRANSLATOR
REFERENCE
Z @ MIRROR
MONOCHROMANC COLUMATOR BEAM SPUTTER
POINT
LIGHT SOURCE
d =
SURFACE
UNDER TEST
INTERFERENCE PATTERN

DETECTOR ARRAY
FIGURE 14 Twyman-Green interfecogram adapted to do rhase shilting,
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FIGURE 15 Obtaining the phase shilt b

y means of a maving
mireor or a rotating glass plate.

the teference wavefront, for that measured point over the wavefronl. By obtaining this
initial phase difference for many points over the wavefront, the complete wavef
is thus determined.

If we consider any fixed point in the interferogram, the initial phase difference belween
the two wavefronts has to be changed in order to make several measurements.

One method that can be used to shifi this phase is by moving the mirror for the
relerence beam along the light trajectory, as in Fig. 15. This can be done in many ways, for
example, with a piezoelectric crystal or with a coil in a magnetic field. If the mirror moves

with a speed V, the frequency of the reflected light is shifted by an amount equal to
Av =2V/A,

Another method to shift the

beam (see Fig. 15). Then the
axis,

The phase may also be shifted by means of the device shown in Fig. 16. The firsi

ronl shape

phase is by inserting a plane parallel glass plate in the light
plate is rotated about an axis perpendicular to the optical

QUARTER WAVE QUARTER WAVE
PHASE PLATE PHASE PLATE MIRROR
— ’—
UNEARLY RIGHT HANDED ROTATING LINEARLY
POLARIZED % CIRCULARLY % POLARIZED
LIGHT POLARIZED LIGHT UGHT

INCIDENT FREQUENCY = o RoTaTon L %
REFLECTED FREQUENCY = v+,

FIGURE 16 Obtainiag the phase shift by means of phase plates and potarized light, with a
double pass of the light beam,
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FIGURE 17 Ohtaining the phiase shift by means of difltaction:
(a} with a diflraction graling; (/) with an acouslo-optic Bragg ceil.

Guartcr-wave retarding plate is stationary, with its slow axis at 45° with respect to the plane
of polarization of the incident linearly polarized light. This plate also transforms the
returning circularly polarized light back to linearly polarized. The second phase retarder is
also a quarter-wave plate, it is rotating, and the light goes through it twice, therefore it is
acting as a half-wave plate.

Still another manner to obtain the shift of the phase is by a diffraction grating moving
perpendicularly 1o the light beam, as shown in Fig. 17a, or with an acousto-oplic Bragg
cell, as shown in Fig. 175, The change in the frequency is equal to the frequency f of the
uitrasonic wave times the order of dilfraction . Thus: Av = mf,

The nonshifted retative phase of the two interfering wavefronts is found by measuring
the irradiance with several predefined and known phase shifts. Let us assume that the
irradiance of each of the two interfering light beams at the point x, y in the interference
patterns are /\(x, y) and 4,(x, v} and that their phase difference is dfx, v) It was shown
before, in Eq. (5), that the resultant irradiance I{x. ¥} is a sinusoidal function describing
the phase difference hetween the two waves. The basic problem is to determine the
nonshifted phase difference between the two waves, with the highest possible precision.
This may be done by any of several different procedures.

Phase Stepping

This method {Creath, 1988} consists of mieasuring the irradiance values for several known
increments of the phasc. There are several versions of this method, which will be described
later, The measurement of the irradiance for any given phase takes some time, since there
is a time response Tor (he detector, Therefore, the phase has (o be stationary during a
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FIGURE 18 Six dhfferent ways 1o shift the phase using phase steps.

short time in order Lo take the measurement. Belween (wo consecutive measurements, the

phase is changed by an increment o, For those values of the phase, the irradiance
becomes

P=1h+ 1, +2ViLcos(d +a,) {20

There are six different algorithms, as shown in Fig. 18, with different numbers of
measurements of the phase. As we sce, the minimum number of steps needed to
reconstruct this sinusoidal function is three. As an example with four steps,

Lo=1 +1,+2ViLcos ¢ (21)
L=t + 1, = 2VETsin (22)
lo=10 41 ~2Viicos ¢ (23)
Ly =1 +1,+2VI T sin ¢ (29

From these relations the desired phase is

N an 0y — Ll v n
ey =tan Ly =1t vy (2

Integrating Bucket

In the integrating phase-shifting method the delector continuously measures the irradiance
during a fixed time interval, without stopping the phase. Since the phase changes
continuously, the average value of the irradiance during the measuring time interval is
measured. Thus, the integrating phase-stepping method may be mathematically considered
a particular case of the phase-stepping method if the detector has an infinitely short tinte
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ETGURE 19 Averaged signal measurements with
the integrating phase-shifting method.

responsc. Then, the measurement tlime interval is reduced to zero. If the measurement is
taken as in Fig. 19, from a, = A2 (o a, + Af2 with center al a,, then

~ 4 A2
l=af th+ 4+ 2Vifcos (b + a,)] da (26)
~ A
P=1+1L,+2VI1sin c(Af2)cos(¢ + a,) (27)

In general, in the phasc-stepping as well as in the integrating phase-shifting methods,
the irradiance is measured at several different values of the phase a,, and then the phase is
caiculated.

Two Steps Plus One Method

As pointed out before, phase-shifting interferometry is not useful for testing syslems with
vibrations or turbulence because the three or four interferograms are taken at different
limes. An attempt to reduce this time is the so-cailed two steps plus one method, in which
only two measurements separated by 90° are taken (Wizinowich, 1989). A third reading is
laken any time later, of the sum of the irradiance of the beams, independently of their
rclative phase. This last reading may be taken using an integrating interval A =21, Thus

L=l + L+ 2V cos o (28)
Io =1+ 1+ 2V0 Fsin o (2%
lo=1+1 (10
Therefore:
$ = tan '{i”—f—"—‘} (0.
A 4'(

Simultaneous Measurement

It has been said several times that the great disadvantage of phase-shilting interferometry
i5 its great sensi'livily to vibrations and atmospheric turbulence. To eliminate this problem,
it has been proposed that the different interferograms corresponding 1o different phases be
taketi simultaneously (Bareket, 1985 and Koliopoulos, 1991). To obtain the phase-shifted
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interferogram, they have used polarization-based interferometers. The great disadvantage
of these interferometers is their complexity. To measure the images these interferometers
have to use several television cameras.

Heterodyne Interferometer

Phase Lock

When the phase shift is made in a continuous manner rather than in steps, the frequency of
the shifting beam is permanently maoditicd, and a beating between the two interlerometer
beams is formed (Massie, 1987).

The phase of the modulated or bealing wave may be determined in many ways. One
way is by electronic analog techniques, for example, using leading-edge detectors. Another
way is by delecting when the irradiance passes through zero, that is, through the axis of
symmetry of the irradiance function.

The phase-lock method (Johnson et al., 1977, 1979; Moore, 1979) can be explained with
the help of Fig. 20. Assume that an additional phase difference is added to the imual
phase ¢(x, y). The addilional phase being added has two componcnts, one of them with a
fixed value and the other with a sinusoidal time shape. Both components can have any
predetermined desired value. Thus:

b =d(x, ¥)+ 8(x, ¥y} tasinw (32)
then, the irradiance i(x, ) would be given by
I=1+1+2Vicos|d + 6+ asin wi] (33)

The amplitude of the phase oscillations a sin wt is much smaller than 7. We may now
adjust the fixed phase & to a valuc such that ¢ + 8 =n/2+nn Then the value of
cos {¢ + &) is zero. The curve is antisymmetric at this point; hence, only odd harmonics
remain on the irradiance signal. This is done in practice by slowly changing the value of the
phase &, while maintaining Lhe oscillation a sin wf, until the maximum amplitude of the
first harmonic, or fundamental [requency, is obtained. At this point, then, we have
5+ ¢ = n/2 + nn, and since the value of & is known, the value ol ¢ has been determined.

IRRADIANCE
FUNCTION

IRRADIANCE
OSCILLANIONS

PHASE DIFFERENCE |

OSCILLATIONS ! }

FIGURE 20 Phase-lock method o (ind the phase with a smali
sinusoidal modulation of the phase.
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30.8 MEASURING ASPHERICAL WAVEFRONTS

The most comimon type o mterferometer, with the exception of lateral or rolational
shearing interferometers, poduces nterference patlerns in which the fringes are straight,
cquidistant, parallel, when the wavelront under test 1s perfect and sphicrical with the
same radius of curvature as the reference wavelront

I the surface under fest does not have a perfect shape, the fringes wall not be straght
and their separations will he variable. The deformations of the wavefront may be
determincd by a mathematical examination of the shape of the fringes. By mtroducing a
smadl spherical curviature on the reference waveltont (focus shift) o by changing its angle
with respect (o the waveltont under test (1Ll0, the number of fringes in the interferogram
may by changed. This 15 done to reduce the number of fringes as much as possihle, since
the greater the number of fringes, the smaller the sensitivity of the test. However, far
aspherical surfaces this number of fringes cannot be smaller than a certain minimuna. The
larger the asphericity is. the greater is this minimum number of fringes. Since the fringe
scparations are nol constail, i some phaces the [ringes will be widely spaced, but i some
athers the fringes will he too close together.

The sensitivity of the test depends on the separation between the frinpes. because an
crror of one wavelength m the wavelront distorts the [ringe shape by an amount equal to
the scparation hetween the fringes. Thus, the censitivity is dircetly proportianal to the
fringe scparation. When the fringes are widely separated, the sampled points will be quite
separated [rom cach other, leaving many 7oncs without any information, On the other
hand. where the fringes are very close Lo cach other, there is a high densty ol sampied
data points, but the sensitivity 1s low.

Then, it is desirable that the spherical aberration of the wavelrant under lest is
compensated in some way, SO that the fringes appear straight. parallel. and cquidistant, for
a perfect wavefront. This is called a null test and may be accomplished by means of some
special configurations. These special configurations may e used to conduct a null test ol a
conic surface. These are described in several books (Malacara, [991). Almost all of these
surfaces have rolational symeelry.

[f no testing configuration can be found to get rid of the spherical aberration, additional
oplical compenents, catled null compensators, have 1o he used. Many different types of
compensators have been invented. The compensalors may be refractive (lenses). reflective
{mirrors), of diffractive (rcal of computer-gencrated holograms).

Refractive or Reflective Compensators

The simplest way to compensate the spherical aberration of a parabolod or a hyperhotoid
tested at the center of curvature is a single convergent lens placed near the point of
convergence of the rays, as Fig. 21 shows. This lens is called a Dalb compensatar.

LIGHT paLL
SOURCE  COMPENSATOR

TESTING
POINT

FIGURE 21 The 12all compensatar.
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FIGURE 22 The Offner compensator. Only the reflected beant is shown.

Unfortunately, the correction due to a single lens is not complete, so a system of two
lenses must be used lo obtain a better compensation. This system is called an Offner
compensator and is shown in Fig, 22. The field lens L is used 1o image the surface under
lest on the plane of the compensating lens L. Mirrors may also be used 1o design a null
compensator,

As the sad experience of the Hubble space telescope proves, the construction
paramelers in a lens compensator have to be very carefully measured and adjusted,
otherwise an imperflect correction is obtained cither by undercorrection or overcorrection,
The distance from the compensator to the surface under test is one of thuse parameiers 1o
be carelully measured. A way around this problem would be to assume that the
compensator detects smoothness imperfections byt not the exact degree of asphericity,
Tlus degree ol asphericity may then be measured with some independent measurement
like the Hartmann test.

Holographic Compensators

Diffractive holographic elements also may be used Lo compensate the spherical aberration
of the system and to obtain a null test. The hologram may be real, produced by
photographing an interferometric pattern, This pattern has o be formed by superimposing
on the screen a wavefront like the one we have to test and a perfectly flat or spherical
wavelront. The only problem with this procedure is that a perfect wavefront with the same
shape as the wavefront to be Lested has first 1o be produced. This is not always easy.

A better approach is Lo simulate the holographic interference pattern in a compuler
{Wyant, 1978) as in Fig. 2. Then this image is transferred 10 a small photographic plate,
with the desired dimensions. There are many experimental arrangements to compensate
the aspherical wavefront aberration with a hologram. One of these 1s illustrated in Fig. 24

Infrared Interferometry

Another simple approach to reduce the number of fringes in the interferogram is to use a
fong infrared wavelength. Light from a COy Laser has been used with this purpose. Hocan
also be used when the surface is stil quite rough,

Two-wavelength Interferometry

In phase-shifting interferometry, each detector must have a phase difference smaller than
from the closest neighboring detector, in order to avoid 2 phase ambiguities and ensure
phase continuity. In other words, there should be at least two detector clements for cach
fringe. If the slope of the wavelront is very large, the fringes will be too close together and
the number of detector elements would be extremely farge (Wyant et al., 1984).

A solution to this problem is to use two different wavelengths A, and A,
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FIGURF, 23 Computer-gencrated hologram for testing an
aspherical wavelront, (Fren Wyani, 1978)

simultancously. The group wavelength or cquivalent wavelength A, is fonger than any of

the two components and is given by:
Adds (34)

Under these conditions. the requirement in order to avoid phase uncertainties is that

there should be at least two detectors for each [ringe produced if the wavelenpth is A,
The great advantage of this method is that we may lest wavclronts wih large

SURFACE
UNDER TEST

IMTERFERENCE PATTERN

el rrrrrirn

FIGURE 24 An optical arrangement for testing an aspherical wavefrant with a computer
generated hologram.
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asphericities, limited in asphericity by the group waveiength, and accuracy himited by the
shotiest wavelength of the two components.

An interferogram in which a large amount of tilt has been introduced is an ideal periodic
structure to form moiré patlerns. A moiré patlern represents the dilference between two
periodic structures. Thus, a moiré formed by two interferograms represents the dilference
between the two interferograms. There are several possibilities for the use in optical
lesting of this technique, as shown by K. Patorski (1988).

Let us assume that the (wo interferograms are laken from the same optical system
producing an aspherical wavelront, but with two different wavelenglths A, and A,. The
mairé obtained represents the interferogram that would be obtained with an equivalent
wavelength A,, given by Eq. (31). If the ilt is of different magnitude in the (wo
interferograms, the difference appears as a tilt in the moiré between them. Strong aspheric
waveflronts may be tested with this method.

A second possibility is to produce the moiré between the ideal interferogram for an
aspheric wavelront and the actual wavefront. Any differences between both would he
castly detected.

Anaother possibility of application is for eliminating the wavefront imperfections in a
low-quality interferometer. One interferogram is taken with the inlerferometer alune,
without any optical piece under test. The second interferogram is taken wilh the optical
component being lested. The moiré represents the wavefront deformations due to the
piece being lested, without the interferometer imperfections,

Sub-Nyquist tnterferometry
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ABSTRACT

Several applications of the Murty incerferometer in the testing of optical
systems and components are reviewed in this article. The interferometer
has applications in the testing of lenses, spherical mirrors, paraboloidal
mirrors and paralle! plates. The interferometer can also be used for the
determination of homogeneity of optical materials, measurement of
refractive indices of glasses and liquids, measurement of radii of
curvature and location of cardinal points, checking the laser beam
collimation, determinarion of the power of ophthalmic lenses, measure-
ment of refractive indices of simple lenses, measurement of birefrin-
gence of optical materials, thermal expansion coefficient of metatlic bars
and optical distortion in transparencies or glass windows. Copyright ©
1996 Elsevier Science Ltd.

1 INTRODUCTION

Lateral shearing interferometers have certain advantages over conven-
tional interferometers, mainly that they do not require a perfect
reference wavefront. In the lateral shearing interferometer, a test
wavefront is shifted laterally with respect to itself and this acts as a
reference wavefront, thereby avoiding the need for a standard test
surface. These interferometers were devised by several authors, as
shown in the references at the end of the chapter. Ordinary sources of
light having broad spectral lines were used in these interferometers and
!
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hence zero-order compensation was required. In order to have inter-
ference between the sheared wavefronts in such interferometers, the
angular size of the source must be very smail to give spatial coherence
over the entire wavefront. This condition was fulfilled by reducing the
source size 1o the diffraction limited size at the cost of the brightness of
the fringes. When the He-Ne laser operating at 632:8 nm, which has a
highly monochromatic and highly spatially coherent beam in TEMoo
mode, became available, Murty' suggested the use of a laser in a lateral
shearing interferometer, now known as a Murty interferometer in the
literature.>*** This instrument was used for the testing of lenses,
mirrors, parallel plates, and paraboloidal mirrors by several authors,**
It can also be used for determining the homogeneity of optical
materials, measuring refractive indices of glasses, measuring the radius
of curvature of test plates and locating the cardinal points of an optical
system. This interferometer has also been used with infrared light, by
employing a screen that can be observed with an infrared viewer. For
CO, lasers the plate has been made with ZnSe (zinc selenide) or
germanium and a pyroelectric detector for viewing the fringes. This
interferometer is so useful that there are some commerciaily available
versions, manufactured by companies such as Blue Sky Research,
Melles Griot, Optical Systems Div. and Continental Optical Corp. The
purpose of this paper is to review the applications of the Murty
interferometer. The information presented in this article will be useful
to the various workers in optics, mainly in the field of laser inter-
ferometry applied to testing of optics. There are many other types of
lateral shearing interferometer, for example, grating interferometers,
but they will not be considered here.

1.1 Basic theory

In the Murty interferometer, as in any other lateral shear interfero-
meter, the wave(ront interferes with a copy of it, laterally displaced by
an amount § in the x direction. The wavefront may be represented by
W(x,y) and the laterally displaced wavefront by W(x — S, v). By
expanding in a Taylor series, the optical path difference between the
two wavefronts may be written as

W(x,y)-W(.r—S,y)Z(i‘i/)S—(azw)s—va“' (1)

ax axt/ 2
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Only the first term needs to be considered, if S is very small, so that

To satisfy this condition, the ratio of the gradient, given by the first
derivative, to the local curvature, represented by the second derivative,
must be small at any point on the aperture. In other words, the
wavelront must be smooth with small aberrations. Thus in a first
approximation, the shape of the fringes is given by

(aW

S = 3
r‘i.r)g A ()

where n is the order of interference. Since (3W/dx) is the gradient of
the wavefront, we conclude that the fringes are the locus of points on
the wavefront, with constant gradient in the direction of the shear. This
gradient represents the component of the transverse aberration of the
ray in the direction of the shear, TA,. Thus we may also write

TA,S =nA (4)

This expression tells us that a lateral shearing interferometer does not
directly measure the optical path difference or wavefront deformations
OPD as most interferometers, but the value of the transverse aberra-
tion TA, in the direction of the shear. The wavefront deformations
OPD may be indirectly obtained by integrating the relationship

AW (x, y) TA,

= - (5
adx et )

where 7., is the radius of curvature of the reference wavefront, or the
distance from the vertex of the wavefront to the plane where the
transverse aberrations are measured, if this plane is not at the center of
curvature of the wavefront.

We may notice that the wavefront deformations over the complete
aperture may not be obtained with a single interferogram. Two
interferograms with lateral shears in perpendicular directions are
needed. A rotatable shear plate interferometer has been designed by
Sweatt’ in order to be able to take these interferograms, one after the
other, in a minimum amount of time. The shear plate 1s fixed in a
mount that aliows the direction of shear to be rotated.

When the wavefront deformations with respect to the reference
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sphere are also spherical, we say that we have pure defocusing. Then,
the wavefront may be written as

W(x, y)=D(x? +y?) (6)

where D is a defocusing coefficient, equal to D = 1/2r if the reference
wavefront is flat and the wavefront has a radius of curvature r, as is
normally the case for a Murty interferometer. If the reference wave-
front is not flat but has a radius of curvature r,, the defocusing
coefficient is equal to D = Ar/2r%, where Ar is the difference in the
radii of curvature of the wavefront and its reference. Substituting this
wavefront expression in eqn (3) we find

2DxS =nA (7)

This is a system of straight, paraliel and equidistant fringes, with
separation X equal to A/2DS. Thus, in the Murty interferomeler the
spatial frequency 1/.X of the system of fringes is 2DS/A = S/rA. In other
words, the spatial frequency of the fringes in the direction of the lateral
shear is directly proportional to the curvature ¢ = 1/r of the wavefront
and to the magnitude of this lateral shear S. In a complicated
interferogram, with highly deformed fringes, the local frequency of the
fringes in the direction of the shear would give an indication of the local
curvature of the wavefront.

In the Murty interferometer shown in Fig. 1, the light is reflected
from the front and back surfaces of the plate and because of the
thickness of the plate there is lateral shear. The lateral shear S for a

PARALLEL PLATE OR
SLIGHTLY WEDGED PLATE

LENS
SPATIAL UNDER TEST
FILTER A
e L I J— % ;\ ¢
He-Ne MS@T{T- 7 }T; | P

L7 L ‘
MICROSCOPE ‘lﬂj pd e
OBJECTIVE ;

/

o
IATERAL SHEAR 4 |

t

OBSERVING SCREEN t—————

LATERALLY SHEARED (
APERTURES
N2

Fig. 1. Schematic diagram showing the parallel plate used as a lateral shearing
interferometer.
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plate of thickness 7 and refractive index N, and for an angle of
incidence 8, is given by Malacara™ as

G- T sin28 g
VN® —sin’ @ (8)

For a glass with N =1-515 at 632-8 nm, Fig. 2 shows the plot of S/T
versus 8. From this it is seen that § has a maximum value of about (-8,
corresponding to an angle of incidence of 50°. Therefore a 45° angle is
quite convenient to use in a practical setup. The maximum lateral shear
for any refractive index is given by

sin?@=N? - NVN? - | (9)

An interesting problem solved by Mantravadi® is the calculation of
whether there is any material with a refractive index that gives a
maximum lateral shear at 45° incidence. From eqn (9) we may find that
if we want this maximum shear to occur at 45°, the refractive index N
has to be infinity. Thus, 8 has to be greater than 45° if we want the
maximum shear with a real index of refraction.

2 TESTING OF LENSES AND MIRRORS

2.1 Testing of lenses

The schematic diagram of the Murty interferometer for testing a
collimating lens is shown in Fig. 1. The light from the He-Ne laser is
focused by a suitable microscope objective on a pinhole located at the
focus of a collimating lens.® The collimated beam of light is incident on
the parallel plate which is normally used without any coating on either
surface. Figure 3 shows some lateral shearing interferograms of
aberrated lenses, taken with this interferometer.

The interference takes place between the sheared wavefronts n a
common area. If the lens under test is perfect, a fringe-free field is
obtained for a well-collimated beam. When the collimation is not
perfect, but there is a small amount of defocusing, straight fringes occur
in the field, as shown in Fig. 4. The direction of the fringes is
perpendicular to the direction of shear. Hence, the interferometer may
be used for checking the collimation of the beam.

In the above-mentioned arrangement, the glass plate was considered
as strictly parallel. Such an arrangement is not convenient for the
testing of lenses suffering from small aberrations because the common
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08; —1r—"1—

e T T —_——

S/t

¢ 20° 300 40° 50°  60° 70°  80° 90°
ANGLE OF INCIDENCE

Fig. 2. Plot of §/1 versus angic of incidence for a typical borosilicate crown glass plate.
From the plot it is scen (hat any angle of incidence up to a maximum of 50° is
convenient.

area between the beams appears fringe-free when the light is perfectly
collimated. It is usually convenient to have a small tilt between the two
sheared beams in a direction perpendicular to the direction of the
lateral shear. This is easily achieved by making the plate slightly
wedge-shaped. The apex of the wedge-shaped plate is set parallel to the
direction of shear. The direction of the wedge may be easily determined
by using the glass plate in a Fizeau configuration, as shown in Fig. 5.
With the wedge set parallel to the shear, the fringes would be straight
and parallel to the direction of shear for the exact collimated beam.
Hence, when an optical system is being collimated, we go through the
region of the focus, obtaining the sequence of interferograms as in Fig,.
6. Thus, it is possible to detect a slight defocusing, because we are
looking for a change in the direction of the fringes rather than the
absence of them. At the focus the fringes are parallel to the direction of
shear, whereas inside and outside of focus they arc inclined. The quality
of the optical system may also be determined by analyzing the shearing
interferogram.

If the wedge angle of the glass plate is ¢ in a first approximation,
then the tilt angle between the wavefronts is equal to y=2N{.
However, as pointed out by Mantravadi,® since the plate is normally
used with an angle of incidence of 45°, the tilt ¥ between the wavefronts
is more accurately given by

y =2¢VN? —sin’ 8 (10)
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PERFECT WAVEFRONT DEFOCUSED WAVEFRONT

SPHERICAL ABERRATION COMA COMA
AND DEFOCUSING ' (MERIDIONAL SHEAR) (SAGITTAL SHEAR)
COMA AND DEFOCUSING HIGH ORDER ASTIGMATISM
(SAGITTAL SHEAR} SPHERICAL ABERRATION

Fig. 3. Lateral shear interferograms in a Murty interferomcter, for the primary
aberrations.

which, for 6 = 45° gives
y=2VN?—0-5¢s

The primary or Seidel aberrations produce very characteristic inter-
ference patterns that permit us an easy and fast identification of these
aberrations, as shown in Fig. 3. The primary abcrrations may be
represented by

W=D+ y) + A+ y) + Bv(x+y?) + B + y?) + C(7 — v7)

(11)
where the first term D as described in the preceding section, is the
defocusing coefficient, equal to D =1/2r with r being the radius of
curvature of the wavefront. The second term is the primary spherical

aberration. The third and fourth terms represent the primary coma
aberration, when the image has been displaced off-axis in the y
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(A) (B)

(C)

Fig. 4. Sequence of lateral shearing intcrferogram for an aberrationless wavefront as

one passes through the focus. The central fringe pattern is obtained when there is no

defocusing. The patlerns on either side are due o slight defocusing in either direction
by the same amount. (A) inside the focus, (B) at the focus, (C) outside the focus.

direction and when the image has been displaced off-axis in the x
direction, respectively. Finally, the fifth term is the astigmatism. Then,
from eqn (3), the interference pattern for a lateral shear § in the x
(sagittal) direction is

2DxS + 4A(x? + y*)xS + 2BxyS + 2Cx§ = nA (12)
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LATERALLY SHEARED SLIGHTLY WEDGED PLATE
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OBJECTIVE \MI‘RROR \‘J

§
JE 4
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Fig. 5. Fizeau configuration 1o find the direction of the wedge in the glass plate.

and the interference pattern for a lateral shear 7 in the v {tangential)
direction is

2DxT =4A(x* + y )xT + B(x* + 3y2)T - 2CyT = nA (13)

The procedure for calculating the shape of the wavefront when it has
many kinds of deformation, not only primary abberations, is given in
several publications.®'* Some methods" involve the fitting of the
wavefront to a two-dimensional function, typically to Zernike polyno-
mials. This procedure is very accurate, but requires that the wavefront
be sufficiently smooth, without any strong local irreguliarities. Another
simple method not requiring polynomial fitting®" is shown in Fig. 7. In
this method the interference pattern is scanned from left to right along
a line in the shear direction and the wavefront differences AW, are
estimated at equally spaced points. This spacing between the data point
must be equal to the magnitude § of the lateral shear, obtaining

W=0
W, = AW,
Wi =AW, + AW,

(14}
W, = AW, + AW, + AW,

W,-=AM+AW2+AW3+---+AW_1
These methods require a lot of computation; however, a qualitative
estimation of the wavefront accuracy can be done by observing the
deviation of the fringes from the ideal linear pattern, as in the
interferograms in Fig. 3.
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(A) (B)

(C)

Fig. 6. Sequence of lateral shearing interferograms of an aberrationless wavefront as

one passes through the focus. In this case, a certain amount of 1ilt orthogonal to the

direction of shear is introduced. At the focus the fringes are paralle! to the direction of

shear, whereas inside and outside the focus they are inclined. (A [nside the {ocus, {B)
atl the Tocus, () outside the focus.

2.2 Testing of large optics

The interferometer can be used in the testing of large optics because a
reference surface as large as the test surface is not required in the setup
because the wavefront is compared with itself. The reference and test
wavefronts obtained from the shearing plate travel almost identical
paths and therefore the vibrations and turbulence of the medium are









Foucault test of a spherical mirror, at several

positions of the knife edge.
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Interferometers without observable fringes
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Abstract. There are some optical arrangements that closely resemble
interferometric configurations but do not produce fringe patterns. An im-
portant characteristic of these devices is that they do not have two dif-
ferent outputs with compilementary patterns, but only one. Some of these
interferometers are described here, pointing out their common properties
and differences. It is shown that if we open the second output, both
complementary patterns will appear. © 1997 Society of Photo-Optical Instruman-
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Subject terms: interfarometry; fringe pattems; cyclic interlerometers; polarization.

Faper 05106 received Oct. 2, 1996, revised manuscript received May 29, 1997;
accapted for publication May 29, 1997, This paper is a revision of a paper
presented at the SPIE intemational conference on Optical Fabrication and
Testing, June 1995, Tokyo, Japan. The paper presented there appears

(unrefereed) in SPIE Proceedings Vol. 2576.

1 Introduction

It is well known that any two-beam interferometer produces
two complementary interference pattemms, i.e, a bright
fringe in one of the interference patterns corresponds to a
dark fringe in the other. The reason for this complementa-
rily lies in the principle of energy conservation. Obviously,
if only one pattern exists, it is really the superposition of
both complementary patterns and hence the field must ac-
tually be fringe-free. Sometimes, the presence of one of the
two fringe patterns is not obvious, but even then, its pres-
ence is sufficient to guarantee the existence of the fringes in
the main pattern.

There are some optical arrangements closely resembling
interferometric configurations that have only one output.
These instruments, however, do not produce fringe pat-
terns. An important characteristic of these devices is that
they do not have two different outputs with complementary
patterns, but only one, as we pointed out before. Here, we
describe some of these instruments, which we call nonin-
terferometers.

2 Cyclic Interferometers

The first example has a cyclic configuration, described by
Cervantes.! In Figs. i(a) and 1(b) two similar cyclic con-
figurations are illustrated, where a collimated wavefront
with amplitude a enters the interferometer. We see that
there is only one output, that is, only one interference pat-
tern.

We show that this interferometer may take on several
different but equivalent configurations based in a general-
ized Fabry-Perot interferometer with the two mirrors hav-
ing different reflection coefficients.

The amplitude E in the cyclic interferometer in Fig. 1
may be obtained as the sum of all the multiple reflected
beams as follows:

E=artarit'e®+art'ret+arin' s 1e3®

+athr et (1)

Opt. Eng. 36(10) 2863-2867 {October 1997)

0091-3286/97/$10.00

where ¢ is the phase difference introduced in every cycle.
An optical element with amplitude transmission coefficient
T 1s inserted in the optical path. Here, r is the amplitude
reflectivity for external reflection, r' is the amplitude re-
flectivity for internal reflection in the beamsplitter, and ¢ is
the amplitude transmitted from the air into the beamsplitter,
After some algebraic manipulations we may obtain the fol-
lowing result for the amplitude in the output beam of the
interferometer:

artr'e'®

E=ar+ ———3.
ar 1—7r'e! )

If we assume that there are no absorption losses in the
beamsplitters, we may use Stokes's relationships

rirnt=1 3)

and

Hence, the amplitude of the output becams becomes

ar+arrie'®+a(l —rt)re'? r+ re'?

=a —.
1+ 7re'® 1 +7re®

(5)

Multiplying this equation by its conjugated complex £*,
the irradiance on the output field is

al(r+ 're'“b)(r+ re ')
Tl trrett) (1 + re '9)°

(6)

which may be transformed into

(r—7)2+2r7(1+cos ¢) .
1=t T T 2r (i T cos @) @

© 1997 Society of Photo-Optical instrumentation Engineers 2863
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E

(a) (b)

Fig. 1 Two possible cyclic interferometer contigurations.

where fp=a?. Alternatively,

(r+ 7y =4r7sin’(¢/2)

=1l (L+r7) =4rrsin’($/2)

(8)

It should be pointed out that this result is valid only for
a system with nonabsorbing beamsplitter' and mirrors.
However, any absorbing or reflecting element with trans-
mission 7 can be included the system.

Plots of the irradiance versus the phase are shown in Fig.
2 for v=0.5, 0.7, 0.9 and, 1.0. Here, we may notice the
following interesting facts:

YOV o St et
T T
e = b
Bl N oD

(¢) o

1.0 r=0()
r=03
o
........... i
() o5 v
!
0.0

-2n - 4%

(¢)

1. The fringes disappear for the extreme values of T,
equal to zero and one.

2. The dark fringes width is reduced when increasing
the value of .

Figure 3 shows plots of the real versus the imaginary
part of the reflectivity. It is interesting to see that these
graphs are circles whose diameter represents the variation
between the minimum and maximum amplitudes in the
fringe pattern. If the beamsplitter reflectance increases, the
circle decreases in diameter and shifts toward the edge of
the largest {unit-radius) circle. This means that the interfer-
ometer reflectance becomes unity. We may also notice that
for values of r equal to r the circle passes through the
center, making the irradiance equal to zero,

Considering a particular case with the irradiance trans-
mission coefficient T equal to one, we obtain

r2+l+2rcos¢t 2

=2 =
=a’ 3 s ———— =a’.
I=a r‘+ 1 +2r cos ¢ 9 ©)

As we see, in this case the irradiance in the interference
pattern is a constant, equal to the irradiance in the incident
beam. That is, the interferometer acts as a perfect mirror,
just introducing a phase shift. If an absorbing beamsplitter
is used, a fringe pattern appears. The complementary pat-

et oy ey
WA

e ==
iRl N 000

l(d)) 0.5 ¥

0.0
-2n -n 0 n 2 3n aw

(b) ‘b

Hb) og| o ............ ____________ —

0.0

(d)

Fig. 2 Plots of the irradiance versus ¢ for several values of r and .
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t=05

{a) (h

T=10

NG

(c) {d)

Fig. 3 Graphs in the complex piane showing the irradiance for sev-
eral vaiues of r and r. The imaginary versus the real part of Eq. (5)
has been plotted.

tern is absorbed in the beamsplitter. A plot of the intensity
versus the phase is shown in the Fig. 2{d) for +=1.0.

In Fig. 4 a plot of the maximum and minimum irradi-
ance as a function of the reflectivity and the transmission
coefficients is presented. When r and 7 take the same value,
the plot for /., goes to zero. Both the minimum and the
maximum irradiances start at the same value and join at the
same place when the transmission value is 1.0. In Fig. 5,
the visibility versus the transmission coefficient it is plot-
ted; the visibility of our configuration takes its maximum
value for identical values of the reflectance r and the am-
plitude transmission 7. The visibility decreases in all other
cases.

[I'“I‘( T‘r)
1.0
fue{T.F)

{T,.09) a.af

(1.08) g6

(1,07)
0.4 b

(t,06)

(t.05) g2

{t,04)
(1.0.3)

Fig. 4 Plots of the maximum and minimum irradiances as functions
of the reflectivity and the transmission coefficients.

M(t,r) 10

.60 0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.8 0.9 1.0

a9

T

Fig. 5 Plots of the visibility versus the transmittance of the intemal
element.

The internal element with transmission ceefficient 7 in-
troduces losses in the system, allowing the interferometer
to have two outputs, and hence twe complementary inter-
feromeiric patterns. In this case the complementary pattern
is in this absorbing element. It can in principie be made
visible if the absorbed energy in this element is transformed
by any means into visible light.

A simpler manner to make the complementary pattern
observable 1s by introducing losses in one of the mirrors by
making it partially reflective, as in Fig. 6. In this case Egs.
{7) and (8) are still valid if we write r=—r,. The minus
sign is introduced because the phase shifts upon refiection -

E,

T,

Fig. 8 Cyclic interferometer with two outputs,

Optical Engineering, Val. 36 No. 10, October 1997 2865
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(e} fs)

Fig. 7 Fabry-Perot interferometer with different reflection coeffi-
ciants.

for ry and r; are O for one of them and 180 deg for the

other, because one is an internal reflection and the other is
an external reflection.

3 Fabry-Perot Interferometer versus Cyclic
Interferometers

This cyclic interferometer with two outputs reminds us of a
Fabry-Perot interferometer with two different amplitude re-
flection coefficients, as in Fig. 7. We now find the reflected
and transmitted patterns for this modified Fabry-Perot in-
terferometer using two different amplitude reflection coef-
ficients.

Following the notation in Fig. 7(c), the expressions for
the reflected irradiances in the interferometer may be found
by using Stoke’s relations to be

(ri—r)2+4rr, sin®($/2)
(1 —r|r1)2+4r1r2 Sln2(¢/2) !

I,=1l, (10)

where /; is the incident irradiance and ¢ is the phase dif-
ference for two consecutive reflections. In an analogous
manner, the transmitted irradiance is found to be

; (1y03)?
Y (1 —riry) T+ dr,r, sind($/2)

7= (1)

Now, since all surfaces are dielectric, the transmitted irra-
diance plus the reflected irradiance should equal the inci-
dent irradiance; hence we may find

2 2
1 —rl—r24r(.r',1"2)2

{
O (t—ryry) +4r,ry sin2($/2)"

1= (12)

If we compare the result in Eq. (10) for the Fabry-Perot
interferometer with Eq. (8) for the cyclic interferometer, we
see that the two irradiances become identical if we make
the substitutions r=r| and 7= —r,.

4 Polarizing Interferometers

Another example in which no fringe pattern appears is the
well-known? interferometer configuration shown in Fig. 8.
The incident beam is right circularly polarized. Again, as in

2866 Ovtical Enaineenna. Vol 36 No 10 Octoher 1097
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Fig. 8 Another interferometric configuration that uses the polariza-
tion states of the light and does not produce fringe pattems.

the preceding example, there is only one interference pat-
tern. No complementary pattern exists. The two interfering
beams w, and w, are linearly and orthogonally polarized as
shown in Fig. 9, so that no interference can occur.

If a polarizing filter is placed in the beam with its axis
along the direction P as illustrated in Fig. 9, the compo-
nents of w, and w, along P will interfere, forming the
interferogram. If the filter is rotated to have its axis in a
direction P’, the complementary pattern appears, Thus, we
might say that without the polarizing filter no fringe pattern
is observed, because the two complementary orthogonally
polarized patterns overlap in the same direction of observa-
tion. With the filter, the two complementary patterns are
separated by absorbing the energy of one in the filter. If a
nonabsorbing polanzing prism is used instead of the filter,
the two complementary patterns may be observed.

5 Conclusions

We have described some examples in which the interfero-
metric systems do not produce fringes, because there is
only one output beam. In this case there is no complemen-
tary pattern. So, in order to have a fringe pattern in the
cyclic interferometer, one of following conditions should
be sausfied:

1. There is a real output.

2. If not, the output should be through absorption (i.e.,
an absorptive ciement).

Pl

Fig. 9 Axis of rotation for a polarizing filter.
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We have obtained some important relations between the
Fabry-Perot and the cyclic interferometers. From Fig. 6 it
can be observed that the light beam follows only one direc-
tion in both possible path, but in the Fabry-Perot interfer-
ometer (Fig. 7} it travels the same path in both directions.
Another requirement is that in both interferometers the re-
flection coefficient r, should be different from one in order
10 have fmuges (or an absorbing element).

The main practical difference between the cyclic and the
Fabry-Perot interferometers is the same as between the
Mach-Zehnder and the Twyman-Green interferometers,
i.e,, that in the first the tested sample is wraversed only in
one direction by the light, while in the second, it is tra-
versed in both directions.
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Fig. 10. Point in the observing plane that is illuminated by a light
ray from a point source, in an interferometer with pure shift.

When the light source is extended and there is shift
or any kind of shear, then the two images of the
observing plane are separated in space as shown in
Fig. 11. As we pointed out above, this eflect reduces
the interference pattern contrast. The maximum
contrast with an extended light source is thus ob-
tained when there is no shift and no shear. This is
the same as saying that the two images of the light
source must coincide in space and must also be
perfectly coplanar to each other. Using this fact,
Guild® proposed a method to verify the compensation
for the size of the light source in a Twyman—Green
interferometer by eliminating the equal inclination
fringes that are observed when one looks at the
spatially separated images of the light source. An
exact compensation for the light source size may be
obtained only if the two light source images not only
coincide in space but also have the same size and
orientation to avoid the presence of any kind of shear.
This condition may be satisfied by use of many
methods. Connes! proposed the use of adjustable
telescopic compensators in a Michelson interferom-
eter, and Steel® used thin-field lenses placed at the
light source images.
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Fig. 11. Point in the observing plane that is illuminated by two
different light rays from the same point in the light source.

4. Light Source Monochromaticity

The OPD is an interferometer parameter that is
independent of the other four. It is given by!

OPD = D nd - 2 nd = 2, nd. (16)
]

2 12

This relative OPD is independent of the wavelength
when dOPD/dA = 0; thus we obtain

S Nt =X N (17)
1 2
where N is the group refractive index defined by

. dN
N=N-rg; (18)
Therefore the interferometer compensates for the
bandwidth A\ when the group optical path for both
interferometer paths is the same. A particular case
is when both paths travel the same distances, with
the same amount and type of glass on both paths.
White-light fringes may be observed only if the
interferometer is perfectly compensated for the whole
visible spectrum.

5. Conclusions

Four parameters, shift, shear, lead, and tilt, have
been defined in an analogous but slightly different
manner from those defined by Steel.! The effect of
each of these parameters in a practical interferometer
has been analyzed. As pointed out by Steel,! if the
interferometer is made out of plane mirrors and thin
or nondispersive plane beam splitters, without any
lens or spherical mirror or glass plate, then the shift,
lead, and OPD are all equal. These three param-
eters are equal even with glass plates, as long as the
glass in both paths is the same. This forms what is
known as a compensated interferometer. However,
if the glass path is not the same for both beams, then
the OPD is different from the shift and lead. If there
are lenses or spherical mirrors in the interferometers,
the shift, lead, and OPD are generally different.’
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other. If the light source is small compared with its

distance to the observation plane images, then the
interferometer produces two reversal sheared wave
fronts.

If there are only lead and shift (shear = tilt = 0)in
the interferometer, the light source is small compared
with its distance from the images of the observation
plane, and at least one of the two images of the light
source is at a finite distance, then both radial shear
and defocusing are present. In the case of pure
defocusing as shown in Fig. 8,

B_® 1 (13)
a Y
The presence of defocusing implies the presence of
lead; however, the converse is not necessarily true
because the two images of the light source might be
separated, but at infinity.

If there is no lead and no shear, besides Eq. (13) we
may also write

ap' = By, (14)
8 =y (15)

This result means that when the two images of the
light source coincide in spatial position, size, and
orientation, then the two images of the observing
plane must also coincide in spatial position and size.
In other words, it is impossible to have a shift value

LIGHT
SOURCE

JHSERVATION ORSERVATION

|
i{ ; \ , e

FLANE | LIGHT PLANE
IMAGES ! SOURCE
IMAGES
Fig. 9. Interferometer with pure tilt.

different from zero if the lead is zero, unless there is a
radial shear value that is differept from zero.

If the two images of the light source are laterally
displaced with respect to each other and with the
perpendiculars pointing to the center of the observing
plane, as in Fig. 9, then the interferometer has pure
tilt. In this case the two images of the observatign
plane are located one over the other and have'the
same size, but one is tilted with respect to the other.

Table 2 shows the effect of these parameters on the
configuration of the interferometer. The column
labeled interferometer parameters lists only those
different from zero.

3. Light Source Size

Let us consider first the case of an extremely sniall
light source, asin Fig. 10. If there is pure shift, a ray
from the light source illuminates the same point on
the two images of the observation plane; then there
are no spatial coherence problems. If there is any
kind of shear, however, spatial coherence problems
may appear even with a point source, because the two
images of the observing plane will be separated in
space. Thus any given point in the observing plane
will be iluminated by two different rays, coming from
a given point in the light source but with different
directions. The greater the angle between these
rays the smaller the degree of coherence between
them. This effect reduces the interference pattern
contrast.

Table 2. Eftect of the Interferometer Parameters on the Interferometer Configuration

Interferometer

[mages
QOperation Parameter Observing Plane Laght Source
Tilt Tilt Same size, laterally separated along arc Same position and size, tilted with respect tn
each other
Defocusing Lead shift Longitudinally displaced, same angular size Longitudinally displaced, same angular size
Shear |
Radial Shift shear (radial) Different position, ratio of angular sizes = p Same position, different sizes, with ratio = p
Rotational Shear (rotational)  Same position and size, rotated with respect to Same position and size, rotated with respect to
each other each other
Reversal Shear (reversal) Same size and position, reversed with respect to  Same position and size, reversed with respect to
each other each other
Lateral Shear (lateral; Same position and size, tilted with respect to Same size, laterally separated along arc

each other
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Fig. 4. Interferometer with pure lateral shear.

o Esz 82'
= 222 (10)
B ElGl Y1
Then from the last two relations we find
[0 4 6 alr 5,,
—Em == (11}
B v & Y1

This result shows that the angular sizes of the images
of the observation plane, as seen from the light
source, are always equal to the ratio of the angular
sizes of the images of the light source as seen from the
observing plane.

2. Interpretation of Interferometer Parameters

Let us now examine the effect of each of these
parameters in a practical interferometer. The shear
or lateral displacement of one of the images of the
observation plane with respect to the other must be
interpreted in a general manner. In other words, a
lateral displacement may be present, but a size con-
traction of one image with respect to the other, an
angular displacement, or an orientation change may
also be present. One may perform an orientation
change, for example, by reflecting one of the images of
the observing plane upside down and vice versa, while
leaving the left and right sides unchanged.

In a lateral shear interferometer the two images of
the observation plane are placed with respect to each
otherasin Fig. 4. The two images of the light source
are then one over the other in the same place with the
same size, but they are tilted with respect to each

S

()

LIGHT T LIGHT
SOURCE OBSERVATION SOURCE OBSERVATION
PLANE IMAGES PLANE
IMAGES
Fig. 5. Interferometer with pure radial shear.
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Fig. 6. Interferometer with pure rotational shear.

other. A point on the observation plane is illumi-
nated by rays with two different directions from the
light source. Then if the light source is small com-
pared with its distance to the observation plane
images, the interferometer produces two laterally
sheared wave fronts.

In a radial shear interferometer the two images of
the light source have a different size but coincide at
the same plane (lead = 0} as in Fig. 5. The two
images of the observation plane have a ratio of their
angular sizes, as seen from the light source, equal to
radial shear p, as follows:

p=—=-" {12)

As in a lateral shearing interferometer, if the light
source is small compared with its distance to the
observation plane images, then the interferometer
produces two radially sheared wave fronts.

In a rotational shear interferometer the two images
of the observation plane have the same size and
coincide in the same plane, but one is rotated with
respect to the other as in Fig. 6. The two images of
the light source are also rotated one with respect to
the other. Ifthe light source is small compared with
its distance to the observation plane images, then the
interferometer produces two rotationally sheared wave
fronts. :

In a reversal shear interferometer the two images
of the observation plane have the same size and
coincide in the same plane, but one is reversed with
respect to the other as in Fig. 7. The two images of
the light source are also reversed with respect to each

S
REVERSAL SHEAR ‘

- i /\
S I i
t . I ” — ]
e 1Al o K
B "
e JIF H}J 1 f.‘l‘l H
LIGHT OBSERVATION | LIGHT o
SCURCE PLANE ’ SOURCE gf;;gv.wow
IMAGES IMAGES

Fig. 7. Interferometer with pure reversal shear,

1 July 1995 / Vol. 34, No. 19 / APPUED OPTICS 3573




’ |
vt ‘;
u !

LIGHT SENERVAT
SOURCE Sf;,ﬁl vamon
LGHT
OBSERVATION SOUREE
PLANE IMAGES
IMAGES
Fig. 2. Maodifed Steel’s parameters for a general two-beam inter-

ferometer.

of wave fronts, because it is easier to visualize these
parameters in terms of these rays. These consider-
ations are completely general and valid for any two-
beam interferometer, such as the Twyman—Green
and the Fizeau interferometers.

Assuming now that the object medium and the
observation plane medium have the same index of
refraction, by the Lagrange relation that uses a
paraxial approximation we may write for ray A-G,
and its first image

ACB = A CB/, {1
and for ray A-G, and its images
ACa = A\ C iy = A0y, (2)
Now for ray E-C| and its first image we write
EGy = E\Gyy, (3)

and for ray E-C, and its images we write

EGS = E]Glalr = Engag‘. (4]
Cy
GI‘
C
c ‘ 8 2 i
| G|
. I I
A
| I
LGHT JBSERVATION OBSERVATION
SOURCE PLant UGHT PLANE
IMAGES SOURCE
IMACES
~_

?g”;’ " 23,:: VATIGN ORSERYATION
URC LIGHT PLANE
IMAGES SOURCE
IMAGES
Fig. 3.
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Table 1. Some Points and Ray Paths and Their Images

(Ohject Image 1 Image 2
Pomt Point Point
A Ay Ay
B, B
C C, ,
E E, E.
¥ F
G Gy 32
Ray Ray Ray
A-G A-G Ayt
A-liy A-F A-G
E-C, E.-C E,-D
E-C, E.-B E,-C

From Egs. (1) and (2} we obtain

a o
BBy
AC, 3 oy
A,C, _“1’

Similarly, from Eqgs. {3} and (4) we obtain

5 8
Yoo
ElGl 82'
E.G, &,/

From an analysis of Fig. 3 we may also find

&
Y

A202 (\'.2r

AlCl B]'

CESCRVATION
16

:gu‘r:ct' PLANE

: IMAGES

LCHT GBSERVATION
SOURCE PLANE
IMAGES

LIGHT
SOURCE
IMAGES

¥

LIGHT
SOURCE
IMAGES

(9)

ORSFRVATION
PLANE

DBSERVATION
PLANE

Relative sizes and positions in a two-beam interferometer for the light source, the observation plane, and their images.



First-order parameters for

a general two-beam interferometer

lan A. Walmsley and Daniel Malacara

We formulate the first-order properties of a general two-beam interferometer. We show that it may be
completely described by the light source position and the location, orientation, and size of the two images
of this light source as seen from the observation plane, plus the image-plane position and the location,
orientation, and size of the two images of this observation screen as seen from the light source position,
plus the optical path difference between the two possible optical paths. The parameters are quite similar
to those previously defined by Steel [W. H. Steel, Interferometry, 2nd ed. (Cambridge U. Press, New York,

1983].

1. Introduction

The first-order properties of a general two-beam
amplitude-division interferometer may be completely
described by the light source position and the loca-
tion, orientation, and size of the two images of this
light source as seen from the observation plane, plus
the image-plane position and the location, orienta-
tion, and size of the two images of this observation
screen as seen from the light source position, plus the
optical path difference between the two possible
optical paths. Steel' showed, based on an earlier
study by Hansen,? that four parameters could be
defined by the positions of these images. These
parameters are shear, shift, tilt, and lead. As shown
in Fig. 1, shear S is the lateral separation of the two
images of the observation plane, and shift 4 is their
longitudinal separation. Tilt ¢ is the lateral separa-
tion of the two images of the light source, and lead /! is
their longitudinal separation. As Steel pointed out.
a fith independent parameter is the optical path
difference (OPD).

Here We propose a slightly different definition for
these parameters, including tilts and sizes of these
images, to make them more closely associated with
practical interferometer parameters. We show that
it is convenient to define these parameters as in

I. A, Walmsley is with The Institute of Optics, University of
Rochester, Rochester, New York 14627 D. Malacara is with the
Centro de Investigaciones en Optica, A. C., Apartado Postal 948,
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Fig. 2. The perpendicular lines passing through the
centers of the images of the observation plane pass
through the center of the light source. Similarly,
the perpendicular lines passing through the centers
of the images of the light source pass through the
center of the observation plane. The size of the
images of the observation plane is directly propor-
tional to their distance from the center of the light
source. In addition, the size of the images of the
light source is directly proportional to their distance
from the center of the observation plane. The first
four interferometer parameters are elearly illustrated
in this figure. It is obvious that these modified
parameters reduce to Steel's parameters when both
the light source and the observation plane are at
infinity.

To understand the way in which these parameters
are related, let us consider an interferometer in which
both the shear and the tilt are zero (see Fig. 3).
There are two images of the light source and two
images of the ohservation plane, with different points
and ray paths imaged as in Table I. Here we have
considered the paths for some important rays instead

LIGHT i , _d

'
. CRSERVATION
SOURCE J ' .“ LIGHT PLANE
SOURCE
OBSERVATION
PLANE IMAGES

IMAGES
Fig. 1. Steel's parameters for a general two-beam interferometer.
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coefficient of thermal expansion is 3-5% for an aluminum rod of length
equal to one meter in the temperature range 20-40°C.

8 CONCLUSIONS

Several applications of the Murty interferometer were described in this
article. The information presented in this review paper will be useful for
workers engaged in the testing of optical systems and components.
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Fig. 37. Schematic diagram of a parailel plate interferometer for measuring the
thermal expansion coeflicient of a metallic bar.

is shown in Fig. 37. A metallic bar under test is placed in the path of the
light transmitted through a parallel plate of glass. One end of the bar is
fixed while the other end is free to move along its length. A plane
mirror is fixed on the movable end of the bar such that its surface is
perpendicular to its length. The collimated laser beam is focused on the
plane mirror. The focusing is checked by setting a fringe of uniform
brightness. The bar is expanded by heating to a higher temperature.
Due to expansion of the bar, the defocusing occurs in the interfero-
meter and straight fringes perpendicular to the direction of shear
appear in the shearing interferogram. The fringe spacing is a measure of
the defocusing, i.e. the displacement of the mirror due to the expansion
of the metallic bar. The linear expansion dL of the metal is given by
1AM,

dL 53D f (45)
where A is the wavelength of the light, M is the number of fringes over
distance D in the shearing interferogram, f is the focal length of the
focusing lens and § is the shear given by eqn (8).

The linear thermal expansion coefficient « is then calculated by
1AM f?

Y TospLdT

where L is the length of the bar and d7T is the change in the
temperature of the bar.
The maximum possible error reported in the measurement of the

(46)
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Fig. 36. Schematic arrangement of the interferometer for measuring the wedge angle
of a glass plate.

the plate is a, then the angle 8 between the emergent wavefronts {rom
the front and back surface of the plate is given by

VNI sl @
B=2 N* —sin 0a=é (43)
cos @ o

where d is the fringe spacing.

- The measurement is done by counting the number of fringes in the
common area of the wavefronts. If there are K fringes in the distance

D — 8 for an aperture D and a shear §, then the wedge angle o is

calcutated by

B KAcos@
TTAD - S)VN =i 8

(44)

Further studies using this method of measuring angles have been
reported by Tentori and Celaya.™

7 MEASUREMENT OF LINEAR THERMAL EXPANSION
COEFFICIENTS

An application of the parallel plate interferometer for measuring the
lincar thermal expansion coefficient of long metallic bars has been
supgested by Srivastava, Tomar and Kasana.™ The experimental setup
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Fig. 35. Schematic arrangement of a parallel plate interferomeler for use in measuring
angles.

where m is any integer and A is the wavelength of light. The total angle
that the glass plate rotates is given by 8,- 8,. The integer m is
determined by counting the fringes. The angle of rotations is then
computed by eqn (3). If the measurement starts at normal incidence,
i.e. 8, =0, eqn (40) reduces to

m 2
o fIN VNI Tl
T ,\[N N® —sin’ 6,] (41)
This method for measuring angles has two possible applications:

(i) The accurate measurement of angles of prism and wedges. In
this case, the measuring plate and the prism are rotated about a
common axis. An auto collimator in front of the prism faces
may be used to determine the starting and ending points in the
fringe counting.

(i) The measurement of angular velocities of slowly rotating axis is
another application of this method. The angular velocity w in
radians per second can be determined by measuring the
{requency f of the signal in fringes per second, using the formula

__qir_z_(ét_{) sin &, cos @, (42)
dT \A/VAN,—-sinig, "

This method is capable of measuring any angle from 0° to 360°
with a precision of about one second of arc.

Figure 36 shows an arrangement for measuring the wedge angle of
glass plate. The collimated beam of laser light is incident on a wedged
plate under test. If the angle of incidence is 8, and the wedge angle of
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Fig. 34. Schematic arrangement of a Murty interferometer with two interferograms to
increase the sensitivity of collimation.
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from collimation, the straight fringes move from left to right or from
right to left.

6 MEASUREMENT OF ANGLES

A method for measuring small angles or rotations with high accuracy
was described by Malacara and Harris* using a Murty interferometer.
The method is based on the variation of optical path difference OPD
between the reflections from the two surfaces of a parallel plate of glass
when this plate is rotated. To change the OPD, the plate is rotated
about an axis parallel to the plate as shown by a curved arrow in Fig,
35. The difference in the OPD for two different angles of incidence 8,
and 8, on the plate is given by

OPD, — OPD, = 2T |VN? —sin’ 8, — VN? —sin? 8, (39)

where T is the thickness of the plate and N is the index of refraction.
The condition for destructive interference to occur in this situation is
given by

? = % [VN? —sin? 8, — VN? —sin’ 6,) (40)
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Fig. 32. A scries double wedge plate shearing interferometer for collimation test. (a)
With two plates, (b) with one plate.

cube corner reflectors, has been devised by Langenbeck.> A third
method to improve the sensitivity of this test has been described by
Gouhua Mingshan and Jingbin.* They use an optical arrangement as in
Fig. 34. The two fringe patterns will show straight and parallel fringes
with an inclination due to the presence of the wedge in the glass plate.
When the light beam is not well collimated, the fringes in both patterns
rotate due to the wedge in the glass plate. However, the rotation in the
two interferograms will be in opposite directions because the trans-
mitted beam reaches the wedge plate in opposite directions.

There is a commercial collimation testing device made by Blue Sky
Research, in San José, CA, based on a Murty interferometer using a
true parallel plate (without wedge). This instrument shifts the phase
between the two wavefronts by slowly rotating the glass plate. At the
exact collimation position, the interferogram has no fringes, but the
field switches continuously between dark and clear, giving the field a
very characteristic blinking appearance. When the position is away

(A) (3)

Fig. 33. Schematic drawing of the fringe patterns observed in a series double wedge
plate shearing interferometer for collimation test. (A) Inside of focus, (B) collimated,
(C) out of focus.
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Fig. 31. Double wedge plate shearing interferometer for collimation test.

be horizontal but will be inclined. By moving the lens longitudinally it is
evident when one is going through the focus by observing the horizontal
fringes. The sequence of the fringe pattern in passing through the focus
is like that shown in Fig. 6. A complete study of the Murty
interferometer using a rotatable plate with a wedge for collimation
testing has been described by Xu and Rosenbruch.?

A method of duplicating the sensitivity of this test for collimation has
been described by Sirohi and Kothiyal®® and by Kothiyal, Sirohi and
Rosenbruch.” Their method, as shown in Fig. 31, uses two plates with
the same wedge. The two wedges are parallel to each other, horizontal
and on opposite sides. The two interferograms produce straight fringes
with opposite slope. The beam is collimated when the two sets of
fringes are horizontatl,

Sriram, Kothiyal and Sirohi® and Sriram, Senthilkumaran, Kothiyal
and Siroht* have devised a four-wave interferometer system with two
slightly wedged plates, in series, as shown in Fig. 31. Two of the
wavefronts coincide in space, without any relative lateral shear. The
two wedges are parallel to each other, and both introduce a tilt
orthogonal to the shear. The wedges may be on the same or opposite
sides. By using a reflecting arrangement as in Fig. 31(b), only a wedged
plate is necessary. The result is a set of horizontal fringes if the beam is
collimated. Otherwise, the fringes appear as in Fig. 32.

Another similar way to improve the collimation sensitivity, using
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Fig. 30. Schematic diagram of a parallel plate interferometer for measuring the optical
distortion of window plate or transparency, The optical arrangecment with a digital
electronic readout was devised by Taboada (1977),

plate can be tested by bringing different areas into the test region. The
reported precision of the measurement in the optical distortion™ is
+0-005 diopter in this setup.

5 CHECKING THE COLLIMATION OF A LENS

One of the most useful applications of the parallel plate interferometer
is for checking (Murty 1992) the collimation of a fens. In Fig. 1 if the
pinhole is not located at the focus of the lens, the resulting beam is
slightly divergent or convergent. Hence the shearing interferometer
paltern is as shown in Fig. 4(a) and (c). Only when the pinhole
coincides with the focus of the collimating lens will the common arca of
the two sheared apertures be free of any fringes as scen in Fig. 4(h),
However, a better judgment can be made of the exact collimation if a
wedged plate is used for the purpose of indicating it. In this case the
plate is first used normal to the beam emerging from the collimating
lens. The reflected beam shows the Fizeau fringes indicating the
direction of the wedge. Since in this position the shear is zero, slight
decollimation does not matter. The wedged plate is rotated in its own
plane until the Fizeau fringes are horizontal. Then, the plate is at about
45°. If the pinhole is slightly outside the focus. the shear fringes will not
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Fig. 29. Schematic arrangement of the parallel plate interferometer for large-aperture
wind-tunnel applications.

collimated beam is incident on a combination of lenses L, and L,
separated by the sum of their focal lengths. Therefore, the light
emerging out of the lens L, is well collimated. The parallel plate then
produces two sheared wavefronts showing a fringe of uniform bright-
ness or fringes of nearly zero frequency. However, a slight longitudinal
displacement of the lens L, introduces a slight positive power in the
combination of lenses L, and L, system. The net power 1/L of the lens
system is given by

1 A 18

L SX (38)
where § is the shear and X is fringe spacing measured at a convenient
place.

Net power in the system can also be introduced by placing a
low-power ophthalmic lens in the test region between lenses L, and L,.
In such a case, a fringe system of frequency 1/X is obtained in the
shearing interferogram. The fringe frequency can either be measured by
counting the number of fringes per unit length in the interferogram or
by sweeping® the fringe pattern with a rotating mirror cube across a
100 wm resolution detector consisting of a pinhole aperture A, micro-
scope M and photodiode PD. The periodic fringe signal is low-
frequency filtered by an electronic band pass filter EF, monitored with
an oscilloscope OSC, and frequency measured with a counter FC.

The calibration is obtained by placing low-power lenses in the test
region between L, and L, A linear plot is obtained of power versus
fringe frequency. For measuring the optical distortion, a window plate
or a transparency is placed in the test region and the fringe frequency is
measured as indicated above. The optical distortion in units of power
(diopters) is then determined by the calibration curve. A good window
having no distortion shows a power of zero diopters. A large window
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Fig. 27. Ray diagram indicating that pure lateral shear cannot be obtained when the
thin glass plate s located at the focus.

the form of an air wedge. Even then only a very limited amount of
lateral shear is obtained, and it is better to use a system designed for

large aperture wind-tunnel applications or homogeneity measurements,
as shown in Fig. 29.

4.6 Measurement of optical distortion in aircraft transparencies and
window glasses

An application of the parallel plate interferometer for measuring the
optical distortion of large aircraft window plates has been suggested by
Taboada.” An experimental setup is shown in Fig. 30. A laser beam is
expanded up to 2cm in diameter and collimated by a lens L,. The

Fig. 28. Typical appearance of the lateral shear fringes in the interferometer shown in
Iig. 26.
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Fig. 25. Schematic arrangement of a parallel plate interferometer for testing the
hoemogeneity of a glass sample.

the shear plate can be used for flow studies, diffusion studies, and other
research.

Another modification of the interferometer suitable for the study of
aerodynamic research and wind tunnel studies was suggested by
Tanner.”*# A schematic diagram of this Murty-Tanner arrangement is
shown in Fig. 26. A very small, thin parallel plate is used at the focus of
the system. The laser light is collimated by the first lens, and after a
certain distance, the collimated light beam is focused by the second
lens. At a position very close to the focus, a thin glass plate is set at
about a 45° angle of incidence. As can be easily seen from Fig. 27 it is
not possible to obtain pure lateral shear because of the longitudinal
separation between the two images, seen as reflections from the two
surfaces of the plate. The result is that, even for a well-corrected optical
system, the lateral shear fringes are slightly curved, as shown in Fig. 28.
Ideally this system requires an extremely thin plate of glass with a
wedge between the surfaces. Alternatively, the system may be made in
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Fig. 26. Schematic diagram of a Murty-Tanner interferometer for wind tunnel studies.
A thin parallel plate is used at the point of convergence.
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extraordinary ray. The refractive index N| for the extraordinary ray is
calculated by

T

N = -
- D,

(35)

Using the above procedure, the refractive indices (MN,, N3} and
(Ny, N3} are measured along the remaining two directions which are
normal to the surfaces of the slab. The birefringence (N, — N,) is then
calculated using the following relationship:

1
NNy = (SN = M)+ (Vi = N + (V= N)) (36)

where N, = refractive index for extraordinary ray, N, = refractive index
for ordinary ray Nj, N3 and N; are the refractive indices for the
extraordinary ray along the three directions that are normal to the
surfaces of the rectangular slab. N,, N,, and N, are the refractive indices
for the ordinary ray (i.e. N, =N, =N, = N,).

The uncertainty in the refractive measurement, dN, is given by

dN = (NT—Z) dD (37)

where dD is the uncertainty in the measurement of the displacement D,
and N is the refractive index. Assuming dD = +£0-003mm, ¢ =4 mm,
N =15, then dN = £0-002. The accuracy of the measurement can be
increased by up to +0-0002 for a sample of thickness of 40 mm.

It may be pointed out here that fringes of high contrast are obtained
only when the direction of vibration of the polarized light is parallel to
the directions of either the ordinary ray or the extraordinary ray.

4.5 Determination of homogeneity of solid glass samples and
aerodynamic studies

A schematic arrangement for the determination of homogeneity’ of a
glass sample is shown in Fig. 25. The sample may be prepared in the
form of a paraliel plate of glass and sandwiched between two very good
plane plates, using a suitable oil for contact. This sandwich is placed
between the collimating lens and the shearing plate. Since a good plane
wavefront passes through the sample, any inhomogeneity distorts this
wavefront, which when laterally sheared reveals the inhomogeneity.
This method can very easily reveal variations in the refractive index
inside the material. The same region between the collimating lens and
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Fig. 24. Schematic diagram of a wedged plate interfcrometer for measuring the
birefringence of optical materials.

lens. The expanded laser beam is focused on a plane mirror by a
well-corrected focusing lens mounted on a precision distance measuring
device. The apex of the wedged plate is made horizontal by the
procedure described in Section 2. Horizontal straight fringes are formed
in the shearing interferogram for the precisely focused beam on the
plane mirror. Position 1 of the focusing lens is noted. To measure the
birefringence of the crystal, a parallel plate of the crystal is placed
between the focusing lens and the plane mirror. Longitudinal displace-
ment of the focus for one plane of polarization (say for the ordinary
ray) makes the fringes inclined. The focusing lens is then moved away
from the plane mirror in order to focus the laser beam on the plane
mirror and horizontal straight fringes are again seen on the screen.
Position 2 of the focusing lens is noted on the scale of the carriage. The
difference between the two positions 1 and 2 gives the displacement D,
for the ordinary ray. The thickness T of the slab is measured by a
micrometer. The refractive index N, for the ordinary ray is given by
N = r 34
A T Dl (34)
To measure the refractive index for the orthogonal polarization, i.e.
for the extraordinary ray, the plane of polarization of the laser light is
rotated through 90° by rotating the half-wave plate. Inclined fringes are
again obtained on the screen. The fringes are made horizontal by
displacing the focusing lens to position 3 such that the light is focused
precisely on the plane mirror. The difference between position 3 and
the position 1 is a measure of the longitudinal displacement D! for the
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Fig. 23, Schematic diagram of a parallel plate interferometer for use in measuring the
refractive index of a glass.

accuracy of +£0-0002 in the mecasurement of the refractive mdex of
liquids using this setup.

Figure 23 shows a corresponding arrangement for measuring the
refractive index of a glass. The glass sample must be fabricated in the
form of a parallel plate. The refractive index of the plass 1s calculated
from the following relationship:

T
Ny= ot (33)

D

where the thickness T, of the glass plate under test is measured by an
accurate micrometer and the displacement is determined by the
interferometer, The accuracy achieved in the measurement of the
refractive index of glass is +0-0002.

4.4 Measurement of the birefringence of optical materials

Fieure 24 shows a schemarie diagram of the wedped plite intertero.
meter for measuring birefringence™ of optical materials. The material
must be in the form of a parallel plate. When the opucal axis of the
crystal is unknown, a rectangular plate of the crystal is cut and all six
surfaces ot the slab are ground and polished 1n such a way that the
opposite surfaces are parallel to cach other. A He Ne laser enitting a
planc polarized light is used in this setup. A half-wave plate 1s placed
between the He-Ne laser and the microscope objective to rotate the
planc of polarization of the laser light. Laser light is expanded by a
beam expander consisting of a microscope objective and a coilimating
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Fig. 22. Schematic diagram of a paratlci plate interferometer for use in measuring the
refractive index of a liquid.

remains collimated after passing through the cell and lens. This is
indicated by observing the horizontal straight fringes in the ficld. The
position of the plane mirror is noted. To measure the refractive index of
a liquid, the liquid sample is filled into the cell. The liquid cell now
functions like a parallel plate of thickness T and refractive index N in
the converging beam of light. Consequently, the focus of the lens-liquid
ceil combination is displaced along the optical axis by an amount given
by

TN - 1)

N

D (31)

The longitudinal displacement of the focus is indicated by the inclina-
tion of the fringes from the horizontal direction. The plane mirror is
then moved back to the new focus O’ in such a way that the fringes
apain become parallel to the horizontal direction. The position O" of
the mirror is noted. The differcnce between positions O and O’ gives
the measurement of the displacement D caused by the liquid sample. It
the cell length T is known, the refractive mndex of the liguid is
calculated by eqn (31), which can be rewritten in the following form

T

S — 32
T~ D) (32)

Ny

Since the displacement is measured by taking the difference between
two positions of the mirror, the accuracy in the measurement of the
displacement D is of the order of a micron. It is possible to achieve an
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Fig. 21. Schematic diagram of a wedped plate interferometer for measuring the
refractive index of a lens. In this sctup. the convex surface faces toward the wedged
plate.

The method described here is useful for measuring refractive indices
of simple negative-, positive- or zero-power lenses. In the case of a
plano-concave or plano-convex lenses, the lens is mounted such that
light enters the plane surface. The apparent thickness 7, and the actual
thickness are measured and the refractive index is given by

N=— (30)

An error analysis was done and the measuring accuracy reported® is
in the range +0-04 to +0-001. The measuring accuracy is a function of
the shape, radius of curvature, and thickness of the lens. If the lens is of
the meniscus type, i.c. the front surface is convex and the rear surface is
concave, then it is preferable to measure the radius of curvature of the
concave surface using the setup of Fig. 20 to obtain a more accurate
value.

4.3 Measurement of the refractive index of a liquid or glass

Another application of the Murty interferometer involves the measure-
ment of the refractive index of a liquid with the instrument shown in
Fig. 22 designed by Shukla.” A well-collimated laser beam is incident
on a wedged plate whose apex lies in the horizontal plane. A focusing
lens is placed in the path of the transmitted beam. An empty cell 1s
placed in the converging beam of the light obtained by the focusing
lens. A plane mirror is then placed at the focus of the lens and empty
cetl combination. In this position. the fight is reflected back and
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Fig. 20. Schematic diagram of a wedged piate interferometer for mcasuring the
refractive index of a simple negative, positive or zero power lens, [n this selup, the
concave surface faces 1oward the wedped plate.

focusing lens is noted on the scale of the carriage. The focusing lens is
then moved toward the lens under test in order to focus the light beam
on the rear surface of the lens and Position 2 of the focusing lens is
noted. The difference between positions 1 and 2 gives the apparent
thickness T, of the test lens. Finally, the focusing lens is moved away
from the test lens in order to focus the light beam on the center of
curvature of the front surface of the lens. Straight fringes are apain
obtained when the focus coincides with the center of curvature of the
front surface of the lens. Position 3 of the focusing lens is noted and the
distance between positions 1 and 3 gives the radius of curvature R of
the front surface of the test lens. The central thickness 7 of the test lens
is measured with a micrometer. The refractive index N of the lens is
calculated by
v TRT) .
PR T
Figure 21 shows an opuical arrangement for measuring the refracuve
index of a lens whose convex surface faces towards the wedged plate.

The refractive index N of the lens is calculated by
R -1,

TR T )

T(R-T)

This optical arrangement is stmilar to that of Fig. 20 except that the
focusing lens is moved toward the test lens to measure the radius of
curviature of the convex surface.
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iens, Hence the focai lengths of the lens in liquids I and 2 should be
measured separately to determine the refractive index of the lens.
Liquids of known refractive indices should be selected and the focal
length of the test lens is determined independently with each liguid.
‘The back focal length of the optical system in Fig. 19 is defined as the
distance between the focal ptane and the back surface of the glass cell
and this is determined exactly by means of the parallel plate interfero-
meter. The actual focal length is given by

f—S’+T°+T“+S' 25
SN N (25)
where §; = the distance between the back surface of the glass cell and
the foca!l point, T, = the thickness of the rear side of the cell, S, = the
axial distance between the principal point and the back vertex of the
lens, 7, = the axial thickness of the liquid column between the lens and
the rear side of the cell, and N; and N, = the refractive indices of the
glass cell and the liquid inside the cell, respectively. The factor S/, is
given by

Sp= = (26)
N
for a plano-convex lens and
Sp= . (27)
2N

for a biconvex lens of equal surface curvatures.

If all the parameters of the cell and liquid are known and the back
focal length is determined experimentally, then the refractive index of
the lens can be calculated by the use of eqns (24)~(27). The accuracy of
the measurement in the refractive index of the fens as reported by
Kasana and Rosenbruch™ is of the order of 1 » 10 *in this setup.

4.2 Measurement of the refractive index of lenses

An alternative method™ for measuring the refractive index of a lens is
shown schematically in Fig. 20. The apex of the wedged plate is set
parallel to the horizontal direction. A focusing lens is mounted on a
carriage and placed in the path of collimated beam of laser light. The
light is focused on the front surface of the test icns, which is placed on
the optical axis of the focusing lens. Consequently, horizontal straight
fringes are obtained in the shearing inteiferogram. Position 1 of the
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Fig. 19. Schematic diagram of a parallel plale interferometer for measuring the
refractive index of a lens,

is repeated. The method described here is applicable only to converging
lenses.

4 MEASUREMENT OF REFRACTIVE INDICES AND
HOMOGENEITY

4.1 Measurement of the refractive index of lenses with 2 liguid cell

An innovative nondestructive technique for measuring the refractive
index of a simple lens was described by Kasana and Rosenbruch" who
used a Murty interferometer. The schematic arrangement for this
purpose is shown in Fig. 19. The arrangement contains a well-corrected
lens which collimates the beam. A glass cell with plane parallel plates as
walls is placed in the path of the collimated beam. The test lens is
immersed in the liquid inside the glass cell. The wavefront converges 1o
a point incident on a plane mirror which reflects it. This reflected
wavefront again passes through a lens which acts as an autocollimator.
The plane parallel glass plate is uscd to test the collimated wavefronts.
The refractive index N of the lens is given by the following relationship:

= ﬁfn_’fz - M f' (24)

(f: ‘ﬁ)

where £, is the focal length of the lens in a liquid of refractive index N,
and f. is the focal length of the lens in a liquid of refractive index N
Relationship (24) is valid only for a thin lens or for a plano-convex

———T T
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Fig. 18. Schemalic diagram showing a parallel plate interferometer in two steps (a)
and (b) [or location of the cardinal points of a lens system.,

The distance between the principal points is given by

A=D~(L +L+2P) (22)

The effective focal length of the lens is then calculated from the
tollowing cquation:

el = f+ P = V(L - f)(L, - f) (23)

The distance P 1s considered to be positive when the principal point
ltes on the right side of the front surface. When the distance P is
negative, the front focal length is greater thau the effective focal length.
By measuring the distances L, L, and f the position of the cardinal
points can be computed from egns (21)-(23). For measuring the back
focal length, the lens is rotated through 180° and the whole procedure
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Fig. 17. Schemaltic diagram of a parallel plate interferometer for measuning the radius
of curvature of a convex spherical surf{ace.

The Murty interferometer has also been used for determining the
lens parameters.’”? Figure 18(a) and (b) shows the schematic arrange-
ments for the determination of effective focal length, efl, and front focal
length. The first step is to bring the plane mirror at the focus O by
setting the fringes horizontal and noting down the position of the
mirror. The mirror is now displaced to a convenient position depending
upon the focal length of the lens under test. The position O of the
mirror is noted. The difference between these two positions is denoted
by D. The second step is to place the lens under test at the focus O and
the positions are noted (see Fig. 18(b)). The lens is now moved to a
position 2 so that the focus of the beam coincides with the focal point of
the lens. In this setting the wavefront reflected back is a piane, and
consequently one sces a field containing horizontal fringes. The distance
between position | and position 2 gives the front focal length. The third
step is to move the Iens to a position 3 such that the image of the point
O is focused on the plane mirror at O, The distance between postion 3
and position 1 is denoted by L. The last step is 1o move the lens to g
position 4 such that the points O and O' are agamn conjugate points.
The distance between position 4 and position 1 is denoted by L. The
cardinal points can be located by solving the following cquation:

prH2P+ (L, v LY~ LL, =0 {20}

where P is the distance of the first principal point from the front surface
and [ the front focal length.

I'= [ Nfiv LL ~ f(l.+ L)) (21
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Fig. 16. Schematic diagram of a parallel plate interferometer showing ils usc in
measuring the radius of curvature of a concave spherical surface.

3.3 Measurement of short radius of curvature and location of
cardinal points of a lens system

Another application of the interferometer involves the measurement of
the radius of curvature'® of a concave spherical surface as shown in Fig.
16. The system contains two welil-corrected lenses, the first of which
collimates the beam. The shearing plate is located between the two
lenses such that the apex of the wedge is in the horizontal plane. The
test plate under test is brought to the focus of the lens. The reflected
beam is again collimated by the focusing lens and interference is
observed due to the sheared wavefronts. The position of the test plate is
noted. The test plate is then moved towards the right in order to focus
the laser beam at its center of curvature. When the focus of the beam
coincides with the center of curvature of the test plate, horizontal
straight fringes are observed. Even a slight error in the setting will
incline the fringes, which can be easily detected by piacing a horizontal
wire against the fringes. The sccond position of the test plate 1s noted.
The displacement of the test plate between these positions gives the
radius of curvature. Since the distance is measured by taking the
difference between the two positions, the accuracy of the measurement
ts high. Figure 17 shows the corresponding arrangement for convex
surfaces. In this case the longest radius of curvature of the test plate
that can be measured is slightly less than the focal length of the focusing
lens. The collimating lenses in the above applications have to be very
good, and several designs have been suggested by Malacara (1965),
among others.
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Fig. 14. Schematic diagram of a lateral shearing interferometer for measuring a long
radius of curvature for a concave sphencal surface. In this arrangement, the shearing
plate is a parallel plate of glass.

plate, and the reverse is true for the convex surface. Figure 15 shows
the shearing interferogram of a concave mirror of radius 10-275m
which was recorded in the setup of Fig. 14.

Fig. 15. Photograph of the shearing interferogram of a concave mirror taken with the
arrangements of Fig. 14,
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convex mirror. L is the distance of the mirror from the recording plane
via a parallel plate. Using eqn (8), the lateral shear distance S is
calculated by measuring the thickness T and angle of incidence 6. The
angle of rotation ¢ is measured from the interferograms and the radius
of curvature is then calculated by eqn (17). The accuracy of the
measurement is about 0-2% of the radius of curvature. Riley and
Gusinow used the following parameters for the glass plate: N =1-515,
wedge angle = 6-91 seconds of arc, and 7 = 1-343 cm.

An alternative optical arrangement for measuring the radius of
curvature using a parallel plate of glass'**'® is shown schematically in
Fig. 14. The collimation is achieved by obtaining uniform illumination
over the common region of the sheared wavefronts. In order to achieve
a high degree of collimation, it is preferable to use a large aperture lens
and large aperture parallel plate. A 100-mm aperture lens and 150-mm
aperture parallel plate will be quite adequate for this purpose. In this
arrangement, the interference fringes are formed perpendicular to the
direction of the shear due to the curved nature of the mirror under test.
The radius of curvature of the wavefront at the recording plate is given
by

Sd S
R ,=—+—coté 18
L= ED (18)
where d is the fringe spacing. The positive sign is used for a converging
beam and the negative sign for a diverging beam. The radius of
curvature of the mirror is given by

5_12:‘: T cos?@ :tL]
An - VNT—sinl@

where L is the distance between the recording plane and the mirror and
D is the distance between n fringes in the whole overlapping region
along the diameter of the sheared wavefronts. The distance D is
measured from the photograph of the shearing interferograms by using
an accurate distance-measuring device. The thickness of the plate, T\ is
measured with a micrometer. For measuring the angle of incidence, the
parallel plate is usually mounted on the rotating disc of the spectro-
meter. The parallel plate is set in autocollimation by making the
back-reflected image from the plate coincide with the pinhole. The
spectrometer reading is noted. Now the disc is rotated through the
required angle. In order to determine the nature of the mirror (le.
concave or convex), the spacing of the fringes is measured at two
different recording planes. For concave surfaces, the fringe spacing
decreases as the recording plane is moved away from the shearing

r=2[ (19)
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Fig, 12. Schemalic arrangement of a lateral shearing interferometer for measuring a
long radius of curvature for a concave spherical surface. In this case, the shearing plate
is slightly wedge-shaped.

the radius of curvature r of the mirror is calculated from the following
relationship, which was derived by Riley and Gusinow (1977)

r:Z(Aqubi L) amn

where the + sign is used for a concave mirror and the — sign for a

Fig. 1). Schematic representation of interference pattern resulting from the shearing
interferometer shown in Fig. 12.



14 R. P. Shukla, D Malacara

appear in the common area of the two beams. Spacing of these fringes
is inversely proportional to the relative local power of the lens. The
interferometer can be adjusted so that light leaving the center of the
lens is essentially collimated. Then, if the interference fringe spacing X
is measured near the edge of the lens, the average power of the lens in
the direction of the shear, for the region where the fringe spacing is
measured, is different from the power at the center of the lens by an
amount equal to

A
P=— 15
X5 (15)

If the interferogram is M times as large as the lens, both the shear §
and the distance X between the fringes on the interferogram are M
times as large as the corresponding distances on the lens under test.

Therefore, the power distribution of the lens is given by
M

P =
XS

(16)

where M is the magnification of the system and X and S are measured
from the interferogram.

The interferometer measures power only in the directions of the
shear. The power in each principal axis of a toroidal lens can be
measured separately when the lens is oriented so that one of the
cylinder axes is perpendicular to the directions of the shear. The power
of the second principal axis of a toroidal lens can then be measured by
rotating the lens through an angle of 90°.

3.2 Measurement of a long radius of curvature

Figure 12 shows an optical arrangement described by Riley and
Gusinow'” for measuring the radius of curvature of a concave or convex
surface. A wedge plate is placed in the path of the beam such that the
apex ol the wedge is horizontal. The mirror under test is placed on the
optical axis of the beam. In this position the refiected beam from the
mirror is focused back on the pinhole itself. The shearing interferogram
is recorded on the photographic plate. The interference fringes are
inclined with respect to the direction of shear due to the curved
wavefront obtained from the curved mirror. Figure 13 shows a
schematic representation of the interference fringes resulting from a
shearing interferogram. If d is the fringe spacing, S the shear, and ¢ the
angle of rotation of the fringes with respect to the direction of shear.
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of a pair of 35mm plano-parallel plates of elliptical shape, which are
fastened to a steel ribbon running around two pulleys. The pair of
plano-parallel plates scan the mirror as they are translated around the
aperture in opposite directions by the rotation of the mirror blank. A
laser source assembly consisting of a 10 mm aluminized diagonal inside
the microscope tube with its diverging objectives is mounted on a lever
arm, which can be raised and lowered by a differential micrometer. This
focusing arm and the micrometer measure the reflective deviations at
each zone being scanned by the pair of plano-parallels. The two
reflective interferograms are projected on a viewing screen. The anguiar
deviations can be converted to surface deformations.

3 MEASUREMENT OF LENS PARAMETERS
3.1 Measurement of the power distribution in ophthalmic lenses

The use of the parallel plate interferometer for measuring the power
variation of ophthalmic lenses was described by Wyant and Smith.”" A
schematic arrangement of the interferometer is shown in Fig. 11. The
lens being tested is placed either in a converging or in a diverging beam
of light, so that the light leaving the lens is essentially collimated. If the
beam leaving the lens is not perfectly collimated, interference fringes

GOOD PARALLEL

SPATIAL PLATE

FILTER

MICROSCOPE
OBJECTIVE

He—Ne LASER

OPHTHALMIC |
LENS |
UNDER TEST !

INTERFEROGRAM
(IMAGE OF LENS)

Fig. 11. Schematic diagram of a parallcl plate interferometer for measuring the power
distribution of ophthalmic lenses.
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Fig. 9. Schematic arrangement of a parallel plate interferometer for testing a
paraboioidal mirror of moderate aperture.

He-Ne LASER |

because this particular arrangement eliminates the need for a large-size
parallel plate. Figure 10 shows schematically the arrangements devised
by De Vany and De Vany called a scanning Murty interferometer. The
large concave mirror on the polishing machine is being tested. The
assembled scanning unit is mounted in the parallel beam and consists

A
@ )
4 —_—
7 :
¥
| S ——
He—Ne IASER MICROSCOPE”
i "S OBJECTIVE S0
@ D
INTERFEROGRAMS
DIFFERENTIAL
\ MICROMETER
PARABOLOIDAL
MIRROR
UNDER TEST

Fig. 10. Schematic arrangement of a parallel plate interferometer for testing a
paraboloidal mirror of large aperture. The scanning arrangement was devised hy De
Vany
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Fig. 7. Computation of the wavefront deformation at several points along a line in the
direction of the shear.

reduced considerably. A schematic scheme of the interferometer for the
testing of a large concave mirror was devised by Malacara,’ as shown
in Fig. 8. If the mirror is not spherical, a suitable null correcting system
may be inserted into the setup. The shearing interference pattern is
scanned photo-electrically or a fringe photograph is taken from which
the surface figure of the mirror is analyzed.

2.3 Testing of paraboloids

The schematic arrangement for the testing of a paraboloid is shown in
Fig. 9. The laser beam is focused with a microscope objective at the
focus of the paraboloidal surface and the beam is well collimated, The
rest of the procedure for determining the wave aberration is the same
as that for the lens. This scheme is useful only for the testing of a
paraboloidal surface of small aperture, say up to 15cm. Another
scheme was adopted by De Vany® for a large-size paraboloidal surface,

@ OBSERVING SCREERN
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| ¢ D Y.
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PARALLEL PLATE OR
SLIGRTLY WEDGED PLATE

Fig. B. Schematic diagram of a parallel plate interferometer for use in testing large
concave mHrrors.
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The reference waveltent laterslly diapiaced with
respect o the other.

. The optical, OPD(5.Y) and the
~wgyefrul def:tmatlos: tfﬂx.ﬂ are reinted by

OPD(xy) = Wiz, y) - Wix ~ 8, 9)

'S s the Iaters

g the shear is small, this expression may be
approximated hy

There are #lso fadial, rotstienal and reversal
shearing interferemetons 3
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FIXED INTERFEROGRAM EVALUATION

The measurements are made with:

Measuring microscope, digitizing tablet or video
camera connected to a computer.

To analyze fringes with a computer, they must
be digitized, locating fringe centers, and assigning fringe
order numbers to them.

OPD = mA

where m is the fringe order. Atn%' valu‘eF of tll:e fring;
ringe. For the secon

Mnmsiﬁéd to the firs
fringe, order may be Increased or decreased by one.

This choice affects the sign of the OPD.,

A disadvantage of the fixed interferogram
analysis is that the sign of the OPD can be obtained only
if the sign of any ferm, like defocusing or tilt, is
previously determined.
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GLOBAL AND LOCAL INTERPOLATION OF
* INTERFEROGRAMS

Global interpolation by least-squares fitting of
the measured data to a two-dimensional polynomial.

A least squares fitting begins by defining the
variance_g of the discrete wavefront fitting, as follows:

hzl'\'r'); W/ - W (o, 0)f

where N is the number of data points,

Y,! is the measured wavefront deviation for the
data point {.

is the functional wavefroat deviation
after the polynomial fitting,

This variance or fit error is minimized.




LEAST SQUARES METHOD,

. The standard approach is te fit the measured
‘paints to a linear combination of polynomjals that are

orthogonal gver the discrete sef of data points. Thus, the
wavefront Is represented by

W © =Y B,Y,p,0)

n=l

Y _(p,_@ are: polynomials of degree r and not the
mﬂ!“i’ﬂ‘:’iﬂb X', These polynomia}s satisfy the orthogonality
condition |

N
2 Vi, 8) Vo(pp ) = F, 3,
i=1 |

where F, = 2V}

The matrix of the system becemes diagonal and there is
no need to invert it.




ZERNIKE POLYNOMIALS

The polynomials V. approach the Zernike
polynomials.

We may add or subtract one or more polynomial
terms without affecting the fit coefficients of the other

terms.

A better choice for the wavefront representation
is the set of Zernike polynomials, which are orthogonal
on the circle with unit radius, as follows

x

1 2
[[U.(®U,(p®pdpdd-~F,3,
0

These polynomials are not exactly orthogonal on the set
of data points. It is common to transform the wavefront
representation in terms of the polynemsials YV, to another
similar representation in termis of Zernike polynomials

U, as

L
W (p, 6) = z; A, U, (p, 0)
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Static fringe analysis is generally less precise
than phase shifting interferometry, by more than one

order of magnltude.

Phase shifting interferometry requirgs several
images, acquired over a long time interval during which
the fringes must be stable.

The reference wavefront is moved along the
direction of propagation, with respect to the wavefront
under fest, changing in this manner their phase
differemce.

This phase shifting is made in steps or in a
continuous manner.

Measuring the irradiance changes for different
values of the phase shifis, is pmsible to determine
wavefront under tost.
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(ANALYSIS)

The phase-medulating function is the wavefront
shape Wiz, y).

, H¢.hamﬂﬂedh,ﬂmcxgmhamybe
-"rewri,ttenas

I=1I +1 +2‘ﬂ T, cos (kx sin © + kW)

Mulsiplylnx t!ﬁ phase mogul@ed function by a
signal sin ; - obulned and
multiplying *b: nlﬂpl m_(kx_aln_.ﬂ a slmal Cis
obtained. Ifhth&oquncylemumthedmhsmdc
are removed with a lew pass fllter, they become

- 8(x9) = - JI['L, sin ¥Wxy)
Coxy) = JI T, oon kWay)

then, the wavefront Wix.3) i given by

p . ~ " . ! U ﬂ--"“"‘l s . )
1,4 = = a
Vo) = -3 e [c’- w)]
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INTERFEROGRAM INTERPRETATION:
a) As a hologram of the waveftont W(x, y), with a teference
~ wavefront, ’I:E Imemm WIth & flat reference wavefront W,
at an angle 6, given by .
E (x,y) = exp (i k x sin 6,) {5)
Thus we obtain:
Ey ,9) M69) = Ku ) okp (1 k x in 0)) =
(y + 1) exp (1 k x sin 0,)
: : (6)
- 1/(-’1 L) exp 1k[xsin@ + xsin 0, + W(x )]

- \/(I1 I,) exp- 1 k[ % sin O, - x sin 8, + W, y)]
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INFRARED INTERFEROMETRY

A simple approach to reduce the number of
fringes in the interferogram is to use a long infrared
wavelength. Light from a CO, laser has been used.

It can be used when the surface is rough.
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SUB-NYQUIST INTERFEROMETRY

Each detector must have a phase difference
smaller than z from the closest neighboring detector, in
order to avoid 2x phase ambiguities and ensure phase
continuity. there should be at least two detector elements
for each fringe. This condition is known as the Nyquist
- condition.

This condition may be relaxed (Greivenkamp
1987) if the wavefront and its slope are assumed to be
continuous on the whole aperture. Then, optical surfaces
with larger asphericities may be tested.
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Pitch polisher—reticulated and netted.
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