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Filter design for optical pattern recognition:

heuristic and statistical approaches.

Ph. Réfrégier,
Signal and Image Laboratory, ENSPM,
Domaine universitaire de Saint-Jérome
13 397 Marseille cedex 20 France

Abstract

Filtering methods for pattern recognition are reviewed. In particular, the heuristic

and the statistical approaches are analyzed for different situations. The stability of the
different techniques are discussed and methods of regularization are described for both
the heuristic and the statistical approaches.
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1 Introduction

1.1 The need of filter design

An important problem in optical correlation for pattern recognition, object location or de-
tection, is the efficiency of the algorithms involved in these signal processing tasks. Indeed,
without a particular attention to this problem, only trivial tasks can be resolved with optical
architectures which implement the classical linear matched filter. However, for that trivial
tasks, therc exists classical numerical solutions which require simple hardware and which
can be more efficient that the matched filter method.

In fact, the spatial matched filter which is optimal in additive gaussian noise, does not lead
to acceptable performance for difficult pattern recognition or target location. For example,
it can lead to poorly discriminant correlation and its performance deteriorate rapidly when
the input image is subject to distortions (rotations, scale, view angle, structured background
...) or when the input noise is not additive with a known spectral density.

These last twenty years, many different solutions have been proposed for filter design [1-
13]. For example, when invariant or tolerant pattern recognition is required, specific methods
for improving recognition capabilities have been introduced. For in-plane distortions, several
methods have been proposed [2,14]. When distortions cannot be described analytically, a
supervised learning method can be used for which the filter is determined using training
images that are sufficiently descriptive of the expected distortions. A well known example of
these filters are the synthetic discriminant function (SDF') filters and their different variations
[15-17].

However, the different heuristic criteria generally introduced in filter synthesis are not
sufficient to describe all needed characteristics of the filter. In general, an optimal filter is
obtained by minimizing some criterion, or a combination of criteria with the optimal trade-
off (OT) approach [17], under constraints for optical implementation and/or for obtaining
specific values on a training set. The criteria are usually dependent on some expected
distortions. For example, the optimization of noise robustness or of signal to noise ratio
(SNR) is dependent on a noise model. A filter optimal for this noise model can be greatly
sub-optimal for other type of distortions or noise models [18]. Since this problem results from
the unstability of the filter {19}, we will analyze precisely in this paper different solutions to
regularize filtering methods.

The detection and location of a target in a scene is a classical problem, pervasive to
many image processing applications. However, the improved linear filtering techniques, as
well as the matched filter [20], have been shown to perform poorly on many real-world
images [21,22]. This is because such images often do not belong to the class for which
linear filtering is optimal. Indeed, in general, in real images, the main source of noise is
not the additive detector noise, but the whole background of the scene {clutter), which is
nonoverlapping [21]. Secondly, the gray levels of the reference object can be unknown a
priore. Thirdly, the power spectral density (psd) of the noise is also often unknown a prior:.
In each of these three cases, an important assumption which is necessary to demonstrate the
optimality of linear filters is not fulfilled. As a practical consequence, it has been frequently
observed that linear filters vield poor performance in real applications of optical correlation.



On the other hand, the statistical approach is a very powerful method in order to describe
specific image models and to design the corresponding optimal filtering techniques.

In this paper we propose to review two main approaches used in filter design theory. The
first approach is based on filtering techniques with an imposed structure (mainly linear) and
the filter is designed by optimizing some heuristic criteria. With the second approach, the
images are described by a statistical model and the optimal filtering technique is the optimal
statistical method for that model. In that case the structure of the filtering techniques is
not imposed.

1.2 The different approaches to filter design

Let us first discuss more precisely the different approaches that can be used to design optical
pattern recognition filters.

With the empirical approach, the mathematical expression of the location processor
is chosen a priori without optimality consideration. Of course, this approach is far from
being satisfactory. However, it can provide powerful techniques capable of solving problems
unsolved with the known optimal methods. This has been the case for example with Nonlin-
ear Joint-Transform Correlators (NLJTCs) proposed in [23,24]. These processors were not
first defined by the optimization of some criteria, but they have been shown to be attractive
in many difficult instances because of their high discriminating performance [24-26]. Their
basic properties in terms of signal processing and pattern recognition are still a subject of
intensive investigations.

The empirical approach is far from being satisfactory since it does not elucidate in which
context the considered method is superior to another one. Systematic simulations and ex-
periments are necessary to answer this question. However, in the field of optical pattern
recognition, the proof from experiments is very hard to obtain, due to the very different
input scenes that can occur and to the large number of available techniques which all have
their own parameters. This approach is thus not of particular interest for efficient filter
design.

With the second approach {the heuristic approach), the filtering method is obtained
by optimizing heuristic criteria using an a priori chosen class of processors (in general, linear
filters). This is a very powerful and versatile technique which has been the main subject of
investigation for optical pattern recognition filters these last twenty years [3,27,20, 16,17].
Furthermore, with this approach, it is quite easy to determine filters that are invariant
to some expected distortions of the object in the input scene compared to the reference
object [14-17,28]. It is also possible to determine filters which perform optimal tradeofl
between several antagonist criteria [17,29].

Recently, the optimal tradeoff approach has been extended to nonlinear joint transform
correlation (NLJTC) [30,31], and it has been shown that some NLJTC techniques are optimal
tradeoff solutions when some specific criteria are considered. Nonlinear global filtering (NGF)
techniques, which can be implemented with NLJTCs, can be considered as the natural
extension of the basic linear filtering techniques. However, unlike the linear matched filter,
which was designed on the basis of the statistical decision theory before its implementation in
optical correlators, investigations on nonlinear filters still suffer, in general, from insufficient
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theoretical analyses.

In particular. the main limitation of the heuristic approach is that the ecriteria are in
general chosen a prior by the filter designer. Of course, therw have been mauy discussions
in the scientific community about the different criteria [29], but none of these criteria has
been shown to be adapted to most of the different situations which can occur in pattern
recognition. In particular, as far as noise robustness is concerned, all the classical criteria
are adapted to an additive noise with known psd and to a target with known gray levels.

The analyses of some properties of the heuristic approach for filter design will be reviewed
in the first part of this article.

The third approach we will discuss here is based on statistical decision theory. In
that case, the probability of error is minimized while the specific sources of randomness are
clearly specified. It is thus necessary to know the probability density function (pdf) of the
noise, although it is not necessary to specify all the parameters of this pdf. For example,
as already mentioned above, it is well known that the classical matched filtering optimizes
the probability of correct location of a target with known gray levels if the input noise is
additive, Gaussian, stationary and ergodic with a known psd [32}]. For this type of noise, any
other filter, either linear or nonlinear, will result in a lower probability of correct location
than the matched filter. However, if one or more of the above assumptions does not hold,
there may exist a better solution than the matched filter. We will discuss some examples of
this situation in section 2.

1.3 Notations

The notations used in this paper are:
x - for a scalar,
x : for a vector,
X : for an operator or a matrix,
: complex conjugate value of 7,
xt complex conjugate transpose vector of x,
lz| : modulus of z,
fo.y : scalar product of x and y,
x Yy : correlation function of x and y,
¢ : an unknown parameter which can be a real or a complex vector,

maz F(6) : maximum value of F(¢) for the different possible values of &,

b

argmax F(68) : value of § which maximizes F(¢).
)

In cartesian coordinates, the value of the image x at pixel ¢ (which is indeed two di-
mensional, say ¢ = (4,,%,)} will be denoted x,, and Z; will denote a value in the Fourier
domain (where & is also two dimensional, say & = (k.. k,)). The total number of pixels will
be denoted N. ' denotes the set of complex numbers,

So one can atso written:



xTy P = Zz\;i ‘r:yiv

x|? o = =2 ol

xtay : =58 2 Ay

x*y(7) 1 = L 2 Yiass

If z is a random variable with porbability density function Px(x) , we also define the
mean value < £ >= [ xPx{x)dz. The mean value of a function g{x) of a random variable is
thus: < g(x) >= f g{z)Px(x)dz.

A lexicon can be found at the end of this paper.

1.4 Structure of the paper

This paper is organized in two main parts. In the first one we review some well known
heuristic approaches with a particular attention to the stability of the methods. In the second
part, we present some recent results obtained with the statistical theory for nonoverlapping
noise, fluctuating gray level targets or for additive noise with unknown spectral density. We
also discuss how to increase the stability of the statistical methods.
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Part I
Heuristic theory and stability

2 Heuristic criteria and optimal filters

In this section, we present different criteria which classically have been considered in filter
design (a more complete review can be found in [29]). Optimal filters for these criteria are
discussed in the context of the heuristic approach for which the structure of the fittering
technique is imposed. The structure is in general the linear filtering but we also describe
the design of an optimal nonlinear processor by optimizing the discrimination capabilities.
Finally, at the end of this section, SDF filters are introduced and discussed.

2.1 Noise robustness characterization and matched filter

Noise robustness can be characterized by the output variance (or mean square error - M.SFE)
of the correlation peak when the input image is corrupted by noise:

MSE =< |ey— (r + )} b| >=hish, (1)

where < . > represents the mean over the realizations of noise n, which has covariance
matrix 5, zero mean and where ¢; is the mean of the central values of the correlation peaks.
With our assumption of spatially stationary noise, we also have [33]:

MSE =high (2)

where the diagonal element S, of S is the noise spectral density at frequency k. The MSE is
dependent on the modulus of b, so in general the SN R is preferred in order to characterize

noise robustness: ‘
SNR = |co|"/MSE  with ¢ =h'r. (3)

Optmnzatlon of the SNR in the Fourier domain leads to the well known matched filter:
hi = rk/Sk, a proof of this result is given in appendix A. This filter is equivalent to the
optimal solution in the bayesian approach with gaussian additive noise with known psd for
a detection problem (see part 2}.

This is an important theoretical approach to justify the use of filtering techniques (or
correlation techniques) for pattern recognition.

Of course, the first limit of this approach with images is the assumption of additive
gaussian noise. In particular, the assumption of additive noise is not completely realistic
in image processing as discussed in [21]. With non-overlapping noise, different solutions
have been proposed in [34] and [35] (see also part 2). The second important point is that
this method assumes that the spectral density of the noise S is known. This is not the
case in general in image processing, where in contrast to radar processing, it is very difficult
to estimate S. Then, an important question in the context of pattern recognition is the
determination of an appropriate model for S. Furthermore, there is no reason to consider
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that the realizations of noise are obtained with a temporal stationary density probability law.
For example, this is clear if images of the ground obtained from an airplane are considered. If
the background is modeled by a noise, its spectral density can be very different for the sea [36],
mountains or fields. Furthermore, even for application for which the noise is additive with a
known spectral density, an important limitation of the matched filter is its low discrimination
capabilities and the presence of sidelobes in the correlation plane which can result in false
detection.

2.2 Sharpness of the correlation peak and inverse filter

In order to control the whole correlation plane and to minimize the possibility of large
sidelobes which could result in false detection, the Peak to Correlation Energy (PCE) [29]
is classically optimized:

PCE = |c|*/CPE (4)

where the Correlation Plane Energy (CPFE) is defined as: CPE = che =¢te (i.e the
integral of the square modulus of the correlation function) :

N—-1 N-1
CPE =Y |&l* = > |hifl®.
k=0 k=0

It is easy to verify that the inverse filter (A = 7% /|7x|?) optimizes this criterion (the proof is
analogous to the one proposed in appendix A). This filter is equivalent to a matched filter
designed for noise with spectral density matrix equal to |#;]|*. In that case, noise and target
would have the same spectral density. At first sight, this situation may appear to be the
most unfavorable one. We will see in the following section that this is not the case.

Other criteria have been proposed in order to characterize the sharpness of the correlation
peak and to limit the existence of sidelobes (see [29] for a critical discussion about these
criteria). However, they do not lead, up to now, to explicit solutions {i.e. for which the
optimal filter has a known analytical expression).

2.3 Optical efliciency and phase only filter

For optical correlators, it is important to consider a third criterion [3] which characterizes
the amount of light which will be detected for the determination of the correlation func-
tion. Indeed, if a linear filter is implemented with an optical Vander Lugt correlator, for
each spatial frequency, one necessary has: |f1k| < 1. The optical efficiency ny can thus be
quantitatively characterized by:

o = leol?, (5)

The optical efficiency is therefore optimized with Phase-Only-Filters (POF) among which
the choice hy = 74 /|| leads to high correlation peaks.

It is possible to obtain an interesting interpretation of this result in comparison with the
matched filter. As mentioned above, an important question with the matched filter is to



infer a spectral density for the noise model. A possible approach may be to consider the
worst. case for the SNR for a given total noise power:

Sﬁota! = ng (())
k

In this approach, under the constraints of Eq. (6), by minimization of the SNR. defined by
Eq. (3) using the Lagrange multipliers technique, it can be shown that the worst density is:
Se=4 |7]. The matched filter to this noise spectral density is then: Ay = P&/ |Fxl, which is
the POF. This property has been illustrated with numerical simulations in [18].

It is interesting to note that in that case the spectral density of the noise is not the spectral
density of the reference {|#¢}?) but its square root. (We have seen that the optimization of
the CPE leads to a filter optimal to noise with a spectral density matrix equal to |#]?).

2.4 Discrimination capabilities and a new approach

It can be important to improve the discrimination capabilities of the filter between the object
to be recognized and objects to be rejected. For this purpose, a method discussed in [37] can
be generalized. Let 3 denote (with £ = 1,..., P) some objects to be rejected. For improving
the discrimination capabilities of the filter, a possible method consists of minimizing the
energy of the correlation with the images ¥, with the constraint that the correlation with
the object I to be recognized is equal to a given value.

In this case, the criterion to minimize is:

Dg =33 kg (7)
k

=1

Let 3,(6”) = Yi_, |#£]> be the average spectral density of patterns to be rejected. An optimal
filter for this purpose is given by [37]: Ay = fk/é',(;j).

The interpretation is straightforward, optimizing the discrimination capabilities leads to
the consideration of a matched filter with a spectral density of noise equal to S’fc” ),

Optimizing discrimination is a very attractive approach to the optimization of filters.
Indeed, realizations of noise can be considered as images to be rejected. However, the
general question of inferring the appropriate images ¥ which correspond to objects to be
rejected is still not obvious.

It is interesting to note that this approach allows us to obtain a new interpretation of
the CPE. The most diflicult situation for discrimination can be expected when y* ~ r for
all ¢. In that case, Dg is equivalent to the C'PE and the inverse filter is optimal. However,
as it will be seen helow, this filter is in general unstable.

A new approach to overcome this drawback was proposed in [30]. Let § denote the Fourier
transform of the input image {i.e. the analyzed image). A discriminant filter for this image
is obtained by niinimizing the energy of the correlation function:

el =3 [hel*[5:f (8)
k




Of course, minimization of (8) leads to the null filter. However, if this minimization is
performed under the constraint that there still is a correlation peak with the target (i.e.
pIy fz;'ﬁk = ¢p), we will show below that an optimal nonlinear filtering technique can be
obtained. We will also show that this approach can be very attractive if it is correctly
regularized. Right now, we can observe that this criterion (8} is dependent of the input
image. For each input image, a different filter will be obtained, the filter is thus adaptive
with the input image.

2.5 Optimal SDF filters

In some practical situations of pattern recognition, the object to recognize may appear with
different attitudes. For example the object have to be localized or recognized for different
view angles and/or at different scales. The linear filtering technique with a filter designed for
a single attitude {at given in-plane and out-of-plane rotation angles and at a specific scale)
is in general unable to recognize the object with different attitudes.

In that case, two main approaches can be considered. The first one is brute force: a filter
is designed for each attitude which can appear in the input image. The input image is then
correlated with all the different filters. One can show that this approach is in general the bhest
in terms of probability of good recognition, detection or location (see part 2 section 8.3.1).
However, if the number of different attitudes is large, this approach can be very tedious and
incompatible with the requirement of fast processing for most of the applications which may
require optical correlators. Indeed, for a large number of attitudes (for invariant recognition
for example) this optimal approach can lead to the computation of a very large number of
correlations.

In order to overcome this bottleneck, suboptimal strategies have been proposed. The
second approach belongs to that category and consists in designing filters which have some
invariance or tolerance properties. A possible solution is to define a learning set of images
which contains reference images with sufficient examples of the different possible attitudes.
This is the basic concept of the Synthetic Discriminant Funcition filter (SDF) we now de-
scribe. Let rf with ¢ = 1, ..., P denote the P reference images. SDF filters are defined in
order to obtain some specified values at the center of the correlation function for the patterns
belonging to the training set. Then, the SDF filter must satisfy the following constraints:

bl & = 4, =1, P (9)

where the d, are in general equal to one if the pattern rf has to be recognized and is equal to
zero otherwise. There exist in general an infinite number of solutions for the filter h (since
in general N >> P) and the optimization of some relevant criteria is thus possible.

We thus now propose to generalize the definitions of the preceding criteria to the SDF
problem. For the sake of simplicity, we will not consider the optical efficiency (an analysis
of this point can be found in [38]).

With the constraints of Eq. (9), minimization of the M SE leads to the minimum variance

SDF filter (MVSDF) [L5]:
. N . 1. 1-1
h— SR [RTS‘lR] d (10)
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where R = [#1,#2. ... #7].

A genereral analysis of determining optimal SDF filters for quadratic criteris is proposed
I appendix B.

This filter shows the same limitation as the matched filter to lead to correlation functions
with large sidelobes. It has thus been proposed to generalize the Correlation Peak Energy
criterion for SDF filters. The average correlation peak energy (ACPE) for all the training
patterns is:

] PN X L
ACPE = % [Fthl? = hf DR (11)
t=1k=1

with: D, = 1/PE |#E[*. The minimization of the ACPE leads to the minimum average
correlation energy (MACE) filter [16] :

b= D [ﬁsz;—lfz}” d (12)

The MACE filter shows the same drawback as the inverse filter: it is very sensitive to input
noise on the analyzed image [39].

2.6 Optimal Trade-off filters

Here, the general concept of Optimal Trade-off (OT) filters is recalled. In general the filter
15 subect to some constraints. For example, for invariant filtering, the central values of the
correlation functions are imposed on a set of training patterns. For optical implementation
reasons, h can be constrained to belong to a particular subset of (h;c € 8), for each
frequency k [40]. These constraints impose that the filter h can only be in a subset D of
C¥. For example, for optical implementation constraints we thus have D = SV and for SDF
filters D is the hyperplane defined by the constraint of Eq. 9.

Let By (h), Ey(h), ...,Ey{(h) denote the values of the A considered criteria for the filter
h (for example MSE and ACPE). Each criterion is defined in order to correspond to a
minimization problem.

OT filters are defined in order to lead to the most interesting trade-off between the
considered criteria with the constraint that the filter h belongs to D. Consider a filter bV
in D. The values of its criteria are: E)(h{V), Ey(hW), . Ep(hM). If there exist a filter
h? in P such that:

Ei(h®) < E;(hY) vj=1, . M.

then it is clear that h{®) is a more interesting filter than h("). OT filters are the filters hiO7T
for which there is no filter h in D such that:

E;(h) < E;(h°T) vj=1,.. M. (13)
with at most one strict inequality. In order to obtain optimal trade-off (OT) filters it is
necessary to minimize in D {40]:

~ "\’I -~
E(h) =Y X E,(h) (14)

J=1

12



where the A; are positive numbers that allow to balance the optimization between the dif-
ferent criteria.

It is important to stress that the minimization of a linear combination of criteria in Eq.
(14) does not arise from empirical considerations, but is a strategy in order to find OT filters.

2.7 Optimal trade-off SDF filters

The MACE filter is very sensitive to input noise on the analyzed image [39], while the
MVSDF filter is not enough discriminant in general. It is the reason why Optimal trade-off
SDF (OTSDF) filters were introduced [17].

When criteria are quadratic forms of the filter h, the OT approach also leads to the
minimization in D of a quadratic form which will be written:

E(m)=h'Bh=hiBh

Let us, for example, consider the filter which corresponds to the optimal trade-off among
the two previous criteria (M SE and ACPE). The quadratic form to optimize is a linear
combination of the M SFE and ACPFE which leads to the OT SDF filter:

~ ~ ~ ~ ~ ~ 7}‘ ~ ~ -~
h=B"'R [R“B—‘R] d where: B={1-p)S+uD (15)

where the parameter u allows us to balance optimally between the different criteria (p is
positive and smaller than 1). If p = 0, the MVSDF filter [15] is obtained (see Eq. 10). If
¢ =1 the MACE filter [16] is obtained (see Eq. 12).

Since this result is derived in [17], let us only comment this equation. B is a diagonal
matrix of size N x N and R is a rectangular matrix of size N x P, so that RIB'Ris a

. nr o oaq—l
matrix of size P x P. The inverse matrices B~! and RfB‘lR must be understood as

inverse matrices in the space spanned by the eigenvectors associated to non null eigenvalues.
Let us denote:

P r . 1-1
be=3 ([RTB-lR] ) d.
n=1 En
we can then write:
N P ff.’
he =Y b (16)
=1 Bk

The Minace filter [28] was more recently introduced in order to obtain trade-offs between
ACPE and MSE. This filter can be written:

-~ ~ -~ -~ ~ -~ 71 ~ ~ ~
h=N"'R [RTN_lR] d with: N, = Mazx[(1 — p)Sk, pDy] (17)

and where Mazx[zr, y| means maximum value between x and y.
Minace and OTSDF filters were compared in [41]. The stability of these filters will be
analyzed in the following. The choice of (17) is still an empirical approach.
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In conclusion, it can be seen that optimal SDF filters have a mathematical expression
which can be written:

]

b= A‘R[}?H—‘R] d (18)

where 4 is a diagonal matrix which corresponds to the optimization of the criterion E =
S Ihk[ Ag. The choice of a matrix A, and therefore of the criterion which is optimized, can
also be considered as an inference of the spectral density of the noise model (ie. S, = Ak) In
other words, OTSDF and Minace filters can be considered as MVSDF filters with respectively
noise spectral density equal to By or to N,

3 Stability of the solutions

The solution of the general filter synthesis problem formulated above is not always stable
with respect to the reference model.
We have seen that the filter synthesis problem can be written:

h*?* = argmin E(h) (19)
heD

where argmin E(h) means: the value of h which minimizes E(h) in D.
heD

Let us first consider the case for which there is a single pattern in the training set. The
optimal filter of Eq. (19) is a function of the reference image. Let us emphasize this point
by writing: h°?* = h°?![r}.

A filter is stable if a small variation in the reference pattern (r — r+ér with ||ér|| << 1)
does not induce a large variation in the filter (6h°P*[r] = h*'[r + 6r] — hP*[r]). It is clear
that if the filter is not stable, a small deviation ér of the reference will result in a large
mismatch between the filter and the reference r + ér. In other words, a filter which is not
stable against small perturbations in the pattern r will be very discriminant but will have
very poor tolerance capabilities against distortions of the input image.

A possible distortion can be the addition of a noise which is very different from the one
expected [18]. The possible distortion can also be small deformations. due for example to
in-plane or out-of-plane rotation.

This concept of stability can be generalized when there are several patterns in the train-
ing set. In that case, the filter will be considered stable if it is stable for each possible
modifications: rf — r* + ér® (V¢ = 1,..., M). Since in general all the possible distortions
cannot be included in the learning set, robustness to small in-plane, out-of-plane rotation or
scale variations, not included in the training set is still important for SDF filters.

The importance of stability is thus clear in order to design filters which are robust to
input images with properties slightly different to the ones expected during the filter design.

14



3.1 Analysis of the stability of optimal filters

Let us first consider filters with a single pattern in the training set.

Since OT filters include the matched and the inverse filters we now consider that case.
The mathematical expression of the OT filter is (Eq. 15): hy = 67"‘k/Bk, where 3 is a
multiplicative factor and B, = (1 — 1Sk + uDy.

If there is a frequency k for which By is small, then a small perturbation in r may result
in a large variation of h and of h xr. More precisely, if 4f is a small perturbation in £, the
induced perturbation §h in h is:

Shy ~ 3 ((1— ) Sk i ik 5?*)
kE — H [BkP k u[gklz L

The norm of &k, can be large if B, is small.

If h is fixed (fr,k = ﬁf‘k/Bk), the variation of the center of the correlation function induced
by dr is:

'f‘*
tSCo = ﬁ Z A—k (S’f'k
x B

Thus, it is clearly seen that, in that case, neither the correlation function nor the filter are
stable against small perturbations in the pattern r.

However with a white noise model and p not equal to 1, it can be expected to obtain a
stable filter. More precisely the condition of stability is that, for all £, (1 — p,)é'k is not to
small. We will precise this point in the following. On the other hand, the inverse filter is
clearly unstable.

An equivalent approach (although the calculations are more tedious) would show that
the Minace filter shows the same behavior.

_ Let us analyze the stability of the POF. We have seen that this filter can be written:
hi = 71 /\Fe|. If 6F is a small perturbation in ¥, the induced perturbation éh in h is:
; 1 [ )?

Shyy ~ ——— b7y — Bz
TN ML ETER R

The norm of 6h; can be large if |7| is small which is a typical situation for high frequencies
with images. It is then also clear that the POF will not be stable in general. This is the
main reason for its high level of discrimination and low level of tolerance (such as noise or
rotation robustness for example). We proposed in section 2.3 an interpretation of the POF
as a matched filter designed with the spectral density noise model which corresponds to the
worst situation. We see that this approach leads to an unstable filter, i.e. which is too

specialized to this particular noise model. We will discuss in the following a simple method
in order to regularize the POF.

3.2 Stability of optimal SDF filters

Let us consider the case of the OTSDF filter (which contains as limit cases the MVSDF and
the MACE filter). The expression of Eq. (16) (hy = 325, beit /By of the OTSDF filter leads
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to a simple analysis. Indeed, the stability of SDF filters can be deduced from the stahility
of the filters of the previous section. )
Let us denote 6F' a small perturbation in #, the induced perturbation ¢h in h is:

“ L i ,i:E 2 7
Shy = Zb “M[Ei-]lr_kl 57t — u [(B‘l)]Q(o'f,i)* . (20)

Here again, the norm of 6h; can be large if By is small.

The MACE filter is unstable because the spectral density of images is generally very
small at high spatial frequencies.

The MVSDF filter is stable for a white noise model, but is unstable for low band frequency
noise models. The OTSDF filter, as well as the Minace filter, shows a similar behavior. It is
stable if it has been designed with a white noise model and unstable if it has been designed
for a low band frequency noise model.

4 Regularization of filters

It has been shown in the previous section that the general problem of filter synthesis can be
formulated as the minimization of some eriterion, in a definition set D. The optimal filter
hort can thus be written:

ho?' = argmin E(h) (21)

heD
In order to regularize this inverse problem, different solutions can be employed. We will first
analyze the simple method of regularization by truncation and then review some well known

heuristic approaches. Then we will consider the regularization of the inverse problem with
the use of a stabilizing functional.

4.1 Truncature method for regularization

A classical approach to the regularization of inverse problems is to forbid the inversion of
small values. Let us first consider the case of filters designed for a single reference ob-
ject. Their general expression can be written: by = fr/Ar (which optimizes the criterion
) At Aphy). The truncature method of regularization replaces this filter by:

) ’i‘ﬁk//:lk if fik > €
hk —= (22)
0 otherwise

Of course, it is easily verified that the larger ¢, the more regularized the solution, but the
smaller the correlation peak and the larger the optimized criterion ¥, h:‘./ikfzk.

Because of the all-pass nature of the POF and of the Binary POF [42], the resulting
SNR can be very low [10,43]. This remark has led to the concept of region of support [43]
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of the POF in order to improve its noise robustness. This concept was also generalized in
order to find optimal trade-offs between different criteria [44].

Let us consider the POF: hy = 7 /!7x|. The regularization technique by truncature leads

to.

X ?:k/{?:ki if If'k|>€

he = (23)

0 otherwise

which allows us to analyze the binary amplitude POF [45,46,44] as a regularized version
of the POF. The same approach would allow us to analyze ternary filters as a regularized
version by truncature of the binary POF. The truncature approach thus provides a new
interpretation of binary amplitude and ternary filters [47,48]. These filters are attractive
since they can be easily implemented on available spatial light modulators.

This technique generalizes previous approaches of optimization of the performance and
tolerance of POF [45,46,44]. In particular, with a non white noise model in the previ-
ous methods, the filter may be unstable. The truncature regularization will guarantee its
stability.

This approach is easily generalized to optimal SDF filters. In that case, the truncature
regularization leads to: .

h=FR[HFAR] d (24)
where: A A
B if Bp>e
F k —
0 otherwise
remembering that B, and then F, is diagonal in the Fourier domain, and that the inverse
matrices must be understood as the pseudo-inverse.

It is also interesting to remark that truncature regularization applied to the Minace filter
leads to a filter analog to Eq. (24) but with kernel:

N k if f\hf L > €
=
0 otherwise

4.2 Stabilizing functional

In order to regularize filters, a stabilizing functional Q(h) can be introduced to stabilize the
solution to small perturbations in the data (i.e. training patterns).
The regularized solution is simply defined as the solution of the following problem:

B = argmin [E(h) + oQ(h)] (25)
heD
The parameter o can be considered as a Lagrange parameter introduced in order to

satisfy the inequality: i
Q(h) < e (26)
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where € > 0. In general, the Lagrange parameter « is not identified, but it is clear that the
larger o the smaller Q(h™?) [19].

When the stabilizing functional is quadratic, this is a very convenient appioach since an
explicit mathematical equation for the filter can still be found (this would not be the case,
for example, with maximum entropy methods [49-511).

Furthermore, as mentioned above, an interesting aspect of the stabilizing functional ap-
proach is to introduce a priori knowledge in the filter synthesis. Indeed, there are some a
priori properties of the filter which are not easily defined as precise criteria. This is in par-
ticular the case for insensitiveness to distortions of the input pattern when all the possible
distortions cannot be simply described, or included in a training set.

In the following, some examples of stabilizing functionals which improve the robustness
to input distortions are proposed.

4.3 The minimum norm stability functional

Let us consider a filter h, and the perturbated version r + ér of an input pattern r. The
induced variation of the correlation function is:

bc=hx[r+8r]—hxr=hxdr (27)

This variation of the correlation function can be bounded using the Cauchy-Schwarz
inequality:
[éc i< | hér (28)

where || . || represents the euclidian norm.

Thus, imposing a maximum value for || h || in turn imposes a bounding value for the norm
|| 6¢ || of the variation of the correlation function for a given norm || ér || of the perturbation
or.

In order to obtain a quadratic criterion, it is appropriate to choose the stabilizing func-
tional:

Qh) = || h |’ (29)

which corresponds to a classical regularization method [52]. When the criterion E(h) is also

quadratic (i.e. E(h) = ATB}]), the regularized filter h™¢ is given by:

o= argmin (1B + okl B (30)
heD

[t is easy to check that the regularized filter is thus given by:
. re > -1 = "'s‘ o -1 27! .
B0 = [B+a 1] R{R (B+a1) R 4 (31)
where I, is the identity matrix in CV (i.e. diagonal with unitary elements).
With a single pattern in the training set, the regularized filter s given byv: h;, =

ﬁﬂ,/[[g’g. + a, where 3 is a multiplicative factor and where B, is defined by Eq. (15).
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Figure 1: Image of an airplane.

Then, if there exist some frequencies k for which By is small, the filter will be approxi-
mately equal to #¢/c at these frequencies, which limits the effect of a small perturbation of
f on the modulus of the correlation function.

For a small perturbation éf, we now obtain:

By ta—pl|flt F2
k w7 iy "k 57

5h ~ 3 - 7
* [Br + af? g (B + a?

which modulus is now bounded. It is easy to see that for an OT filter with a white noise
model, this kind of regularization is naturally obtained.

4.4 The minimum variation stability functional

In the previous section, no particular form for the perturbation ér was assumed. However,
in general, it is needed that the filter be robust to small distortions of the input image, which
can be introduced for example by small variations of the attitude of the object (scale, view
angle...). It is then natural to impose that the filter variation be bounded for perturbations
ér which look like the ones induced by small attitude variations. Since such small attitude
variations emphasize mainly the edges of the object, ér is mostly composed of high frequen-
cies. In order to support this conjecture, we show the difference between an image and a
small attitude variation of itself. More precisely, Fig. 1 shows an image of an airplane, and
Fig. 2 the modulus of the subtraction of this image with its 5 degrees rotated version. It is

clearly seen that the difference image is essentially an edge enhanced image of the airplane.
Thus, a first approximation of ér might be:

6 = Gpy * I (32)
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Figure 2: Modulus of the subtraction of the previous image with its rotated version by an
angle of 5 degrees.

where g, is a high pass filter, enhancing the edges of r. Using the approach of the previous
section, the Cauchy-Schwarz inequality leads to the minimization of the following stabilizing
functional:

2
Q(h) = || hx g, || (33)
When the criterion E(ﬁ) is quadratic, the regularized filter h™¢ is given by:

i< [Brod] R[R[Brac) A (34)

where G’k = “f;hp] k‘z. Then, if there are some high frequencies & for which Bk 1s small, the

filter will be approximately equal to 7,/ oGy, at these frequencies, which bounds the modulus
of the effect of a small perturbation of r due to a small edge shifting.

4.5 The minimum elastic energy stability functional

The previous considerations lead to analyze the problem with the following approach. The
filter needs to be robust to small distortions of the input image which can be induced by
small variations of the object (scale, view angle...). This can be achieved if the filter values
do not vary rapidly in the image domain. In other words, it is required that the filter be
a smooth function of the spatial coordinate (u,v). For the sake of simplicity, let us first
consider a non sampled case. The filter will be denoted A(u,v). It can be imposed to the
filter to be a smooth function by minimization of the elastic energy:

/]

Fhiu,v) OQh(u,?_") :
du’ v’

dudv {35)



Using the Fourier transform of continuous functions, and after sampling, it is easily
shown [19] that this approach leads to the stabilizing functional:

2

~ 2 .
Qh) =Y Y [k +k?] |hlk k) (36)
ko ko
When the criterion E(h) is quadratic, the regularized filter h™9 is given by:
. . R cro1 .11
e = [B+a L 1R[RT[B+QL] lR] d (37)

where: i )
Loy by = [k + k7]

It is then seen again that if the frequencies for which By is small are high frequencies, L
will stabilize the filter.

The minimum elastic energy stability functional presents a strong analogy with the min-
imum variation stability functional since both measure the energy of high frequencies.

4.6 Application to optimal discriminant processor

We saw in section 2.4 that the discrimination capabilities of filters is generally optimized
indirectly by minimizing either the sharpness of the correlation function [17], or the energy
of the correlation function with objects to be rejected or background models to be discrimi-
nated against [37]. We also discussed the limitations of this approach and introduced a new
criterion.

With the use of the minimum norm stabilizing functional, we are now able to determine
a method for optimizing the discrimination capabilities of the processor which does not need
a priort knowledge of objects to be rejected or of the background [30].

Let r and s denote respectively the reference and input image. The output of the processor
is still written ¢; = 37y hl,;$;, but h may now be a function of s.

When the input image is the reference object, it is imposed that the filter produces the
correlation peak cg = d. This leads to the constraint:

N
S ki =d. (38)
i=1

As mentioned in section 2.4 and in [30], in order to optimize the discrimination capabilities
of the processor, the energy of the correlation function with the input image s is minimized.
Since we consider Eq. (38) as a constraint, this is equivalent to minimizing:

EJr] =3 [hil? 18] (39)

which can also be written: E,[h] = || ¢ || with & = h} &
In order to be robust to modifications or distortions of the reference image r, and with no a
priori knowledge of the perturbations, we consider the minimuin norm stabilizing functional:
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Q(h) = || h{|*. The problem is now clearly defined, h™¢ = argmin U\ clP+alh Hzl
heD
where D is defined by the constraint: >, fl,‘;f'k =d.
After appropriate substitution and taking into account that d is arbitrary, it can be
shown (30| that the optimum processor is:

o = &S SR) (40)
o? + |§(k)]

where ¢ is the Fourier transform of the correlation output and where ¢ is a given positive
constant. It is obvious from Eq. (40) that this optimal processor is nonlinear since it requires
a nonlinear transformation of the input image. This nonlinear processor is adaptive since the
filter function is dependent on the input image energy spectrum. The optimum nonlinear
processor can be generalized with any of the previous stabilizing methods or functionals.
Furthermore, if |§(k)|? is replaced by |#(k)|? in Eq. (40), the correlation with an OT filter
for peak sharpness and noise robustness with a white noise model is obtained [17]. It can be
shown [30] that the regularized solution with the minimum norm functional of the optimal
trade-off filter between discrimination and correlation peak sharpness (PCE) leads to the
optimum processor: & = fi&e/[0? + p [P+ (1 — p) |8/ (with g € [0;1]). This
processor is very similar to the Fourier transform of a nonlinear JTC output [24] which can
be implemented optically. Both have the same Fourier phase and the amplitude modulation
requires a nonlinear transformation of both Fourier magnitudes of the reference function and
the input function.

In summary, we have seen that regularization with stabilizing functionals can be applied
to optimal nonlinear processor design.

4.7 Application to optimal optical implementation

If the filter is to be implemented in an optical correlator with a SLM in the Fourier plane, all
complex values for each spatial frequency of the filter cannot be reached. Indeed, in general
a voltage is applied to each pixel of the SLLM and only a bounded curve in the complex plane
can be obtained. More precisely, this constraint results in a coupled modulation between
amplitude and phase with bounded values. Well known examples are phase only modulation,
pure amplitude modulation, binary phase only modulation or ternary modulation. In that
latter case, for each spatial frequency, the ternary filter can only take the values (-1, 0 ,1).
POF, binary POF and ternary filters have already been analyzed in the context of truncature
regularization. However, it was shown more generally (see [53] and references therein) that
other complex codings can be obtained, such as spirals in the complex plane.

We will take the example of Fourier plane optical filters. Let & denote the admissible
domain of coding for each spatial frequency {for example § = (—1,0, 1) for ternary filters).
This constraint imposes that the filter h can only be in a subset D of C" which is defined by:
D =SV, If hy =0 can be obtained with a good approximation (i.e. with a good contrast),
the truncation regularization can be applied.

[
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Figure 3: Target used in numerical simulations.

However, optimal realizable filters are obtained by optimizing a criterion {27]. Then, if
this criterion is written as a function E(h) to be minimized, the stabilizing approach can
also be applied. If we consider the minimum norm stabilizing functional, the optimal filter

is given by:

hree = argmiﬁn E(fl) - )\BT-f' T+ ||ﬁ||2 (41)
heD

where D = S¥, and X is a parameter which is introduced in order to balance between
the optimization of the criteria and the optical efficiency. Indeed, since § is a bounded
region, a trade-off is necessary in order to obtain a detectable correlation peak (|f1fi“|2) in
the correlation plane [54, 38].

In general this optimization does not lead to an explicit expression for the filter. The
investigation of the iterative procedure is beyond the scope of this paper (see for example
[40]). However, it is cleatly seen that the general formalism of stabilizing functionals is well
adapted to the regularization of optimal realizable filters which are obtained by optimizing
a criterion.

5 Illustration with simple examples

Numerical simulations are now shown in order to illustrate in simple examples the effect of
stabilization of filtering techniques for pattern recognition. The minimum norm stabilizing
functional is first illustrated with the optimal nonlinear discriminant processor. We will also
illustrate the effect of the elastic energy stabilizing functional in colored noise. For these
different numerical simulations, the image of the target used is shown in Fig. 3.
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Figure 4: Input image used for numerical simulations with the optimal discriminant nonlinear
ProCessor.

5.1 Nonlinear processor

The input image is shown in Fig. 4. In Fig. 5, we show our conventions for the different
objects in the input image, and the correspondence with the different correlation peaks. The
airplanes appear buried in white noise. At the center {position B), the noise is nonoverlapping
with the target. However, at positions A and C, the noise is additive (overlapping) with the
target.

In Fig. 6, we show the result of the nonlinear processor of Eq. (40) with ¢° = (0 and
p=1/2, i.e. without regularization. Tt is clearly seen that in this case. the correlation is not
regular enough to identify correctly the different correlation peaks. In Fig. 7, a minimum
norm regularization is considered (i.e. ¢* # 0 and p = 1/2). The efficiency of the minimum

B

A A, o
B

C

Figure 5: Conventions for the different objects present in the input image, and correspon-
dence with the correlation peaks.



Figure 6: Correlation with the optimal discriminant nonlinear processor without regulariza-
tion.

Figure 7: Correlation with the optimal discriminant nonlinear processor with regularization.
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Figure 8 Input image used for numerical simulations with OT filters.

norm regularization is clear, since now the correlation peaks can easily be detected. Other
numerical simulations comparing the nonlinear processor with OT filters were published

in [30].

5.2 Elastic energy stabilizing functional

We now illustrate the effect of the minimum elastic energy stabilization of the simple OT
filter (i.e. without learning capabilities).

The target is still the airplane of Fig. 3, however the input image is now that of Fig. 8.

The airplanes now appear on colored noise, with a spectral density equal to 1/[f7 + f;]
(which will be denoted 1/f7 in the following). The noise is overlapping with the target. At
the center (position B), the target has the same orientation as the one of the reference target.
At location A, the target is rotated by an angle of 10 degrees and at location C, the target
is rotated by an angle of 5 degrees.

In Fig. 9, the results of the OT filter (Eq. (37)) without regularization are shown. We
clearly see that in this case, the correlation is not regular enough to identify the different
correlation peaks for rotated targets. This is a consequence of the 1/f? nature of the noise.
In Fig. 10, an elastic energy stabilizing functional regularization is considered. The efficiency
of this regularization, which is defined in order to stabilize the filter to small variations of
the reference object, is clearly seen. Other numerical simulations analyzing the performance
of regularized OTSDF filters were published in [19]. It is important to notice that MVSDF
and MACE filters are limiting cases of the OTSDF filter and they thus show very unstable
behavior in this example.

These two exampies clearly illustrate the advantage of using stabilizing functionals when
the input image is perturbated.



Figure 9: Correlation function with an OT filter, optimized for 1/f? noise and without
regularization.

Figure 10: Correlation function with an OT filter, optimized for 1/f? noise and regularized
with the minimum elastic energy stabilizing functional.
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6 Conclusion of part 1

Lu this part, we have reviewed heuristic filtering methods for pattern recognition. We have
analyzed different criterta which are classically considered for filter design. We have shown
that optimizing these criteria {or trade-offs between these criteria) leads to well known filters.

In this context, the importance of the stability of the resulting filters has been analyzed.
We have seen that stability is not in general obtained with classical heuristic approaches. We
have then proposed two methods of regularization. The first one is the truncature approach,
which allowed us to give a new insight in the use of the region of support of phase-only filters.
The second method is the stabilizing functional approach, which allows one to introduce more
knowledge about the a priori expected distortions.

These concepts were illustrated with numerical experiments.



Part 11
Statistical theory

7 Introduction

7.1 Filtering techniques and image model

As mentioned in the introduction, the detection and location of a target in a scene is a
classical problem, pervasive to many image processing applications. However, the matched
filter, as well as the improved linear filtering techniques [20], have been shown to perform
poorly on many real-world images [21,22]. This is because such images often do not belong
to the class for which linear filtering is optimal.

In general, in real images, the main source of noise is not the additive detector noise, but
the whole background of the scene (clutter), which is nonoverlapping [21] with the target.
Secondly, the gray levels of the reference object can be unknown a prior:. Thirdly, the power
spectral density (psd) of the noise is also often unknown a priori. In each of these three cases,
an important assumption which is necessary to demonstrate the optimality of the matched
filter is not fulfilled. As a practical consequence, it has been frequently observed that the
matched filter yields poor performance in real applications of optical correlation.

7.2 Examples of noise actually present in real images

Let us discuss more precisely the three cases above, in which one of the assumptions necessary

for the optimality of the matched filter is not fulfilled. In particular, let us illustrate the
behavior of the linear filters in these cases.

7.2.1 Nonoverlapping noise

If the main source of noise in the input image is not the detector noise, which can be
considered as additive, but the whole background of the scene, the noise is non-additive
since it does nat affect the pixels of the target. The importance of this point has been clearly
emphasized by B. Javidi et al. in [21]: They have named this type of noise "nonoverlapping”.
The difference between additive and nonoverlapping noise is illustrated in Figure 11. In this
figure, it is also pointed out that many real-life scenes can be more accurately represented
by a nonoverlapping noise model than by an additive noise model.

In presence of nonoverlapping noise, the important task is to discriminate the target with
the background clutter, and classical linear filters often fail to correctly locate or detect the
target in that case. We show in Figure 12 (bottom line) an example of such situation, in
which we can clearly observe that the matched filter, the Optimal Tradeoff [17] and the
POF [6] filters, which are all linear filters, are unable to locate the target although it can
be seen very easily on the scene image. The same linear filters are efficient (when slightly
regularized) in presence of additive noise (Figure 12, top row). We will discuss in the following
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Figure 11: Left: additive noise. Center : nonoverlapping noise. Right: realistic image ; it
can be noticed that the main source of noise is nonoverlapping.

recent approaches which can solve this problem and in particular the maximum likelihood
solution [34].

Scenes POF

Figure 12: Top row: scene with additive noise and result of the processing of this scene with
the classical matched filter (CMF), an Optimal Tradeoff filter (OT) and a Phase-Only filter
(POF) slightly regularized. Bottom row: scene containing the same object (airplane) than
above, but corrupted with nonoverlapping noise, and result of the processing of this scene
with the same linear filters as above.

NB: the curves represent the maximum value of each line of the modulus square of the
correlation plane obtained with the corresponding filter.

7.2.2  Fluctuations of the target’s gray levels

Until now [20], most optimal filtering techniques have assumed that the internal structure
of the target, that is, its gray level distribution, is deterministic and known. This is in
particular the case of the imatched filter, the MACE [16], the Optimal Tradeoff (OT) and
the MINACE (28] filters. However, in many applications, this assumption is not realistic.
For example, the target may be subject to sun reflections in optical lmages or temperature
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changes in infrared images: the gray levels of the target then fluctuate in an unpredictable
way.

In order to illustrate this problem, let us look at Figure 13. The images in the first column
are two scenes representing an object with the same shape in presence of nonoverlapping
noise. Both scenes are processed with a linear filter (second column) and the maximum
likelihood processor of Ref. [34]. The images in the first line are the reference objects utilized
to design the corresponding processors. It can be seen that the linear filter fails to locate
the target in the scene of the second line, since it is not adapted to nonverlapping noise.
However, the processor of Ref. [34] correctly locates the target. In the third line, the scene
also contains nonoverlapping noise, but its gray level internal structure is different of that of
the reference object utilized to build the processors. It can be seen that the optimal processor
for nonoverlapping noise also fails on this image. An optimal maximum likelihood processor
adapted to such an image model has been designed in Ref. [55]. Its behavior is represented
in the fourth column of Figure 13: it is robust to nonoverlapping noise and to fluctuations
of the target’s gray levels. The principle of this processor is summarized in Section 8.3.3.

7.2.3 Additive noise with unkown psd

When the noise is additive with a known power spectral density {psd) we will show below
that the optimal processor in the sense of decision theory {(maximum likelihood) is the well
known matched filter. However, in many applications, the psd of the noise is unknown a
priori and can vary rapidly from one image to another. The consequences of a difference
between the actual psd of the noise and the psd used in the filter synthesis have been precisely
studied in [18,36] for Optimal Tradeoff filters and nonlinear filters. It has been shown that
the matched filer is in general very sensitive to such difference. It has been demonstrated
in {18} that Optimal Tradeoff filters designed with a white noise model are less sensitive to
that problem than the matched filter, since they are stable [56] while the matched filter can
be unstable. However, Optimal Tradeoff filters are not optimal when the psd of the noise is

unknown. It would thus be useful to find out the optimal processor in that case. Section 9
will be devoted to this topic.

8 Background on the statistical decision theory ap-
proach

We propose in this section to review the statistical decision theory and to apply it to the
target location problem.

8.1 Statistical decision theory without nuisance parameters

Let 6 denote the parameter to be estimated. In the particular case of location problems, &
is the coordinates of the target’s position in the scene, which will be denoted j in Section 9.
In the current seciion, however, we use a different notation since, at this level, we do not
need to particularize the discussion to location estimation. However, in order to make the
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Fluctuating
target

Scene Linear Nonoverlapping

Figure 13: Behavior of a linear filter, of the maximum likelihood optimal processor for non-
verlapping noise of Ref. [34] (cf. Eq. 67), and of the maximum likelihood optimal processor
for fluctuating targets of Ref. [55] (cf. Eq. 73).

discussion easier, we will consider that the parameters ¢ or j take discrete values. s will still
denote the input image.

The first point to specify in order to apply the decision theory approach is the image
formation model. This is indeed an important property of the decision theory to allow one
to design an optimal method particularly adapted to each image formation model. It is
in fact because of this adaptation that better results can be obtained with decision theory
approaches than with heuristic techniques. From a methodological point of view, it is also
an important property of the decision theory approach to clearly specify the problem which
will be solved.

In order to specify the image formation model, we have to clearly state the relation
between the image s, the reference object r and the noise n for a given hiypothesis on the
value of the parameter ¢é:

s = Fs(r,n) (42}

For example, in the presence of additive noise and for target location, this model is:

8 = Tig + Ny Vi & [0 N — 1} (43)



while with multiplicative noise, it is:
si=mn; s Vie [OpN —1] (44)

In the general case, the noise is not independent of the target and the general image for-
mation model can be deduced from the conditional probability P[s|r,§], which represents
the probability density of observing s assuming that the value of the unknown parameter is
6 and the gray levels of the reference are r. P|s|r, 4] has a central position in the decision
theory and is called likelihood. Indeed, it is the likelihood of the hypothesis that the value
of the parameter we want to determine is equal to 4, assuming that the target is known and
equal to r. For that reason, it will be also denoted L{s|r, é] in the following.

When the noise is independent of the target’s gray level values, the likelihood can be
determined very eastly from the image model itself. For that purpose, let P,(n)} denote the
probability density function (pdf) of the noise and assume that Eq. 42 can be rewritten in
the form:

n = F;'(r,s) (45)

The likelithood is thus:
Lis|r, 8] = Pa (F; '(r,5)) (46)

In the following, we will consider a general image formation model for which only the shape
w of the target is assumed to be known, but not its gray levels r. In that case, the likelihood
will be written: L[s|w,6]. We can now describe the Maximum Likelihood (ML) principle
which is frequently used in statistical inference problems.

8.1.1 Maximum Likelihood principle

The maximum likelihood estimate of the unknown parameter é is the value which maximizes
L[s|p, ] where p is any assumed known parameter. The parameter p can be for example r
or w. The maximum likelihood estimate of 6 can thus be written:

oML = argmaz L[sip, 6] (47)
b

Since the likelihood L[s|p, é] is the probability of observing s under the assumption that the
value of the unknown parameter is 6, the basic physical idea of the ML principle is to choose
the value of 6 which makes very probable (or likely) the data we have observed. This is a
very reasonable approach but it can also appear arbitrary at this level.

8.1.2 Maximum a Posteriori principle

In fact, it is well known [57] that if we want to minimize the probability of wrong estimation
of the value of § and maximize the probability of true estimation, we have to consider the
Maximum a Posteriori (MAP) estimation obtained from P[é|s, p|. We thus obtain the MAP
estimation principle which is also frequently used in statistical inference problems. The MAP
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estimation of the unknown parameter 6 is the value which maximizes Plb|s, p| where p is
any assumed known parameter. The MAD estimation of # can thus be written:

SMAP = argmax PlSis, p) {48)
&

The probability density used for the MAP estimate is directly related to the likelihood
through the Bayes relation. Indeed, we have:
Lls|p, 6|P[¢]
Plé|s,p| = /22—
[6]s. p] Pis] (49)
P[] is a prior probability density for the values of the unknown parameter &, it is thus
frequently simply denominated prior. For example, when tracking a target in an image
sequence, this prior can be obtained from the previous estimated location using a Kalman
filter [58).
The MAP estimate is easily obtained from the likelihood and the prior:

SMAF — argmaz [L[s|p, 8] P[6]] (50)
&
If we introduce the loglikelihood:
{[s|p, ] = log [Ls|p, ¢]] (51)
the MAP estimate becomes:
sMAF — argmaz [¢[s|p, 6] + log [P[8]]] (52)
&

which clearly shows that when the loglikelihood is determined, it is in general simple to
obtain the MADP estimate. We will thus consider in the following ML estimation of the
parameter &.

8.2 Decision theory in presence of nuisance parameters

In the general case, the conditional probability P[s|r, 8] is not precisely known. It is possible
to consider a parametric model for this function, which depends on unknown parameters
(denoted g in the following}. In that case, it must be written: Pls|u, p, 8] since it can be
evaluated only for some a prior: assumed values of p. The parameter y is generally a nuisance
parameter since we are not interested in its value. A classical example of such situation is
the location of a target with unknown illumination & and in the presence of additive noise:

;=01 s+mn Vic[;N 1] (53)

In that example, the nuisance parameter is the scalar value 3. We will consider more complex
examples in the following sections.

There exist several methods to deal with nuisance parameters. We propose to briefly
describe three of them, which are frequently used and which will be useful in the following
developments.
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8.2.1 ML estimation of the nuisance parameter

In the first approach, we determine the ML estimate of the nuisance parameter and then
insert the value of this estimate in the expression of the likelihood.
The ML estimation of the nuisance parameter g is determined by:

pME(8) = argmazx Lisly, p, 6] (54)
7]

The ML estimate of § can thus be written:

§ML — argmaz Lisiu™*(6),p,d) (55}
4

In practice, the maximum likelihood estimate often appears to be unstable. The likelihood
is said to be unstable [56] if a small variation of the initial conditions (here s — s + ds) can
lead to a large variation of LisiuM%(6),p, 8] !. The MAP approach can be used to overcome
this problem.

8.2.2 MAP estimation of the nuisance parameter

The MAP approach is interesting when some values of the nuisance parameter are very
unlikely or lead to unstable estimate of the likelihood and thus of the parameter 6. The
MAP estimate of the nuisance parameter y is determined by:

pMAP(8) = argmaz [Lluls, p, 8] Pul| (56)
n

The ML estimate of é can thus be written:
§ML, = argmax [L [smMAP((S), P, 6] P [U,MAP((S)H (57)
b

The prior P[y] is thus useful to penalize undesirable values of p. It is very easy to apply
this approach when computing the MAP estimate of ¢, which is:

oap = argmax [L [s]u*7(8), p, 6] P [u"47(8)] PP (58)

It is clear that if the prior Py is uniform, the MAP approach is equivalent to the ML
method.

L1One can also consider stability against reference variation r — r + dr as in part 1. Both approaches
should be analyzed but for statistical models considered here stability requirement against input image
variation implies stability against reference variation.
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8.2.3 Bayesian approach

The Bayesian method has been the subject of many investigations and theoretical studies
[59]. Here, we will not discuss this approach in detail since critical analyses can be found
in references [57, 59] for example. The motivation for this approach for the applications
considered here are the same as for the MAP 2.

In the Bayesian approach, the ML estimate of é is obtained with:

é’gﬁf’ = argmar [L[s],u, p. 6] P{ujdp (59)
)

where, when u is a real vector of dimension n. [ Flpjdp is a formal notation for:
i Jy -+ fy, Fluldpndps...dpty.

8.2.4 Conclusion

With both the MAP or the Bayesian approaches, the value of the estimate depends on the
expression of the prior Plu]. This point is sometimes considered as a limitation of these
methods [59]. However, it should be noted that our goal is mainly to suppress the cases
where the likelihood is unstable. Thus, from a practical point of view, the choice of the
expression of Pu] generally results from the following considerations:

1. to penalize the undesirable values of pu,

2. to lead to MAP or Bayesian estimates that are close to the ML estimate for the values
of the nuisance parameter for which the likelihood is stable,

3. to lead to tractable mathematical equations.

In Section 9, we propose to illustrate these approaches in a particular case for which the
psd of the noise is unknown a priori, and can thus be considered as a nuisance parameter.

However, let us first rapidly discuss some classical and more recent results obtained with the
ML method in the field of optical correlation.

8.3 Examples of location problems and statistical decision the-
ory
In this section, we first review the well known case of the matched filter. We then describe

two more recent approaches that utilize decision theory in order to solve original target
location problems.

20ne can show with the risk theory [57,59] that with the bayesian method the nuisance parameter are
really considered of no interest while in the MAP approach they are in fact considered as parameter of
interest.
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8.3.1 Matched filter

The correlation operation allows one to compare a reference pattern with an input scene.
This comparison can be useful not only for detection or classification of a target, but also to
estimate a parameter (for example the attitude) or to locate this target in an input image.
In the following, we will speak about classification for these general tasks.

We propose to review this classical problem of signal processing when the input noise on
the image (which represents uncertainty) is additive, gaussian, stationary and with a kown
spectral density. We consider in this classical problem the ML estimations of the nuisance
parameters.

Let s denote the input image and r® the references. The references are dependent on a
parameter §. Let us consider some examples. If we want to locate a reference r in the input
image, § denotes the different possible locations of the target. In that case 'rf =r;_s. If we
try to estimate the angle of a rotation around a given axis, r’ = Ryr where Rj; is the rotation
operator with an angle §. If the problem is a detection problem, there are two possibilities:
§=00ré=1. § =1 corresponds to the hypothesis that the target is present and 6 = 0 that
it is not present. More generally, if P types of target are possible (for example P different
objects or P different attitudes of the object) the problem is a classification one and ¢ can
be a label for the type of the targets (6 =1,2,..., P).

For invariant recognition, we are not interested in the particular value of é but we try to
know if & belongs to the set of objects to be recognized. This last problem clearly shows strong
analogies with the problem of invariance analyzed in part 1 and for which we introduced the
SDF approach.

In realistic applications, the problem is a mixture of these different problematics and 6
is a vector. We consider for the matched filter design that the input image s is the addition
of a noise and of the target with an unknown value of é and, in general, with an unknown
illumination 3 3. Let v[é, 3] denote the hypothesis that the input target is in the input image
s with parameter & and illumination 3. Under hypotheses v[6, 3], we can write:

S:ﬁr‘s—i—n (60}

where n is a gaussian additive noise with a known spectral density S.
The probability density function P,(n) of the noise can be written:

1 1
n) = ———— exp[—=n’ 5 'n], 61
Putm) = s capl- " ) (61)

where S is the noise covariance matrix (which is a Toeplitz matrix [60] since the noise 1s
assumed stationary), and || is its determinant. Furthermore, cyclic boundary conditions

are assumed. In other words, Sji_;) = Sj;_;pn) for any integer p and S is a circulant Toeplitz

matrix [EEO] In that case, S is diagonal in the Fourier domain with value equal to the spectral
density S.

We can write:

81 :—lmer mls— Y75 s — 3 %Y. 62
Plshit S) = S eapl- s = 0 ¥T5 70— 00 (62

3The parameter 3 is introduced with its specific notation since its ML estimation is very easy.
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The ML estimation of & and 7 is obtained by maximizing the likelihood 62. With our
assumption of additive gaussian noise. we obtain:

e S ?

QML _ [rélTS_ls
'd {ré]TS_ll'ﬁ

L S é}\d'L
[I.é]TS—lrb

and: = argmaxr (63)

In order to be somewhat more concrete, let us assume that the target can belong to
one of P possible classes. Furthermore, let us consider that this recognition task has to be
performed with translation invariance.

The parameter & is now composed of a value for the class ¢ and a value p for the location,
6 = (¢,p). The optimal estimation of £ and p is given by:

N b o=l 2
1T |97 )iy
(pML1 fML) = argmaz |EJ\I;J—1 i p[ ],J JI (64)
S e[St
£ p ig=1"li=p wilj-p
Since the noise is assumed stationary with cyclic boundary conditions, it holds [S]; jl =
-1 . !
[S); -, and thus:
N N
¢ ro-ly 0 bro-1y
Z Ti—p[s ]i,j"j—p - Z T [S ]i,jTj
i,7=t1 ij=1

Furthermore, the expression of Eq. {64) can be simplified if the matched filter is introduced:

N
hy =3 {5
=1
Thus, Eq. (64) becomes:
MY = argmaz Cpa.l) [ Al (65)
¢
with:
N
Cmaz[‘g] = mar |Zh’§—psjl2
p =1
and: N
Ale)= 32 rilS7 s
ij=1

Cruax(f] 1s the maximum value in the correlation plane of the modulus square of the correlation
function between s and hf. The ML classification is thus performed in two steps. In the
first step the maximum value of the modulus square of the correlation function between s
and h® is determined for each ¢. In the second step, the class ¢ which maximizes over all
the hypotheses this value of the modulus square of the correlation correctly normalized (i.e.
Chracl?]/Al€]) 1s chosen.
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This is an important theoretical approach to justify the use of linear filtering techniques
(or correlation techniques) for pattern recognition.

Of course, the first limit of this approach with images is the assumption of additive gaus-
sian noise. In particular, the assumption of additive noise is not completely realistic in image
processing as discussed in [21]. With non-overlapping noise, different solutions have been
proposed in [34] and [35]. The second important point is that this method assumes that the
spectral density of the noise S is known. This is not the case in general in image processing,
where in contrast to radar processing, it is very difficult to estimate it. Then, an impor-
tant question in the context of pattern recognition is the determination of an appropriate
model for S. Furthermore, as mentioned in part 1, there is no reason to consider that the
realizations of noise are obtained with a temporal stationary density probability law.

It appears also clearly that if the number of classes P is large, determining the correlation
function with all the hf can be prohibitive in terms of memory in order to store all the h?, and
in terms of computational power to determine the correlations. This problem is an important
motivation for using SDF filters as noted in part 1, even though they are sub—optimal in the
statistical decision theory framework.

8.3.2 Deterministic target and nonoverlapping noise

This model has been developed in order to describe situations in which the main source of
noise is the background clutter. In that case we introduce the support function w of the
target T which is defined by setting w; is equal to 1 within the support of the target (i.e.
where r; # 0) and is equal to 0 elsewhere. The nonoverlapping noise is equal to zero in the
support function of the target while it can have a positive mean value outside this support
function. This background noise is thus represented by (1 — w;_s) b; where b, are the gray
levels of the background. The image formation model is:

s, =fri_s+ (1 — ’w,‘ﬂs) b +n; Ve € [0, N — 1] (66)

where the target is assumed to have known internal gray level structure r;, the noise n; is
independent of the target and is assumed to be white, Gaussian and additive, and 5 is a
nuisance parameter. It has been shown in [34] that when the power of n; tends to 0, the ML
estimate of the location is obtained by maximizing

6L = arg max | — S wios st+ M (67}

DT

In that case, the nuisance parameter 3 has also been estimated with the ML approach.

In fact, we show in appendix C that the processor of Eq. 67 is optimal in the maximum
likelihood sense for any value of the variance of n; within the target support. More precisely,
we demonstrate that if the values b; are considered as nuisance parameters, the ML estimation
method described in Section 8.2.1 for the b; leads to the processor of Eq. 67. This result is
important, since it precisely defines the domain of optimality of this processor.
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8.3.3 White random target and nonoverlapping noise

The previous model can lead to very interesting results. However. only a global flnctuation of
the target’s gray levels is taken into account with the model of Eq.66, through the parameter
. the gray level structure r; of the object is assumed to be precisely known. In some practical
situations, this assumption is not realistic. This can happen, for example, when the gray
levels of the reference object are not known at the moment where the reference object is
defined. Moreover, these gray levels can fluctuate rapidly from one image to another (due
to sun reflections for example). In order to describe such situations, one can consider [61] a
new image formation model:

& = (U)z‘,tj) ; + (]. — 'wi_g) bi VE e [0, JV — 1] (68)

where @; and b; are two white Gaussian random fields. They are considered as statistically
independent, so that this model has been named Statistically Independent Region (SIR)
image model. The corresponding ML or MAP optimal location processors are thus denoted
SIR processors.

Since a white Gaussian random field is described by its mean and its variance, there are
four nuisance parameters in the model (the means and the variances of each random field,
l.e. m,,my, 0, and ;). It can be found that the ML estimates of these parameters are the
well known empirical estimates of the mean and the variance of a data set [61]:

miE(6) = S(wie)s, (69)
myH(6) = ij(l-'wima>si (70)
oHL(E) = é(wz-_n[sim—frni.“(zs)]? ()
oH6) = L —wis) [si o m®)] (72)

The ML estimation of the location is thus obtained by:
ML — arg max [Nw log [02/"1‘(6)] + (N = N,) log [af’”‘(&)” (73)

where NV, 1s the number of pixels in the support function (w) of the target.

It has been shown that this processor can solve problems that cannot be solved by linear
filters. Figures 14 and 15 show examples of such situations. Moreover, a similar algorithm
can be designed for images with y* statistics [62].

However, the processor of Eq. 73 is designed to be optimal for white (uncorrelated) statis-
tics of the target and of the background. Experience shows that its performance decreases
when the statisitics become correlated, and when their correlation lengths increase. An
example of such situation can be found in Figure 16.

8.3.4 Correlated random target and nonoverlapping noise

In order to overcome the problem of correlated statistics, several strategies may be envisaged.
Oune of them is to model the vectors a and b of the SIR image model (¢f. Eq. 68) with a
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Figure 14: (a) Scene image. (b) Result of the processing of (a) with the optimal SIR
processor of Eq. 73. (c¢) Result of the processing of (a) with an Optimal Tradeoff filter. The
matched filter [32], the POF [6] and other linear filters also fail to detect the target. NDB:
(b) and (c) are plots of the maximum of each line of the correlation plane.

&) (b) ()

Figure 15: Same legend as Figure 14.

@ () (©)

Figure 16: Same legend as Figure 14.
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correlated random field. Markov Random Ficlds (MRF) are well adapted to this aim [63].
Let us assume that the statistics of both the target and the background are represented by
the same MRF, which has the following expression:

P(x)= A exp (74)

- (i: >z — ;) +9(‘~Ei)) /T

i=1jeV,

where A 1s a normalization constant, 7" is a parameter and g(x;) is the realization of a random
function which depends only on z,. It can be shown [63] that the ML optimal processor is:

N-1 N-1
ML __ h h v v rd=
oM = aTg max [ > Awl s s+ Y Aw? sl] (75)
i=0 i=0

For each pixel 7, i" denotes its horizontal right neighbor and 7" its vertical top neighbor. The

two images s and sV are defined in the following way
st =(s; — s)* and &' = (5;—s0)° (76)

These images contain the modulus square of the gradient of s respectively in the horizontal
right and in the vertical top directions. Awh? and AwY are two edge images of the support
of the reference object:

Awl = [(we) — (we)n]? and  Awly = [(we)i — (we)e]? (77)

An illustration of the performance of this processor on a realistic image is represented
in Figure 17. It can be shown that the processor of Eq. 75 is not optimal in presence of
white statistics, and that its performance increases as the image statistic gets more corre-
lated. Its behaviour is thus inverse of that of the ML SIR processor for white statistics
(cf. Eq. 73). This can be seen very clearly on Figure 18: for small correlation lengths of
the scene, the optimal SIR processor for white statistics is more efficient, whereas for large
correlation lengths, the optimal SIR processor for Random Markov Fields is more adapted.
Consequently, these two processors are complementary, so that it would be interesting to
utilize them at the same time on the same image, and to perform a fusion of their results.
A global processor based on this principle would be efficient for a wider class of images than
the two sub-processors used separately.

8.3.5 Whitening preprocessing and Statistically Independent Region processor

In some real images, as mentioned in setion 8.3.4, the statistics of both the target and the
background cannot be approximated with good precision by uncorrelated random fields. In
these situations, the SIR processor is then suboptimal and can fail. In Fig.19, two scenes and
their respective output planes obtained with the SIR processor are shown. The maximum
of the output plane represents the estimated location of the target. Omn scene (b), the
probability density functions (pdf's} of both the target and the background are white and
Gaussian whereas those of scene (¢) are also Gaussian but correlated. Omne can note that
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(a) (c)

Figure 17: (a) Reference object utilized to design the location processor. (b) Scene. (c)
Result of the processing of (b) with the ML processor for RMF correlated statistics of Eq. 75.

even if the target is easier to see on scene (c) than on scene (b}, the SIR processor fails on
scene (¢) whereas it is able to locate the target on scene (b).

Up to now, it seems difficult to design a general optimal processor for the location of a
random correlated target appearing on a random correlated background. The main problem
consists in finding simple models for the target and for the background thai characterize
the different possible situations and that allow one to design an optimal processor in the
maximum likelihood sense for these models. The processor designed in section 8.3.4 assumes
that the textures are described by the same random Markov field model for both the target
and the background. However, although that model represents a difficult case, it corresponds
to a particular situation.

We analyze here another practical approach which allows one to satisfy the optimality

conditions in order to apply the SIR processor. We define the nonlinear whitening filter in

the Fourier domain by :
- 1 1
e — (78)
‘Skl §;§k + i

where g is a small positive parameter which allows one to obtain stable filters (see part I).
The Fourier Transform z of the preprocessed image z is thus defined by :

ék = ;Lkék. (79)

One can note that since s and h are real, z is also real. It is easy to show that the square
modulus of z is approximtely constant. Thus we can conjecture that the pixel values of the
preprocessed image z are uncorrelated variables. In Fig.20, we show a target with a correlated
texture which appears on a random correlated background. and the obtained preprocessed
image. The impulse response of the preprocessing filter (fzk in the Fourier domain) and
the histogram of the preprocessed background (which is similar to the histogram of the
preprocessed target) are also represented. One can note that describing the pixel values of
the preprocessed image as Gaussian random variables is a good approximation. If we model
the preprocessed image with two independent regions, according to [61], the 2-SIR processor
can be defined by :

F& = — N, logld?(j)] — (N — N,,) logl5" (/)] (80)
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Figure 18: First line: scene where the target’s and the background’s gray levels are noiscs
with increasing correlation lengths. Second line: Result of the application of the SIR proces-
sor optimal for white statistics (cf. Eq. 73) to the corresponding scene. Third line: Result
of the application of the SIR processor optimal for Random Markov Fields (¢f. Eq. 75) to
the corresponding scene.

where 62(;) and &°(j) are computed from the preprocessed image z as follow:
J g

0) = et e wly - gleewl (51)

. 1 N, 1 N 2
a'{j) = N—_Mu(gz" — [z *W]j)—m(zzi*[z*wb) (82)

i=1

and
2* = {z%i € [1,N]} (83)

However, as one can remark in Fig. 20, the preprocessing can introduce three regions
in the preprocessed image. Indeed, when the textures are strongly correlated, a boundary
region appears in the preprocessed image between the target and the background.

We have determined the width of that boundary from the width of the impulse response
of the preprocessing filter h (see Fig. 20). Let f, t and b denote respectively the boundary,
the target and the background composed of Ny, N, and N, pixels, and let wl, wt and wb
define respectively the shapes of the boundary, the target and the background reference
centered on the pixel 0 so that w;/ (respectively w;’ and w,") is equal to one within the
boundary (respectively the target and the background) reference and to zero elsewhere. In
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Figure 19: (a) Binary support of the reference. (b) Example of a scene with white gaussian
textures for both the target and the background. The texture parameters are m, = 0 and
o, = 1 for the background and m, = 0.5 and o, = 1.5 for the target. (c¢) Example of a
scene with correlated gaussian textures for both the target and the background. The texture
parameters are m, = 0, g, = 1 and [, = 1 for the background and m, = 0.5, ¢, = 1.5 and
[, = 1 for the target. (d) Result of the processing of (b) with the 2-SIR processor. (e) Result
of the processing of (¢) with the 2-SIR processor.

Note : (d) and (e) are plots of the maximum of each line of the output plane of the considered
method.
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Figure 20: (a) Example of a scene with correlated gaussian textures for both the target and
the background. The pdf parameters are m, = 0, 0, = 1 and I, = 1 for the background
and m, = 0.5, o, = 1.5 and [, = 1 for the target. (b) Preprocessed image of (a) with
the whitening filter. (c) Impulse response of the whitening preprocessing obtained with {a).
(d) Histogram of the background of (b).
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that situation, we thus propose to describe the preprocessed image z using a 3-SIR model
as follow:

z, = tlwf,j + fiwf_j + baw?_ (84)

i—j
when the target is supposed to be centered on the j** pixel of the image.
With an approach analogous to the one in 8.3.3 and [61], we can design a 3-SIR processor
that takes into account three regions. This leads to :

F¥ = N log[62(j)] — Ny log[67(7)] — Ns log[6 (7)) (85)
with :

o 1 1
ai(j) = *N:[ZQ *w'; — N—tz[z * w3 (86)
ey 1 1
5ij) = K,;[zz *wl]; - @[z x w2 (87)
ey 1 1
5:(J) = E[Z2 * W — sz[z *w')? (88)

67(7), 6%(j) and 63(j) are respectively the estimated variances of the target, the boundary
and the background of the whitened image when the target is supposed to be centered on
the j* pixel of the image. These quantities can be determined by correlating the images z
and z? with binary masks. They can be obtained with a simple optoelectronical architecture
or using FFT algorithm applied to the images z and z°.

To illustrate the domain of application of the 3-SIR processor, we finally show in Fig. 21, a
realistic scene where the target appears on a structured background. The shape of the target
is the same as Fig. 1 and the three windows are defined with a structured element of size 3 x 3
pixels. We can observe in the figure that the 3-SIR processor and the proposed preprocessing
are efficient in the considered case. It can also be shown that the 2-SIR processor succeeds
in locating the target on the whitened image whereas it fails when it is applied directly to
the input image.

8.4 Conclusion

In conclusion of these examples, one can see that the statistical decision theory approach
is a very powerful tool in order to design optimal processors adapted to different practical
situations. There exist many other examples, but it is not our purpose to detail them here.
Omne can however remark with all previous examples that the optimal solutions are rarely
linear correlations. Only the matched filtering technique is a linear correlation followed
by the selection of the maximum value of the modulus square of the correlation plane.
However, it is easy to show that with the three above optimal solutions, the most intensive
computations which are needed are linear correlations. All the other computations can be
considered as low-complexity preprocessings of the input image and postprocessings of the
correlation planes.

In the following section, we propose to discuss in more detail another image formation
model, which leads to nonlinear correlations that are analogous to the ones which can be
performed by a NLJTC. Moreover, this example will provide a more detailed illustration of
the different approaches for the estimation of the nuisance parameters.
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Figure 21: (a) Scene with a structured background. (b) Result of the processing of (a)
with the 3-SIR processor. The three references wf, wt and w® used in the processing are
determined from the reference w shown on figure 1{a).

Note : (b) are plots of the maximum of each line of the output plane of the considered

method.

9 Theoretical approaches to Nonlinear Joint Trans-
form Correlations

In this section, we assume that the observed scene is corrupted by a cyclostationary [31],
additive, Gaussian noise. The image model can thus be described by:

si =711 +n; (89)

However, contrary to the usual model which leads to the classical matched filter {cf. section
2.1), we suppose that the psd T of the noise n; is unknown a priori. For this model, let us
determine the optimal location processor with the different statistical approaches described
above.

9.1 Mathematical expression of the likelihood

Since we consider here sampled random signals with a finite number of pixels, it is possibie
to define their Fourier transforms:
Sk = Tp + iy (90)

Let us now compute the likelihood of §, that is, the probability of observing the input image
§ with the hypothesis that the spectral density is I' and the object location is j. Since fi is
a cvclostationary Gaussian random vector, one has:

N g |
Pall') = — - 91
(n| ) .k]:[:{) AV QWF;; P [ 2FR J ( )
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where I'; denotes the component of I' at frequency k. It will be interesting in the following
mathematical developments to write the pdf of Eq. 91 in the canonical form of the exponential
family [59] by introducing oy = 1/(I'y). We thus define a vector alpha with components .

We thus obtain the following expression for the probability of observing the input image §
(i.e. the likelihood):

N-—1
L(3la, ) = TT Y25 ox [—%é—“ 92
(l j) Ig)m P 2|k Tk! ( )

9.2 ML estimation of the spectral density

We propose to estimate the spectral density T' of the noise and the target position which
maximize the likelihood L(8|T, 7). In order to obtain this result, one has to solve the following
equation:
9P@IL, j)
ory,
The solution of this equation leads to the following estimate:

=0 (93)

TME(G) = |8 — 7 (94)

After injecting this estimate into Eq. 92 and taking its logarithm, we obtain the following
expression of the loglikelihood:

‘ N-1q o
INOEEDY 5 log [|3k - Ti|2] + K (95)
k=0

where K is a constant independent of 7.

One can remark that €yr () diverges if |3, — 711 = 0 for some frequency &: this estimate
can thus be unstable. In order to have a stable estimate, it is thus necessary to assume an a
priori knowledge with a prior pdf P(I') which penalizes null values for I';: this will be the
subject of the next sections.

However, let us now consider Eq. 95, which represents the optimal processor in the
maximum likelihood sense for the considered image model. It is very computation intensive.
Thus in the following, we will study how a first order development of this expression leads
to a processor which has the same computational complexity as a linear filter, and which is
identical to some previously proposed NLIJTC processors.

We first assume that for every frequency k, we always have {3, — 71| > o2 with 0% > 0.
In order to simplify the following analysis, we propose to introduce the notations:

AL = & - (96)
Ul = [&" #L+ F]" % (97)
D = &%+ |7 (98)

We have used the fact that #] = 7y exp{—i27 j k), where #; is the Fourier transform of the
target when it is centered at the origin. With these definitions, one has: A = Dy — U} (U}
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is real) and the loghikelihood can be written:

R e Uy
("‘\”,(j) =N - 5 Z (l()g{Dﬂ + h)g{l - —)Di}) (99)
k=0

k

. - . . . - N 7 .
Since D) is independent of j and since the assumption A} > o? leads to %’f; <1l- %i’ one
can consider the first order development of the loglikelihood:

12U
() =K'+ 5 3 & (100)
k=0 k

where K’ is a constant independent of j.
It can be shown [64] that maximizing ¢y (j) is equivalent to maximizing the inverse
Fourier transform of F}:

: k(7))
£ PAEESAE (101)
We have utilized the fact that, when r and s are real, one has:
N—t N-1
S F, exp(—i2m j k)= > (Fk)* exp{i2n j k) (102}
k=0 k=0

The Fourier transform of the nonlinear JTC introduced in section 4.6(see also [30]) is
described in the general case by:
s Se(Te )
@+ po[$el? + (1 = p) |75

(103)

One can thus remark that £y is a particular case of ¢} with the regularization term a equal
to0and p=1—p=1/2.

If the assumption A, > o? is not fulfilled for ¢? sufficiently large, the nonlinear JTC de-
fined by F}, can be unstable. We thus propose in the following sections to analyze respectively
the MAP and the Bayesian approaches which allow one to regularize the ML solution.

9.3 MAP estimation of the spectral density

We now propose to determine the estimates of the spectral density of the noise and of the
target location which maximize the posterior probability P(«, j|8) (MAP estimate ). We
have shown in Section 2 that according to Bayes law, maximizing P(a, j|8) is equivalent to
maximizing P(8|a, 7} Pla). We have assumed that the variables o and j are statistically
independent (i.e. that P(a,j) = P,(«) P(j) ). We have seen in Eq. 92 that, in order
to obtain an exponential mathematical form (the canonical expression of the exponential
tamily), the likelihood L(§|a, 7) can be written:

N1
. . Gk [T
L(§|ae,j) = EX)[————A"’] 104
( | JJ) ;EJ \/ﬂ ! 2 k ( )
The likelihood becomes unstable for null values of THL(}), so from a practical point of
view, the main goal of the choice P[a] is to penalize large values of «. There are many
types of such functions. In the following, we will analvze two of them: the uniform prior and
the exponential prior (c¢f. Figure 22).



Ra(rk) Ru(ak)
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Figure 22: Examples of possible priors. (a): Uniform prior (on I'y). (b): Exponential prior
(OH g = I/Fk)

9.3.1 Uniform prior

The expression of the uniform prior on Ty is P[I'} = [18 Ra[[x] where:

{ Ra[l“k] =b if a S Fk S ay (105)

R,Tel =0 otherwise

a; is determined so that on the current scene 'y < a; for all k. Moreover b = 1/(a; — a).
This prior fits the second point of Section 8.2.4: it is obvious that it will lead to psd estimate
values close — in fact equal — to the ML estimate values when the likelihood is stable.

The optimal processor in the MAP sense corresponding to this prior is derived in ap-
pendix D. The computations are complex, and so is its final expression. However, after one
approximation, it can be shown that its first order term is:

- S (Fr)
* T max [|5]* + [7]? , a

(106)

This expression is quite satisfying for the intuition, since it penalizes the very little values
of {5¢|* + |#«|?, which could make the expression of the filter unstable. This prior leads to
solutions which present strong analogies with the truncature method discussed in partl.

9.3.2 Exponential prior

As we discussed in Section &.2.4, another interesting property for the choice of the prior is
to lead to easily tractable mathematical equations. The exponential prior:

N-1
Pla] =[] a exp(—a ax) (107)

k=0

fulfills this requirement. If this prior is used, it is easy to show that the MAP estimate of
the spectral density has the following expression [64]:

TPy =2a + A} (108)
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After injecting this estimate into Eq. 92 and taking its logarithm, we obtain the following
expression of the loglikelihood:

Nl
. 1 - N B
fMAP(j) = — Z ﬁlog[Q a + ’Sk - 7'1{’2] + A (109)
k=0
where K’ is a constant independent of j.
The first order of the Taylor expansion of the logarithm shows that the MAP estimate
of 7 is thus obtained by maximizing the inverse Fourier transform of F(j):

h__ n
k= TR
2a + |8)* + |7k

(110)

Within this approximation, the optimal estimate of the location j is the one which maximizes
F(j). This expression is identical to that of the nonlinear JTC introduced in section 4.6 (see
also [30]) with p = 1 — p = 1/2. The MAP approach has thus allowed us to determine
the optimal value of a parameter which remained free in Ref. [30]. This is an example of
practical advantage of the decision theoretical approaches versus the heuristic approaches.

In order to illustrate the previous results, let us look at Figure 23. We have constructed
two scenes containing the same object and an additive white noise. The ncise statistic is
uniform. The Signal to Noise Ratio {SNR) is respectively 10 (very low noise) and 0. In the
second line appears the correlation plane obtained by applying Eq. 110 to the corresponding
scene. In the third line appears the result of the MAP processor of Eq. 109. We can see that
the correlation planes corresponding to both filters are almost identical. This shows that the
higher-order terms of Eq. 109 are negligible with respect to the first-order approximation.
The Figure 24, which represents the same data computed from noisier images (SNR of —10
and —20 dB) leads to the same conclusions. Whatever the level of noise present in the image,
the nonlinear JTC of [30] is thus an accurate approximation of the optimal alternative to
the matched filter when the spectral density of the noise is unknown.

9.4 Bayesian approach

Let us consider here again the exponential prior of Eq. 107. In the Bayesian approach, one
has to determine:

:/L(§,|a,j)P[a}da (111)

where the integral has to be interpreted with same notations as in Section 8.2.3.
One can show that

P a + A3 112
1;[ 2a + ALY (112)
Its logarithm is:
N-1 4
fpay(j) =~ 3 logl2a + s — 7 + K7 (113)
k=0

where A" is a constant independent of j. One can remark that the j-dependent term of
€pay(j) 1s proportional to the j-dependent term of €3, 4p(j) (cf. Eq. 109). The maximization
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Figure 23: First line: scenes with additive white uniform noise (low levels of noise). Second
line: result of the application of the NLJTC of Eq. 110 to the corresponding scene. Third
line: result of the application of the MAP optimal processor of Eq. 109.

NB: the graphs of second and third lines are plots of the maximum of each line of the output
plane obtained with the corresponding algorithm.



Figure 24: First line: scenes with additive white uniform noise (higher levels of noise).
Second line: result of the application of the NLJTC of Eq. 110 to the corresponding scerne.
Third line: result of the application of the MAP optimal processor of Eq. 109.

NB: the graphs of second and third lines are plots of the maximum of each line of the outpnut
plane obtained with the corresponding algorithm.



of €gay(y) with respect to j is thus equivalent to the maximization of ¢y 4p(j). In other
terms, for the exponential prior, the optimal Bayesian solution is equivalent to the MAP
approach. Of course, this is also true for the first order developments, and thus the NLJTC
of Eq. 110 is also a good approximation of the Bayesian solution. The NLJTC is thus close
to the optimal decision theoretical solution for an exponential prior, whatever the derivation
technique that is used.

9.5 Conclusion

In this section, we have analyzed statistical approaches adapted to practical target detection
and location tasks when the psd of a Gaussian additive noise is unknown a priori. In that
case, the psd can be considered as a nuisance parameter. We have discussed the ML, the
MAP and the Bayesian solutions to that problem. It has clearly appeared that the MAP
and the Bayesian solutions can lead to regularized versions of the ML solution.

Moreover, we have determined the precise prior pdf of the spectral density which leads to
the optimal nonlinear JTC of [30] and we have shown that this approximation is a particular
case of the nonlinear JTC introduced in [30]. More precisely, with the heuristic approach,
there were two independent parameters while with the statistical decision theory approach
there is only one free parameter. Using numerical simulations, we have shown that the
approximation by the nonlinear JTC is quite accurate.

10 Conclusion of part 2

In this part, we have analyzed the statistical decision theory in the context of optical corre-
lation applied to object location. We have first presented the general theory, with the ML
and the MAP approaches. We have also discussed the different way of handling nuisance
parameters, i.e. the ML, the MAP and the Bayesian methods. We have then illustrated
these different approaches with recent results obtained for cbject location. These results
show that the statistical decision theory approach is very efficient and enables to solve prob-
lems that could not be solved by usual heuristic approaches. The main reason for this fact is
that with decision theoretical approaches, the starting point is the image model itself, which
represents — as accurately as possible — the characterisitcs of real scenes.

As a further application of the decision theoretical techniques, we have studied the case
of a scene corrupted by a Gaussian additive noise with unknow psd. We have determined
the optimal processors in the ML, MAP and Bayesian approaches. We have demonstrated
that the nonlinear joint-transform correlation, which is frequently used in optical correlators,
can be considered as an approximation of these optimal processors. This result constitutes a
theoretical support in the context of statistical detection theory for the use of nonlinear joint
transform correlators. In particular, its practical consequence is to accurately specify the
domain of applications for which one can expect that nonlinear joint transform correlators
will provide better performance than linear Vander Lugt correlators.

In this part, we have illustrated the efficiency and the versatility of the statistical decision
theoretical approach for object location applications. In the context of optical correlation,
1t is important to notice that all the optimal algorithms presented in this paper are mainly
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bas;ed on correlations. Some of them consist of nonlinear preprocessings of the input scene
followed by correlations. Others are based on nonlinearities in the Fourier plane (NLJTC).

Their computational complexity is thus equivalent to that of linear tilters. IL is important

to notice that this result was not postulated ¢ prior:, as in the heuristic approaches, bug
obtained a posteriori through optimal decision theoretical filter design techniques.
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Lexique
ACPE : average CPE,

CPE : Correlation Plane Energy,
MACE : minimum average correlation energy,

MAP : Maximum a Posteriori,

ML : maximum likelihood,

MVSDF : minimum variance SDF,

MSE : mean square error,

NLJTC : nonlinear joint transform correlation,
OT : optimal trade-off,

OTSDF : optimal trade-off SDF,

PCE : Peak to Correlation Energy,

pdf : probability density function,

POF : Phase-Only-Filters,

psd : power spectrum density,
SDF : synthetic discriminant function,

SNR : signal to noise ratio.

A Appendix

The criterion to optimize is

T2
SNR - ——';;}'l (A1)
In the Fourier domain, one obtains:
Fora 12
snp - | Zelinl (A2)
Zk hISkhk

Let us introduce:

G = Vékilk (A3)



and:

- ‘]-'
fi = — (A4)
Ve
one thus has: -
snR = [Zx0ihil (A5)
>k Gk gk

The Cauchy Scwartz inequality let us know that:
1gTE1? < gl (A6)
Furhtermore, one knows that there is an equality if there exist a scalar number A such as:
g = Af (AT)

So the ratio defined by the SNR is optimized if

e = My (A8)
which leads to: .
~ ’rk

o g (A9)

The multiplicative constant is often choosen equal to 1 since it does not modify the SNR.

B Appendix

Let rf with ¢ = 1,..., P denote the P reference images of dimension N. SDF filters are
defined in order to obtain some specified values at the center of the correlation function for
the patterns belonging to the training set.

The mathematical problem of optimal SDF filter for quadratic criteria is to optimaize a
quadratic function of the form:

hfAh (B1)
with the following constraints:

-~

bl # = d, Ve=1,.. P (B2)

We consider positive circulant Toeplitz matrices A, i.e. matrices which are diagonal in the
Fourier domain with positive values. The optimization problem is thus to minimize:

Z fl;Ak’k;lk (83)
k

with the constraints:

(B4)
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Let us introduce the matrix £ such that its column numbet ¢ is the vector ©¢. In other
. RO N
words: R = [¢', %, ... F"]
As we have done in appendix A, let us introduce:

Gk = hy, y/ Agx (B5)

¢

4 Tk

Iy = —= (B6)
v Akk

We also define the matrix X such that its column numbet ¢ is the vector %¢ and the vector
d with components d,. [t is easy to verify that:

K= AR (B7)

and:

and: o
g = AY?h (B8)

where A'/? and A~'/? are the diagonal matrices with elements:

(AY)) ke =  Axk (B9)
(A71/2)k‘k = 1/\/z‘ik‘k (BIO)

The optimization problem is thus to find the solution of:
Xfg=d (B11)

which mininizes ||g|| i.e. the norm of §.
Let us write:

g=Xa+p (B12)

where a i1s a parameter of dimension P and p is a vector of dimension N and which is
orthogonal to the P vectors #§. With Eq.B11 one obtains:

XTXa=d (B13)

and thus: L
a=[XT%]1d (B14)

where [XTX]_l is the pseudo inverse of XTX (which means that only the non null eigenvalues
of the symetrical matrix X TX are inverterd). We thus obtain:

Xa=X[XT%1a (B15)

It is thus clear that the orthogonal vector p has on influence on the constraints and the
vector which minimizes the norm of g is:

g=X[XTx14d (B16)

which leads to: . .
g=A"RRTA R (B17)



C Appendix

In this appendix, we demonstrate that the processor proposed in Ref. [34] is optimal in the
ML sense even if the target is noisy. Let us first briefly review the derivation of this processor
which is performed in Ref. [34]. The background pixels values b; are considered as random
gaussain variables, so that the pixel values in the background of the noisy scene §° are
distributed with a probability density function P (56) where t; = b; + n,;. The loglikelihood
corresponding to the model (after having estimated 3 in the ML sense) is thus:

{slr,w, 6} = L [Zm 5 82— %} + log P ( ) (C1)
2

When the variance o2 of the additive noise tends to 0, the second term of this equation
becomes negligible with respect to the first one. The authors conclude that the first term
{which is equivalent to Eq. 67) is the optimal location processor when the variance of the
additive noise is zero. This result is satisfying for the intuition since when there is no additive
noise, it can be shown that this processor exactly reaches its minimum value when § is the
true position of the target.

However, this processor is optimal in an other type of situation. Indeed, let us now
assume that the pixel values of the background b; are unknown parameters, that is, nuisance
parameters. In that case, the term log P (é‘s) in the likelihood must be replaced with

log Py (é‘s) 202 Yi{1l —w,_s) (s; — b;)* The expression of the likelihood thus becomes:

1 Z Ti— 6 53
14 b6 = —— ig soEATT
[s|r, w ] 207 lZw -5 S Ty
1
By Z(l — wis) (si — b)) (C2)
It 1s then possible to estimate the b; in the ML sense:
%:O e ML =g (C3)

After injecting this estimate into the expression of the likelihood, on obtains:

f[s|r,w, b, 6] = c1r2 Zwl P L (C4)

r,,,2

2

which is the processor introduced in Ref. [34]. This processor is thus optimal in the ML
sense whatever the power of the noise on the target, when we have no a priori knowledge
about the statistical distribution of the background’s pixel values.

D Appendix

In this appendix, we determine the MAP processor for a uniform prior on T (cf. Section 9.3
and Figure 22).
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Let us recall the expression of the log-posterior density:

1 1 — A
i, s) = 5 > logly — 2 > F—R + log Pr(I') (D1)
k k Lk

In order to maximize this expression with respect to [y, one first computes the ML estimate
(without taking the term log Pp{(T") into account). According to Eq. 94, its expression is:

ot = & (D2)

Then two cases may appear:
Atz a = 7 =4 (D3)
Al <a = TYAP —4 (D4)

Let us define the following two sets of integer values:

D = {kelo,N-1]] A} >a) (D5)
D = {kelo,N-1]] Al <ad} (D6)
After injecting the estimates of [}4¥ into the posterior density, one obtains:
1 o1 1 — A
f?(j|I‘MAP,s):—§ S logAf— o Y(loga—1)~- 3 —E4 K (D7)
keD keD 2 keb

where K is independent of j. Let us now perform on ¢ (jjI‘MAP,s) the same first order
development as in Section 9.2. One obtains:

1 Ui 1
S MAP _ k
de (FITMAP ) = S ,CEZ;)I)I_E l;longug kz:(loga—l)
ep
1 Dy 1 U}
e PR el ¢ (D8)
2 keD a 2 keD ¢

This expression is quite involved since D and D depend on j itself. In order to obtain a
more tractable equation, one has to do a further approximation, which is consistent with the
hypothesis of validity of the first order development: Let us suppose that Dy >> U/ so that
Al ~ D,. We can then replace the set D and D with:

D = {ke[0,N-1]| Dy >a} (D9)
D' = {ke[0,N—-1]! D, <a} (D10)

The advantage of this operation is that D’ and D’ do not depend on j, so that the expression
of d¢ (j|1"MAP, s) becomes:

] j
dé’ (jlrf‘“f’,s) =5 3 D—' +% > i + A’ (D11)
k. =



where K is a constant which do not depend on j. Consequently, following the same reasoning

as in Section 9.2, maximizing d¢' (j|I’MAP, s) with respect to j is equivalent to maximizing
the inverse Fourier transform of:

- k(i)
Fp= ——
¥ max [Dy, a} (D12)
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