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FEBRUARY 1998,

Pierre Chavel. Laboratoire Charles Fabry de ['Institut d"Optique, CNRS
BP147. 91403 Orsay, France

Lecture outline

Part I - The paraxial model of diffractive optics

o & & 0 »

Some motivations for diffractive optics.
Transmission of a plane parallel plate, a lens, a prism : validity of the concept.
Diffraction gratings : thin and thick, reflection and transmission, surface and volume :

orders : the Floguet theorem ; the two versions of the grating law ; diffraction efficiency in
the scalar model.

Gratings fabricated by resist masking.

Zone plates, applications, difference with Fresnel lenses.
Application : diffractive achromats.

The concept of diffraction orders revisited.

How many zones does it take for a component to be « diffractive? »

Part I1 - Diffractive optics in the resonant regime

Diffraction efficiency and field calculations : coupled waves, modal theories, and surface
coordinate transform method.

Applications : diffraction efficiency of multiple masks gratings : polarising beam splitters.

Part III - Diffractive optics below the resonant regime

The concept of effective index. Asymptotic limit.

Application to reflection control, photonic bandgap structures.
Polarisation properties.

Effective index media for wavefront controt.



Lecture documents

1) Exercise set :

El - diffraction efficiency of thin gratings in the paraxial regime.

E2 : about prisms and blazed gratings (paraxial case).

E3 : diffraction gratings fabricated by resist masking (paraxial case).

E4 : achromatic doublets (paraxial case).

E5 : zone plates (paraxial case).

E6 : Fiogquet's theorem (TE case).

E7 : the Kogelnik coupled wave model for thick transmission holograms (TE case. non slanted
fringes)

ER : effectiveindicesin the « quasi static » linut.

2) The MIT reports on diffractive optics applied to hybrid optical systems :

G.J. Swanson, MIT Lincoln Laboratory Technical Report 854, [989: « Binary optics
technology : the theory and design of multi-level diffractive optical elements. »

G.J. Swanson, MIT Lincoln Laboratory Techmical Report 914, 1991 : « Binary optics
technology : theoretical limits on the diffraction efficiency of multilevel diffractive optical
elements. »

3) Some basic articles on the rigorous calculation of diffraction by thick

gratings :

N. Chateau and J.P. Hugonin, J. Opt. Soc. Am. A11(1994) 1321-1331, « Algorithm for the
rigorous coupled wave analysis of grating diffraction. »

F. Montiel and M. Neviére, J. Opt. Soc. Am. A1l (1994) 3241-3250. « Differential theory of
gratings : extension to deep gratings of arbitrary profile and permittivity through the R-
matrix propagation algorithm. »

L. Li, J. Opt. Soc. Am. Al13 (1996} 1024-1035. « Formulation and comparison of two

recursive matrix algorithms for modeling layered diffraction gratings. »

4) Some basic articles on the rigorous calculation of diffraction by gratings

with discontinuities :

Ph. Lalanne and G.M. Morris, J. Opt. Soc. Am. Al3 (1996) 779-784, « Highly improved
convergence of the coupled-wave method for TM polarization. »

L. Li. J. Opt. Soc. Am. A13 (1996) 1870-1876, « Use of Fourier series in the analysis of
discontinuous periodic structures. »

Additional reading : some classical references on grating diffraction : (those
marked ¥ are available from the lecturer at Trieste)

- two reviews that are still useful :

R. Petit, ed. Electromagnetic Theory of Gratings. Springer Verlag, Berling, 1980.

T.K. Gaylord and M.G. Moharam, Proc. [EEE 73 (1985) 894-937, « Analysis and
applications of optical diffraction by gratings. » Easier to find in an Engineering library
than in a physics library.

- the C method (coordinate transformation for surface profile gratings) :
J. Chandezon. M.T. Dupuis, G. Cornet and D. Maystre, J. Opt. Soc. Am. 72 (1982) 839-846.
« Multicoated gratings : a differential formalism applicable in the entire optical region. »

- a basic reference on the coupled wave methods :
M.G. Moharam and T.K. Gaylord. J. Opt. Soc. Am. 71 (1981) 811-818. « Rigorous
coupled-wave analysis of planar-grating diffraction. »

* a short course on hybrid diffractive optics in French :



P. Chavel. « L optique diffractive au service de la correction des aberrations » in Optique
Instrumentale, P. Bouchareine. editor. collection de la Société Frangaise d'Optique.
Editions de Physique. les Ulis. 1997, pp 249-259.

* one more modern article on diffraction by thick gratings :

M.G. Moharam. D.A. Pommet. E.B. Grann and T.K. Gaylord. J. Opt. Soc. Am. Al2
(1995) 1075 1086. « Stable implementation of the rigorous coupled-wave analysis for
surface-releif gratings : enhanced transmittance matrix approach. »

* one more modem article on gratings with discontinuities :
G. Granet and B. Guizal. J. Opt. Soc. Am. A13 (1996) 1019-1023. « Efficient implementation

ot the coupied-wave method for metallic gratings in TM polarization. »
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ABSTRACT

Alulti-level diffractive phase profiles have the potential to significantly improve
the performance of many conventionat lens systems. The theory. design, and fabri-
cation of these diffractive profiles are described in derail. Basic examples illustrate
the potential usefulness. as well as the limitations. of these elements.
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1. INTRODUCTION

The direction of propagation of a light ray can be changed by three basic means: reflection,
refraction. and diffraction. Three simple. vet useful. equations that describe these phenomena are
the law of reflection. Snell's law. and the grating equation. These three fundamental equations are
the foundation for the description of redirecting light rays.

Virtually all optical svstems in existence relv on only reflection and refraction to achieve the
desired optical transformation. Lens design. based on reflective and refractive elements. is a well-
established and refined process. Until recently. diffractive elements have been neglected as viable
components of optical systems.

One reason for the lack of interest in using diffractive elements in a lens design is that the pro-
cess of difiraction does not simply redirect a light ray. Diffraction. unlike reflection and refraction.
splits a light ray into many rays — each of which is redirected at a different angle. The perrentage
of the incident light redirected by the desired angie is referred to as the diffraction efficiency. The
diffraction efficiency of a difiractive element is determined by the element *s surface profile. If the
light that is not redirected by the desired angle is substantial. the result will be an intolerable
amount of scatier in the image or output plane of the optical system.

Fortunately. a surface profile exists {in theory) that achieves 100-percent diffraction efficiency at
a specified wavelength. The theoretical diffraction efficiency of this surface profile is also relatively
insensitive to a change in waveiength. This profile could therefore be used in optical systems
operating over finite wavelength bands. Section 2 of this report discusses a theory of this highly
efficient diffractive profile. The diffraction efficiency of the simplest examptle of a diffractive element.
a grating. is derived. The section concludes with the extension of the results to diffractive elements
having arbitrary phase profiles.

The theoretical existence of a surface profile having high diffraction efficiency has no practical
consequences in the design of optical systems unless this profile can be easily determined and
readilv fabricated. The diffractive surface profile described in Section 2 is not easily fabricated.
It is possible. however. to readilv fabricate diffractive phase profiles that approximate the ideal
diffractive profile. The ideal profile can be approximated in a discrete fashion. similar to the digitai
representation of an analog function. This discrete representation is called a multi-level profile and
is theoretically analyzed in Section 3.

If diffractive surfaces are to become an accepted alternative to reflective and refractive surfaces.
a well-defined process of actually fabricating the diffractive surface is needed. Section 4 describes a
fabrication process that starts with a mathematical phase description of a diffractive phase profile
and results in a fab-icated multi-level diffractive surface. The fabrication process is best described in
two different steps. The first step. described in detail. is to take the mathematical phase expression
and generate from it a set of masks that contains the phase profile information. The second step is
to transfer the phase profile information from the masks into the surface of the element specified
by the lens design. This particular step is explained in a brief fashion, since the details of this
procedure can be found in another report currently in preparation.



A multi-level diffractive phase profile is an additional option that should be seriously considered
by lens designers. These profiles are not the solution to all problems: vet, in many instances, they
can be used to improve on a design thar consists solely of reflective and refractive elements. Section 5
describes some basic examples of cases where a diffractive phase profile can improve on the per-
formance of a completely refractive design. The limitations of these diffractive phase profiles are
quantified in order to give the lens designe: a sense of the realm of applicability of diffractive
profiles.

A lens designer relies heavilv on the capabilities of a lens design program in arriving at a
suitable solution to a particular problem. 1If a diffractive phase profile is to be considered in a
design. the lens design program must have the capability to insert and optimize these diffractive
profiles. Widely distributed lens design programs such as CODE V and ACCOS have the ability
to insert diffractive surfaces into lens systems. Tuese programs also have the capability to optimize
the phase profiles of the diffractive surfaces in order 1o attain the best possible performance.

Section 6 describex in detail the process of inserting a diffractive surface in a lens design and
the optimization of the diffractive element’s phase profile. The format and terminology of the lens
design program. CODE V. were chosen as the basis for the description of the procedure. CODE V
was chosen because it is not only the most widely available program with the required capability.
but also it is the program with which we are most familiar. The reader not familiar with CODE V
can gain some insight into the process and peculiarities of designing 1 lens that contains diffractive
surfaces.



2. THEORY

2.1 DIFFRACTION GRATING

The simplest example of a diffractive optical element is a linear grating. A variety of different
tvpes of grat!1gs can be categorized based on the way by which the grating modulates the incident
light field. “mplitude gratings. for example. modulate the incident light field by transmitting a
certain percentage of the incident light and either absorbing or reflecting the rest. Phase gratings.
on the other hand. transmit all of the incident light. The modulation is achieved by imparting
1o the incident light field a periodic phase delay. This periodic phase delay can be accomplished.
as in a volume grating. by periodically modulating the reiractive index of a material: or it can be
accomplished. as in a surface relief grating. by periodically changing the physical tiickness of a
material.

Phase gratings have the advantage over amplitude gratings in that they can be made to diffract
100 percent of the incident light {of a given wavelength) into one diffraction order. This is a
aesirable. if not necessarv. condition if a difiractive element is to be used in an optical system.
Surface relief gratings have the advantage over volume gratings in that ihe difiraction efficiency
falloff as a function of wavelength is minimized. This is a requirement if the element is to be
used in an optical system designed to operate over a finite wavelength band. Furthermore, surface
relief gratings can be fabricated in a mass-production environment similar to the integrated circuit
fabrication process. For these reasons. we have concluded that surface relief phase gratings have
the most potential for finding their way into commercial and military optical systems. The rest of
this report will focus only on surface relief structures.

A surface telief phase grating is shown in Figure 2-1. The surface relief pattern. familiar to
most pecple. is that of a conventional blazed grating. In order to analyze this structure, we will
assume that the grating period T is large enough compared with the wavelength of the incident
light so that the scalar approximation to Maxwell's equations can he used. The scalar theory
is. in general. accurate when the grating period is greater than five wavelengths. The possible
applications of diffractive struciures. discussed later in this report, fall well within the regime of
validity of the scalar approximation.

In the scalar approximation. the transmittance of the surface relief grating in Figure 2-1 can

be described by

t(x)= 3 b(z - mT)» rcct(%)exp(i?wﬁ:c) (2.1}
m=-oc
where 8 = (n — 1)d/AT and * represents a convolution.

For an incident plane wave tra\'ehing in the z-direction, the far-field amplitude distribution is
given by the Fourier transform F(f} of the grating transmittance function t(z)
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Figure 2-1. Surface relief phase grating.

Fifr= % é(f—?)im—‘_f%%‘%—_% (2.2)

where [ = sin(B)/A. It is apparent from Equation {2.2) that the ampiitude of the m* diffraction

pia (’FT(@‘M/T“

order is given by

_ sin(mT(3 - F)) (2.3)

Qm = . -
m T(52 . m™m
TPF) 1 TT (¢ 7%)
The diffraction cfficiency of the m®™ order is the absolute value of the amplitude of the m*" order
squared
- 2
sin(zT(f — F))
= LIS P4 24
N l wT(p - %) (2.4)

The diffraction order of interest. in general, is the first diffraction order. Setting m = 1 in Equa-
tion (2.4), the diffraction efficiency of the first order is given by

_ Isin(=(8T — 1))7°
n | =(BT -1) | 23)

12493410



This equation predicts that. when B = 1/7T, the diffraction efficiency of the first order will be
100 percent. Therefore. a properly constructed surface reliel phase grating can diffract all of the
incident light of a given wavelength into the first diffraction order.

Equation (2.5} also predicts that the first-order diffraction efficiency is both depth and wave-
length dependent. A depth error in the fabrication process will result in a lower diffraction efficiency.
Likewise. a change in wavelength will result in a diffraction efficiency decrease.

The depth dependence of the diffraction efficiency can be modeled by assuming a depth error
of ed. The total grating depth is then

(2.6)

d=(1-+(\l”_“-

Substituting this value of d in Equation {2.5) resulis in a first- order diffraction efficiency given by

[sinfzel®”
S (2.7)

m=

[

e

This equation predicts that a =5-percent depth error results in a diffraction efSciency fallofl of less
than 1 percent. In the majority of applications. this can be considered negligible. A depth error
of 23 percent corresponds 1o a physical depth error of approximately +500 Angstroms for visible
light. The etching technology used to fabricate these structures can be controlled to achieve depth
tolerances of better than =300 Angstroms.

The wavelength dependence of these elements becomes a concern when the element is to be used
in an optical system operating over a finite wavelength band. There are, in fact, two wavelength-
dependem eflects unique to these structures. The first well-known effect, apparent from Equa-
tion (2.2) is that the first-order diffraction angle is wavelength dependent. Longer wavelengths are
diffracted over larger angles than shorter wavelengths. Thisis a chromatic dispersion effect that

will be discussed later in this report. The second eflect is the wavelength dependence of the first-
order diffraction efficiency.

Returning to Equation {2.5) and assuming that the diffraction efficiency is maximized for a
wavelength Ag by setting d = Ao/(n — 1) result in

in(={2e -1 :
m = [5__—»"‘( G ”] . (2.8)

T(%ﬁ - 1)

This equation expresses the first-order diffraction efficiency at wavelength X of an element optimized
for wavelength Ag. It is apparent from Figure 2.2. a plot of the diffraction efficiency as a function of
wavelength. that the diffraction efficiency falloff is small for wavelengths close to Ap and is significant
for large wavelength deviations.

For optical systems designed to operate in finite spectral bands, the integrated diffraction..
efficiency over the spectral band is the parameter of interest. The average diffraction efficiency over
a finite bandwidth Ag = A is given by

wr

YT

[t bt
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Figure 2-2.  Plot of the diffraction efficiency as a function of wavelength.

1
= — A 2.9
# = a3 L, mid ‘ (29)
which is approximately expressed by
7AA 2
B |1 — . 2.10
m [1 (SAU )] ( )

Table 2-1 Jists the average difiraction efficiency over various fractional bandwidths. The average
diffraction efficiency remains above 95 percent for fractional bandwidths of up to 40 percent. but
falls off rapidly for larger bandwidths. This effect is the most limiting constraint in using a diffractive
element in a finite bandwid:h system. The decrease in efficiency as a function of bandwidth has to
be considered in a system design. The residual light that is not diffracted into the desired order 1s
diffracted into different orders. This light manifests itself as a type of scatter at the image plane of
an optical system. The amount of tolerable scatter is particular to the optical system’s performance
requirements. The lens designer has to establish the advantage or disadvantage of introducing a
diffractive element into a design based on the performance goals of the optical system.

The scatter as a function of bandwidth introduced by a diffractive element is unlike the more
familiar random scatter caused by inadequate surface polishing or surface defects. The scatter
caused by the diffractive surface is deterministic. This scatter, or residual light, propagates in
different diffraction orders. The amount of light at any wavelength, and in any given order, can
be easily calculated from Equation (2.4). Figure 2-3 shows the amount of light in the various
diffraction orders, at various wavelengths, for an element designed to have a 100-percent efficient

+24921-11




TABLE 2-1.

Average Diffraction Efficiency f-: Various Fractional Bandwidths

Fractional Bandwidth Efficiency
(AX!Ag) T
0.00 1.000
0.10 0.997
0.20 0.989
0.30 0.975
0.40 0.956
0.50 0.931
: 0.60 0.901

first order at Ag. As the wavelength increases from Ap. the residual light appears most strongly in
the zero order. For decreasing wavelengths. the light appears in the second order. This residual
light can be traced through an optical system to see how it is distributed at the image plane.

The blazed phase grating analvzed in this section was described by the transmittance function
given in Equation (2.1). An equivalent way of expressing the transmittance function of a blazed
grating is

t(r) = fii‘:ion:',., (2.11)

where joprla represents a linear function in x. module a, limited to values between ta/2.

The transmittance of a prism (the refractive counterpart of 3 grating) can be expressed as
Hx) = e 007, ‘ (2.12)

The prism and grating phase functions are shown in Figure 2-4.

2.2 ARBITRARY PHASE PROFILE

In the previous section, the theory of a blazed phase grating having 100-percent diffraction
efficiency in the first order was given. The effects of a change in depth, or a change in wavelength.
were analyzed. However, a diffraction grating is of extremely limited usefulness in optical systems
which require elements that focus or reshape the wavefront by desired amounts. In conventional
optical systems. this is done refractively or reflectively by employing lenses and mirrors. What is
required is the diffractive counterpart to these conventional optical elements.
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Figure 2-3.  Plot of diffraction efficiency as a function of diffraction order for various
wavelengths.
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Consider a refractive element that can be described by a transmittance function

t (r) = e'2rels) (2.13)

where o(r) is an arbitrary function of x. Can a general analogy, like the grating-prism analogy
of the previous section. be made? What is the behavior of the diffractive counterpart with a
transmittance function of

tatz) = €277 (2.14)

where o/(x) = jo(1).o” The refractive and diffractive phase functions for an arbitrary phase are
plotted in Figure 2-5.

In order to understand the diffractive transmittance function of Equation (2.14), a nonlinear
limiter analvsis is used. The ciffractive phase o/(r) is plotted as a function of the refractive phase
of{z) in Figure 2-6. The diffractive phase. for generality, bas been limited to values between ta/2.
It is apparent from the figure that o/(r) is periodic in o(x) with a period equal to one. It follows
that exp 2ro/(r)) is also periodic in o{x) and can therefore be written as a generalized Fourier
series

>
ei'.’?ror(.rl — Z cmfﬂrmo{.r) (215)

m= -2
where the coefficients c., are given by

sin{w{a — m))

P (2.16)

1
T g -
Con :/ E:-rr-.'o m]o(zldo(r) —

1
2

Therefore. if a = 1. ¢; is egual to 1. and all the other &, coefficients are zero. The exiting
wavefront from this diffractive structure is identical to its refractive counterpart. It is interesting
to note that the ¢, coefficients are identical to the a,, coefficients of Equation (2.3} by setting
a = (n- 1}/ .

The wavelength and depth dependence of diffraction efficiency for any arbitrary phase diffrac-
tive structure is identical to the linear phase grating. The arbitrary diffractive phase element has
orders similar to the grating. These orders, instead of being plane waves, take on more complicated
wavefront profiles represented on the right-hand side of Equation (2.15).

10
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3. MULTI-LEVEL STRUCTURES

In Section 2 we showed that an arbitrary wavefront can be produced from a diffractive structure
with 100-percent diffraction efficiency at the design wavelength. Unfortunately, this diffractive
structure has a surface relief depth which varies continuously over every 2% phase interval. This
phase profile, with a continuous depth, is not easily fabricated with any existing technology. A
compromise has to be made between achievable diffraction efficiency and ease of fabrication.

A compromise that results in relatively high diffraction efficiency and ease of fabrication is a
multi-level phase structure. Figure 3-1 shows a continuous phase grating profile compared with
phase gratings with 2. 4. and 8 discrete phase levels. It is apparent from the figure that the
larger the number of discrete phase levels. the better the approximation to the continuous phase
profile. These multi-level phase profiles can be fabricated using standard semiconductor fabrication
techniques. The fabrication process of multi-level structures will be described later in this report.
The first question to be answered is the extent of the sacrifice in diffraction efficiency as a function

of the number of discrete phase levels.

(a)

(b)

(c)

8 PHASE LEVELS

Figure 3-1. A continuous phase grating compared with 2, 4, and 8 discrete phase
levels.
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The diffraction efficiency of a multi-leve! structure can be simply derived by considering the
multi-level structure as being equal to the desired continuous profile minus an error phase profile.
The diffraction efficiency of the multi-level structure is then the efficiency of the desired continuous
phase profile multiplied by the zero-order efficiency of the error phase structure. Figure 3-2 illus-
trates this concept for a 4-level structure. If the number of discrete phase levels of the multi-level
structure is . then the error phase structure to be subtracted has a depth of d/N (where d is the de-
sired continuous phase depth} and a periodicity of 1/N times that «i che ideal structure. The result-
ing diffraction efliciency of the multi-level structure is then easily obtained by using Eqyuation (2.4)
and is given by

2

(3.1}

N sin{ (25 — m))]g [sin(r(‘ﬁ,{.\l')d))]
s (n-1id (nond)
Y

7| - m) w{—x

This equation can be used to determine the diffraction efficiency of any multi-level profile at any
wavelength and for any diffraction order.

4444444444424 44444444

Figure 3-2. A multi-level phase structure can be analyzed by representing it as the
difference of two continuous phase profiles. .

1249314

As an example of how the number of phase levels affects the diffraction efficiency, consider a
continuous phase structure designed to achieve 100-percent diffraction efficiency in the first order
at the design wavelength. Equation (3.1) then reduces to the expression

o™ = [5_"‘_(1’@]2 (3.2)

m/N

14
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The continuous phase profile would achieve 100-percent diffraction efficiency, whereas a multi-level
structure with N levels is reduced to that given by Equation (3.2). Table 3-1 lists the diffraction
efficiency of a multi-level structure for various values of the number of phase levels. Two things to
notice in the table are that for 16 phase levels the diffraction efficiency at the design wavelength is
99 percent. and that values of diffraction efficiency are highlighted for multi-level structures with
N equal to a power of 2. The reason multi-level structures with a number of levels equal to a power
of 2 are highlighted will become apparent in the next section.

TABLE 3-1.

Multi-level Diffraction Efficiency for Various Numbers of PFase Levels

! Number of Levels First-Order Eificiency
N T N
2 041
3 0.68
4 0.81
5 | 0.87
6 i 0.91
8 i 0.95
12 : 0.98
16 i 0.99

A 16-phase level structure achieving 99-percent diffraction efficiency is an element that could
have advantageous implications in the design of many optical systems. The residual 1 percent of
the light is diffracted into higher orders and manifests itself as scatter. In many optical systems.
this is a tolerable amount of scatter. The fabrication of a 16-phase level structure, described in
the following section. is relatively efficient due to the fact that only four processing iterations are
required to produce the element.
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4. MULTI-LEVEL FABRICATION

The fabrication of a multi-level diffractive element requires the same technology used in the
production of integrated circuits. This fabrication process will be outlined in order to describe
in a general fashion the steps involved in producing z multi-level diffractive element. A separate
report describing in detail all the equipment and processing steps used in fabrication of multi-level
elements i3 in preparation.

The first step involved in fabricating a multi-level element is to mathematically describe the
idea) diffractive phase profile that is to be approximated in a multi-level fashion. The simplest case.
for example. is a grating of period T. designed to operate at a wavelength Ag. The phase function
for this grating can be mathematically described by

2

4(1‘) = A—Za: (4.1)

where e = Ay 'T.

A phase function having more complexity than a simple grating can be mathematically de-
scribed in a general way by expanding it in a power series

27
olr.y) = ™ E Gnmx "y, (4.2)
’ o n.m

This equation represents a general phase function in the spatial coordinates (x,v). The number
of terms retained in the power series determines how wel! of an approximation the series is to the
actual phase desired. The values of the @, coefficients are optimized to make the series expansion
hest approximate the desired phase. For example. the grating phase of Equation {4.1) is represented
by Equation (4.2) where all the a,. ccefficients are zero. except for ayg which is equal to Ap/T.

The majority of cases in optical design require phase functions that are circularly symmetric:
these phase functions can also be described by a power series expansion

ofr)= %\% Zaprp (43)
P

where r is the radial coordinate. The optical axis of the lens system is at the radial coordinate r = 0.
7The values of the a, coefficients determine the functional form of the radially dependent phase.

The next step in the fabrication process. once the phase function is mathematically determined.
is to create a set of lithographic masks which are produced by standard pattern generators used in
the integrated circuit industry. Pattern generators, either optical or electron beam, expose a thin
laver of photoresist which resides on a chrome-covered quartz substrate. The exposed photoresist
is then washed off the chrome-coated substrate, leaving the pattern in the remaining unaxposed
photoresist. The pattern is then transferred to the chrome by etching away the chrome that is
not covered by the remaining photoresist. Once the chrome has been patterned, the remaining
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photoresist is washed away, resulting in a finished lithographic mask. The fina) product is a binary
amplitude mask that transmits light where the pattern was exposed, and reflects any incident light
where there was no exposure.

4.1 GRATING FABRICATION

To illustrate the purpose of these lithographic masks in the fabrication of a multi-level element,
consider the simplest case of a grating. The final grating that is desired has the surface relief profile
shown in Figure 3-1(a). The coarsest approximation to the desired grating profle, also shown in
Figure 3-1(a). is a binary phase profile. A lithographic mask can be easily produced with a binary
amplitude grating pattern having the desired period and a 50-percent duty cycle (i.e., 50 percent
of the light is transmitted). What remains is to transfer the amplitude patteri contained on the
lithographic mask onto an optically transmissive substrate, and convert the amplitude pattern into
a surface relief patteru.

Figure 4-1 illustrates the process of fabricating a binary surface relief grating, starting with the
binary amplitude lithographic mask. A substrate of the desired material is coated with a thin layer
of photoresist. The lithographic mask is then placed in intimate contact with the substrate and
iNluminated from above with an ultraviolet exposure lamp. The photoresist is developed, washing
away the exposed resist and leaving the binary grating pattern in the remaining photoresist. This
photoresist will act as an etch stop. like in the lithographic mask process, except that now the
substrate material has to be etched instead of chrome.

The most reliable and accurate way to etch many optical substrate materials is to use reactive
ion etching. The process of reactive ion eiching anisotropically etches materials at very repeatable
rates. The desired etch depth can be obtained very accurately. The anisotropic nature of the process
assures a vertical etch, resulting in a truly binary surface relief profile. Once the substrate has been
reactively ion etched to the desired depth. the remaining photoresist is stripped away, leaving a
binary phase surface relief grating. In the case of a binary phase profile, Equation (3.2} predicts a
maximutn first-order diffiraction efficiency of 40.5 percent for an etch depth of d = XAo/2{n —1).

Imagine repeating the process described above on the same substrate, except this time using
a lithographic mask having twice the period of the first mask. Figure 4-2 illustrates this process.
The binary phase element is recoated with photoresist and exposed using the lithographic mask
#2 that has a period twice that of the first mask. After developing and washing away the exposed
photoresist, the substrate is reactive ion etched to a depth half that of the first etch [i.e, d =
Mo/4(n = 1)]. Removal of the remaining photoresist results in a 4-level approximation to the
desired profile. The 4-level phase element bas a first-order diffraction efficiency, predicted by
Equation (3.2), of 81 percent. One can imagine repeating the process a third and fourth time with
lithographic masks having periods of one-quarter and one-eighth that of the first mask, and etching
the substrate to depths of one-quarter and one-eighth the depth of the first etch. The successive
etches result in elements baving 8 and 16 phuse levels. The first-order diffraction efficiency, after
the third and fourth etches, is predicted from Equation (3.2) to be 95 and 99 percent, respectively.
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After only four processing iterations. a 16-phase level approximation to the continuous case can be
obtained. A similar iteration process to that described here is used in the fabrication of integrated
circuits. The process can be carried out in parallel, producing many elements simultaneously, in a
cost-effective manor.

The one major difference between fabricating a binary phase element and a multi-level element
is that. after the first etching step. the second and subsequent lLithographic masks have to be
accurately aligned to the existing pattern on the substrate. Alignment is accomplished using another
tool standard to the integrated circuit industry. a mask aligner. Mask aligners are commercially
available with varving degrees of sophistication. The majority of aligners can place in registry Lhe
mask and substrate to submicron tolerances. This degree of alignment accuracy allows for the
fabrication of many useful multi-level diffractive elements.

Some instances in a lens design may require or prefer the diffractive surface tc reside on a
substrate surface that is not flat. The process. as described, necessitated a flat substrate to obtain
intimate contact between the lithograghic masks and the substrate. The condition of intimate
contact can be relaxed. depending on the feature sizes of the lithographic masks. If the mask and
substrate are not in intimate contact. the ultraviolet exposure light will diffract from the mask.
blurring the pattern in the photoresist. In many instances, particularly for diffractive elements
designed for use in the infrared. the mask’s feature sizes are large enough to allow for a significant
distance between the mask and the substrate. This is a point the lens designer must be aware of

in a system design.

In summary. the fabrication of a multi-level surface relief grating requires a set of lithographic
masks and standard integrated circuit fabrication equipment. A set of M properly designed litho-
graphic masks results in a multi-level surface relief grating with 2% phase levels. The optimum

etch depth for the 3/™® mask pattern is dy = Ao aMin - 1).

4.2 ARBITRARY PHASE FABRICATION

The design of a set of lithographic masks used in the fabrication of a multi-level grating was
easy to visualize. Mask #M\I simply had a 50-percent duty cycle and a period equal to one-half that
of mask #(M - 1). The design of a set of lithographic masks used in the fabrication of multi-level
structures approximating the general phase functions described by Equations {4.2) and {4.3) is
slightly more involved.

Let us consider the case of designing a set of masks to be used in the fabrication of a circu-
larly symmetric phase function described by Equation (4.3). The coarsest approximation to this
phase profile is again a binary phase profile. The lithographic mask needed to produce this binary
phase element will have a circularly symmetric amplitude profile (i.e., a set of alternately transmit-
ting and reflecting annuli). The positions and widths of these annuli are determined from Equa-
tion (4.3). The phase at the center of the pattern is zero. By stepping out in radius, the phase ¢(r)
either increases or decreases. The magnitude of the phase will reach 7 at some value of r which is
the first radial position on the lithographic mask where an amplitude transition occurs.
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Continuing the process of stepping out in radius results in radial locations where the phase
function ¢(r} takes on values that are integer multiples of n. These are the subsequent radial
positions where amplitude transitions occur on the first lithographic mask. The process of stepping
out in radius is continued until the maximum radial value of the pattern to be written is reached.

The resulting set of radial values is sufficient information to write the lithographic mask. A
computer program called Mann 53, and written by the Binary Optics Group at Lincoln Laboratory,
is able 10 take the set of radial values and properly format the data such that they can be read by
a Mebes electron beam pattern generator. The Mann 53 program creates a data tape that can be
sent to various lithographic mask vendors for mask fabrication.

The process of designing mask #MI, where M is greater than 1, is carried out in a fashion similar
to the first mask. Again. the phase function o{r) is monitored as a function of radius. At some
radial distance. the inagnitude of the phase will reach the value n/Af. This is the radial position
where the first amplitude transition will occur on mask #M. Subsequent amplitude transition points
for mask #M will occur at radial values where the phase ic an integer multiple of x/A{. The process
of stepping out in radius is continued until the maximum radius of the pattern is reached. The
Mann 53 program is used to format these radial values and produce data tapes in a manner similar
to the case of mask #1.

The process described above is straightforward and applicable to any radially symmetric phase
profile. except for a certain subset of phase profiles where an anomaly can occur. This subset of
phase functions is one wheie the first derivative of the phase with respect tor is zero at some radial
position that corresponds to a transition point. For this subset of functions. a little more care has
10 be taken in locating the transition points. 1f the first derivative do/dr is zero at a transition
point. the guestion arises whether or not this point should correspond to a transition. The way
to determine whether a transition should or should not occur is to check the second derivative.
If d20:dr? is also zero at the radial point in question. the phase is at an inflection point and a
transition should be located there. On the other hand. if the second derivative is zero, the point
corresponds to a local maximum or minimum of the phase, and a transition should not be located
there.

Figure 4-3 illustrates an example of a phase function that contains a local maximum at a radial
position ry: this position also happens to correspond to a value of the phase tqual to 3x. Since the
second derivative is not zero at this point. a transition point should not be located there.

The procedure described above is also applicable for noncircularly symmetric phase functions
described by Equation (4.2). The basic idea is the same, yet the determination of the transition
point locations can become gquite computationally intensive. Perkin-Elmer Corp. has devised a
software package that can take an arbitrary two-dimensional phase profile and construct from it a
set of proper lithographic masks.

Once the proper set of lithographic masks is designed and constructed, the fabrication of
the multi-level diffractive phase element is identical to the fabrication process of the multi-level
phase grating described above. The first mask pattern is reactively ion etched to a # phase depth.
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Figure 4-3. Exampie of a phase function that contains a local maxiraum.

Subsequent mask patterns are aligned and etched to a phase depth of n/
determining transition point location and etch depth is summarized in
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Figure 4-4.
etch depths.

Summary of the procedure for determining transition point locations and
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5. APPLICATIONS OF MULTI-LEVEL DIFFRACTIVE PROFILES

The fabrication of multi-level diffractive phase profiles has been described in the previous
section. Here. we attempt to elucidate the potential as well as the limitations of using a diflractive
surface in the design of an optical system. Hopefully, a lens designer will be able to determine
whether or not a multi-level diffractive surface will be advantageous in any particular design.

We begin with a description of the focusing properties of a cornpletely diffractive lens (Sec-
tion 5.1). A completely diffractive lens is shown 1o suffer from severe chromatic aberration, limiting
its usefulness in any optical system that has to operate over a finite wavelength band.

In Section 5.2 we show how the chromatic dispersion of the diffractive lens can be used to one’s
advantage by combining it with a refractive lens element. The combination of a refractive lens and
a diffractive profile is shown to be a very powerful concept in the design of optical elements.

The idea of using a diffractive profile to correct for the inherent sph.erical aberration of a single
spherical lens is described in Section 5.3. For a monochromatic system, the spherical aberration
can be completely eliminated: for a finite waveband system, it can be reduced. The amount of
correction possible is shown to depend on the fractional operating bandwidth of the system.

Finallyv. in Section 5.4 we show how the diffractive pattern that corrects for spherical aberration
can be combined with the diffractive pattern that corrects for chromatic aberration. The result
of this combination is shown to be a single diffractive pattern that corrects for both spherical and
chromatic aberration,

5.1 DIFFRACTIVE LENS

The simplest example of a diffractive phase profile. other than a linear grating. is a quadratic
phase profile. In the paraxial approximation. a quadratic phase profile is a lens. A one-dimensional
diffractive lens. having a quadratic phase profile. is illustrated in Figure 5-1. The lens has a focal
length Fg for wavelength Ag. and forms an image at of an object located at zg. The transmittance
function for this lens. assuming 100-percent diffraction efficiency in the first order for wavelength
Ap. is described by

t(zg) = e~rTvEo’ (5.1)

where 1 = 1/AoFp is a constant. By performing a Fresne! diffraction calculation, it is shown that
the first-order lens equation for a diffractive leus is

— = Ay - -, (5.2)

1 1
o Zn

From this equation it is apparent that the image distance z; is strongly dependent on wavelength.
Setting v = 1/AgFyp in Equation (5.2) results in the expression

o = (5-3)




where F(A)}) = AgFp/A. This expression looks conspicuously like the first-order lens equation for
refractive Jenses. The only diflerence is that the focal length of the lens, instead of being constant,
depends inversely on the wavelength. The result of this wavelength dependence is severe chromatic

aberration.
t{xq}

U (xg) U, (x;}

Figure 5-1. IHustration of a one-dimensional diffractive Jens.

The amount of chromatic aberration in a diffractive lens can be quantified by setting the object
distance to infinity. The cutput wavefront from the diffractive lens is then described by the lens
transmittance function of Equation {5.1). An ideal wavefront, having no chromatic aberration, is
given by '

iz

Uiz)=¢e" iR (54)

The output wavefront from the diffractive lens can be rewritten as

L_1):2

Up(z) = Uilz)Ualx) = ViR o~} {5.5)

where U; is the ideal wavefront and U, is the aberration component of the wavefront. The phase
function ¢, of U,

(z) = (5o - LA (5.6)

is the chromatic phase aberration of a diffractive lens. Note that, for the wavelength A = Jp, the
phase aberration is zero. For any wavelength other than Ay, the phase aberration is nonzero.

An expression for the maximum amount of chromatic phase aberration present in a diffractive
lens of aperture diameter A, and operating over a bandwidth AAX centered at Ap, can be written as
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o A AA)
maro, = —— {5 .
BLF =) A° (5.7)

ahere F/= is the f-number of the lens. Note that the amount of chromatic aberration is propertional
1o both the fractional bandwidth and the number of wavelengths across the aperture. As an
example. consider an F/2 lens. operating over the 8 to 12-um wavelength band, and having a
75-mm aperture. The maximum phase error due to chromatic aberration of this lens is 234 waves!

This is an intolerable amount of chromatic aberration. Clearly, the usefulness of a completely
diffractive lens in an optical svstem operating over a finite wavelength band is limited.

5.2 REFRACTIVE/DIFFRACTIVE ELEMENTS

The previous analvsis made it quite apparent that completely difiractive lenses cannot be used
in finite wavelength band systems. A solution to this dilemma is to combine a refractive lens with a
diffractive lens profile. It should be pointed out that this is not a detraction from using diffractive
lens profiles in an optical system — rather. it is an attraction. A completely diffractive lens would
have to reside on an opticaliy flat substrate to retain good perfomance. The cost differential between
an optically flat refractive substrate and a refractive lens with spherical sutfaces is negligible. There
is no cost advantage in using completely diffractive lens elements. Furthermore. the smaller the
F = of a diffractive lens. the finer the features become in the diffractive profile and the more
difficult the element becomes to construct. By combining a refractive lens and a diffractive lens.
the refractive lens can do the majority of the focusing. substantially increasing the feature sizes
required in the diffractive lens profile.

The most compelling reason 1o consider refractive/diffractive elements is that the chromatic
dispersion of the difiractive surface can be used to negate the chromatic dispersion of refractive
lenses. The etching of a properly designed diffractive lens profile en a surface of a dispersive
refractive lens can result in a single-lens element that has virtually no dispersion. This concept is
very powerful. especialiy in wavelength regions where the number of available materials that have
suitable transmittance characteristics is himited.

The index of refraction of a refractive lens can be modeled in a linear approximation as
n{A) = ng — D(A — Ao) (5.8)

v-here D is the dispersion constant and Ag is the center wavéleng{h of the wavelength band. The
focal length of this dispersive refractive lens, F,. is given by

1 1 _ D{A - X))
F.(A) Fo (ne-1)F

(5.9)

where F,g is the focal length of wavelength Ag. The focal length of a diffractive lens Fy was
previously determined to be




Fa() = f:—OFdn. (5.10)

A refractive/diffractive combination of the lenses described by Equations (5.9) and (5.10) results
in a lens with a focal length F{A) given by

RS - (5.11)
F(x) ~ F(N)  Fa(d) )
Substituting Equations (5.9} and (5.10) into Equation {5.11) results in
1 A 1 D(A - A
(2~ 2) (5.12)

FO)  XoFm  Fo  (no-DFo

Now. if the ratio of the foca! length of the diffractive surface to that of the refractive lens is set to

Fg _(ng—1) .
Fro h ACll:) (3-13)
the resulting focal length of the combined refractive/diflractive element is given by
| 1 1
(5.14)

FN~ Fo  Fao

The result of Equation (5.14) is an element that has a focal length independent of wavelength.
By satisfving the condition of Equation (5.13). a refractive/diffractive lens can be made that, in a
linear approximation. has no chromatic dispersion. It is important to note that both the refractive
and diffractive components of the combination element have focal powers of the same sign. This is
unlike a corventional achromatic doublet lens made from two refractive lenses of different materials.
In a conventional refractive achromat, the two lenses must have focal powers of opposite sign. This
difference between conventional and refractive/diffractive achromats is due to the fact that the
focal length of a diffractive lens is shorter for longer wavelengths, while all refractive lenses have
focal lengths that are longer for longer wavelengths.

Consider an example of the utility of a refractive/diffractive lens in correcting for chromatic
aberration. KrFl lasers are fast becoming useful tools in microlithography and medicine. KrF]
lasers emit ultraviolet light in a 2-nm wavelength band centered at 248 nm. The only durable
material that can be polish:d into refractive lenses at this wavelength is fused silica. However,
fused silica is very wavelength dispersive at 248 nm. A conventional refractive achromatic doublet
is difficult to fabricate due to the lack of materials other than fused silica.

A refractive/diffractive achromatic can be readily fabricated. The dispersion constant of fused
silica at 248 nm is D = 6 x 10~% nm~!. Using this value of D in Equation (5.13} results in

Fao
7D = 34, (5.15)
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Therefore. if a diffractive lens is etched into the surface of a fused silica lens such that Equa-
tion (5.15) is satisfed. the resulting combination will have minimum chromatic dispersion. Fig-
ure 3-2{a) shows the phase aberration in waves across the aperture of a fused silica lens. The lens
has a l-in-diam. aperture and a 9-in focal length. Approximately 3 waves of chromatic aberration
are present at the edge of the aperture over a 2-nm bandwidth. The placement of a diffractive lens
profile. that satisfies Equation (3.13). on a surface of the fused silica lens results in the chromatic
phase error shown in Figure 5-2(b). The maximum chromatic phase error has been reduced from
3 waves of aberration to less than 0.02 wave. This is a 150-fold improvement in wavefront error!

- — — — — —  2470m
248 nm
""""""""" 249 nm

£0.10
(b)

Figure 5-2. The phase aberration (a) of a refractive fused silica lens, and (b) of the
same lens with diffractive aberration correction.
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The concept of a refractive/diffractive achronat has been experimentally verified in the visible
region of the spectrum. A l-in-diam. fused silica {quartz) lens, with a 6-in focal length, was used
to image an Air Force resolution target illwminated with a source emitting from 450 to 700 nm.
An identical lens. with the properly designed diffractive profile etched into one of its surfaces, was
also tested. The results are shown in Figure 3-3. The diffractively corrected lens is obviously far
superior in performance than the refractive fens. The figure abso shows that the refractive/diffractive
combination is far superior fur off-axis points. This can he understood by realizing that the amonnt
of lateral chromatic aberration depends on the separation of the two lens cumponents. In the case
of a refractive. diffractive achromat. the two lens components are placed as close in proximity as

posstble. thus mininzing lateral chromatic effects,
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Figure 5-3. Experimental imaging resulis of the fused silica lens, with and without
diffractive aberration correction.
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Experimental verification of chromatic aberration correction using a refractive/diffractive ele-
ment has; been shown not only in the visible portion of the spectrum, but in the far-infrared (8 to
12 pm). the mid-infrared (3 to 5 ym), and the ultraviolet {0.246 to 0.248 um) as well.

A refractive‘diffractive achromat does not completely eliminate all of the cnomatic aberra-
tion because the refractive index variation as a function of wavelength is not exactly described by
Equation {3.8) which is a linear approximation to the true dispersive properties of refractive ma-
terials. In reality. the dispersion has a small nonlinear component that cannot be compensated for
by a diffractive element. This nonlinear component is. in terms of lens design, called the secondary
spectrum. Fortunately. the secondary spectrum is small in the majority of materials.

5.3 SPHERICAL ABERRATION CORRECTION

In the previous section we showed how a properly designed diffractive lens profile could be
used to correct for the chromatic aberration of a refractive lens. Diffractive profiles can be used
to correct for the monochromatic aberrations of refractive lenses as well. Here we will discuss the
particular case of spherical aberration.

In the majority of cases. refractive lenses have spherical surfaces. A lens with spherical surfaces
inherently suffers from spherical aberration. The spherical aberration of a single refractive lens
element can be minimized by the proper choice of the radi’ of curvature of the two surfaces of the
lens. but cannot be completely eliminated.

Two conventional solutions exist to eliminate spherical aberration. One is to use multiple
lenses instead of a single lens. The number of lenses needed depends on the required performance
of the lens syvstem. This solution to the problem results in added weight, lower light throughput.
and greater system complexity. The other conventional solution to the problem is to place an
aspheric surface on the lens. This solution suffers from the fact that, in general, aspheric surfaces
are very costly 10 produce.

The approach described here is to employv 3 diffractive surface to eliminate the spherical aber-
ration of a refractive lens. For simplicity, the following analysis shows how a difiractive phase
profile can eliminate third-order spherical aberration from a lens. A diffractive surface can correct
for higher-order spherical aberration as well. Consider the wavefront. of wavelength g, exiting
from the back surface of a lens. Ideally. this wavefront would be a spherical wave converging to the
focal point F and described by the phase profile

o=-"R (5.16)

whete B = (+2 = F"')%. A second-order approximation to this ideal wavefront can be made by
expanding R in a power series, resulting i

wr? ard

_mr? . (5.17)
NF | IagF?

i3 =
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Figure 5-4. Theoretical phase error due to spherical aberration of a fused silica lens

with and without diffractive correction.
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This equation is the expression. to fourth order in r. of an ideal waveir 11, .. refractive lens
with spherical surfaces cannot produce this wavefront. The wavefront frem wov j-articular lens,
depending on the design. will vary. To simplify things. let us assume that fne wavefront exiting
the refractive lens is quadratic and given by

0, = ———=. {5.18}

The third-order spherical aberration of this lens would then be
wrl

—m- (5.19)

Og =

This third-order spherical aberration can be negated by simply etching a diffractive phase profile
into the back surface of the lens that has a phase profile of
=t

- o (5.20)

Qg

The resultant wavefront would be given Ly Equation {5.17) and suffer no third-order spherical
aberration. This refractive 'diffractive element. that has no spherical aberration at the wavelength
. behaves very much like a conventional aspheric element.

A demonstration of the concept of spherical aberration correction has been performed using a
fused silica single-element lens at the HeNe laser wavelength of 0.6328 um. The fused silica lens
was plano-convex and had a 1-in aperture and a 2-in focal length. This lens suffered from severe
spherical aberration. having a maximum phase error of close to 100 waves. as shown in Figure 5-4{a).
When placed on the lens. the properly designed difiractive surface had a theoretical phase error of
less than 0.1 wave isee Figure 5-4(b};.

The diffractively corrected refractive lens was fabricated and tested. Figures 5-5(a) and (b)
are images of the focal spot produced from the uncorrected and corrected lenses. Figure 5-3(a)
clearly shows the expected light distribution associated with spherical aberration. The diffractively
corrected focal point of Figure 3-3(b) is essentially diffraction limited. The experimentally verified
improvement is enormous. It would take three conventional spherical lenses in tandem to achieve
the same performance.

As further verification. the lenses were used to image an Air Force resolution test pattern. The
results of the imaging experiments are shown in Figure 5-6. The uncorrected lens [Figure 5-6(a)}
has a resolution as expected from theory. The diffractively corrected image {Figure 5-6{b)| has a
resolution that is essentially diffraction limited.

‘The Binaryv Optics Group at Lincoln Laboratory has also demonstrated spherical aberration
correction of lens elements at wavelengths in the far-infrared. the mid-infrared. and the ultraviolet
yegions of the spectrum.
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5.4 LIMITATIONS OF REFRACTIVE/DIFFRACTIVE ELEMENTS

In Sections 5.2 and 5.3 we showed that it is possible to diffractively correct for the primary
chromatic aberration and spherical aberration. at a specified wavelength, of a refractive lens. All
single-element refractive lenses with spherical surfaces suffer from both chromatic and spherical
aberration. The question zrises as to how well a diffractive surface can correct for both chromatic
and spherical aberrations over a finite wavelength band.

In order to get an estimate on the capability of a diffractive surface to correct for both chromatic
and spherical aberration over a finite wavelengtl. band. a model of the phase error of a refractive

lens will be assumed to be

2% 5 2
or(r) = 5 [l = A)F = Bldo - A2 cr"] : (5.21)

The first term on the right-hand side of this equation represents the primary chromatic aberration
of the lens: the next term is a representation of the secondary spectrum; and the last term represents
the spherical aberraticn of the lens. The values of the constants A, B, and C determine the amounts
of primaryv chromatic aberration. secondary spectrum. and spherical aberration present.

A diffractive profile can be added to the refractive lens that imparts a phase given by
259 ; A
- ! 2 4 5
oyglr) = — {AAr- —C(—)r|. (5.22)
TN Ao ]

The resulting wavefront. from the refractive diffractive lens. will have a residual phase error given
by

odr) = 27- B(xp ~ APrf = C(1 - %)H] {5.23)

which is the phase error of Equation (5.21) minus the phase correction of Equation (5.22). The
residual phase error of Equation (5.23) reveals. as expected, that the secondary spectrum of the
refractive lens cannot be corrected. Furthermore. the additional term in Equation (5.23) represents
the inability of a diffractive surface to completely correct for spherical aberration over a finite
wavelength band. This residual term is commonly referred to as “spherochromatism,” which is
the amount of spherical aberration present in the image as a function of wavelength. For a center
wavelength Ag. the spherochromatism term in Equation (5.23) is zero, as expected. For wavelengths
other than Ag, the spherochromatism term is nonzero.

A diffractive surface is not able to completely correct for spherical aberration over a finite
wavelength band. The amount of correction obtainable, as described in Equation (5.23), is propor-
tional to the fractional bandwidth over which the lens has to operate. In many cases, the amount
of correction is sufficient to justify the use of a diffractive surface.

As an example. consider an F /2 single-element silicon iens with a 100-mm focal length and an
operating bandwidth from 3 to 5 pm. This bandwidth representsa 50-percent fractional bandwidth
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Figure 57. (a) The phase aberration and (b) point spread function of a refractive
silicon lens.
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which is representative of. or larger than. the majority of finite bandwidth systems. The phase
aberration of the best-desigi >d. spherical sutface. refractive element is shown in Figure 5-7(a). and
the light distribution at the focal point (i.e.. point spread function) is shown in Figure 5-7(b}.
it is evident from Figure 3-7{a} that the single-element lens bas both chromatic and spherical
aberration. A diffractive phase profile. described by Equation (5.22) and placed on the back surface
of the refractive silicon lens. results in the phase aberration shown in Figure 5-8(a) and the point
spread function shown in Figure 5-8(b). The primary chromatic abetration of the refractive lens
has been eliminated. as has the spherical aberration at the center wavelength (4 ym). The residual
spherochromatisni. that cannot be corrected. has a maximum phase error of 0.2 wave. This is a
significant improvement over the maximum phase error of the refractive lens (3 waves).

The silicon lenses described above. with and without the diffractive phase profile, were fab-
ricated and tested. The experimentally measured modulation transfer function (MTF) of both
lenses is plotted in Figure 5-9. The resolving capability of the diffractively corrected lens is far
superior to that of the completely refractive lens. The discrepancy between the theoretical and
experimental performance of the diffractivelv corrected lens is attributable to the fact that the
theoretical prediction assumed a 100-percent efficient diffractive surface for all wavelengths. The
experimentally tested lens was an B-phase level structure with a maximum efficiency. at 4 uym. of
only 95 percemt. In any case. the diffractively corrected lens far exceeded the completely refractive
lens in performance.

The spherochromatism term in Equation (5.23} can be averaged over the operating fractional
bandwidth A M. resulting in an expression for the average residual spherochromatism

- Al
6. r):C(——)r4. 5.21
( i (5:24)
This equation reveals that the ratio of the residual spherochromatism of a diffractively corrected
lens to the spherical aberration of the refractive lens is equal to one-half the fractional bandwidth.

Figure .10 illustrates the chromatic and spherical aberration reduction capability of a diffrac-
tive profile. Examples are shown for common operating wavelength regions extending from the
far-infrared t. the ultraviolet. Notice that. in all the examples, the residual rms phase error is less
than 0.1 wave.
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Figure 5-8. (a} The phase aberration and (b) point spreal function of a diffractively
corrected silicon lens.
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Figure 5-10. Examples of the chromatic and spherical aberration reduction possible
by using a diffractive corrector.
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6. DESIGNING DIFFRACTIVE PHASE PROFILES USING CODE V

In Section 5 we showed analvticallv the potential usefulness of a difractive phase profile in
reducing aberrations. The analysis was very nonspecific in regard to the exact diffractive phase
function needed to optimally -educe the aberrations of a particular refractive lens. The exact
determination of the optimum diffractive phase profile for any particular lens requires the assistance
of a lens design program which must have the capability to insert diffractive phase profiles into a
lens system and optimize the profile.

Inserting and optimizing a diffractive phase profile in a lens system can be accomplished using
the commercially available lens design program CODE V. this program is used extensively by lens
designers for optimizing and analvzing refractive and reflective systems. Lens designers familiar
with the conventional capabilities of CODE V' will have little problem learning and using the
diffiractive surface design capabilities of the program.

in CODE V. as well as other design programs. the lens designer inputs a design that meets the
necessary first-order performance specifications of the system. An optimization routine is used that
changes the initial firsi-order design in such a way to achieve maximum optical performance. In the
optimization process. the thicknesses. spacings. and radii of curvature of the individual elements are
treated as variables. The performance resulting from the optimization routine generally depends
on the initial conditions specified by the designer.

CODE V" has the ability to insert one or more diffractive surfaces anywhere into a lens system.
These diffractive surfaces are specified by parameiers that can be optimized to attain the best
system performance. The implementation of diffractive surfaces in CODE V was formulated to
emulate the recording of optically generated diffractive surfaces (i.e.. holographic optical elements).
The recording of a holographic surface is specified by the recording wavelength Ag and the location
in space of two point sources. as shown in Figure 6-1. The two point sources. located at Hy{(xy.31.:1)
and Ralra.ye. 22). produce spherical wavefronts. The interference of these two spherical wavefronts
results in a diffractive phase profile at the recording plane given by

i -
on(r.y) = " \"I(-T ~nP A+ {y-w)Pral+ ﬂl‘ -z H{y - )+ 222] . {6.1)

Note that the diffractive phase profiles that can be generated optically are a small subset of the
total possible phase profiles. The spherical nature of the two interfering wavefronts restricts the
set of optically generated phase profiles. )

Fortunately, CODE V has the ability to analyze and optimize a more general set of diffractive
phase profiles than that given by Equation (6.1). An additional diffractive phase term

10 10-k

2r
on(z.y) = = SN abry! (6.2)
® k=0 1=0

can be added. in CODE V, to the optically generated phase profile of Equation (6.1). This ad-
ditional diffractive phase term makes it possible to optimize and analyze a much larger subset of

41




R, ¥

T‘h Zy
. s
-z
Y2 Mi’

2y

Figure 6-1. Recording setup for producing an optically generated
holographic element.

diffractive phase profiles than those of Equation {6.1). Furthermore, it is possible (and preferabie)
10 let Equation (6.2) completely specify the diffractive phase function. This can be accomplished by
setting the twe point source locations R, and R at the same point in space. The resulting interfer-
ence pattern from two point sources located at the same point is a constant. The resulting phase.
given by Equation {6.1), becomes zero. The total diffractive phase is then ziven by Equation (6.2).

In the screen mode of CODE V, a diffractive surface can be placed in a lens system by entering
the surface data screen {Gold S). Choosing the holographic surface option (Number 7} results in
a screen that requires numerous input parameters. The first parameter to be entered is simply
the surface number in the lens design on which the diffractive profile is to be placed. The second
input parameter is the diffraction order of the diffractive phase profile that will be optimized and
analyzed by CODE V. The first diffraction order is almost exclusively the order of interest.

The next parameter to be entered is the holographic recording wavelength. Typically, the
wavelength of the laser used to optically record a holographic element would be entered. In our
case, the value entered is irrelevant, since the diffractive phase profile is computer generated instead
of optically generated. We prefer to set the wavelength equal to the center wavelength of the
operating bandwidth only for consistency.

CODE V assumes that the diffraction order chosen will have 100-percent diffraction efficicncy
unless the next three input parameters are entered. These three parameters, used to model the
diffraction efficiency of volume holograms, are: the volume thickness, the volume index of refraction,
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and the index of refraction modulation. Since the surface relief profiles described in this report are
aot volume elements. it is best to leave these three parameters set to their default value of zero.
The actual diffraction efficiency of an elenent will have to be determined outside of CODE V by
using the theory developed in previous sections of this report.

The next set of eight input parameters specifies the two point source locations and whether the
point sources are real or virtual. The spatial coordinates of both point sources are set to the same
location. as mentioned above. It is then irrelevant whether the point sources are real or virtual.
e set both point sources to be real for no particular reason other than consistency. '

The last entry on the holographic surface screen is the number of aspheric diffractive phase
terms. of Equation (b.2). to be entered. This entry is misleading in its wording. It is not the
pumber of terms that should be entered. rather the number corresponding to the maximum term
number in the polynomial expansion. The CODE V terminology for the aspheric phase polynomial

is

2=
ofz.y) = W 3 Zakiﬁ‘ky'- (6.3)
0%
The number N. representing a particular term in the expansion, is determined by the expression
Y . ;
N = ag(k-—l) 3 =+ ki (6.4)

The polynomial expansion of Equation (6.3) is truncated to values of (k+1) less than or equal to 10.
The total number of possible terms is 65. The term N = 65 for example, as given by Equa-
tion (6.4). represents the coefficient ago of the y'9 term.

Once the maximum desired term number is entered on the screen, a fina! input screen consisting
of a two-column table will appear. The term numbers N desired in the expansion are entered in the
left-hand column: the values of the corresponding coefficients are entered in the right-hand column,
directly opposite the appropriate term number. Any particular coeflicient value entered can be set
to a variable by pressing the Gold V" key after entering the coefficient value. In many cases, there
is little a priori knowledge as to what the coeflicient values should be. For these cases, it is best to
enter initial values of zero for all the desired coefficients and let the optimization routine determine
their optimum values.

A complete description of entering a diffractive phase profile on a surface in a lens system has
been given. The optimum diffractive phase profile is attained by using the CODE V automatic
design feature. A deficiency of the CODE V program is that the diffractive aspheric phase terms are
neglected in determining the first-order parameters of a lens system. These first-order parameters
(i.e., eflective focal length, F/#, etc.) are often used as constraints in the automatic design routine.
If a diffractive element is optimized in CODE V using first-order constraints, the result can_be

— e

erroneous. Only exact ray trace parameters can be used as constraints when optimizing a diffractive
phase profile in CODE V. S
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The vast majority of optical systems ate designed to operate over a field of view that is radially
svimmetric. If the elements in a lens system are constrained to be radially symmetric, it is only
necessary to optimize the performance over a radial slice of the field of view (i.e., y-axis). The
lens svstem is then guaranteed to have the same performance over any rudial slice of the field of
view. The advantages to optimizing over a radial slice as compared with the full field of view are
speed and cost. Each additional field point used in the automatic design routine increases the
computation time and. therefore. the expense.

The diffractive phase profile. described in Equation {6.3), is not radially symmetric. If this
difitactive profile is to be optimized for use in an optical system that is to operate over a radially
svmmetric field of view. the field points used in the optimization routine would have to cover the
whole field of view. If oniy field points lying on the y-axis were used in the optimization, the
resulting profile would perform well for v-axis field points. Field points lying on the x-axis, or any
radial axis other than the y-axis. would not be guaranteed suitable performance.

Within CODE V. a wav exists 1o constrain the diffractive phase profile of Equation (6.3) to
be radially svmmetric. Constraining the diffractive profile to be radially symmetric allows for the
optimization over the complete field of view. using only the y-axis field points. A radially symmetric
diffractive phase profile can be expressed in (x.y) coordinates as

27, ) )
odir.yl= W 'a) (r'—y2)+ag(r"+2r2y‘+y")—.—a3(16+3:r‘y2+312y"+y5)+. - (6.
1

A
!

o

By entering only the (x.x} terms of this equation in the diffractive phase expression [Equation (6.3}
and constraining the coefficient values to conform to the proportions of Equation (6.5}). the diffrac-
tive phase can be made radially svmmetric.

When optimizing a diffractive profile. the coefficients of Equation (6.3} can be constrained
to conform to the ratios of Equation {6.5) by introducing a sequence file in the automatic design
routine. This sequence file acts as a user-defined constraint in the optimization process. The
introduction of the proper sequence file in the automatic design routine allows for the optimization
over the total field of view from only ficld points lving on the y-axis.

The generation of sequence files is explained in the CODE V manual. A sequence file is basically
a file type .SEQ in the VMS directory. An example of a user-defined constraint sequence file that
forces the diffractive phase profile to be radially svmmetric is given below. For this example, the
sequence file is given the name HOE2.SEQ:1. It constrains the coefficients of Equation (6.5), on
surface Number 2 of the lens system, to be radially symmetric.

Filename: HOE2.5EQ;1

@H21:=(HCO $2 C3)-(HCO S$2 C&)
@H21=0

@H22:=(HCO S2 C10)-(HCO S2 C14)
GH22:=0

@H23:=(HCO $2 C12)-2*(HCO S2 C10)
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6H23=0

6H24:=(HCO §2 C21)-(HCO S2 C27)
G6H24=0

@H25:=(HCO S2 C23)-(HCO S2 C25)
@H25=0

@H26:=(HCO S2 C23)-3*(HCO S2 C21)
@H26=0

The file HOE2.SEQ:1 will be read inte CODE V as a user-defined constraint by entering IN
HOE?2 while in the command mode version of CODE V’s automatic design.

The first line of this sequence file defines a variable, H21, that is the difference between the N =
3 and N = 5 terms of Equation (6.3). The second line of the file constrains H21 to be zero. In other
words, the first two lines constrain the coefficients of the x? term and y? term to be equal. The
diffractive phase profile will therefore be radially symmetric in the r? term. In a similar fashion, the
next four lines constrain the profile to be radially symmetric in r4, while the last six lines constrain
the profile to be radially symmetric in r8. This sequence file could easily be extended to constrain
the profile 1o be radially symmetric up to the r'0 term if desired.

The sequence file example given above constrains the diffractive profile on surface 2 of the lens
svstem to be radially symmetric. Similiar sequence files can be generated and stored in the user’s
directory that constrain the diffractive phase pro.. 2 to be radially symmetric on any surface of
the lens system. More elaborate sequence files can also be generated that constrain the diffractive
profile in any way desired by the designer.
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7. SUMMARY

In the past. optical designers have avoided considering diffractive elements as practical alter-
natives to refractive and reflective elements. The neglect bad been justified based on the fact that
no reliable and cost-effective fabrication capability existed.

Hopefullv. this report has provided the reader some iusight into the potential usefulness of
multi-level difiractive phase profiles. These profiles can be easily designed and evaluated by using
standard lens design programs along with the procedures detailed in this report. The fabrication of
these elements has been shown 1o be reliable and straightforward. The fabrication tools and equip-
ment necessary to produce these elements are not inexpensive. However, it is standard equipment
used in the fabrication of integrated circuits and available for use at many places.

Multi-level diffractive elements are in no way the solution to all optical design problems.
However. there are many syvstems where a diffractive element can be used to gain an advantage
over a conventional design. The applications section of this report {Section 5) attempted to elucidate
some of the distinct capabilities. as well as the limitations. of diffractive elements.

It is our hope that an optical designer. after reading this report, will begin to serjously consider
diffractive surfaces as potential solutions to some of his/her lens design problems. The use of these
surfaces is in its infancy. The Jarger the number of designers considering these structures. the faster
diffractive elements will begin 1o appear in real optical systems.
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1. INTRODUCTION

Diffractive optical elements are being considered as potential solutions to a number of optical
design problems that are difficult or impossible to solve with conventional refractive and reflective
elements. Two unique characteristics of diffractive elements can be exploited: the first is the
dispetsion property. Diffractive structures bend light rays of longer wavelengths more than those
of shorter wavelengths, which is the reverse of refractive materials; therefore. diffractive structures
minimize or eliminate the dispersive effects of refractive materials.

The second unique characteristic is the relative ease with which arbitrary phase profiles can
be implemented. Advances in both diamond turning technology and the use of semiconductor
fabrication equipment have made possible the construction of a variety of diffractive elements. Dia-
mond turning technology allows fabricating diffractive surfaces over large areas in a relatively short
period of time. However, there are limitations: the phase profile has to be circularly symmetric.
and the accuracy with which a diffractive profile can be made is dependent on the tip size of the
diamond turning tool.

Using sermniconductor fabrication equipment to make difiractive elements has become a pow-
erful technique. This particular approach produces a stepped approximation, referred to as a
“multilevel structure,” to the ideal profile. As the number of levels becomes large, the diffractive
st:ucture approaches the continucus profile. Difiractive elements can be made with feature sizes
down to 0.5 um. The diffractive profiles can be very general with no symmetry restrictions, for
example, lenslet arrays, which are being used to increase the collection efficiency of detector arrays
and as components of wavefront sensing devices. These arrays are composed of individual diffrac-
tive lens profiles that are corrected for spherical aberration. Each lens has a rectangular aperture
so that 100% of the area is covered. Such lenslet arrays would be difficult to fabricate any other
way.

The diffractive optical clements that are fabricated by diamond turning or by using semicon-:
ductor fabrication equipment are surface relief elements. Surface reliefl diffractive elements are a
particular class of diffractive elements that impart a phase delay to an incident wavefront in a very
thin laver close to the surface of the element. The thickness of this layer is on the order of the
incident wavelength. The phase delay is imparted to the incident wavefront by selectively removing’
material from the surface of the substrate. -

Diffractive optical elements are different from reflective or refractive elements in that a light
ray incident on a diffractive element is split into many rays, only one of which travels in the desired
direction; its magnitude, relative to the sum of the magnitudes of all the split light rays, is called
the diffraction efficiency. In most cases, a diffraction efficiency of one is desired, which is equivalent
to all the light traveling in the chosen direction.

The diffraction efficiency that can be expected in practice from a particular diffractive element
is limited by theory as well as by fabrication tolerances. The ability to fabricate diffractive elements \\
has improved dramatically over the past few years — so much so that the attaipable difiraction
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efficiency for many elements (particularly those operating in the far infrared) is limited zlmost .
exclusively by theory. Performance degradation of diffractive optical elements due to fabrication
ecrors has been investigated by others {1.2]. This report concentrates on the strictly theoretical
limitations of achievable diffraction efficiency. It is, therefore, assumed that the surface relief profiles
can be fabricated with infinite accuracy. The resulting difiraction efficiency calculations place a
theoretical upper limit on attainable performance.

Whether a diffractive element will work for a particular application is ultimately determined
by the obtainable diffraction efficiency: for example, consider the case of a lenslet array that is
used to increase the light-gathering ability of a detector array. Certain detector arravs ace made
with a substantial fraction of dead space on the detector plane. A lens. properly placed in front
of each detector, would effectively concentrate the light that would have fallen on the dead space
onto the detector. For typical detector arizys under consideration. the increase in light-gathering
capacity that a lenslet array can achieve is about a factor of 4, assuming that the lensiets have
a diffraction efficiency of 100%. If the difiraction efficiency were only 50%. the increase in light-
gathering efficiency would be only a factor of 2. I the diffraction efficiency dropped to 25%. the
lenslet array would contribute absolutely nothing. Therefore, the diffraction efficiency that can
reasonably be expected from a diffractive element is an important parameter,

Conventiona! lens design programs are now commonly used to modet and optimize diffractive
phase profiles. These lens design codes assume that the diffraction efficiency of a diffractive element
is 100%. These codes are capable of determining phase profiles, but obtainable diffraction efficiency
has to be determined separately. Theoreticaily, diffitaction efficiency is a function of a number of
parameters: the index of refraction of the substrate, the size of the zones of the diffractive profile
relative to the incident wavelength, the polarization and angle of incidence of the incident light,
and the depth and shape of the surface profile within a zone.

In theory, Maxwell’s equations can determine exactly the diffraction efficiency of any diffrac-
tive structure. In practice, it is not possible to ontain exact solutions for the majority of cases.
Numerical solutions are possible for certain diffractive structures; however, the necessary algorithms
are very computationally intensive.

One of the simplest and most widely used ways w0 predict diffraction efficiencies is to use
a scalar theory. The scalar theory of diffraction from a surface reliel structure is based on a
simplification of Maxwell's equations and a simplified model of the surface relief structure. The
region of validity of the scalar theory is in the limit of the wavelength-lo-zone spacing approaching
zero. In other words, the size of the diffracting feature has to be very large compared with a
wavelength of the incident light. The light is, therefore, deviated from the incident direction by a
small angle. Section 2 describes the scalar theory and uses it to predict diffraction efficiency.

When the ratio of the wavelength-to-zone spacing approaches one, the incident light is de-
viated by large angles approaching 90 deg. It is in this regime that the scalar theory completely
breaks down. Reliable estimates of diffraction efficiency can no longer be obtained from the scalar
theory; however, numerical solutions to Maxwell’s equations can be obtained for periodic diffracting



structures, i.e., gratings. If the grating period becomes much larger than a few wavelengths, the
algorithm becomes too computationally intensive. Section 3 describes briefly the electromagnetic
theory approach used to solve Maxwell’s equarions numerically for periodic structures.

In determining the diffraction efficiency of a grating, the scalar theory is valid for large period-
to-wavclength ratios while the electromagnetic theory can only be used for very small period-to-
wavelength ratios. A large void is left between the two limits where the scalar theory is not very
accurate znd the electromagnetic theory is numerically prohibitive. An approach to obtaining more
reliable results for the diffraction efficiency in this region of period-to-wavelength ratios is to extend
the scalar theory. This extended theory, developed in Section 4. combines aspects of geometrical
optics with conventional scalar theory.

Section 5 compares the results of the three theories for a few representative examples, and
the consequences of the theoretically obtainable diffraction efficiency for various applications are
discussed.



2. SCALAR THEORY OF DIFFRACTION EFFICIENCY

The scalar theory of diffraction is based on the assumptions that light can be treated as a
scalar rather than vector field and that the electric and magnetic field compenents are urcoupled.
Two conditions are commonly stated as necessary for the scalar theory to have any validity: the size
of the diffracting features mus. be large compared to the incident wavelength, and the diffracted
field must be observed far from the diffracting structures [3].

A further approximation. referr<d to as the “Fresnel approximation,” allows an integral solu-
tion of the propagation of the light field. The Fresnel approximation assumes that spherical waves
can be approximated by quadratic waves. Within the realm of Fresnel diffraction. given the light
field at some initial plane. the light field can be determined at any plane. Mathematically. the
process of Fresnel diffraction is expressed by

Uiy = [ dr [ dyUizo o) exp {5 lx - 20’ = (v - )}, (1)

where the initial light field, U(zg. yo), is propagated a distance =, resulting in the light field U (1. y).
Multiplicative factors preceding the integral are generally not important and are onitted.

If the propagation distance is large enough so that the quadratic phase term in the inte-
gra! of Equation (1) can be ignored, the resulting expression, again neglecting the unimportant
multiplicative factors, becomes

Ulfert) = [ Z dz f z dyU (29, y0) exp {~ 27| foTo + fyvol}. (2)

where f; = x/Az and fy = y/A:z. Equation (2) represents the approximation known as the Fraun-
hofer diffraction and is the foundation for calculating diffraction efficiencies of surface relief diffrac-
tive elements in the scalar regime. For a periodic siructure, ie., grating. the amplitudes of the
various diffraction orders can be determined by a simple Fourier transformation of the grating
transmittance function. This simplification will be used to calculate the thearetical performance
of multilevel phase gratings. It should be noted that in the scalar theory, the diffraction efficiency
of an arbitrary diffractive optical element can be directly related to the diffraction efficiency of
a grating [4]. It is, therefore, only necessary to determine the diffraction efficiency of a grating
structure.

2.1 Diffraction Efficiency of a Multilevel Phase Grating

The surface relief profile of a one-dimensional, multilevel phase grating is shown in Figure 1.
In order to calculate the diffraction efficiency of this grating structure, the far-field of one grating
period has to be determined. The transmittance function of one period can be described by the



summation of the transmittances of N subperiods of width T/N, where N is the number of phase
levels within one period of dimension T.

N-PHASE STEPS

AT AT

e 1 —]

Figure I. Surface retief profile of a one-dimensioral, multilevel phase grafing.

Each subperiod is a rect function of width T/N, centered at r = {m + 1/2)T/N, where m
is an integer from 0 to N — 1. In the scalar approximation, the phase delay imparted by each
subperiod can be expressed as ¢ = mag/N, where ¢q is the largest phase delay of all subperiods.

The far-field amplitude distribution of a subperiod, centered at a position z, with a width
T/N and a phase delay of ¢, can be calculated from Equation (2} with the result

Us) = %%N—) exp {—i2mz ) exp {i276}. (3)
The far-field amplitude distribution of a total period can then be expressed as a summation
of the far-field amplitude distributions of the N subperiods within the total period:

_ 1 T sin(aTf/N) _ 1, Y
U{f)= N mz=0 —TT“Tf_/N_ exp {—iZ=((m + E)T’N)f} exp {i2nxmay/N}. {4)

Repeating the pericd an infinite number of times constrains the far-field to have nonzero
values only at positions f = {/T, where ! is an integer that represents the Ith diffraction order. The
far-field amplitude of the Ith diffraction crder can be written as

sin{ml/IN)

N-1
Nk (/M) 3 exp{—in(l = colm/N). (5)

m=0

A, = exp{—inl/N}



The diffraction efficiency n; of the {th order is Ar 4],

sin?(xl/N o s
me = SN N2 S exp {—i2n(l - o0)m/N Y (6)
(=U/N) P

The summation in Equation (6) can be readily evaluated

N-1 in’ ‘
. . 2 S {‘h’(f - c’ﬂ))
{Z exp {—i2n(l — Ga)r/N}° = sin?(n(l — o0)/N)

m=0

{7)

Substituting the result of Equation {7} into (6) gives the expression for the diffraction efficiency
of the Ith order as

~ _ (sin{w(l — o)) sin(w{/N) 2
m = i sin(n([—oo)/l\’)] ' (&)

where N is the number of phase levels, ¢o = No, and ¢ is the phase depth change in waves of one
subperiod.

Equation (8} is the basis for calculating diffraction efficiencies of surface relief diffractive
optical elements. Within the scalar theory region of validity, this equation can determine the
amount of light in any diffraction order for any number of phase levels. Equation (&) shows that for
a given number of.phase levels, ¥, the diffraction efficiency of the ith diffiraction order is a function
of one parameter, ¢g. This ¢ parameter can be related to the physical step height of a multilevel
structure, as well as the incident wavelength and the angle of incidence ol light impinging on ‘he
difiractive surface.

Figure 2 illustrates the relationship between the parameters necessary to define &g in terms
of physical properties. Two light rays are shown impinging on two neighboring subperiods in
2 multilevel structure. The index of refraction of the diffractive element is n and the angle of
incidence is #,. The physical step height between the neighboring subperiods is éd.

‘The parameter ¢, previously defined as the phase difference in waves between two neighboring
subperiods, is thereflore defined in terms of the parameters of Figure 2 as

{rnyy — y2) (9)

D]

o=

where the distances v, and y are geometrically determined to be
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Figure 2. Light rays traced through twe neighboring subperiods.
éd .
y = ~ sin@a{r — éd tanfs) (10)
cosba .
and
bd ;
yr = +sinfy{z — dtanf). (1n)
cos &

Inserting Equations (10) and (11) into (9) results in an expression for o that can be trigono-
metrically reduced to

o=§g{ncosﬁg—cosﬂl}, (12)

Relating 8; to 6 in Equation (12) through Snell’s law results in the following expression for o
as a function of the step height. the index of refraction of the substrate. and the angle of incidence
in air:

@:%an’usinzﬂl — cos ). (13)

The parameter ¢ in Equation (8) is, again, ¢o = N¢. It should also be noted that for the
case of normal incidence & becomes zero, and Equation (13) reduces to the simple expression




o= édin - 1) A. (14}

2.1.1 Examples

Equation (8) is a gencral scalar theorv expression used to determine the diffraction efficiency
of multilevel diffractive elements. An equivalent scalar theory expression for continnnus profile
_diﬁ'racti\'tz g!lemem_s. such as those fabricated by diamond turning technigues. carn pe found by
taking the limit of Equation (8) as the tumber of levels N approaches infinity. The resulting
“expression for an infinite number of ';')-hasé levels becomes

. sin{m{l — o)) 2 -
|| w7* = {ﬁ(ﬁ([_mﬁj . (15)

Notice that the diffraction efficiency of the first order. 7%, becomes 100% when gp = 1. This is the
result of the scalar theory that claims that 100% diffraction efficiency is possible.

The first diffraction order is usually of mest interest and usually requires the highest diffraction
efficiency. The diffraction efficiency of the first-order is maximum when oo = 1. The first-order
diffraction efficiency of an optimized N level element can be found by setting ! and oy both equal
to one:

v osin(E/N)

M = (s {16)
(7 /N}

expressing the maximum first-order diffraction cfficiency one can expect {rom an N-level element

in the scalar approximation.

The oy parameter can be expressed as a function of the total depth d of the diffractive profile
rather than the depth 6d of a subperiod. The total depth d is simply related to &d. by d=(N-1)bd
The oy parameter, for normal illumination, becomes

N -1
Op = (;\T_—l')(n 3 )

d. (17)

Setting @p equal to one determines the optimum total depth for an N-level diffractive profile
on a substrate of index n, to be used at a wavelength A:

_(N=1) A
dA——N TP (18)

In the limit of the number of levels approaching infinity, the well-known expression for the
optimum depth,}d = A/(n — lj, is obtained.




It is a fact that the diffraction efficiency of a diffractive structure is wavelength dependent.
From the previous analysis. it can bz deduced that the optimum step lieight for normal inciden-e
and wavelength Ag is

Ao

T Nm-1) 09

&d

Substituting Equation (19) into (13) results in an expression for @ from which op can be
determined to be

Ao, Vn? —sin" 8y — cos by, o,
op = 7[ 8 (20}
{n-1)

Equation (8). in conjunction with (20). car be used to determine the diffraction efficiency
of an N-level element as a function of wavelength and incident angle. for which the first-order
diffraction efficiency has been maximized for wavelength Ag and normal incidence.

Figure 3 plots the first-order diffraction efficiency as a function of wavelength for various
values of . The element was optimized. as described above. to have a maximum diffraction
efficiency at wavelength Ap and normal incidence.

Figure 4 plots the first-order diffraction efficiency at wavelength g as a function of incident
angle for varioss valies of N The olement was optimized tc have a maximum diffraction efficiency
at wavelength Xy and normal incidence. The figure reveals that in the scalar approximation the
diffraction efficiency of these elements is very inscnsitive to the angle of incidence. This resuh
reflects positively on the concept of placing diffractive surfaces on refractive optical elements, with
the intent that the diffractive surface minimizes the aberrations of the refractive element. In such
cases. the period-to-wavelength ratio of the diffractive structure is usually large, lending credibility
to the scalar approximations: however, the range of incident angles impinging on the diffractive
surface becomes quite large. Figure 4 shows that the diffraction efficiency. in general. will not suffer

very much as a consequence of the large range of input angles.
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3. RIGOROUS ELECTROMAGNETIC THEORY OF DIFFRACTION
EFFICIENCY

In Section 2. analvtical expressions for the diffraction efficiency of surface relief phase gratings
were developed using a scalar theory. As mentioned earlier. tie diffraction efficiency of structures
more complex than simple gratings can be directly related to the diffraction efficiency of the grat-
ings through a ronlinear limiter analysis [4i. This allows a closed-form solution of the diffraction
efficiency for any surface relief diffractive optical element.

The scalar theory is usetul for desiguing surlace rlief diffractive elements with periods that
are much larger than the wavelength for which the element is to be used. When the periods
on the diffractive element become comparable in magnitude to the wavelength, the scalar theory
(developed in Section 2) gives unreliable values for diffraction efficiency. The amount of discrepancy
between the diffraction efficiency predictions of the scalar theory and reality is a function of the
period-to-wavelength ratio and the index of refraction of the substrate.

In order to get a more reliable prediction of expected difiraction efficiencies. a more accurate
theory must be used. In principle, Maxwell's equations could be solved for a particular diffractive
structure, giving results that would be extremely accurate. In practice the solutions to Maxwell's

equations have to be calcutated numerically.

Various approaches to solving the electromagnetic equations of grating diffraction exist. Al-
though they are equally valid, this report uses the approaci. first employved by Moharam and
Gaylord {5}, which is based on a coupled wave theory approach to solving Maxwell's equations. A
brief outiine follows. (Because the details are too numerous to discuss in this report. the reader is
referred to Reference 5.)

An electromagnetic field incident on a phase grating can be divided into three main regions.
The first. described by a homogeneous permittivity €, is where the incident and reflected ficlds
propagate. The second is the modulation region of the grating profile, with permittivity alternating
between ¢, and €3, the permittivity of the third region. This third region is where the transmitted
field propagates and is characterized by the homogeneous permittivity e3. In all three regions,
permeability is equal to the sermeability of free space.

The electromagnetic fields in the first and third regions can be expanded as sums of plane
waves with the wave vectors determined from the Floquet condition. In the second region. the
electromagnetic fields are expressed as Fourier expansions of the space harmonic fields. The second
region is divided into N layers of equal thickness. each represented by the characteristics of the
grating at the middle of the layer. The permittivity of each layer can be represented by a Fourter
expansion. The permittivity in the second region, €3, alternates within a layer between e, and €3.

The solution for the amplitudes of the reflected and transmitted diffraction orders is achieved
by applying Maxwell's equations at the boundaries between the N layers. The electric and magnetic

fields must have continuous tangential components.
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An extensive computer code, DIFFRACT. has been developed based on the coupled wave
theory. The accuracy of the code is dependent on the number of lavers used to describe the grating
modulation region and the number of orders retained in the Fourier expansion of the electromagnetic
fields. The co.nputation time necessary to solve for the diffraction efficiency increases linearly with
the number of layers. In other words. the amount of computer time used to solve an N layer grating

structure is twice that of an N/2.

The computation time necessary to solve for a grating is proportional to the cube of the
number of orders retained in the Fourier expansion. In order to obtain an accurate solution. all
the propagating orders, as well as a few evanescent otders. should be retained. The number of
propagating orders froin a grating is determined by the period-to-wavelength ratio; the larger the
ratio. the more propagating diffraction orders. The computation time is, therefore, a strong function
of the period-to-wavelength ratio. Furthermore, the maximum period-to-wavelength ratio grating
that can reasonably be solved is dependent on the available computing power. In general. gratings
with period-to-wavelength ratios greater than 10 become unreasonable to try to solve using this

algorithm.

As seen above, one of the main constraints of the rigorous coupled wave theory, as well as other
rigorous electromagnetic theories, is the limit on the maximum period-to-wavelength ratio grating
that can be solved. The scalar theory, on the other hand. is only valid in the very large period-to-
wavelength regime. A void remains between the usefulness of the two theories where unfortunately,
a large percentage of the diffractive structures are being considered for various applications.

Another property of the rigorous electromagnetic theory is that it lends iself to very little
intuitive insight into what to expect for diffraction efficiencies from gratings. Section 4 presents
an intermediate theory for multilevel diffractive optical elements that attempts to bridge the gap
between the scalar and the rigorous electromagnetic theories. This intermediate theory partially
explains, in an intuitive fashion, the fallofl of diffraction efficiency as a function of period-to-
wavelength ratio.
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4. EXTENDED SCALAR THEORY OF DIFFRACTION EFFICIENCY

The scalar theory of diffraction. as described in Seetion 3. is valid only for diffractive struc-
tures that have very large period-to-wavelength ratios. The rigorous electromagnetic theories of
grating diffraction allow numerical solutions for only small period-to-wavelength ratios due to the
computational complexity of the algorithms. A useful theory would function in the region of inter-
mediate values of period-to-wavelength ratios. would be more accurate than the scalar theory, and
would be cousputationally simpler than the rigorous electromagnetic theories.

The intermediate theory presented here. called the extended scalar theory. is like the scalar
because it is strictly valid only in the confines of very large period-to-wavelength ratios. but for
intermediate values of period to wavelength. agreement with reality is much better.

The major assumption that the extended scalar theory attempts to avoid is that the phase
delay of the incident light, caused by the grating. occurs in an infinitelv thin layer. The effects of
the finite thickness of the grating profile are taken into consideration.

The finite thickness of the grating profile is treated by combining ihc scalar theory (based
on wave propagation) with a geometrical theory (based on ray tracing). The incident light field is
assumed Lo propagate through the thickness of the grating profile according to geometrical optics.
Once the light exits the grating profile. the scalar theory based on wave propagation is applied.

4.1 Optimum Grating Profile Depth

As mentioned above, the most widely used scalar theory assumes that the phase delay as-
sociated with a surface relief phase grating occurs in an infinitely thin laver on the surface of the
substrate. This phase delay is physically implemented. however, by etching away certain areas of
the substrate surface. The phasc delay is the result of the optical path length difference due to
the variation in surfacc protile thickness. The conversion of a phase delay into a physical thickness
far a diffractive element designed to have a maximum first-order diffraction efficiency was shown
in Section 2 to result in a physical depth of d, where d = A/(n — 1}. Notice that the optimum
depth based on the scalar theory is only a function of the wavelength and index of refraction of the

substrate.

The mathematical assumption that the phase delay occurs in an infinitely thin layer is obvi-
ously unrealistic. Only for the case of substrates with extremely large tefractive indices would the
theory begin to agree with reality. Therelore, the scalar value of depth d is also an approximation.
The questions “How bad is the assumption of the scalar theory?” and “What is the actual optimum

depth?” need to be answered.
The approach used to determine the optimum depth by extending the scalar theory is shown

in Figure 5 for the case of light normally incident on the substrate boundary and traveling from
the substrate into air. The angle, 64, at which the first diffraction order travels from the grating is

simply determined by the grating equation
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sinfy = MT. (21)

« SNELLS LAW: n sin (0} = sm(ep+ u)
+ GRATING EQUATION: sin By = %

- SET By =6,

+ SOLVE FOR ¢

Figure 5. Geometrical ray trace through a sutface rehef grating.

If one now considers each period of the grating to consist of a miniature refractive prism. light
ravs can be traced geometrically through each facet. The angle that the light rays exit the prism,
B, is simply governed by Snell’s law

nsina = sin (6, + a), (22)

where a = arctand/T.

An intuitive argument would suggest that the first diffraction order will have its maximum
efficiency when the angle of the light rays traced through the prism 8, is equal to the angle of the
first diffraction order 84. The result of setting 6, equal to 84 and solving for d is

P S (23)

T n- V1= (T
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Notice that this value of the grating depth is different from the scalar theory value. The
most apparent difference is that the optimum depth given in Equation (23) is a function of the
grating period, whereas the scalar theory value is independent of it. This immediately implies that
for structures more complicated than gratings, the depth of the diffractive profile should vary as a
function of the local period of the structure. Furthermore. it is worth noting that in the limit of
the period T going to infinity, Equation (23) reduces to the scalar theory value.

From this point on, the depth value determined from Equation (23) is referred to as the
“optimum depth” and represented by dope. The scalar depth value is represented by dgpp- In order
to see how the optimum varies from the scalar theory depth. it is useful to plot the ratio of the two
as a function of the period-to-wavelength ratio. as shown in Figure 6 for two values of the index of
refraction of the substrate. As expected, the ratio of dop /dapp asymptotically approaches a value
of one as the period-to-wavelength ratio increases. The depth ratio deviates significantly from a
value of one at small period-to-wavelength ratios. The exact period-to-wavelength ratio at which
the deviation becomes significant is dependent on the index of refraction of the substrate. For high
index of refraction substrates. the deviation occurs at smaller period-to-waveiength ratios than for

low index of refraction -ubstrates.
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Figure 6. Ettended scalar theory prediclion of optimum depth as @ function of the pertod-
{o-wavelength ratio.

Equaticn (23) was derived for normal incidence on the substrate boundary with the light
traveling from the substrate into air. A more general expression for the optimum depth can be
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derived using a similar approach to that used to derive Equation {23). Again. the idea is to simply
cquate the diffraction angle of the grating to the deviation angle of the prism for an arbitrary angle
of incidence. The result of such an approach is the expression for the optimum depth as a function
of incident angle as well as the wavelength-to-period ratio and the index of refraction:

X
nyT=(mnd - \/1- (3 + nsing,)?

(24)

dopt

Notice that Equation (24) reduces to (23) when the incident angle 8, is set equal to zero.
Equation (24) can also be used 10 determine the optimum depth for normal illumination when the
light is traveling from air into the substrate. In Equation (24). 0; is defined as the incident angle in
the substrate material. For the case of normal illumination from air into the substrate, sin#; has
1o be set equal to —;’%;. The result is the optimum depth for normal incidence traveling from air
into the substrate:

A
dopt = 7 = (Aaly -1 (25)

For all cases as the wavelength-to-period ratio approaches zero. the depth approachies the scalar
theory value of dapp = A/(n — 1)

The depth values determined above were based on a somewhat intuitive argument. There is
no proof that the expre.sions derived determine the depth that results in a maximum first-order
diffraction efficiency. Ts icst these extended scalar theory depth values, the DIFFRACT program
(described in Sectior. 3) was used to calculate the theoretical first-order diffraction efficiency for
various wavelength-to-period ratio gratings. The minimum ratio tested was 0.5, corresponding to
a 30-deg diffraction augle for the first order. Calculations were done for both high- (n = 4) and
Jow-index (n = 1.5) substrates. The depth of the gratings was varied over a region that included
the optimum as well as the scalar theory depth. In all cases. the first-order diffraction efficiency
was maximized when the depth was near that predicted by the extended scalar theory.

Figures 7 and & plot the first-order diffraction efficiency as a function of the wavelength-to-
period ratio. Curves are plotted for gratings having depth values equal to both the scalar theory
and the optimum. Figure 7 plots a substrate with a low index of refraction (n = 1.5}, and Figure 8
plots a substrate with a high index (n = 4). The calculations for the high-index substrate include
a single layer antireflection coating; the low-index substrate had none. In all cases, the optimum
depth value, as predicted using the extended scalar theory, results in a higher diffraction efficiency
than that predicted using the scalar theory.
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Figure 7. First-order diffraction efficiency as a function of the wavelength-to-period ratio
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Figure 8. First-order diffraction efficiency as a function of the wavelength-to-period ratio
for an n = 4 substrate.
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4.2 Extending Scalar Theory Prediction of Diffraction Efficiency

Diffraction efficiency predictions based on the scalar theory are completely independent of the
wavelength-to-period ratio. Figures 7 and 8 clearly show, however, that the diffraction efiiciency
is a function of the wavelength-to-period ratio. One of the major reasons that the scalar theory
fails to predict this falloff is, again, largely due to the assumption that the phase delay occurs in
an infinitely thin boundary of the substrate.

The concept of geometrically tracing rays through the finite depth of the diffractive structure
and subsequently applying the s.atar theory can be used to extend the prediction of diffraction
efficiency. This approach. theugh obviously not an exact solution to the diffraction problem. s
more consistent with the electromagnetic theory calculations.

The most apparent feature that emerges from geometrically tracing rays through tne depth
of the diffractive structure is an effect referred to as “light shadowing.” Figure 9 jllustrates the geo-
nietrical ray trace and shows the light shadowing resulting from a fAnite thickness structure. Light
ravs traveling in a direction normal to the substrate boundary are refracted at the substrate/air
interface. Tl angle that the light rays deviate is determined from Snell’s law. The depth d is as-
sumed to be the value determined in Section 4.1 that optimizes the first-order diffraction efficiency.
The period of the grating is T, and the index of refraction of the substrate is n.

The light rayvs that exit the grating structure in the first diffracted order no longer fill the
entire grating area. Immediately after the grating, the tatio of the area filled with light to the total
area is called the duty cycle (DC) and is equal to AT/T. From a geometrical construction, the
DC for the case illustrated in Figure 9 can be expressed as

d) (26)

DC=1- =757

Once the light rays are traced through the grating profile and the DC of the firs: diffraction
order is determined, the scalar theory is applied to the exiting field. The light in the first diffraction
order immediately after the grating resembles an unfilled aperture. It is 2 well-known result of the
scalar theory that the amount of light that travels undifiracted through an unfilied aperture is equal
to the DC of the unfilled aperture.

The light that is traced ! ough one period of the grating encounters a stepped profile if the
grating is made in a multilevel fabrication process. For this case, a fraction of the incident light
equal to the DC given by Equation {26} is lost. Therefore, the fraction of light that resides in the
first diffraction order can be approximately expressed by the product of the DC squared and the
efficiency predicted from the scalar theory. Note from Equation {26) that the DC and, therefore,
the first-order diffraction efficiency, is a function of the wavelength-to-period ratio; going to zero,
the DC approaches one, and the first-order diffraction efficiency approaches the scalar theory value.
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Figure 9. Light shadowing caused by finite depth surface relicf profile.

A further extension could be approximated by including polarization effects. The scalar theory
and its extension are polarization independent. These eflects could be added to the extended scalar
theory by including losses at the grating facdl boundaries due to Fresnel reflection losses.

“The extended theory is designed to be strictly valid only in the large period-to-wavelength
ratio limit. as is the scalar theery, and more accurate for moderate wavelength-to-period ratios.
As the period-to-wavelength ratio decreases. the extended scalar theory breaks down. The theory
completely breaks down for a given index of refraction at the point where the slope of the individual
facets within one period become large enough so that a light ray traced at the boundary will suffer
from total internal reflection. Combining the equations for total internal reflection and the optimum
grating depth results in an upper limit on the wavelength-to-period ratio for which extended scalar
theory has any validity. This upper limit is expressed as

(%)mu = /1 -1/n% (27)
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for example, the extended scaiar theory for a substrate with an index of refracticn equal to 4 will
totally break down when the wavelength-to-period ratio is equal to 0.97. For a substrate with a
1.5 index of refraction, the breakdown occurs at a wavelength-to-period ratio of 0.74. Section 5
compares the extended scalar theory with rigorous electromagnetic calculations. The maximum
value of the wavelength-to-period ratio used in these comparisons is 0.5.

22



-t & -~ &/ A& a8 -

5. COMPARISON OF SCALAR, EXTENDED SCALAR, AND
ELECTROMAGNETIC THEORIES

Three theories have been presented that can predict the diffraction effciency from diffractive
optical elements; each has strong points and weaknesses. and each coinplements the other in terms
of information.

Obviously. the electromagnetic theory results in an exact solution to the problem of diffraction
from a grating. Solutions to the electromagnetic theory can only be calculated numerically and
computation time increases rapidly as the period-to-wavelength ratio increases: thus. there are two
limitations. The first is the upper bound on the period-to-wavelength ratio for which a solution
can be calculated. which is a function of the computer speed and how long one is wiliing to wai
for the solution. The second limitation is the lack of any real insight into trying to optimize the
difraction efficiency of a diffractive structure.

The scalar theory is the least accurate vel easiest to use of the three: it aliows for analytical
expressions for the diffraction efficiency as a function of physical parameters. The analytical expres-
sions give an insight into the design and for feasibility of diffractive optical clements for a particular

application. The diffraction efficiency calculated using the scalar theory is completely independent

of the period-to-wavelength ratio. “The value calculated can be used. however. as an upper bound an
the obtainable diffraction efficiency. Scalar theory accuracy increases as the period-to-wavelength
ratio increases. Thus, the theory becomes valid when the electromagnetic theory cannot be used
due to computation time.

The extended scalar theory fills the void between the scalar and the electromagnetic. It
retains the closed-form solution of the scalar theory and has a functional dependence on the period-
to-wavelength ratio. Using the basic concepts of the extended scalar theory allows for a degree of
insight into the optimum design of grating structures.

A graphical comparison of the results from the three theories is useful to visualize the differ-
ences in predicting diffraction efficiencies. Figures 10 and 11 piot the predicted first-order diffraction
efficiencies as a function of the wavelength-to-period ratio for substrates with refractive indices of
1.5 and 4. respectively. The grating profiles are 16 phase level approximations to the optimum con-
tinuous profiles. The gratings on the n = 4 substrate are assumed to have an optimum quarter-wave
antireflection coating; the n = 1.5 substrate is uncoated.

The most important feature of Figures 10 and 11 is the significant deviation between the scalar
and the other two theories for moderate wavelength-to-period ratios. The curves confirm that the
scalar theory is only valid for very small wavelength-to-period ratios. Arotlier fueture illustrated
in the figures is the effect of the index of refraction of the substrate. Higher-index substrates suffer
a smaller diffraction efficiency falloff than do low-index substrates. This effect is readily explained
from the light shadowing concept presented in Section 4.
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Figure 10.  Predicted first-order diffraction efficiency as e function of the warelength-lo-
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It has been noted that the diffraction efficiency results of the extended scalar and the electro-
magnetic theories are dependent on the period-to—wavelength ratio; therefore, diffractive structures
more complicated than simple periodic gratings have diffraction efficiencies that are a function
of position on the element. Assigning a single diffraction efficiency value to an element requires
satnpling the aperture.

The diffraction efficiency oi a diffractive lens. for example, can be approximately determined
by assigning a periodicity to the jens that is a function of radial position. The lens can then
be divided into annular regions of equal area. Each annular region is assigned a period equal to
the period at its center. The extended scalar or the electromagnetic theory can then be used to
determine the approximate diffraction efficiency of the annular regions. Since each region is of
equal area. the lens can be assigned a diffraction efficiency that is simply the average of all the
efficiencies of the annular regions. The accuracy of this approach is determined mainly by the
number of annular regions intoe which the lens is segmented,

Using the approach described above. a first-order diffraction efficiency can be assigned to
a diffiractive lens as a function of its numerical aperture. Figures 12 and 13 plot the theoretical
diffraction efficiencies as a function of numerical aperture for substrates with indices of refraction
of 1.5 and 4. respectively. The substrate with an index of refraction of 4 is, as in the previous
calculations, assumed to have an antireflection coating. The substrate with an index of refraction
of 1.5 is uncoated. Curves are plotted from calculations of the electromagnetic and the extended

scalar theories.
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Figure 12. Predicted first-order diffraction efficiency of a diffractive lens a3 a funchion
of numerical aperture for a substrate with n = 1.5.
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The extended scalar theory calculations in Figures 12 and 13 were done for diffractive lenses
with an optimum depth, while the electromagnetic theory calculations were done for diffractive
lenses that had optimum depth profiles, as well as the approximate depth, determined from the
scalar theory. Since optimum depth is a function of period, it varies for a lens as a function of

radial position. Diffractive lenses with radially varying depths cannot realistically be fabricatedi"

using lithographic techniques; however, they can be produced using diamond turning methods.

Another difference is that the extended scalar theory is polarization independent, while the
electromagnetic theory is dependent on the polatization of the incident light. On a radially sym-
metric diffractive lens, diflerent angular positions are illuminated with different polarizations. The
net effect over the entire aperture is simply an average of the diffraction efficiencies of the tranverse
electric (TE) and transverse magnetic (TM) polarization states.

The main point elucidated in Figures 12 and 13 is that the diffraction efficiency from a
diffractive lens is theoretically limited. The difference in efficiency between that predicted from
the scalar theory and that predicted from a more accurate theory is dependent on the numerical
aperture of the lens, and the difference becomes quite large as the numerical aperture increases.
Diffraction efficiency is also a function of the index of refraction of the substrate. Diffractive lenses
of a given numerical aperture have a higher theoretical efficiency on high-index substrates than on
low-index substratcs.
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Diffraction of light by periodic gratings is analyzed with a characteristic-matrix formalism based on a rigorous
coupled-wave approach. This formalism is particularly convenient for modeling the diffraction by nonuniform

periedic structures. In order to overcome numerical difficulties that are due to inhomogeneous eigenmodes
we propose a new algorithm that remains stable for gratings of any thickness. We obtain the stability by

distinguishing in the computation the growing and the decaying inhomogeneous modes. Numerical examples

and comparisons with previous results are given.

1. INTRODUCTION

Vaolume gratings have found applications! in various
areas such as integrated optics, optical data pro-
cessing and computing, holography, and spectroscopy.
Their diffraction characteristics have stimulated many
investigations®® over more than two decades (Refs. 2
and 3 provide an excellent review of grating modeling).
Since the analysis of Kogelnik,* the coupled-wave ap-
proach has been extensively studied. This theory has
engendered wide interest because of its good physical in-
sight and the simplicity of its mathematical resolution.
The Kogelnik model* has the advantage of an analytic for-
mulation, but its accuracy is limited by several approxi-
mations. Further research on the coupled-wave model
resulted in more rigorous formulations,’7 in new solving
methods and algorithms,*® and in a generalization to
numerous physical cases. The coupled-wave theory was
extended to a variety of periodically modulated struc-
tures: planar transmission and transmission volume
gratings*'! (possibly slanted and absorbing), surface re-
lief gratings,'*'® gratings with multiple coating layers,'¢
nonuniform (or attenuated) gratings,'? multiple superim-
posed gratings,'® and anisotropic gratings.!® The model
was applied to structures of arbitrary profile and thick-
ness, illuminated at any incidence angle and with any
polarization. Yet some of the solution algorithms are
unstable for relatively thick modulated layers, as noted
in earlier papers.’?!%2 Recently Pai and Awada2® pro-
posed a stable method for gratings of any thickness, for
which solutions were found in the form of iterative one-
way wave multiple reflection series; however, the calcu-
lation of the series coefficients seems time consuming,
especially for gratings with narrow resonance.

In this paper we propose a rigorous and efficient
metheod for caleulating the coupled-wave diffraction of pe-
riodic gratings of arbitrary thickness without numerical
problems. In Section 2 we derive a characteristic-matrix
formalism of grating diffraction, well adapted to handle
periodic structures with nonuniform modulation. In our
model such a structure is represented by a stack of uni-
form subgratings of equal spatial period; the diffraction

0740-3232/94/041321-11806.00

matrix of the whole structure is simply obtained as the
product of all the subgrating matrices. As in the analy-
sis of Moharam and Gaylord,® the most straightforward
solution method of the model involves two main steps:

(1) Caleulation of the eigenvalues and the eigenvectors

of a constant coefficient matrix that characterizes the dif- .

fracted wave propagation and coupling (the eigenvectors
represent the characteristic modes of the grating) and

(2) Resolution of a linear system deduced from the
boundary matching conditions. The system coefficients
contain exponential functions of the produet eigenvalue X
thickness.

With such a method some numerical difficulties are pre-
dictable if the grating thickness is relatively large: the
linear system coefficients that correspond to the eigen-
values with a negative real part then become too large
to be handled correctly by a computer. For the mod-
eling of very deep modulated structures, it is useful to
overcome these numerical problems through a conve-
nient computer implementation. In Section 3 we pro-
pose an alternative and stable algorithm based on our
characteristie-matrix formalism. The new algorithm
takes the inhomogeneous eigenmodes into account in
the resolution of the boundary field matching equations
but avoids the calculation of very large exponentials by
suitably reordering the eigenvalues in each characteris-
tic matrix and recurrently defining a new sequence of
well-behaved matrices. The algorithm is easy to com-
pute, and its execution time is quite small compared
with that of eigenvalue and eigenvector searching rou-
tines. In Section 4 we present numerical results for
surface relief gratings and nonuniform slanted gratings.

2. CHARACTERISTIC-MATRIX
FORMALISM OF WAVE DIFFRACTION
INSIDE A GRATING

We consider a planar volume grating with a periodic index
profile. For simplicity, we assume that the incident light

© 1994 Optical Society of America
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Fig. 1. Grating and incident wave geometry.

has transverse electric {TE) polarization and a known in-
ternal incidence angle, and we assume that the fringe
planes are perpendicular to the plane of incidence. In
addition, we assume that the grating has finite conduc-
tivity, and thus we neglect all the surface currents. At
the moment we make no hypothesis about the media that
surround the grating.

A. Notation
See Fig. 1 for the grating and incident wave geometry,
with the following notation:

J=v-1;

Z, Z*, and R represent the sets of integers, nonzero
integers, and real numbers, respectively;

The 2z axis is normal to the grating surface;

The x axis is the intersection of the grating surface and
the plane of incidence;

The y axis is perpendicular to the x and z axes;

A is the grating fringe spacing;

K is the grating vector (JIKll = 2#/A) perpendicu-
lar to the fringe plane and thus lies in the plane of
incidence;

&' is the internal incidence angle;

ng is the average refractive index;

A is the wavelength in free space;

ky = 2m/A = w/c is the corresponding wave number
[time dependence exp(— jwt)];

h = ucH defines the modified magnetic field, intro-
duced to simplify the notation.

The periodic modulation is represented by the Fourier
expansion

r(x,z) = f i expl jilK.x + K,z)]. 2.1

==
B. Derivation of the Coupled-Wave Equations

We analyze the propagation of waves inside the grat-
ing, using the tangential components E,(x, z) and k,(x, z).
These components of the electromagnetic field are contin-

uous on the boundaries. We introduce the fundamental
coupled-wave expansions:

E,x,2)= % E{(z)exp( jkVx),

f=—u

helx,z) = 3 h¥(z)exp( j&Px}. (2.2)

{=—=
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The x components of the wave vectors are obtained in the
following way: phase matching with the incident wave
vields

k(xm = kono Sil".l(ﬁ") ' (23)

and kY (i € Z*) is given by the Floquet condition
B =R 4K, ie7. (2.4)

Phase matching along boundaries implies that the compo-
nents &Y' ({ € Z) are continuous; thus the field subeompo-
nents E{"*(z) and k\'(z) are also continuous on the grating
boundaries.

The Maxwell equation Vs A E = jouH vields

h,(x,z)xi aE,(x,z)_

ko dz (2:5)

Substitution of f{ield expansions (2.1} and (2.2} into
Eq. (2.5) and the projection of the resulting relation on
the basis of functions of the variable x (x — exp[ j&A¥'x])
(i € Z) give

dEY(z)
dz

= —jkeh¥z), i€7Z. (2.6}

In the equation of Helmholtz,
V2E,(x,2) + k¢*n®(x,2)E,(x,2) = 0; (2.7

after we represent the index modulation and the elec-
tric field by expansions (2.1) and (2.2), respectively, we
introduce expression (2.6) to eliminate the derivatives
of Ey(x,z) and project the resulting equation on x —
exp[ j&%x] (i € 7). We obtain

dh“’(z) . [k(i)}2 ; _
x - _ e 1 g + i
= NS B () ko;n !
% explji — DK.z)EP(2)}» i€Z, (28)
where ‘ ‘
(RO = koo - [RYT, i€Z. (2.9)

In Eq. (2.8) we introduce the factors exp( jiK,z)} (i € Z}
to obtain a differential system with constant coeflicients
where the unknowns are the functions of variable z [z —
EY(z)exp(— jiK.z) and z — AP (z)exp(~ jiK.z)]):

d[rlH(z)exp(— jiK,z)]

dz
) (RO . .
=—j ithi‘](z)exp(—jiK,z) + ;— E;”(z)exp(—ﬂKzz)
0
+ky > A EP{z)expl(— le,z):i, i€, (2.10)
Iy

the same operation performed in Eq. (2.6) gives

d[ES (2lexp( jiK.
LE (Z)EZI;( FED] ik B9 Gexp(— jiK.2)

+hoh N 2lexp{— jiK,2)], i€ Z. (2.11)

‘L—-ﬁ
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C. Algebraic Resolution
Equations (2.10) and (2.11) define an infinite system
of first-order differential equations. For the numerical
resolution we must retain a finite number N of diffracted
orders. The method is rigorous at the limit N = +x;
practically, N can be chosen sufficiently large for obtain-
ing a good precision.

The truncated resulting system may then be written in
the matrix form

U6 _ imjoe, (2.12)
dz
where the 2N vector U(z) is given by
ESNzlexp( - j(i - v)K,z
Uz) = = ' 3 - (2.13)

AU 2expl - (i - ¥)K,z

The first component of each N subvector corresponds to
i = 0, the second one corresponds to { = 1, etc.... v is
the number of negative orders retained; if we choose a set
of diffracted orders centered on the zero order, v is equal
to the integer part of N/2.

{M]is a 2N x 2N matrix with constant coefficients that
may be expressed as

K[A] | kolIn]
M]=-jl -t
k(] | K.[A) (2.14)

In Eq. (2.14) the N X N submatrices are defined as fol-
lows:

iIx] is the N X N identity matrix;
[A] is a diagonal matrix with elements given by

Vol. 11, No. 4/April 1994/d. Opt. Soc. Am. A 1323

The solution of the shift-invariant system (2.12) be-
tween two arbitrary coordinates z; and z; (z; > z) in-
volves a matrix exponential function:

Ulz,) = exp{—(2z - 2}{M]}Ul(22). (2.17)

We shall express the matrix exponential in terms of eigen-
vectors and eigenvalues of [M]. Diagonalizing matrix
[M], we obtain

[M] = [P][D)[P] ', (2.18)

where the columns of matrix [P] are the eigenvectors
of [M] and [D] is the diagonal matrix of the eigenvalues
of [M}:

€

[D]= (2.19)

0 €N -1

Using the definition of the matrix exponential and
the associativity of the matrix product, we change
relation (2.17) into

U(z;) = [Plexp{~ (22 ~ z))[DI[P]'U(zz).  (2.20) .

D. Characteristic Matrix )

From the coefficients of the eigenvector matrix [P] we

define a new 2N X 2N matrix [P(z)]:

iefo,...,N -1} P(2) = expl jli — v)K, 218,

i€{N,...,2N -1} Pyz)=explji - N — vIK,z]P:,
le{0,...,2N - 1}. (2.21)

Introducing definitions (2.19) and {2.21) at coordinates z,

Aji=i-», i€{0,....N-1} (2.15) and z; into relation (2.20), we obtain
. r ' 7
EU-» Ei-9
T (z0) exp{—eglzs — 21)] 0 v (z2)
exp[—eilzy — 21} |_ :
5 =[P(z1)] [P(z9)] ! = e (2.22)
L 0 expl—ean—_1(z2 — 23] ’
RE=9(z,) pl—ean-1(22 1 RS (zy)
. We define a 2N X 2N characteristic matrix of
(@] is defined by wave propagation inside the grating by the product
pli-s? [P(z)lexp{—(z: — z))[D}[P(z2)]t. The characteristic
Q,; = zk 7 i+l Qp=n,,, matrix relates the initial and final values of electro-
Q

i,belo,....N — 1. (2.16)

magnetic field subcomponents that are continuous on
the boundaries.
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ptanar gratings
with binary index

Fig. 2. Representation of a surface relief grating as a stack of
planar velume elementary gratings with binary index.

E. Generalization of the Formalism

We have derived our analysis in the case of the plane
diffraction of a TE polarized wave. The rigorous multi-
wave coupled-wave theory was also used to describe the
plane diffraction of a transverse magnetic (TM) incident
field,'* the more general conical diffraction of an arbitrar-
ily polarized wave,!! and the diffraction by anisotropic
gratings.'® These cases were shown to require the reso-
lution of differential systems similar to Eq. (2.12), and
thus they may be represented by a characteristic-matrix
formulation such as Eq. (2.22).

The characteristic-matrix formalism is particulariy con-
venient for the modeling of cascaded gratings with equal
spatial period (i.e., same K.); since the field components in
relation (2.22) are ¢continuous on the boundaries, the ma-
trix of the whole stack is obtained by multiplication of the
elementary grating matrices. The case of a grating with
nonuniform modulation versus depth is derived in the
same manner; as was initially proposed by Kermisch,!
such a prating can be represented by several uniformly
modulated slices with the same fringe period.

A surface relief dielectric grating may be considered
a particular stack of planar volume gratings,'*1* where
each slice has a binary periodic index. Such a grating
is depicted in Fig. 2. The spatial frequency K, is com-
mon to every slice, but the grating duty cycle may vary
through the stack. Thus the representation of a surface
relief grating also leads to the case of multiple cascaded
gratings with equal period.

Our formalism also applies to the propagation in uni-
form layer coatings surrounding the grating. In this
case, there is no coupling between the diffracted orders.
If we adapt the Abelés? formalism of wave propagation
in stratified media to the case of N propagating waves,
it is straightforward to derive a multiwave characteristic
matrix similar to Eq. (2.22) {in a uniform layer the eigen-
values are directly found in the form = j[k¢Zng? — £97¥2),

A generalized characteristic matrix of a spatially pe-
riodic structure including m substructures (surface grat-

e —
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ings, volume gratings, and uniform layer coatings, as il-
lustrated in Fig. 3) is thus expressed in the form

m~-1

[1 @Pitziilexpi—(zi1 = 2 (DiHPiG-1017Y),

=0

(2.23)

where (zy)ieip1. =) are the coordinates of the interfaces
(20 <z, < ... < Zm)

F. Boundary Conditions

We assume that both external media are homogeneous.
When applying the boundary conditions, we need to dis-
tinguish between forward- and backward-propagating
waves. We thus designate by f}') and bg), respectively,
the electric-field complex amplitudes of the incident and
reflected waves in the first half-space, and we use the
Rayleigh field expansions

Ejfx,z)= > fi exp{jlkx + knzl}

t=-x

+ > by explilkYx — kpz2]},

f=—=

1 - ) Al . [ i
hofx,z) = - P Z B expl jTkx + kplz]}
+ 1 S RUY explkYx - k2], (2.24)

k

0 jm—x

where the x components of the wave vectors are still de-
fined by relations (2.3) and {2.4) (since these components
are constant on the boundaries) and the z components are
given by kS = [koZnp? — kY142, with ny being the complex
refractive index of the first medium.

We see that the fields in external half-spaces are de-
scribed either by components E{’ and A{), which are
more convenient to describe wave propagation inside the
modulated structure, or by parameters f, ,(;f) and bg], which
are more intuitive and, as we shall see below, permit a
simple writing of the boundary conditions. We derive a
2N x 2N matrix that acts as an interface between both
representations at coordinate zg (first boundary),

cascaded planar uniform

volume gratings layers

surface
relief
grating

Fig. 3. Example of a compound periodic structure thap can be
represented by a characteristic-matrix formalism, mcl_udmg sur-
face relief gratings, volume gratings, and uniform optical layers-
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0
expl jkp, "'zl
0
[C(Zo)]=
0
(i~w) _
- =2 expl jkps 2]
ko
0
0
exp[ th vle]
0 i
% v (2.25)
E 0
(1-») )
P expl sk 2]
ko
0

and we obtain the relation

B~z e

17
11

(2.26)

-1
i

= 3 =(C(z)]

Y™ (zo) b

Similar relatxons can be denved in the last half-space;
we denote by f and b the complex amplitudes of
the forward- and backward-propagating waves, respec-
tively, of the Rayleigh field expansion in the last medium,
and [C(zn)] is the interface matrix at coordinate z,, (last
boundary).

Introducing the Rayleigh coefficients and the interface
matrices in the characteristic-matrix relation, we obtain
the 2N X 2N matrix relation

)
fr

|

= 2 =[CEN 1] (Puzlexp(~(zrer — 2)(D])

{=0

B

fi""”’

X [Plzis )] [Clzm)] (2.27)

11
H|

By
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It is now straightforward to apply the usual boundary
conditions:

(1) One incident wave is incident in the first haif-space
with amplitude equal to 1:

= b (2.28)
1 o

(2) there are no backward-propagating waves in the last
half-space:

B =10 | (2.29)

- -

Substituting these vectors into Eg. (2.27), we obtain a
li{nealr sysbe(m jcrf 2N equations with the 2N unknowns
b 1= f 1=w .

W'hen the characteristic matrix is numerically well
behaved (without huge exponential coefficients),
system (2.27) is easily solved by classical inversion
methods. Generally, several eigenvalues exhibit a
negative real part, revealing the existence of growing
inhomogeneocus modes in the structure; if the grating
layer is thick enough, the corresponding exponential
terms in Eq. (2.22) become too large, yielding numerical
instabilities or overflows. One solution is to neglect the
most inhomogeneous modes of propagation by reducing
the number of diffracted orders involved in the calculus;
this solution is not satisfactory, except in some limiting
cases, because it may induce a significant loss of accu-
racy. In Section 3 we propose a rigorous method for
solving the problem without numerical difficulties, even
with extremely large thickness values.

G. Diffraction Efficiencies
After the deterrmnat}on of the reflected and transmitted
amplitudes b5 ' and F57°, respectively, the reflection

and transmission diffraction efficiencies, denoted 17‘ v
and 17,(9 " , respectively, are obtained by the formulas
{i-v) k“ ¢ (i—»)y2 (i—») (t & {i~v} o
N3 = o) lb l: nF = {0) |f | -
k.F‘z Fz
(2.30)

3. ALGORITHM

In this section we use the following vector nota-
tion: incident waves I = [L 0 ... 0], reflected
waves R = [... 5% ..}, transmitted waves T =
.. A" ..J, and backward-propagating waves in
the last halfspace O=1[.. 0 ...J. The 2N un-
knowns of the problem are thus represenbed by R and
T. We recall that the dimension of all these vectors is
N. An eigenvalue has a critical negative real part if
the number exp(—eigenvalue X thickness) is too large to
be correctly handled and a critical positive real part if
exp(+eigenvalue X thickness) is too large.
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Our algorithm makes use of the following property:
in a given characteristic matrix the number of eigenval-
ues with a critical negative real part is smaller than N,
and the maximum number of eigenvalues with a criti-
cal positive real part is also restricted to N. A demon-
stration is given in Appendix A for the case of a non-
absorbing grating. In our numerical investigations this
property was always verified, even in absorbing grat-
ings (see Subsection 4.B.2). By rearranging the position
of the eigenvector matrix columns in relation (2.18), we
can put the eigenvalues in growing order on the diagonal
of matrix (D). We now assume that such permutations
are performed in each elementary characteristic matrix
of relation (2.27),

Relation (2.27) may be rewritten in the form

I m ot T
EYRNCE H

where m’' = 3m + 2 is the total number of matrices in
Eq. (2.27); each matrix [A,) is either a well-behaved ma-
trix, such as [Pi(zp )}, [(Puz)]* ({ € {0,1,...,m — 1}),
[C(2p)], and [C(z,,}] ™", or a diagonal matrix of exponential
terms. Among these diagonal elements only the first N
ones may be critically positive and only the last N ones
may be critically negative.
We divide each matrix [A,] into four submatrices:

(A1} [AR]
[AL = ———t--— s RE{0,1...,m -1}
(4] 1AL (3.2)

and we define two sets of vectors, X, and Y,, of
dimension N:

m' -1
kE0,1,...,m — 1} [iﬂ = ([‘[ [At])[g]
l=k
X.] [T
HER R

From Eqs. (3.2) and (3.3) we immediately derive the re-
currence relations

Xeo1 = [AYIX, + (ALY,
Yoy = [A X, + (ALY,
he(l,2,. .. m}. (34)

We now seek two families of N X N matrices [P,] and
[Q:] that verify
(PuiXy =Y,,
[Q]Xe =T,
ke{0,1,...,m'}. (3.5)
We introduce [P,] and [Q,] into relations (3.4} and elim-

inate X, and Y,; we obtain two sets of relations that are
together sufficient for equalities (3.4) to be verified;

—
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[Peo1] = (A%, ] + [ALL TP ODAAR, T + (AL, TP,
[Qu-1] = [QeJ(AR) + [AL AP,
ke{l,2,....,m'}. 3.6)

The preceding relations are a descending recurrence
definition for [P,] and [Q,). The initial terms of the
recurrence are obtained from Egs. (3.3) and (3.5):

[Pm:] = N x N null matrix,
{Q.] = N X N identity matrix, (3.7}

If ([As-1] is a well-behaved matrix, the calculation of
[P:-1] and [Q, ] by recurrence equations (3.6) yields no
problem. If [A, ;]is a diagonal matrix of exponential
terms, relations (3.6) simplify to

(Pl = [ALL PLIARY 37,
[Qu-1] = [QulAR.T,
kell,2,...,m'}. (3.8

The calculation of matrix [A};L,] (the lower-right-hand
part of [A,_]) is not problematic, since the large elements
belong to the upper-left-hand submatrix [AY,]. [A2,]
is a diagonal matrix, and its elements are exponentials of
possibly large positive real numbers; thus matrix [A]? ]!
is diagonal, and its elements are the exponentials of the
opposites of the same numbers. Because of the conve-
nient eigenvalue redistribution, the elements of both ma-
trices {A3! ;] and [A3 ]! remain of tractable magnitude.

For any value of &, recurrence relations (3.6) are cal-
culated without numerical problems. Starting from the
initial values at & = m/, their repetition leads to the deter-
mination of matrices [Py] and [Q,]. Then relations (3.3)
and (3.5) applied to & = 0 give

R =[P,]L, T = [Qq]I. 3.9

Equation (3.1) was thus changed into relations (3.9).
Equation (3.1) relates the input and output wave ampli-
tudes in the first half-space to their values in the last
half-space. Relations (3.9) express the output wave am-
plitudes (in both half-spaces) as functions of the input am-
plitude. These relations directly represent the physical
transformation of light by the grating; consequently, ma-
trices [Py] and [Qq] are well behaved.

To summarize, the algorithm proceeds as follows:
first, [P:] and [Q.] are initialized at k& = m' with re-
lations (3.7). Then recurrence relations (3.6) are applied
m' times downward through the stack. When matrix
[A,_1] is well behaved, Eqs. (3.6) are simply calculated
with the help of standard mathematical routines. When
[As-1] is a diagonal matrix of exponential terms, a
special matrix inversion routine is required; we must
caleulate the coefficients of [AY,]* directly by using
the opposites of the critical eigenvalues without cal-
culating [AJ,]. After [P;] and [Qu] are determined,
the values of the reflected and transmitted ampiitudes
are directly obtained by relations (3.9), and the diffrac-
tion efficiencies in all the diffracted orders are given by
formulas (2.30).
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[ /’
Y
Fig. 4. Surface relief grating with a rectangular profile; the

spatial period is equal to the incident wavelength, and the angle
of incidence is § = 30°.

4. NUMERICAL RESULTS

A Surface Relief Gratings

Our algorithm is well adapted to the coupled-wave mod-
eling of surface relief gratings. In the analysis we saw
that such a grating might be simply considered a stack
of cascaded planar volume gratings with a binary index.
Because of the nonsinusoidal modulation of these elemen-
tary index gratings and because of the possibly large dif-
ference between the internal and external indices, several
higher-order harmeonics of the index profile are nonnegli-
gible and induce a significant coupling invelving several
higher diffraction orders. Thus an accurate calculation
of the diffraction efficiencies must account for these or-
ders, including the evanescent ones. Beyond a critical
groove depth the direct calculation and resolution of lin-
ear gystem (2.27) become unstable (we shall refer to this
method as direct resolution), while our new algorithm still
gives stable results with high accuracy.

For comparison, we treat two examples that were pre-
sented earlier by Moharam and Gaylord.!'®* In both cases
the first medium is air, the grating substrate extends to
infinity on the positive z side and has a real index ng =
(2.5)"2, and the wavelength in air is assumed to be equal
to the groove spacing (A = A); d represents the groove
depth. A plane wave with TE polarization is incident on
the grating at the first Bragg angle (85 = 30°).

1. Hectangular Grating (Square Wave)

In the first example the grating has a rectangular groove
shape as shown in Fig. 4; thus we treat it as a single
planar binary index grating with thickness d. We plot
in Fig. 5 the diffracted intensity in order —1 as a func-
tion of the groove depth expressed in wavelength units.
We compare the results of our algorithm using N = 8 dif-
fracted orders with three-wave and five-wave calculations
using direct resolution. The three-wave results exhibit
poor agreement with the two other curves and become
erratic for d/A = 7.4 because of too large exponential val-
ues. The beginning of the five-wave curve obtained by
direct resolution is almost exactly superimposed upon the
results of our algorithm, but numerical problems occur
for d/A = 3. Figure 6 represents the efficiency varia-
tions of transmitted, reflected, and diffracted orders cal-
culated with our new algorithm retaining 8 diffracted
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orders. These curves are similar to those presented in
Ref. 15 for groove depths d/A = 4,

In order to demonstrate good stability with very deep
grooves, we extended the curves of Fig. 6 up to d/A = 10.
Qur algorithm remains stable for much larger values
that may not correspond to common physical situations:
we increased the groove depth beyond 1000 wavelengths
without any numerical instability. We also tested the be-
havior of the computer program when the number N of
diffracted orders is increased: for N = 8 the changes in
the efficiencies of Fig. 6 are less than 1075, Our com-
puter program was able to handle up to 18 diffracted
orders; beyond this value of N the iterative eigenvector
searching routine diverged.

In the analysis we explained that our matrix formalism
and our algorithm could also be applied to TM polariza-
tion; this is illustrated in Fig. 7, where we have plotted
the diffraction efficiencies as functions of the groove depth
for the TM case.

2. Stairstep Grating

The second example is a graiting with a stairstep profile
that we represent as two cascaded binary gratings with
thickness d/2. In Fig. 8 we distinguish two geometries,

....... standard 3 waves
—-- standard 5 waves
— new algorithm 8 waves

0.8 -4
0.6 —

0.4 —

Diffraction efficiency

0.2 H

0.0 | E— | —

0 2 4 6 8 10
Groove depth (wavelength units)
Fig. 5. Comparison between the standard and new algorithms
for rectangular surface profile: variations of the —l-order
diffraction efficiency as a function of the groove depth in
wavelengths with TE polarization,

— -1 transmitted order ---- lst transmitted order
- 0 transmitted order ---- 0 reflected order
1.0
P ."-,
2 084:%
5] 4 H
3
& 0.6 - B
L i
= ;
2 04—
o )
g H
&
3 0.2 !
il X A e AT ey,
0.0 T I |
0 4 6 8 10

Groove depih (wavelength units)
Fig. 6. Variations of the main diffracted orders as functions
of the groove depth in wavelengths for the rectangular surface
profile with TE polarization.

1
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— -l transmiuted order ---. st transmitted order
O transmitted order ---- 0 reflecied order

1.0 —T'-

08 °

<
o
l

o
'S
|

Diffraction efticiency

<o
tJ
|

<
=1
|

4 6
Groove depth (wavelength units)

Fig. 7. Variations of the main diffracted orders as functions

of the groove depth in wavelengths for the rectangular surface

profile with TM polarization.

7 7

Profile A Profile B

Fig. 8. Two possible geometries for a stairstep surface profile;
the spatial period is equal to the incident wavelength, and the
angle of incidence is § = 30°.

denoted A and B, corresponding to opposite profiles or in-
cidence angles. The variations of diffraction efficiencies
versus the groove depth with TE polarization are repre-
sented for the two opposite profiles in Fig. 9; the maxi-
mum values of diffraction efficiencies in order —1 are
equal to those given in Ref. 15 within 0.1% (A, 67.7%:; B,
71.8%). We extended the calculation again to very large
values of d/A (>1000) without any numerical difficulty.

B. Helographic Valume Gratings

in this subsection we present numerical results for
slanted volume gratings with attenuated index modu-
lation. Both index and absorption gratings are consid-
ered. The recording medium is a holographic film with
thickness d = 13.5 wm and refractive index ny = 1.53 de-
posited upon a glass substrate with index n, = 1.5. The
incidence medium is air. At recording, the photosensi-
tive layer is illuminated by two uniform and coherent
plane waves with wavelength A = 500 nm and respective
angles of incidence in air of 8, = —45° and s = +30°
(see Fig. 10). The corresponding angles inside the film,
8’ = —27.5° and 8y’ = +19.1°, define a slanted interfer-
ence pattern. For greater similarity with a real grat-
ing we account in our model for the absorption of the
recording light by the holographic material: the expo-
sure intensity exponentially decays from the surface to
the second interface, and we assume that the residual
amplitude on the film—substrate interface is half the am-
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plitude of that on the air—film face. Thus we write the
expression of the recording light intensity inside the film
as follows:

E(x,z) = 27%(1 + cos{{27ne/A) x{sin 8," + sin #s")

+ z{cas 8,' + cos 8:")]}). (4.1

Depending on the material that is used, either an in.
dex or an absorption grating is obtained. In both cases
we assume that the energy response of the material is
linear; thus the modulation amplitude is exponentially at-
tenuated in the film depth. 1In our computation we treat
the attenuated grating as a stack of several cascaded ele-
mentary gratings with uniform modulation, and we retain
N = 5 diffracted orders.

Profile A t
— -1 transmitted --- - lst transmitted
G (ransmiteed - 0 reflected
Protile B: ’
1.0
S N 3
g
b=
o
g
‘s 0.4 H ;
&
& 024
N T g W L A VR e )
0.0 T | | { ;
0 2 4 6 8 1]

Groove depth (wavelength units)
Fig. 9. Variations of the main diffracted orders as functions of
the groove depth in wavelength units for two stairstep surface
profiles with TE polarizatien. The zero reflected order of case B
is superimposed upon that of case A; the other orders of case B
are recognizable by their similarity with case A.

x4

interference

pattern E(x,z)
Fig. 10. Holographic recording geometry of a planar volume
grating.
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1.0 —
0.8 -

(1]
0.6 - -~

0.4 —

Diffraction efficiency

0.2 —

0.0 LI S

Incidence angle (deg)
Fig. 11. Angular variations of diffraction efficiencies in
+land -1 orders for the phase volume grating with TE
polarization.

1.0 —

o
o
|

o
o
i

=]
A

{
3

Diffraction efficiency

o
X
|

e

Incidence angle (deg)
Fig. 12. Angular variations of diffraction efficiencies in
+land ~1 orders for the phase volume grating with TM
polarization,

Table 1. Example of Eigenvalue Distribution,
Ordered by Growing Real Part, for
Phase and Absorption Volume Gratings,
Retaining Five Orders, with Wavelength
A =500 nm and Incidence Angle ¢ = —30°

Phase Grating Absorption Grating

i
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tive index. In our simulation we discretize the modula-
tion over the elementary slices, assuming the following
index response:

n(x,z) = ng — 0.02E(x,z). (4.2)

Figure 11 represents the angular response of the at-
tenuated index grating, replayed at A = 500 nm with
TE polarization, in the —1and +1 diffracted orders.
Figure 12 shows the corresponding results obtained with
TM polarization. In these examples the grating was di-
vided into m = 10 elementary gratings. For a fixed in-
cidence angle of § = —30° we printed the eigenvalues
of the first characteristic matrix, which corresponds to
the closest grating to the air surface. Table 1 contains
these values ordered by growing real part. As predicted
in Appendix A, the opposite of the complex conjugate of
each eigenvalue in Table 1 is also an eigenvalue. We ob-
served the evolution of the results when the number of
elementary gratings was increased to m = 100: the al-
gorithm was perfectly stable, and the efficiency variations
remained within 1075 for m < 24,

0.05
0.04 —
0.03

0.02 —

Diffraction efficiency

0.01 —

0.00 Ill[{?ﬁllllljl!“-l'llil
-50 0 50

Incidence angle (deg}
Fig. 13. Angular variations of diffraction efficiencies in
+1 and -1 orders for the absorption volume grating with TE
polarization.

0.05 —

Real Imaginary Real Imaginary
1 —2.4921071 —-0.2187540 —2.4802980 —0.2093668
2 —-1.1757074 0.1436834  —1.1504568 0.1543284
3 —0.7951013 ~-0.1281361 —0.7574917 ~0.1065848
4 0.0000000 —1.4637870 -0.0158833 1.4050277
5 0.0000000 1.3775048 —0.0052835 1.4090145
6 0.0000000 —1.2813433 0.0102463  -1.4827499
7 0.0000000 1.3987121 0.0109204  —1.3046831
8 0.7951013 —0.1281361 0.7574917  —0.1457060
9 1.1757074 0.1436834 1.1504568 0.1285696
10 2.4921071 —0.2187540 2.4802980 —0.2231450

1. Phase Grating

Diffraction efficiency

0.04 —

0.03 +

0.02 —

0.01 4

0.60

-50
Incidence angle (deg)

In a holographic material such as photopolymers or
dichromated gelatin, the exposition by an interference
pattern induces variations of the real part of the refrac-

et

Fig. 14. Angular variations of diffraction efficiencies in
+1and -1 orders for the absorption volume grating with TM
polarization.
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2. Absorption Grating

In this case, for instance in a silver halide photographic
plate, variations of the imaginary part of the refractive
index are obtained. The final index is assumed to be
given by

n{x,z} = ng + 0.01jE(x, 2). (4.3)

Figure 13 shows the angular variations of diffraction
efficiency of the attenuated absorption grating, recon-
structed at A = 500 nm with TE polarization, in the
-l and +1 diffracted orders. The results for TM polar-
ization are represented in Fig. 14, As above, we give an
example of the eigenvalue distribution in Table 1. Con-
firming the initial assumption of Section 3, we observe
five eigenvalues with a negative real part and five eigen-
values with a positive real part. Only three pairs of
eigenvalues corresponding to nonpropagating modes have
opposite real parts, and the imaginary parts are all dif-
ferent.

5. CONCLUSION

We have derived a characteristic formalism for the rig-
orous coupled-wave theory of grating diffraction, which
applies to planar volume gratings, surface relief grat-
ings, and stacks of planar gratings with equal period.
With the help of this formalism we proposed a new algo-
rithm that overcomes numerical instabilities encountered
in the coupled-wave modeling of very deep modulated
structures. We presented numerical results for surface
relief gratings and for phase and amplitude nonuniform
volume holographic gratings. These results revealed the
very good stability of our algorithm. In conclusion, the
method permits accurate caleulation of light diffraction by
gratings of arbitrary profile and thickness; we believe that
it contributes to enlargement of the field of application of
the coupled-wave theory.

APPENDIX A:; JUSTIFICATION OF THE
EIGENVALUE REDISTRIBUTION IN THE
CASE OF A PURE DIELECTRIC GRATING

In our description of the algorithm (Section 3} we made
the following hypothesis about the matrix [M] given by
relation (2.14): the numbers of eigenvalues with a criti-
cal negative real part and of those with a critical positive
real part are both smaller than N. We now demonstrate
this property in the case of a nonabsorbing grating. In
this appendix complex conjugation is represented by an
asterigk, and matrix transposition is denoted by the su-
perscript T

We consider an arbitrary eigenvalue x of matrix [M]
and its complex conjugate x*. We know that x is a root
of the characteristic polynomial p(X} of matrix (M ]:

plx) = det[M] - z[L:5]) = 0. {Al)

We now calculate the value of p(X) at X = —x*:
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p(-x*) = det(( M} + x*[ Ly))
—JK A+ 2 [In] k[ I ]
=det} | ——————————~ rT———————— =
I AVSEEY S W
(A2)

If we transpose the matrix in Eq. (A2), the diagonal sub-
matrices — jK,[A] + x*[Iy] are not affected, and the de-
terminant remains unchanged:

p(—z%)

T
~ jho[ In]" : ~JK[A] + 2% [ 1n]
(A3)

Since the modulated index profile is real, the coefficients
of its Fourier expansion (2.1) verify that

A;,=nR;, LEZ. (A4)

This implies that the N X N matrix [] defined by
Eqs. (2.18) is Hermitian:

[ =[a]. (AB)

Introducing Eq. (A5) into Eq. (A3) and using the fact that
both matrices [A] and [ Iy] are real, we obtain

pl-x")
(GK[AD® + 2™ [INT* : (ol 2))*
= det ———————————— B e
{ kol In ] ! (GK.[AD* + [ LT

(AB)

The permutations between the first and last N lines and
between the first and last N columns yield

pl—x*y = (-1

Xdet| | ~~—————— g
(jRa[Q]* : (GE (A + ™[ 1]

(A7)

Thus we recognize the opposite of the complex conjugate
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of plx):
p(-x7) = —[ p(x)]* =0. (AB)

We have demonstrated that if x is an eigenvalue of
matrix [M], then the opposite of its complex conjugate
is also an eigenvalue of [M]. In other words, either the
eigenvalue x is purely imaginary or another eigenvalue
exists with the same imaginary part and the opposite real
part. Thus the numbers of eigenvalues with a critical
negative real part and of those with a critical positive
real part are equal.

*Present address, ESSILOR Internaticnal, 81 Boule-
vard Oudry, 94 000 Créteil, France.
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The analysis of gratings of arbitrary depth, profile, and permittivity is conducted by cutting the modulated
region into different slices for which the differential theory of gratings is able to compute the diffracted field

for both TE and TM polarization without numerical instabilities.

The use of a suitable transition matrix

(R matrix) then allows one to analyze the entire stack without encountering the numerical instabilities that
generally occur with use of the 7-transmission matrix, which is well known in stratified media theory. The
use of the R-matrix propagation algorithm provides a breakthrough for grating theoreticians in the sense that
it not only permits the study of grating of arbitrary depth but also eliminates the numerical instabilities that
have plagued the differential theory in TM polarization during the past 20 years.

1. INTRODUCTION

The past 20 years have seen the spread of grating use
from the restricted domain of spectroscopy to various do-
mains of physics, including acoustics, solid-state physics,
nonlinear optics, x-ray instrumentation, optical communi-
cations, and optical computing; and gratings have begun
to appear in common life as safety features on credit
cards, bank notes, and stamps as well as in a wide vari-
ety of display and advertising applications.! The result
is that grating theoreticians are confronted with gratings
whose groove-depth—to-groove-spacing ratio, h/d, is no
longer limited to the classical (0.05-0.5) range used in
spectroscopy® but can reach several units. As the groove
depth increases, the boundary value problem that is re-
lated to Maxwell's equations and the associated boundary
conditions on the grating surface become increasingly dif-
ficult to resolve numerically. Both the computation time
(i.e., the cost of the calculation) and the number of terms
used to describe the electromagnetic field increase. The
presence of ever larger undesired exponential functions
(those terms of Rayleigh expansions that one wants to
eliminate because of their divergent behavior at infinity)
may produce overflows and contaminate the desired so-
lutions, leading to a loss of accuracy. Thus all existing
grating formalisms® have limitations with respect to the
modulations that they can tackle; these limitations de-
pend strongly on the spectral domain, the refractive in-
dex of the grating material, and the polarization of the
incident light.

The first idea that can be tried in the attempt to over-
come this limitation is to cut the modulated region into
different slices that are thin enocugh that the usual for-
malisms can be used. It is then possible to determine
the T transmission matrix of each siice.®® Then, as for
plane stratified media® the T matrix of the entire grat-
ing is simply the product of the matrices of the different
slices. Such a process has turned out te be quite effi-
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cient for studying x-ray gratings etched inside a multi-
dielectric layer.® However, the T-matrix propagation
algorithm is known to be unstable. Thus it does not im-
prove the range of validity of any formalism with respect
to the groove depth.

Two recent contributions have brought some new
ideas to the problem of increasing the range of valid-
ity. The first one is the multiple-reflection series of Pai
and Awada,” which sews together the reflected and the
transmitted orders at each interface in a way similar to
that of the series used to study the Fabry—Perot inter-
ferometer. The second is the so ¢alled R-matrix propa-
gation algorithm®® developed in 1976 to study chemical
reactions and recently introduced in grating thecry by
DeSandre and Elson'® and Li!! Unlike the research
in Ref. 7, which was presented only for dielectric grat-
ings used in TE polarization, the research in Ref 11
was developed for both dielectric and metallic gratings
used in conical diffraction. This research extends the
modal method of Botten et al.'*!3 to conical mountings'
with the R-matrix propagation algorithm and produces
interesting convergent results. We have tried the meth-
ods of both Ref 7 and Ref. 11 and found the latter
to be much more powerful. Thus we decided to use
the R-matrix propagatien algorithm to try to improve
the range of validity of the differential formalism."
The choice of this method is related to the method’s
wide applicability to any groove shape, spectral domain,
stack of gratings, grating material, phase and amplitude
gratings, and so on. However, for highly reflecting
metallic gratings, because of numerical instabilities the
previous method was strictly limited for TM polarization
and visible or near-infrared regions to shallow gratings.'®
It was thus tempting to see whether the new method could
get rid of the old problem. Our research differs from
the research in Ref. 11 in that we do not use the mul-
tilayer modal method. In addition, we implement the
R-matrix propagation algorithm in two different ways,

© 1994 Optical Society of America
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Fig. 1. Decomposition of the modulated region into M different
slices.

and we compare the corresponding numerical results
from the two methods.

2. THEORY

Figure 1 shows a period of a surface periodically modu-
lated with period d with respect to x and describes the
notation used in what follows. The groove shape is arbi-
trary. The refractive’ index of the bumps, v, can be dif-
ferent from the refractive index of the substrate, v2, and
the refractive index inside the grooves, ¢/, can be differ-
ent from that of the superstrate, . An incident linearly
polarized plane wave illuminates the grating under inci-
dence 8, and the incident wave vector lies in the cross-
section plane of the grating. The general vectorial prob-
lem is thus reduced to the study of the two fundamental
cases of polarization, and the unknown funetion u(x, y) is
the z component of the electric or the magnetic field for
TE and TM polarizations, respectively.

Outside the modulated region defined by 0 < y = A, the
field (in media 1 and 2) can be represented by Rayleigh
expansions:

u, = T{AY exp[—iB'y] + B expliB'yllexplianx),
' (1}
ug = 3 {A? exp[—iB¥y] + By expliB;yllexplia,x),
' (1
with

2 .
a,=a+tn—": a = kovy 8in 6,

d

- 2T7r B = ha*vi® = ai?,

i€[1,2], Regy +Img >0,

ko

and A is the wavelength in vacuum. Of course, when
applied to the entire grating, Eqgs. (1) and (1) have to be
simplified through the use of the outgoing wave condition,
which implies that AV = 8,4, Bi? = 0, and ¥n; but when
we consider an arbitrary slice as iliustrated in Fig. 1,
lying between ordinates y;-1 and y;, with j €[2, M — 1],
ail AY' and By’ Rayleigh coefficients have to be kept.
However, at the computational level only N values of n
will be retained. N will be called the truncation order,
and the number M of slices wiil be called the stratifica-
tion order.
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A. Definition of the ¢ Transmission Matrix

The definition of the ¢ matrix used here is a little different
from the one previously used in grating theory*® and
denoted T. Expanding the field inside the modulated
region by a modified Fourier series,

u =3 Uyl ylexplia,x), (2)

we first note that the continuity of the tangential com-
ponents of E and H at y = y, leads to the continuity of
u(x, y)and (du/dy)(x, y) for the TE case and of uix, y) and
1/[k%(x, y)}(3u/dy)x, y) for the TM case, where k(x, y) is
the modulus of the wave vector in the various regions.
Let us call V,(y) the components of the exp(ia,x} basis of
functions du/dy in the TE case and (1/k%){(du/dy)} in the
TM case. We introduce the ¢ matrix of the jth layer as
the matrix linking the components of continuous quanti-
ties through Eq. (3):

Un(.}’j) =t(j) Un(y_f~1) . @
Vn(yj) Vn(yj—!)
The reader interested in the method of computing the '’
matrices can consult Ref. 5, which gives all the details of

obtaining the T matrix, which is similar to the ¢ matrix.
The use of Eq. (3) from j = 1 to j = M shows that

[3:5:; jl - pMIpM=l) tmtm[gn:g)) :l @

n

Since there exist linear relations® between U, and V,
on one side and the Rayleigh coefficients [AY, BV) or
[A®, B?] on the other side, Eq. (4) enables us, through
the method described in Refs. 5 and 17, to compute the
Rayleigh coefficients everywhere and thus to find the ef-
ficiencies diffracted in the various spectral orders. How-
ever, when the groove depth is high enough, such a
method is known to be unstable. This is the reason that
instead of using the ¢ matrix we introduce the r reflection
matrix.

B. Definition of the » Matrix
Let us define a new matrix r'/, for the jth slice, by

Eq. {5):
Unlyj-1) G Valyi-1)
= plJ) 5
[ Uy [~ 7L Vals) )
and divide the 2N x 2N r/' matrix into four ¥ X N
matrices, as shown in Eq. (6):

(VI )
‘ i T2
1) = .
rih = (- (6)
L TO T )

Let us apply the same decomposition to matrix £'¥. Ele-
mentary algebra, with use of Egs. (3) and (5}, allows us
to express the new N X N r matrices as functions of the
t matrices by

T 17 A

rid =841,

r =68 - a7 e

rig = £ Q)
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C. R-Matrix Propagation Algerithm
Let us now consider the global & matrix defined by

U,{(0) — R V.(0) @)
Ualy) Valy,)
and divide it into four submatrices as stated by Eq. (6).
Previcus research®® has established that the block ele-

ments of the giobal B matrix obey a set of recursion for-
mulas which are recalled in Ref. 11:

R(;) — R(J 1 + Rié—llzu,R(ﬁ..U‘
R(J) _ *R;{llz("’"rllé) i
R[Jl _ r‘ﬁ’Z‘“R”‘“
R“) R — i AT 9)
where
ZU [ru) R(" 11]

The R-matrix propagation algorithm starts from the
value of R, which of course is equal to r'!; the block
elements of R'Y are given by Eqgs. (7), in which j =
The R-matrix propagation algorithm computes the r'/)
matrix for each slice from Eqgs. (7) and deduces the R'/!
matrices from Egs. (9). The process ends with the pro-
duction of matrix R We get

U0 ] _ pan| Vol

Unl ym) Valym)
D. Determination of the Rayleigh Coefficients
The matching of the numerical solution at the frontiers

of the modulated area (y = 0 and ¥ = A) with the corre-
sponding Rayleigh expansions leads to

Un(h) = AY exp(—iBiah) + BLY expliBiah),
V() = gi(—iB1)[AY exp(—iBi.h) — B exp(iBi.h)],

(107

U.(0) = AP + B,
V,(0) = gal-iB:, (A7 — BP],
where
1 ¥i for TE polarization
q; = 1

for TM polarization, { = 1, 2 .

P(Ml
R(M:

_ Br(lZ'l]
- BV explifah)] |

(11}

koZV,'

Then Eg. (10) leads to

AZr 4. B R(M)
[A;” exp(—iB1.h) + Bl exp(iﬁl.nh)} -

« q2( - iﬁ2,n ){A{ﬂZi
1=iBa A, exp(=iBy,h)

Overflow problems linked with exponentially growing
functions are avoided by the introduction of new Rayleigh
coefficients, given by
Al = AV exp(—if k)
BY = BY expliBiqh)
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Equation (11) leads to the linear algebraic set
[AZY} 3 (B2} = —igoR)Y [B2nJ0AP} — (B
- iCthz [ﬁLn]({A(uh} - {BM"D,
(AN + (B} = - igoRn (B2 )UAD) - (B
—iqiRy [BLal@AYY — BN, a2

where { } represents a column vector with ¥ elements and
[ ] represents N x N diagenal matrices with elements 8;
(i =1,2).

The use of the outgoing wave condition implies that
AV = 5 o and B = 0, and we call T, the Rayleigh
coefficients [A'?'] of the downgoing waves in the substrate.
If we introduce four new N X N matrices P;; by

. M

Py, = igyRY} ‘[ﬁ‘z!n];
L LM

Py =iq\Riz [Bia],

Pay = iquRiy [B2a),

Po = iqi Ry (Bual.

and with

= {exp(~iB1.1t}8r 0},

the unknown Rayleigh coefficients B\' and T, are solu-
tions of the linear algebraic system
-PQ

I+ Py —Pyy {T.} _ 13
=Py =1+ Py LBV} | | (X + P)@ 1B

where I is the unit matrix.

Its resolution on a computer gives T, and B}, from
which are deduced the efficiencies in the various spectral
orders.

E. Variant of the Method: The- R'-Matrix
Propagation Algorithm
The aim of this subsection is to propose a different imple-
mentation of the R-matrix propagation algorithm, which
will be called the R’-matrix propagation algorithm in
what follows. In order to point out the similarities and
differences between the two methods, we give the equa-
tions that are at the basis of the R’-matrix propagation al-
gorithm the same numbers as those used for the R-matrix
one but with primes added.

Let us define the /' matrix for the jth slice by

Un(yj—l) - Vn(y.!’ll (5
Vn(yj] Un(_)';] )
and divide it into four blocks:

qogt r'IJ\
. r E
ngy 1 12 ) '
= W 16
ra 24

The use of Egs. (3) and (5') allows us to derive the four
blocks in terms of the /' blocks by

=
ri =01,

o A KA T N AT

ras = [0 L. -
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We then introduce the glebal R’ matrix defined by
U.(0) V(D)
—_ R'IJ‘I R Y]
[vnty,)} |:Un(y1):| @

Appendix A establishes among its four blocks the follow-
ing recurrence relations:

R{(lﬂ - R;l‘lj‘l) + R{(ZJ—l:Z,U-,rflcl_le;llrll ,
Ry =Ry "Z0ry,
Rglﬂ = ";1J‘Y"ﬂR;1FU f
Ryl =rod' + rid' Y Rys "r1, @)
where
Z ={1-r{'Red "1,
Y =[I- Ry 'rii'T",

and I i8 a unit matrix.

Similarly to what was done in Subsection 2.C, the R'-
matrix propagation algorithm may start from R"Y, which
is equal te #(1), whose block elements are given by
Egs. (7), in which we take j egual to 1; we then use
Eqs. (%) ¥j €[2, M]. But in contrast to what happens
for the first formulation of the algorithm (the R-matrix
one), one may also initiate the algorithm with

0 I
K0y
v (1 o]

and use Egs. (9)V¥j €[1, M]. Our main interest in this
second formulation is to use it to provide an independent
way of checking the numerical results.

From the numerical peint of view, the two algorithms
turn out to be equivalent. They give convergent results
on the eighth or ninth digit when computations are con-
ducted in double precision (i.e., with 16 digits) as soon as
the integration step 8y is approximately 107° to 107%4,
and they remain stable when 8y — 0, as long as 8y =
10-10,4,

3. NUMERICAL IMPLEMENTATION

Maxwell’s equations used in the sense of distributions
allow us to write the propagation equations in the entire
space as

aH,  #*E, |,

T e~ FE e,

B _ g (14)
ay

where H, = iwuoH, and k(x, y) is the product of &, by
the refractive index at point {(x, y). This set holds for TE
polarization and must be replaced by

dH, =

— 2

3y k°E,,

JE, 3 1 4H,

ay 8x(k2(1, ¥} Bx) He, (15)

where E, = E./(iwug) for TM polarization.
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Expanding k(x, y) on the Fourier basis with respect to
the x coordinate and expanding the field on the exp(ix,x)
basis, we obtain

dgf;‘n = aanz.n = z (kz)n—mEz,m-
df.;m - Hl,n (16)
for TE polarization and
den +x N
d—y" = Z (k2)n—mEx,m:
dE, , < 1
5o £ m(p) om0

for TM polarization.

Thus for both polarizations the propagation equation
is transformed into a set of first-order coupled differen-
tial equations with nonconstant coefficients, for which no
analytical solution exists. Only a numerical solution can
be found with the help of a computer. This numerical
integration is done with use of the classical fourth-order
Runge—Kutta algorithm!® after truncation of the set of
equations to order N (i.e., after limitation of the field se-
ries to N components). Thus the computed absolute ef-
ficiencies e, in the pth order, which are derived directly
from the Rayleigh coefficients B!" and T, are indeed func-
tions of M and N, where M is the stratification order. In
order to check the convergence of the method we define
two criteria Ay and Ay by

M+ My, N) - M,N
Ay =logio el o) — e )"

e (M, N)

eo(M, N + No) — e,(M, N)
e, (M, N)

Ax = logio

where My and Nj are integer increments of integers M
and N.

4, EXTENSION OF THE METHOD TO A
STACK OF GRATINGS

It is worth noting that the present method can be easily
extended to more-complicated periodic diffracting struc-
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Fig. 2. 1lustration of a stack of superimposed dielectric
gratings.
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Table 1. Evolution of the Transmitted Efficiencies and Total Diffracted Energy as Functions
of M for Grating Configuration 1 and TE and TM Polarizations
M R e’ ey’ eg' Yep
TE
2 150 — — — " 3.699429712776
3 100 0.200358593616 0.851696069801 x 10°! 0.915842843856 x 1071 1.000007146496
4 75 0.200358606774 0.851696196233 x 107! 0.915842843415 x 1071 1.000007200927
5 60 0.200358606773 0.851696196228 x 10~} 0.915842843426 x 107! 1.000007200930
6 50 0.200358606773 0.851696196228 x 107! 0.915842843426 x 107! 1.000007200930
™
2 150 — — — 10.665929249490
3 100 —_ ' —_ — 1.025207828867
4 75 0.134345559535 0.7834B6335950 x 107! 0.161406945312 1000008158920
5 80 0.134345559610 0.7834863355681 X 10 * 0.161406945355 1.000008158836
6 50 0.134345559609 0.783486335582 x 107! 0.161406945355 1.000008158836
10 30 0.134345559610 0.783486335581 x 1071 0.161406945355 1.000008158836
12 25 0.134345559610 0.783486335579 x 107! 0.161406945355 1.000008158836
15 20 0.1343455569610 0.783486335581 x 107! 0.161406945355 1.000008158835
20 15 0.134345559610 0.783486335581 x 107! 0.161406945355 1.000008158836
25 12 0.134345559610 0.783486335581 x 107! 0.161406945355 1.000008158836
Table 2. Same as Table 1 for Grating Configuration 2 Made by Rods of Chromium
Embedded in a Dielectric Grating
M Q ey’ et ez’ den
TE
2 150 — — — 77.004115131057
3 100 — — — 17.149623137215
4 75 0.214987159632 0.925631896432 x 1071 0.640430990970 x 1073 0.685151606333
5 60 0.214986891210 0.925617500762 x 107! 0.640267975488 x 1073 0.685150462982
6 50 0.214986891178 0.925617497050 x 107! 0.640268013452 x 1073 0.685150463269
10 30 0.214986R91247 0.925617496724 % 10 ! 0.640268007591 x 1073 0.685150463318
12 25 0.214986891247 0.925617496724 »x 107! 0.640268007590 x 107* 0.685150463318
™
2 150 — — — 21.13900846
3 100 — — — 23.50368409
4 75 0.866398874452 x 1071 0.613453740205 x 107! 0.200134798700 x 10°1 0.528234288135
5 60 0.866397062083 x 107! 0.613453565735 x 107! 0.200135862619 x 10~ 0.528233956629
] 50 0.866397074296 x 107! 0.613453574941 x 107! 0.200135865498 x 107! 0.528233959644
10 30 0.866397074313 x 107! 0.613453574958 x 107! 0.200135865500 x 10! 0.528233959651
12 25 0.866397074313 X 107! 0.613453574958 x 107! 0.200135865500 x 167! 0528233959651
Table 3. Evolution of the Reflected Efficiencies and Total Diffracted Energy as Functions
of M for Grating Configuration 3 and TE and TM Polarizations
M (4] eq” ey’ ez’ ep
TE
2 150 — —_— _ 1.56342275 L6
3 100 — — - 18.2744526935496
4 75 0.448690625723 0.431613129733 x 107! 0.984271226609 > 10 ? 0.551698844713
5 60 0448690737488 0.431614911395 x 101 0.984264519365 = 10 * 0.554699010109
6 50 0.448690737336 0.431614911333 x 10 ! 0.984264517625 » 10 ¢ 11.5546990099-14
10 30 0.448690737306 0.431614811298 x 107! 0.984264518693 < 10 7 (.554699009939
12 25 0.448690737305 0.431614911296 > 107} 0984264518692 < 10 7 0.334699009938
™
2 150 — — _ 2.9972585452595
3 100 —_ — - 2 321194426985
4 75 0.162562615351 .719406380992 x 10 ! 0.337719255117 » 10 * (313198245250
5 60 0.162562665636 0.719406028677 « 10 ! 0.337718029851 « 10 * 0.313198232007
8 50 0.162562665702 0.719406028518 = 10 ! 0337718029508 x 10 # 0.313198231988
10 30 0.162562665698 0.719406028519 = 10 ! 0337718029457 = 10 2 0.313198231991
12 25 0.162562665698 0.719406028519 = 10 ! 0.337718029457 % 10 0.313198231991
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tures such as a stack of two or more dielectric gratings
with the same period but different groove shapes (Fig. 2).
Such a device consists of several modulated regions sep-
arated by homogeneous ones. We divide the modulated
regions into M,, M,, M; ... slices in order to apply the
R-matrix propagation method. Concerning the homoge-
neous slices (e.g., the ones defined by vy, < ¥ < yag+1),
there is no need to divide them, and Appendix B shows
how the r or the r' matrices can be simply derived from
the Rayleigh expansions of the field and of its normal
derivative. Thus in the R-matrix propagation algorithm
each homogeneous region, regardless of its thickness,
plays the role of a simple slice, and the algorithm can
be started from the bottom of the stack and continued as
far as the top.

Of course, in the above-mentioned stack each modu-
lated region could be a grating covered by a thin layer
of a lossless or lossy dielectric grating with a thickness
smaller than the groove depth. Such a dielectric-coated
grating can be treated in a straightforward manner by the
differential method, at the cost of a slight change in the
Fourier coefficients %,2 of function k%(x, ¥). The trivial
case of a single dielectric-coated grating can then be stud-
ied with the R-matrix algorithm along the same lines as
the study of a bare grating,

The methed can be extended to the case of a stack of
gratings with different periods, with the restrictions that
the coarser grating have a period that is a multiple of the
other periods and that its period define the pericdicity of
the entire stack. Such stacks of two superimposed di-
electric gratings have previously been used!®2° a5 grating
interferometers in high-precision measurements. The
possibility of producing fine-pitch gratings by means of
photolithography opens new potential applications for
such devices. They are at present the subject of large
numerical studies in the framework of a Basic Research
in Industrial Technologies—European Research on Ad-
vanced Materials (BRITE-EURAM) European project,
“Flat Optical Antennas,” the conclusions from which will
be published in a future paper.

5. NUMERICAL RESULTS

A. Checking the R-Matrix Propagation Algorithm

In order to check the validity of the new method, we
choose three different grating configurations. The first
one consists of a deep lamellar grating withd = 1 ym —
h, A = 0365 um, », = 1.536 = #,ve=1 and v = 2.3,
with a 0.5-um groove width illuminated under normal
incidence. This particular groove shape leads to fast
computations, because all the slices are identical, and
thus the #/ matrices must be computed for one slice
only. Table 1 shows the transmitted efficiencies 2! in
the zero, first, and second orders and the total diffracted
energy (3 e,) for different values of M and different
numbers of integration steps Q, varied in such a way
that M@ = 300. Tt can be shown that the value of M
does not matter too much, as long as it is high enough
to avoid divergence of the results. Accuracy is indeed
linked with the value of M@, the results are the same as
high as the tenth digit, when M is varied, with M@ kept
constant. The same conclusions apply to both TE and
TM polarization.

F. Montiel and M. Nevidre

Similar conclusions are reached from Table 2 for
configuration 2, which we derived from configuration 1
by changing v from 2.3 to the complex refractive index
of chromium (1.53 +i3.21). No loss of accuracy was in-
troduced by the metal losses, which absorb between 30%
and 50% of the energy. Configuration 3, related to a
full chromium lamellar grating (»y; = 1 = p'; pp = p =
1.53 + i3.21), led to the results shown in Table 3, which
again show an excellent convergence of the numerical re-
sults of the truncated differential set of equations. Let
us point out that we carried out all calculations for the
three different configurations while keeping 21 Fourier
coefficients for representing the field (from — 10 to +10).
The question of whether the truncated Fourier series
approaches the real field sufficiently will be addressed
below, but Tables 1-3 already show that for the deep
gratings considered here (k/d = 1), supporting several
diffracted orders (A/d = 0.365), the overflow linked with
increasing exponential functions as well as other nu.
merical instabilities have been removed by the R-matrix
propagation algorithm.

Ay
|

N

-2 T T T 7 T T 1 T = M
10 200 30 40 S0 60 70 80 90 100

Fig. 3. Evolution of the accuracy Axr on 0, +1, and +2 reflected

efficiencies and on the total di energy as functions of

number of slices, for grating configuration 3 and TE polarization.
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Fig. 4. Same as for Fig. 3 but for TM polarization,
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81 =T 0,26802 0.38101
91 " 0.27007 0.38713
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171 0.27833 0.39624
181 0.27883 0.39478

'd-ou-@p;*h-o.lpm,A_-O.Sﬁﬁ pm, M =10, @ =50.

In 2 second.step we studied the evolution of the ac-
curacy of the computation as function of product M@ by
plotting criterion Ax for different, spectral orders, as well
as forthe fotal diffracted energy, as a function of M (with

t and equal only to 20). Figure 3 shows
or cofiguration 3. An accuracy of 107° is
kly dhtained on the total energy, as soon as M = 20,
whereas it is necessary to double the value of M to ob-
tain gimilar-accuracy on each diffracted efficiency. No
divergence-of the:results occurs even when a stratifica-
tion number M as high as 100 is used. These conclusions
apply to both TE (Fig. 3) and TM (Fig. 4) polarization.

Whien the'stability of the method has been established,
the problem that remains is the convergence of the nu-
merical results when the number N of Fourier coeffi-
cients is increased. For TE polarization numerical tests
on the deep gratings of configurations 1-3 show that cri-
terion Ay applied to the 0, +1, and +2 diffracted effi-
ciencies becomes less than —3 when N becomes close to
61. For TM polarization the convergence is slower as N
is increased; and for deep metallic gratings, oscillations
can be observed in the values of Ay, However, Table 4
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shows that, for current groove depths produced by grating
manufacturers, a reasonable accuracy of 1072 in diffracted
efficiencies is obtained for N = 81. An even faster con-
vergence is obtained for the rod grating in Table 5.

The last step in checking the new method was to
compare its predictions with those obtained with other
methods. In the range of validity of the previously de-
veloped differential formalism,'® we first checked that
the new method leads to the same results as the previ-
ous one; the discrepancies occurred on the fourth or fifth
digit. Outside this range of validity, we compared the
new results with those obtained with the integral method.
For the example studied in Table 4, the integral methed
gave a difference of a unit on the second digit compared
with the results obtained through our method when N
reached 91

B. Examples of Applications

This subsection gives examples of grating computations
that cannot be performed without the R-matrix propaga-
tion algorithm. We choose a 2000-groove/mm gold grat-
ing in a Littrow mount. The grooves have a symmet-
rical triangular shape, and the grating is used with TE
polarization at 0.6-pm wavelength for which the refrac-
tive index of gold is 0.2 + §2.897. Figure 5 shows the
evolutions of the — 1- and O-order reflected efficiencies as
functions of groove depth h, as high as h/d = 10. For
the highest values of the groove depth, one performs the
computations by taking M = 20, @ = 25, and N = 11,
and no instability occurs. Such a curve could never have
been produced by use of the classical differential method
only. The second example deals with a stack of two sinu-
soidal gratings, as illustrated in Fig. 2, i.e., a corrugated
waveguide with corrugations on both sides, The groove
spacing is 1 um, the groove depth is 0.3 pum, the wave-
length is 0.8 gm, and incidence is 30°. The substrate is
silver {vq = 0.09 + i5.45), the superstrate is air, and the
dielectric layer has a refractive index of 1.5. Figure 6
shows the evelution of the 0-order efficiency as function
of the thickness e of the homogeneous region between
the two profiles (i.e., when e = 0, the silver grating is
already coated with a 0.3-um-thick layer of dielectric).
After a very narrow region (e = 0) in which no guided
wave can propagate and thus in which the O-order re-
flectivity remains close to the reflectivity of silver, many
strong and thin anomalies can be found. The curve in

Table 5. Evolution of the Transmitted and Reflected Efficiencies of a
Grating Made with Rectangular Chromium Rods as Functions of N°

N eot g__l‘ eg” e_" 2 en

81 0.24313605 0.13103090 0.16930986 0.11910124 0.66257807

91 0.24034564 0.13237731 0.17370030 0.11934494 0.66576826
101 0.24543773 0.13326091 0.17086301 0.11949403 0.66905568
111 0.24341668 0.13417700 0.17361233 0.11966288 067086830
121 0.24703351 0.13479741 0.17184844 0.11978479 0.67346417
131 0.24562508 0.13546833 0.17360525 0,11990952 0.67460819
141 0.24823707 0.13593543 0.17252051 0.12000920 0.67670222
151 0.24728619 0.13645036 0.17364343 0.12010446 0.67748446
161 0.24918965 0.13681777 0.17300384 0.12018610 0.67919739
171 0.24857610 0.13722602 0.17370573 0.12026052 0.67976839
181 0.24996719 0.13752376 0.17336586 0.12032774 0.68118456

oGame as Table 4, but here the substrate is vacuum.
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Fig. 5. Evolutions of the —1- and 0-order efficiencies as func-
tions of the groove depth for a symmetric triangular-profile gold
grating with Littrow mount, for TE polarization.
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Fig. 6. 0-Order efficiency of a dielectric coated sinusoidal silver

grating as a function of dielectric thickness (M = 10, N = §,
@ = 20, for TE polarization.

e

Fig. 6, which may cast doubt into the minds of many
physicists about the validity of the numerical results, has
indeed been fully confirmed for small values of e by the
previously developed differential method.'® It will not
surprise people in the field of optics whe are acquainted
with multilayer gratings, who know that thick dielectric
coatings introduce many sharp anomalies that are related
to the resonant excitation of guided modes. The multi-
plicity of modes, along with the multiplicity of ways of
exciting each of them through grating periodicity, pro-
duces the spectacular behavior shown in Fig. 6. With the
R-matrix propagation algorithm, one could continue the
curve far above e = 6 um without encountering numeri-
cal instabilities.

6. CONCLUSION

This introduction to the B-matrix propagation algorithm
considerably enlarges the range of application of existing
theories with respect to the groove depth and the total
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thickness of the diffracting device. The R-matrix algo-
rithm allows us to study not only very deep gratings, i.e.,
with groove depth equal to several times the groove spac-
ing, but also stacks of superimposed dielectric gratings
without encountering numerical instabilities and over-
flows. Its property of removing undesired increasing ex-
ponential functions makes it useful for studying the prob-
lem of échelle gratings in visible or infrared regions as
well as the problem of x-ray multilayer gratings used in
orders as high as the 60th one. The latter topic is the
subject of study for a future paper.

APPENDIX A: EXPRESSIONS OF
THE RX? THE ") MATRICES

We start from Egq. (3) above:

Unl(y)) £ 8 [ Unlyin '
s Al
[Vm(yj)} [:‘2{’ £3 1| Vinl3,-0) (Al

and we want to compute matrix "/ given by

Un(yi-1) r;({i) r;(rj) Vely-1)
= iy ! A2
[ Vil y;) ral’ i || Unlys) (A2)
Equation (Al) gives
Um(yj) = til{)Um(y}‘_[) + ttlé)vm(yj,l) .
Vol 3j) = £ Un(y;-1) + €62 Vinl 3i-1), (A3)

from which we deduce

Um(yjfx) = () WUl y) — 1657172 Vil 3i-0)
¥

m(yi) = £33 (81117 Unl3))
+{t”) té{’[t”' (J)}V (J’f 3. (A4)
Comparison with Eq. (A2) gives

D iy

rgy = - tia

JUI [tu)]_

) (W) (S0 (J)

rai = tap — tai [t ) ha

) l.rJ' -1

ryg =tz [¢ u 1 , (A5)

which is identical to Egs. (7').

In order to establish the R'-matrix propagation algo-
rithm, we start from Egs. (A2) and (8) written for the
j — 1 slice:

Um{O} R’U 1) R[J 1 Vm(o)
[Vmu,_n} [R'” v g | Untyyen | A9

and we want to compute matrix R’/ defined by

Un(0) RY' R\ Val®
[vm(y,)} {Ré‘f” R |[Unton (A7)
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From Eqgs. (A2) and (A8) we get

Um(yjf!) = r;(IJ]V (yJ*]) + r,llﬁlﬂU (J’j)a

Volyi-1) = Ryt 'Val0) + Rod Uiy, 1), (A8)

from which we obtain
[ = " Ras " WUl y-0) = £ Uniy,)
meu,- by V,.(0),

Rflj llV (0)

+RF(J L r(,-) m{.)’_;)- {A9)

(- Rod " ri{ Walyyon) =

Equations (A9) will be simplified by introduction of Z' and
Y' given by

Z'9 =1~
YU =1 ~

IUIR.'U—I)],]

Ry Vr{'TL. (A10)

Similarly, the other two terms from Egs. (A2) and (A6)
give

Un(0) = RY™"'V(0) + RY Ui y,-1),
Vol )) =rsy'Va (¥;-1) +r22 Um(y,), (A1)

from which we derive equations similar to Eqs. (A9). Fi-
nally, the use of Egs. (A9)-(A11) leads to

.'E;*U

Uni0) = Val0) + Ry V2" Uni )
- R'“ "z Ry TV A0,
Vil y) = raf "Y' Ry "'V ,0(0)

f(_,li A i=1) rfJJ 1041
Y’U]R U (J’) + rog Um(yj)!

from which we deduce that

.'{Jl Rtl; 1

Rt(_} I)Z;‘J, l[J\RF(; -1t
¥
N HE=1l ey p i)
Ry =Ry 2 ”i"12 f
L] ozl P H —li
R — i"glj Y!(J]R J

a i " j)
R _ J

flJJ " hi-1 ag
22 = Tz Y “'R T2,

which is the R'-matrix propagation algorithm.

APPENDIX B: EXPRESSIONS OF THE r AND
THE r’ MATRICES FOR A DIELECTRIC SLAB

Let us consider a homogeneous slab having y, — v,
thickness that is filled with a dielectric with refractive
index v. Inside the slab the field is expressed by the
following Rayleigh expansion:

Yol. 11, No. 12/December 1994/J. Opt. Soc. Am. A 3249

Ulx, y) = 3[An exp(—i8ny) + B., expliBay)lexpliamx),

{BD

where 8.2 =[(2n/A)r]? ~ a,?, with use of the definitions
given in Section 2. S0 we can write

Um(y)) = Am EXP('iﬁmJ’;) + Bm exp(inemyj) ’ (B2)
Valyi) = —ixBrm[An exp{—ifmy;) — Bn explifny)],
(B3)

with y = 1 for TE polarization and y = (A/27v)? for TM

polarization.
From the expressions Va.{y;) and V,,(y;.,} we derive
1 1

~ ixBr 20 SinlBnly, — ¥, 1)) [Vl yilexpliBny; 1)

= Valyj-1)expliBry;)],
1 1
B = - . Vo —iBny;.
iXBm 2 sin[ Bl y; ‘J’m)][ (¥,)exp(=iBmy; 1)

- Vm(}’;—l)exp(_iﬂmy;)]- (84)
Introducing Eqgs. (B4) into Eq. (B2), we obtain

m

1 1
Unl3 = = 5B, {sin[ﬁm(y, - y“)]}( “2Valy)
+ {exp[iﬁm(y_wl - J’;)]
+ exp[iﬂm(yj - yj—l)]}vm(yj)):
1 1
UM(yj 71) - QXBM {Sin(ﬁm(y_; - yJ—l}]}

X {{—expliBn(y; — ¥;-1)]
- exp[_iﬁm(yj - .)’J*l)]}vm(yjfl)
+ 2V (¥;)). (B5)

From these equations we get

RV D U N
1 XBr tan(Bmh ;)

Hl

a1 1 ,
12 XBr SIn(Bnh,)

RPN e S S
) xBn sin(Bh))

rj‘;é‘ S [ . S 1B&)
: XBm tani( By k)

where h, = y; — y,1.
A similar calculation leads to

At i
rg o= —tan‘ﬁmhﬂj|‘
[XB”F

an 1
T (C(}S(ﬁmh,):'
o 1
[ I ®
! cos( G,k )

I

rliy = i xfm taniBa k3] (B7)
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matrix algorithms for
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Two recursive and numerically stable matrix algorithms for modeling layered diffraction gratings, the S-matrix
algorithm and the R-matrix algorithm, are systematically presented in a form that is independent of the
underlying grating models, geometries, and mountings. Many implementation variants of the algorithms
are also presented. Their physical interpretations are given, and their numerical stabilities and efficiencies
are discussed in detail. The single most important criterion for achieving unconditional numerical stability
with both algorithms is to avoid the exponentially growing functions in every step of the matnix recursion.

Lifeng Li

From the viewpeint of numerical efficiency, the §-matrix algorithm is generally preferred to the R-matrix

algorithm, but exeeptional cases are noted.

1. INTRODUCTION

As research in the field of diffraction gratings advances
and the range of grating applications widens, the strue-
tures of gratings become more complicated than before.
One of many new types of gratings that are finding more
applications is layered gratings. For example, multi-
layer thin films were deposited onto photoresist surface-
relief gratings to make high-efficiency, all-dielectric
reflection gratings,! and coating polycarbonate lamellar
gratings with a layer of MgF; was proposed as a means
of making broadband antireflection structures.? Per-
haps the mest extreme cases of layered gratings are the
Bragg-Fresnel gratings for use in x-ray spectroscopy® and
the photonic band-gap materials.* On the other hand,
in some grating models even a grating that consists of a
single periodically corrugated surface is treated numeri-
cally as a layered structure. In this paper the term
layered gratings will be used broadly to refer to both
physically and numerically layered periodic structures.
All numerical methods for analyzing layered gratings
face a common difficulty associated with the exponential
functions of the spatial variable in the direction perpen-
dicular to the grating plane. This difficulty is indicative
of many problems of wave propagation and scattering in
layered systems, and it is exacerbated by the fact that
accurate numerical analysis of gratings usually requires
a large number of eigenmodes. Recently this numerical
difficulty has been overcome by many authors.*-1%  First,
Pai and Awada® presented a Bremmer series method,
based on the modal analysis with Fourier expansions, for
dielectric gratings of arbitrary profile and groove depth
in TE polarization. At the same time, DeSandre and
Elson® presented an extinction-theorem analysis of
diffraction anomalies in multilayer-coated shallow grat-
ings by using the R-matrix propagation algorithm.
Later. Li" applied the R-matrix algorithm to the classical
modal methoed and enabled the latter to treat gratings

0740-3232/96/051024-12$10.00
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of arbitrary profile, depth, and permittivity. Chateau
and Hugonin® proposed an algorithm, with the coupled-
wave method, to model surface relief and volume gratings
made of lossless and lossy dielectric materials. Montiel
and Neviére® applied the R-matrix algorithm to the dif-
ferential method and thereby eliminated “the numerical
instabilities that have plagued the differential theory in
TM pelarization during the past 20 years (Ref. 9, p. 3241).
Recently Li'® applied the R-matrix algorithm to the dif-
ferential formalism of Chandezon et al. (the C method)
and thus removed a formerly existing limitation of the
C method. The same goal was later achieved by Cotter
etal'' using a scattering-matrix approach (S-matrix
algorithm). The S-matrix algorithm was also used by
Maystre! in an electromagnetic study of photonic band
gaps by the integral method. Additionally, Li'? showed
that under certain conditions the S-matrix algorithm
(which, unfortunately, was referred to there as the
R.matrix algorithm) and the Bremmer series algorithm
are equivalent. Very recently Moharam e al'® pre-
sented another stable algorithm, which they call the
enhanced transmission matrix approach. For references
concerning the applications of the S-matrix and R-matrix
algorithms to problems of wave propagation and scatter-
ing outside the field of diffraction gratings, the reader
may consult the reference list in Ref. 12.

Now there exist many stable numerical algorithms
and several variants of implementation, expressed with
different terminologies and applied to different grating
models. There are obvious similarities and subtle differ-
ences among these algorithms and their variants. Their
advantages and disadvantages, as well as interrelation-
ships, have not been addressed in the literature. The
purpese of this paper is to provide a systematic and
unified presentation of the S-matrix and R-matrix al-
gorithms, independent of the underlying grating models
{integral. differential, modal, etc.) being used and the in-
cidence conditions (TE, TM, or conical mount), and to

£ 1996 Optical Suciety of America
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compare these two algorithms in terms of their physi-
cal interpretations, numerical stabilities, and numerical
efficiencies. Some results presented here have already
appeared in the literature, but many intricate details
are new.

The algorithmic structure of the S-matrix and R-matrix
algorithms is recursive, and the matrix dimension in the
recursion is independent of the number of layers. Mean-
while, there exist stable and nonrecursive algorithms, for
example, those in Refs. 14 and 15. In these algorithms
the field amplitudes in all layers are solved together from
a large linear system of equations whose matrix dimen-
sion is proportional to the number of the layers. The
nonrecursive algorithms and the recursive algorithm of
Moharam et al.,'* which has a structure different from
that of the S-matrix and R-matrix algorithms, are not
considered in this paper.

In what follows, first the framework is laid down, in
Section 2, for the development in the subsequent sections
by defining the notation and the basis functions. The
S-matrix algorithm and the R-matrix algorithm are pre-
sented in Sections 3 and 4, respectively. The presenta-
tions are arranged as parallel as possible for the two
algorithms to bring out their similarities. Several vari-
ants of the two algorithms are then given in Section 5.
In Section 6 the two algorithms are compared in terms
of their numerical stabilities and efficiencies. Finally, in
Section 7 some remarks are made that are specific to the
applications of the algorithms to several grating models.

2. BACKGROUND FRAMEWQORK

A. Layer Abstraction

Figure 1 depicts a multilayer surface-relief grating. We
assume that the profiles of all medium interfaces have
the same periodicity in the x direction and that they are
invariant in the z direction. We say that two adjacent
interfaces are separable if a line y = constant can be
drawn between them without crossing either interface;
otherwise, we say that they are nonseparable. Thus the
bottom three interfaces in Fig. 1 are separable, and the
top three are not.

The S-matrix and R-matrix algorithms are applicable
to all grating models, but here the discussion will be re-
stricted to the classical modal method, the C method,
the coupled-wave method, and the differential method.
When it is not necessary to make the distinction, the first
three methods will be referred to collectively as the modal
methods, because they all rely on finding eigenmodes of
Maxwell's equations. The classical modal method and
the coupled-wave method approximate a continuous pro-
file by a stack of lamellar gratings, as illustrated in the
triangular grating in Fig. 1. This numerical approxima-
tion effectively introduces a number of numerical layer
interfaces. The differential method does not use the
multilayer lamellar grating approximation, but for nu-
merical purposes it decomposes a grating profile into thin
horizontal slices, thus also creating numerical layer inter-
faces. If two adjacent medium interfaces have identical
functional form and amplitude, the C method does not
require any numerical layer interface: otherwise, one nu-
merical interface may be needed between the two medium
interfaces,'¢17
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We abstract a layered grating structure by a series of
parallel straight lines, each representing a real or numeri-
cal, straight or curved interface, depending on the profile
of the medium interface and the grating model being used
[see Fig. 2(a)]. For example, suppose that for the layered
grating shown in Fig. 1 we use the classical modal method
to treat the rectangular profile, the same method with a
three-layer approximation to treat the triangular profile,
the differential method with a three-slice decomposition to
treat the asymmetrical smooth profile, and the C method
to treat the top three profiles. Then, in Fig. 2(a), n = 15,
2 for the rectangular profile, 4 for the triangular profile,
4 for the asymmetrical smooth profile, and 6 for the top
three profiles. The permittivities in Fig. 2(a) may be ei-
ther constants or periodic functions of x, depending on the
spatial region and the grating model. Media Oandn + 1
are two semi-infinite homogeneous media. The dashed
line in medium 0 is a numerical interface. It can be ar-

Fig. 1. General layered grating. All periodic medium inter-
faces share a common period, but otherwise they are arbitrary.

€t a™h t ‘ Pt

- n
S| : ;.aw )
& 4} : }a” ’
(a) )
by U Q@ .-—-—V‘"‘” .,
& U Q) f e o ,
e, U & .-—-—V”” o
s 0

(b}

Fig. 2. Abstract layered grating structure, where the horizontal
lines represent either actual material interfaces or numerical
interfaces. The fields in each layer can be represented either
(a) as a superpesition of upward- and downward-propagating
and decaying waves or (b) as a superposition of two sets of
orthogonally polarized eigenmodes.
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bitrarily close to interface 0. The thickness of layer p
will be denoted by A,

B. Basis Functions

When a modal method is used to analyze layer p in
Fig. 2(a), the fields there are represented by superposi-
tions of the eigenmodes. We assume that the eigenmodes
in all layers share a common Floquet exponent, which is
determined by the incident plane wave. The eigenvalue
spectrum '?', having elements A, can be partitioned
such that ¢'? = o'#"" U /P~ where

o = {Aipl;

Re A)f' +Im A, 20, AP e o2y,

'y

In general, for any numerical truncation, ¢'#'* and &'Fi-
have the same number of elements. The dependence of
the eigenmodes on y, i.e., the y-dependent basis functions,
is given by exp(idn' y], where A" € o5t (Here y
should be replaced by v if the C method is used; how-
ever, for simplicity we will ignore this minor difference.)
Thus we call an eigenmode corresponding to A« an up
wave, and that corresponding to A+’ a down wave. In
particular, in the two semi-infinite regions and the ho-
mogeneous regions between the separable medium inter-
faces, the eigenmodes are simply the Rayleigh modes. In
Fig. 2(a} the upward and downward arrows schematically
represent the up wave and down waves, and the boldface
letters u and d denote the column vectors whose elements
are the wave amplitudes. Once the eigenmodes are de-
termined everywhere, the grating problem reduces to a
problem of determining the mode amplitudes.

Alternatively, we can choose cos(Afmp“y) and sin{A="'" y)
as the basis functions, which is always possible because
A’ = = A" with the classical modal method and the
coupled-wave method and with the C method when the
grating profile is symmetrical. We use {7 and V to denote
the amplitudes of the modes that use this basis function
set. The physical meaning of these amplitudes is clear:
for example, if I/ is proportional to the z component of the
electric field, then V is proportional to the x components
of the magnetic field, as schematically shown in Fig. 2(b).
From a mathematical point of view, the derivative of a
U mode is a V mode, and vice versa. For the modal meth-
ods, both the exponential (or u—d) basis functions and the
trigonometrical (or U/-V) basis functions can be used.

In the differential method, one does not seek the eigen-
solutions of Maxwell's equations. Instead, one numeri-
cally integrates U from one interface to another, where I/
is a column vector whose elements are the Fourier expan-
sion coefficients of the z component of the electromagnetic
fields. The numerical integration procedure gives the
values of I/ and V = dI//dv as functions of y. Clearly,
the U—-V basis functions described here correspond to
the I/-V basis functions deseribed in the preceding para-
graph. Thus the schematic diagram in Fig. 2(b) applies
to the differential method as well. It is possible to have
a set of u—-d basis functions for the differential method
if suitable linear combinations are made.? It is mpor-
tant to realize that, although the basis functions for the
differential method do not have an explicit v dependence,
their v dependence is asymptotically the same as that of
the basis functions in the modal methods,
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C. Boundary Conditions
In this subsection we affix the equation numbers of all
equations that apply only to the u—d basis functions
with a letter a, and those that apply only to the [/—V
basis functions with a letter b. The same convention will
be used for the formulas of the S-matrix and R-matrix
algorithms in Sections 3, 4, and 5.

In the modal methods, when the boundary conditions
are matched along interface p, we generally get an equa-
tion of form

ut l(y, +0) u?y, —0)
(p+ly P = {p} p ,
w lid“’"“(yp + O)jl w [d”"(yp -0 (2a)

where W'¢) and W'#*V are square matrices. Further-
more, by virtue of the modal fields,

u(p)(yp _ 0) _ d,fP) ulp}(yp_l + 0) ,
d'?(y, - 0) d'? (5,1 + 0)

where

(o _ | expliad k) 0 ,
&= . (p)-
0 expliim  h,)

and the exponential functions represent diagonal matrices
{henceforth, all quantities with a subscript m represent
diagonal matrices). Thus we obtain a recursive relation
for the field amplitudes

(3a)

(4a)

[u{P*“(yp + O)J - flm[“[m(yﬂl * 0)]- (5a)
d'#* iy, + 0) d'P(y,-1 + 0)
where
P = Pt 6
with
§P) _ i -lype {7)

The matrices ¢'*’ and {'7' can be fittingly called interface
and layer ¢ matrices, respectively. Note that ¢t'?' is of
order 0(1)."8

If the U~V basis functions are used to match the bound-
ary conditions, we have, correspondingly,

Wil uerity, +0) = Wio UtFity, — 0 ) {2b)
Vip+l)(yp + 0) V(p!(yp _ 0)
Ul‘u'(y.ﬂ -0 = 7 U"m(yp—l +0) , (3b}
Ve, —0) Vel y, 1+ 0)
(b:pl —
COS(/\:'nplhp) r,r:n'm sin{)blnmh‘,,)
ipi-1 . (p} 15l : (4b)
—nm Sin(Am hp) cos(An h,)

Uertlity, +0) = ol Utp:(y”_1+0):|' (5b)
Vierliy, +0) VP ypor + 0)

In Eq. (4b), n« is a constant independent of k,, and for
simplicity the plus sign has been dropped from the su-

perscript of eigenvalue A Also, the same notation
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W, ¢, and t is used with the two different basis function
sets. This, however, is not a problem because the context
will tell to which basis the matrices are referring. From
now on, the amplitude vectors without an explicit argu-
ment stand for the vectors that are evaluated at the lower
bound of the layer. For example, u'?’ = u'”(yp-1 + o).

At this point, it is most natural and mathematically
simplest to proceed with solving the grating problem by
the so-called T-matrix algorithm, which is obtained by re-
peated use of Eq. (5a) or Eq. (5b). However, it is well
known that the T-matrix algorithm, with either of the ba-
gis function sets, is numerically unstable when the total
layer thickness of the grating structure and the matrix
dimension are large.” This numerical instability is gen-
erally attributed to the presence of the growing expo-
nential functions in the algorithm. Fundamentally, the
cause of instability is a classic one: loss of significant
digits when one is computing a small number by subtract-
ing two large numbers by a computer of finite precision.
Symbolically, it is a case of = — * = 0(1). It should be
emphasized that the numerical instability of the T-matrix
algorithm cannot be eased or removed by simply reduc-
ing the individual layer thicknesses without lowering the
total thickness, because the T-matrix algorithm accumu-
lates the magnitudes of the exponential functions as the
layer ¢ matrices are multiplied together.

3. S-MATRIX ALGORITHM

The S-matrix algorithm uses the exponential basis func-
tions. For any 0 = p = n, it seeks a stack S matrix, 8o,
that links the waves in layer p + 1 and medium 0 in this

way:
alp*l a®
l: ao ]= S{m‘:dwﬂ)] (82)

Before moving on, it is important to describe the physical
meaning of the S matrix. For this purpose we rewrite
8'# in a two-by-two block form:

[u(p+1) :l a :[45) erlzl |: a'® ‘J o)
le) R:fﬁ‘ T‘lis) dip+1}
The significance of the subscripts 4 and d becomes evident
once the reader mentally carries out the matrix-vector
multiplication on the right-hand side of the equation. As
a rule in this paper, the use of subscripts u and d is
an automatic indication that the submatrix belongs to a
matrix in the S-matrix algorithm. The choice of letters
R and T, instead of §, makes the physical meanings of the
four submatrices of S‘7' self-explanatory. For example,
2 and R,&ﬂ) are the transmission matrix and reflection
matrix that give the upward wave amplitudes in layer
p + 1 resulting from the transmission of the upward
incident waves in medium 0 and from the reflection of
the incident downward waves in layer p + 1, respectively,
by the whole stack below layer p + L. Alternatively, the
first p layers of the layered grating can be viewed as a
linear four-terminal network. Matrix S'? operates on
the two sets of inputs to generate the two sets of outputs,
as shown schematically in Fig. 3(a}.

L
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Fig. 3. Schematic diagrams for alternative interpretations of
(a) the S matrix and (b) the R matrix. In Fig. 3(a), I and O
stand for inputs to and outputs from the system represented
by the square box. In Fig. 3(b), i and v stand for currents
and voltages at the terminals of the circuit represented by the
square box.

To link the waves in two adjacent layers, we can define
an interface s matrix, s'”, and a layer s matrix, §'e! as
follows:

ul P ¥p 0) ( utpl(y - 0)
= &P P ,
[ d' Py, -0 5 d(p+1](yp +0) (10a)

u<p+il o) u(p]

a» |7F 7 diern | (11a)
LAY _ E{uﬂ’ i.:‘z) u'? . (12a)
d'? 7‘:1‘:' E;z) K (et a

The physical interpretations of s'#' and §'P' are similar
to that of §'7). Note that 2 and f;ﬂ), because of the
notation of their subscripts, cannot be confused with the

¢ matrix defined in Section 2. The layer s matrix is re-
lated to the interface s matrix by

§(p) — 1 0( - s(p) .exp(iAEthp) 0 s
0 exp(—iAn hp) 0 1

(13a)

or

and the interface s matrix is in turn related to the inter-
face ¢t matrix by

[§:3] tp),ipt-1 (p) tal,ipi=1
(o _ |1 it o ti oz
s'F = _ “ : (14a)
_ el tpi-1
Ly in to2

Note that all four entries in Eq. (14a) contain the inverse
of submatrix tég]. For this reason we call :‘25 " the pivotal

submatrix.
From Eqgs. (8a) and (11a), the set of recursion formulas
for the stack S matrix are
(pl — F (p=1_(p T Lo pomy
Tulf o tuﬁ [ 1- Rud Fiu Tuf ’
(pl ~Lpt = p-13 iptptpe-1 _l—tpl
R = rl + LN Ry [1 — Fae Bug ] tyd
ip _ plp-b (p-1_ip} ip-1 0] Yp-1
R = Ry 4 mi V1 - R T

) ~ ) o
T;? = T:ii h[l - F‘tii)R;ff U] Fdfi!- (15a)
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The S-matrix recursion can be initialized by setting

1 0
‘“1‘ e~ il
S {0 1:} (16a)

or, equivalently, by setting §9' = 5%,

The form of the factors enclosed by the square brack-
ets in Eq. (15a) is such that the inverse matrices can be
readily expanded, at least formally, into a geometrical se-
ries in terms of the product of the two reflection matrices.
This fact naturally gives rise to the multiple-reflection in-
terpretation of the S-matrix recursion formulas.!2 (It is
quite unfortunate that in Ref. 12 the S-matrix algorithm
was incorrectly cailed the R-matrix algorithm.} Because
of the elegant form of the inverse matrices, Egs. (15a) will
be called the normalized S-matrix recursion formulas.

Equations (8a}-(16a) constitute the basic ingredients
of the S-matrix algorithm. In most grating problems the
quarntities of interest are the field amplitudes leaving the
grating structure in the two outer media, ie., u" ! and
d'"'. They are simply given by

u " T R'”' u't
’: d!()\ ]_ [RE::‘:L T:I:ﬁ dm,,, N (17a}
fu dd
In particular, if there are no incident waves in medium
0 (' = 0,

fn=1y _ p'fitag e
u - Rudd ’

d® =g b, i18a)

The numerical stability of the S-matrix algorithm
is rooted in the construction of the layer ¢ matrix.
The problem-causing, growing exponential function,
exp(iAn' “h,), that was originally in the / matrix, is
now inverted in Eq. (13a). Since s'? iz of order 0(1), so
i1s 3'7. Furthermore, the submatrices of §»' appear in
the recursion formulas only as additive or multiplicative
terms. Thus the § matrices remain of order 0O{1), and
the numerical stability of the algorithm is ensured.

4. R-MATRIX ALGORITHM

The R-matrix algorithm uses the trigonometrical basis
functions. For any 0 = p < n, it seeks a stack B matrix,
R'7', that links the fields in layer p + 1 and medium 0

in this way:
e 1 . th»il
l: UfUJ :i =R p[ V[O: :' (8b)

The R matrix can be physically interpreted as field
impedance or field admittance (the ratio of the tangential
comporent of the E field to the tangential component of
the H field or its inverse). For example, in TE polariza-
tion, because UV and V correspond to the E and H fields,
respectively, B'?' plays the role of field impedance. An
alternative interpretation of Eq. (8b) can be made, with
the aid of Fig. 3(b), in terms of currents and voltages in
an electrical circuit. Here, if U is identified with the
voltages and V with the eurrents, or vice versa, then R'?
is the electricai impedance or admittance. The concept
of impedance has been used previously in modeling grat-
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ings that contain muitiple planar interfaces but only one
periodically modulated interface.!

To link the fields in two adjacent layers, we can define
an interface r matrix, '#', and a layer r matrix, 77 as
follows:

Ulp-l»(yp_,_o) _ im V(p+1)(yp+0)
[ Uy, - 0) =r Virly, - 0) , (10b)

Urpv[l . Vvie+h .
|: Uin }= zm|i Visl } (11b)

The layer r matrix is related to the interface r matrix by

B ipl ‘B i [P}
o =1 - org P,

e 1Bt py i p) 1ol
Fioo=ria {7 csc| AP hpl.

1

i

wip ip) {p 1 el
Fol P csc[ AP, | Bt

R = ! cot[z\‘,,f”h‘,] - f csc[ A‘,,{”th

X {0 osc 4k, ], (13b)

where
lp}_[ i pl {pi 1p) ot ;
P = e+ i ot Ry | (130')

For a proof of Eq. (13b)}, see Appendix A. Here we have
excluded the possibility that accidentally Ain‘.mhp = I,
where [ is an integer. The interface r matrix is in turn
related to the interface ¢ matrix by
tpi,ipi—-1 ip} tph tpt-1,1p]
f11t 13 -t t
RPT. l: 11 ta: 12 1 fon tag j{ . (14b)

tpl-1 (p)-1_tp}
21 e 2 TR Y

From Egs. (13b) and (14b) it is clear that #7' ig of order
O(1). Alternatively, we can use the layer ¢ matrix to
express the layer r matrix:

HAprApi-1 ~{ gl Aol pi- 1o p)
fHt fig —fi ¢ t :
f_lpi — [ 11 =21 12 11421 22 J . (14b)

Apt-1 Apl-l-Ap)
tay —f21 iy

In Eqgs. (14b) and (14b'}) t;fi and fczf' are the pivotal sub-

matrices. In some cases it is possible that ¢!’ = 0, but
then f;"f’ # 0. In fact, such a case can be utilized bene-

fictally (see Appendix B).
From Egs. (8b) and (11b) the set of recursion formulas
for the stack R matrix are

R =#l' - #f'zonf
R =r{Z PR
Rif' = Ry Mz o7,
R =R+ Ry Nz PR, {15b)
where
Z = (ry - Ry (15b")
The R-matrix recursion can be initialized by setting

R = o {16b}

Unlike their counterparts in the S-matrix algorithm,
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Egs. (15b) do not readily subject themselves to an intui-
tive physical interpretation. Nonetheless, to preserve
the formal symmetry between the two algorithms, we
shall call Egs. (15b) the normalized R-matrix recursion
formulas.

Starting with Eq. (16b), repeated use of Egs. {15b} until
p = n leads to

[U(n+n :I B |:R{'|“ Ri;):||:vtn+h :]
ge [T é;ﬂ R;;) v

Suppose that U® = u® + 4@, V' = 4@ _ g0 i1 =
uttb + din+ll and Vel < yinth — gia+d which is al-
ways possible by definition. Then from Eq. (17b) we get

the linear system that determines the out-going diffrac-
tion amplitudes in the top and bottom media:

i- Ri;l) Ri;) ula+b
-RY 1+ Ry || 4@

—1- R(nb R(n) dintb
z[ S T N

The R-matrix algorithm is also immune to the numeri-
cal difficulties associated with growing exponential func-
tions. This is because the submatrices of 7' are all of
order (1), and they appear in the recursion formulas
Eqs. {15b) and (15b’) only as additive and multiplicative
terms. The former fact is evident when Eq. (13b) is used
to construct the layer r matrices. It is not so obvious
if Egs. (14b') are used, however; in fact, in this case the
R-matrix algorithm is only conditionally stable.

It can be shown that Eq. (14b') and Egs. (13b) are

algebraically equivalent, Therefore the submatrix 15,
as given by Eq. (14b'), should be mathematically pro-
portional to csc()&&»f)hp), which tends to 0 as m — < and
hp — =. On the other hand, the first term of 715 in
Eq. (14V') is £1f = 65 i sin[A2'h,] + 215 cos[AF R, ],
which tends to . Thus the second term of F(1§ " must also
tend to = as m — = and h, — =. Clearly this mathe-
matical arrangement presents a serious numerical prob-
lem. When the absolute values of the imaginary parts

of AR p are large, the numerically calculated matrix ele-

ments of Fig' by Eq. (14b’') may not be small, as a result

of round-off errors. Let A'?! be the maximum of the ab-
solute values of the imaginary parts of all eigenvalues for
a given matrix truncation. As a rule of thumb, when
exp[A'Ph,] ~ 10", the numerical problem described
above begins to arise (double precision is assumed here).
To avoid the problem one has to choose the layer thick-
ness so that exp[A'Ph ] << 10'5. Therefore the R-matrix
algorithm is conditionally stable when Eq. (14b') is used.
Fortunately, unlike the T-matrix algorithm, here the mag-
nitudes of the exponential functions do not accurnulate.
Therefore lowering the individual layer thickness is an
effective remedy for the numerical instability caused by
the use of Eq. (14b').

(17b)

5. VARIANTS OF IMPLEMENTATION

A. Variation in Matrix Manipulation
In Sections 3 and 4 the S-matrix and R-matrix algorithms
were systematically presented. The presentation took
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three steps: the definitions and derivations of the layer
t matrices, the layer s (or r) matrices, and the stack S
(or R) matrices. Although from a theoretical point of
view the introduction of the layer ¢ matrices and the
layer s (or r) matrices has made the presentation system-
atic, from a practical point of view the use of one of the
two kinds of layer matrices can be eliminated, as demon-
strated below.

The S-matrix recursion can be accomplished by use
of the ¢ matrices directly, without the layer s matrices.
From Egs. {5a), (6), and (9a) we can easily derive a set of
nonnormalized S-matrix recursion formulas by using the
interface ¢ matrix:

{ _ (¥ {p) (p) {Plpip-1)
T =[af - REBl e T,

(p (p) tp) (p) (p) -1
R = [512 + I Q(p]][fzz + £2 Q‘p)] >

{pt _ plp-1 (a1 (P (P i p—1)
Ry =Ry, —Tygta e T,
(p) (p-1) “i[ Lo e -1
AR AR PP AR S (19a)
where
-1 _
Qir = g PR Vgl {19a’)

and ¢-"' are the two diagonal submatrices in Eq. (4a). Of
course, Egs. (19a) and (15a) are algebraically equivalent.
Note that the above equations have been written in terms
of the interface ¢ matrices, instead of the layer ¢ matrices,
and the appearance of ¢%”' has been arranged properly
so that there are no exponentially growing functions in
the formulas. This measure avoids possible numerical
overflow and ensures numerical stability of the S-matrix
algorithm.

If we set r,b(f) =1 in Egs. (19a) and (19a’} and replace
all interface ¢t submatrices by layer ¢t submatrices, we ob-
tain the nonnormalized S-matrix recursion formulas by
using the layer ¢ matrix: .

(py . | 2P (pl=p {p-14
Tl = [tu ~ Rugta TN,
-1
tpy _ [ fp Ao nip-1 Ap) Aplplep-1)
R, = [tsz + iy Ry ][tzz i Rug ] s

tpy {p=11 i p)lHp! (p—1)
Rdu = Rdu - Tuu ’

da t21

Ty = T [ EE  BURE Y] (20a)
The use of this set of recursion formulas should be avoided
whenever possible, because the matrix to be inverted is a
sum of an exponentially growing matrix and an exponen-
tially decaying matrix.

The R-matrix recursion can also be accomplished with
use of the ¢ matrices directly, without the layer r matrices.
From Egs. (5b), (6), and (8b) we can easily derive a set of
nonnormalized B-matrix recursion formulas by using the
layer f matrix:

Ry = [8 ~ Al [ a8 ERE]
RS =00 - RTE RS,

R R i

Ryf = RSV - RUBI R (20b)

Since Egs. (20b) are algebraically equivalent to Egs. (15h),
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the R matrices obtained this way are mathematically of
order O(1). Numericaily, however, devastating round-off
errors could occur if the numerical layer thicknesses are
set too high. The reason is the same as the one given at
the end of Section 4 for the possible numerical instability
resulting from the use of Eq.(14b'). Specifically, the
expression of R{zp) in Egs. (20b) is of type = — = = O(1).
Thus Eqs. (20b} also give a conditional stable implemen-
tation of the R-matrix algorithm. The unconditional

Quy Qg . bfm bua' J - buu(l - audbdu)ilauu
GQgu Qgg by bag 2an + Gaabaull — auyby) la,,

stable, nonnormalized R-matrix recursion formulas ob-
tained by using the interface ¢ matrix are given in
Appendix C.

We recall that in Subsection 2.C we formally derived
the layer ¢ matrix from the boundary equation, Eq. (2a) or
Eq. (2b). Infact, in at least two important cases Eq. (5a)
or Eq. (5b) is obtained without the aid of Eq. (2a) or
Eq. (2b). The first case is the classical modal method in
which matrix #'#! is obtained directly by projecting the
functional boundary equations onto a natural basis func-
tion set,” and the second case is the differential method
in which matrix {'# is obtained from a numerical inte-
gration procedure.? In these cases the use of the non-
normalized recursion formulas may be beneficial because
they require fewer matrix operations.

In the € method and the coupled-wave method the
boundary equations (2a) or (2b) are an integral step of
the numerical treatment. In this case we can bypass the
! matrix and derive the s (or r) matrix directly from
the boundary equations. Writing the two W matrices in
Eq. (2a) in a two-by-two form, and rearranging the terms
slightly, we have

Wit —wi2 |[ute iy, + o)
Wi —wif [ APy, - o)
(W -w [ iy, -0 (21a)
Wz(im _ é2p+l) d(p+1:l( ¥p + 0)
Therefore from Egq. (10a),
(o) (o) | gt (AL
o | Wn ~Wia n Wi . 22
g5 = (p+1) ipr (p) (pt+1) (22a)
WQI —W22 WZI T W22

The layer s matrix, §#, then follows immediately from
Eq. (13a). Similarly the interface r matrix, ' can be
derived directly from boundary equation (2b); i.e.,

-1
tprl) (p) (p+1) (p)
ol _ n . —Wy -Wis Wi |
re= (p+1) ip (p+1) (p) (22b)
WZI ¥y —W22 WZQ

The layer r matrix, #'#', then follows immediately from
Eq. (13b).
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B. Variation in Recursion Order

The 8-matrix and R-matrix recursions do not have to be
performed in the order indicated in Sections 3 and 4. In
other words, one does not have to start the calculation
from medium 0 and work step by step up to medium
n + 1. For the normalized recursions this point can be
best illustrated by the use of Redheffer’s start product.?
Let a, b, and ¢ be 2N x 2N matrices. Then the star
product ofe and &, in the S-matrix algorithm, is defined as

bud + buwua(l — byyaus) Ly,
1 + (23a)
@aq(l — byua,y) 164y
where a,q4, b.q, etc., are N X N submatrices. Similarly,
we define the star product of a and b in the R-matrix
algorithm as

[ﬂn @ | by b
az  ax by by
- l:bu = biz(bay — air) by

bizlbz — a1)) lay ]
—anlbzp ~ ay) by

@22 + anlbz — an) lag,

(23b)

It can be shown that the star multiplications are associa-
tive, i.e., that

a*(brcy=(axb)*c, (24a)
a*bre)={(axb)xc. (24b)

In the remainder of this section, for simplicity, I will
mention only the S-matrix recursion. The results for the
BR-matrix recursion can be obtained by obvious substitu-
tions.

In terms of star products, the S-matrix algorithm can
be succinctly expressed as

S8 = { o [(3® « V) % §D]x ..} x g, (25a)

However, because of the associativity of the star multipli-
cation, the product can be regrouped as follows:

S =30 u i x[F D@V g3 (26a)

Equation (26a) describes the S-matrix recursion in the
reverse order, starting from medium n + 1 and moving
downward to medium 0.

The associativity of the S-matrix recursion can be used
advantageously-to save computation effort or to increase
computation speed. Suppose that a large number of cal-
culations are to be carried out for a grating with a vary-
ing parameter that affects only the Jth layer, for fixed ;.
Then the S-matrix recursion can be performed like this:

gin) [§(0) Koo 5(1‘1)1 w g x [g(j*l) P §(n)], (27a)

where the two recursions inside the square brackets are
performed just once and then are used repeatedly to form
a star product with the changing /. If the grating cal-
culation is done on a computer capable of parallel pro-
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_mmg t.hen the 5 matrices can be grouped pairwise to
-_-mmuq»fhs computation speed. -

6 COMPARISONS

Having : syatemaucally addressed the S-matrix and
R-matrif ‘algorithms- and their variants, we are now
ready to make some comparisons. As mentioned in Sec-

tions 3 and 4, the § matrices are related to the physical
concept of reflection and transmission, and the K ma-
trices are related to the physical concept of impedance
and admittance, - Furthermore, the normilized S-matrix
recursmn-formulas can be readily interpreted in terms of
multiple reflections; but the R-matrix recursion formulas
and the nonnormalized S-matrix recursion formulas are
not eaally mterpreted in physical terms. In what follows
we compare the numencal gtabilities and efficiencies of
the two élgonthms :

Numencal Stlbll.ll!es

Both the S-matrix and R-matrix algorithms are inher-
ently stable because the S matrices and the R matrices
are bot.h mathematma]ly of order O(1). However, there
are suhtle numerical differences between them. In gen-
eral the S-matrix algorithm is much easier to work with
than the R matrix algorithm.

ementation of the S-matrix algorithm is mostly
won;y free:(but see Subsection 7.1), thanks to its use of
,nhaf basis functions. All s and S matrices are

wally we a'ssume that Eqs. (20a) are not used]. Thus
there 18 0o limit in. layer thickness. The possibility of
numerical overflow associated with the exponential func-
tions is eliminated because only the decreasing exponen-
tial functions are evaluated. Underflow can happen, but
it is not a problem for most compilers. Additionally, the
occurrence of” A h, = I is not a problem at all.

The mplementatxon of the R-matrix algorithm requires
special treatment. Although all r and R matrices are of
order O(1) mathematically, they may not be so numeri-
cally, When the factorization of the layer ¢ matrix into
the product of the interface ¢ matrix and the diagonal ma-
trix ¢ is possible, one should use Eqga. (C1) and (C2) below
to perform the nonnormalized recursion or use Eqa. (13b)
to compute 7P if the normalized recursion is to be used.
When the factorization is impossible, as is the case for
the differential method, the numerical layer thicknesses
should be kept suﬁiaently low that the computation of
72 by Eq. (14b") or of R;5 by Eq. (20b) will not suffer
significant loss of accuracy. There is also a minor tech-
nical complication. Functions cot and csc that admit a
complex argument are not intrinsic functions in most com-
pilers. Thus the programmer has to write cot and csc as
user-defined functions, using either the sine and cosine
functions or the exponential functions. In doing so, care
has to be taken to avoid overflow. In principle, the ac-
cidental occurrence of A% A h, = lm is a problem for the
R-matrix algorithm. In practice, it is highly unlikely
that the equality holds for [ # 0 with high precision,
therefore the singularity never poses serious numerical
problems. Of course, one should judicially avoid , = 0,
which is an uninteresting case, anyway.
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B. Numerical Efficiencies

In this subsection we consider the numerical efficiencies
of different varianta of the S-matrix and R-matrix algo-
rithms. More specifically, we estimate the number of al-
gebraic eperations that each variant takes to compute the
outgoing diffraction amplitudes u**! and d, assuming
that the W matrices in the boundary equations have been
obtained.

As is evident from the presentations in Sections 3 and
4, after the S-matrix recursion is completed, u"*" and
d'® are readily given in a solved form. However, with the
R-matrix algorithm the completion of the R-matrix recur-
sion only gives a system of linear equations that has yet
to be solved to yield u*" and d®?. This initial compari-
son is already in favor of the S-matrix algorithm.

We now take a closer look at the structure of the ma-
trix recursion formulas. We say that a subset of the four
submatrices of S® is a closed set with respect to the
S-matrix recursion if every element of the set is deter-
mined by the elements in the same set. Thus §'*' has
four closed proper subsets:

®EY RS TE).  (RE T
(RLY, Tf,g’, T (28a)

If there are incident plane waves in both media 0 and
n + 1, then from Eq.(17a) the S-matrix recursion of
all four submatrices has to be performed. Suppose that

u'® = 0; then only the recursion of {R“:JJ (p)} is neces-
aary if both u®*" and d¥' are needed, and only the recur-
sion of RLZ) is necessary if only u*? is needed. We call
the recursions above the full, half, and quarter S-matrix
recursions, respectively.

Similarly, R'® also has four closed proper subsets:

{p) (p) ( ) (p) ( }
{le ] {Rllpl 1; ’ {lev P 3

(R, R, RiY. (28b)

With the R-matrix algorithm, if both u***!' and d'¥ are
needed, the full matrix recursion has to be performed even
when u® = 0. If d© is not needed and u'” = 0, then
quarter R-matrix recursion with R}{ is possible, but the
R matrix has to be initialized by

1 0
RV = : 20b
[0 °] (29b)

With this initialization, R}’ = R’ = 0 and R} = -1
for all p.

Finally, we shall provide operation counts per grat-
ing layer for the variants of the two recursive matrix al-
gorithms that have been presented in this paper. The
operation counts will be given in units of flops.** The
counts do not include the effort in assembling the W ma-
trices and in solving the final linear system to yield u*Y
and d®. For convenience, we shall consider only the
operations that are proportional to N, where N is the
truncaticn order, the dimension of the submatrices. The
methed of counting is based on well-established rules?!:
suppose that A, B, and C are N X N nonsparse matri-
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Table 1. Operation Counts (in N3 Flops) per Grating Layer for
Different Variants of the S-Matrix and R-Matrix Algorithms
Operation Counts

Algorithm Number Algorithm Stability Full Half Quarter
la W-st—as5—>5§-a8§ Unconditional 76/3 20 19
2a W->t—=8 Unconditional 19 15 14
3a W =5 —=35-»8§ Unconditional 64/3 16 15
4a W-»f{—=§ Conditional 19 15 14
ib W-»t—=r—-#->R Unconditional 25 — 21
2b W-»t—-R Unconditional 23 — 15
3b W-—sr->r>R Unconditional 21 — 17
4b W-si{—>rf>PR Conditional 21 — 17
5h W.-»i=s R Conditional 19 — 14

ces; then AB + C, A™!, and A 'B + C take N3 N2 and totically the same in the two cases. The first few rows of

4/3)N? flops, respectively.

The tesults are summarized in Table 1 where imple-
mentation variants of the S-matrix and R-matrix algo-
rithms that have been described in Sections 3,4,and 5 are
represented symbolically. For example, W --» f — §
represents the variant of the S-matrix algorithm that
uses Eq. (7) to compute the interface ¢ matrix and then
uses Eqs. (19a) to perform the S-matrix recursion. The
broken arrows indicate that in some grating models the
¢ matrices are obtained without using the W matrices.
In this case, (32/3)N° flops shoutd be subtracted from
the operation counts in Table 1. The subheadings of
the last three columns stand for full-, half-, and quarter-
matrix recursions, respectively. Since the half-matrix
recursion of the R matrices serves no useful purpose, the
corresponding operation counts are not given. Cleariy,
algorithms 2a and 3a are the most efficient, assuming
that we start with the W matrices.

7. REMARKS

A. Algorithm of Chateau and Hugonin

It is easy to see that the algorithm proposed by Chateau
and Hugonin,® except for the notational differences, is
algorithm 2a in Table 1 for the special ease in which u'" —
0. It is one of the most efficient variants of the general
S-matrix algorithm, but it can be slightly improved. In
Ref 8 each of the three factors of the layer ¢+ matrix
[see Egs. (6) and (7)] is passed through the recursion
formula separately. So the operation count, including
the inversion of W'77Y is (50/3)N? for the half-recursion.
In comparison, the use of product ¢ = W#-v T"Wie iy
Eq. (19a) costs 15N* flops.

B. R-Matrix Algorithm and Differential Method

For the differential method it is natural to use the
R-matrix algorithm because here the I/ -V basis is the
natural basis. The factorization of the layer ¢ matrices
is unavailable in the differential method, so the applica-
tion of the R-matrix starts with the layer # matrices. As
explained in Sections 4 and 5, use of the # matrix in the
R-matrix algorithm makes the stability of the algorithm
conditional.  Although the modal methods were assumed
when we analyzed the cause of numerical instability
of Eq. (14b’), the conclusion applies to the differential
method as well, because the basis functions are asymp-

Tables 1, 2, and 3 in Ref. 9 cleariy indicate that if the nu-
merical layer thicknesses are not kept low, the RB-matrix
algorithm fails when applied to the differential method,

The R-matrix algorithm that is used in Ref 9 is
algorithm 4b in Table 1 of this paper, which takes
(31/3)N? flops per layer for the full-matrix recursion.
It can be improved slightly by using algorithm 5b, which
takes (25/3)N? flops per layer. Instead, if the u—d ba-
sis functions and algorithm 4a are used, significant im-
provement can be achieved. The operation count for the
S-matrix algorithm is only (13/3)N? flops per layer for
the half-matrix recursion. Furthermore, the extra work
of solving the final system of linear equations, Eq. {17b),
is avoided.

C. R-Matrix Algorithm and Classical Modal Method

In the classical modal method,” thanks to the orthogonal-
ity of the modal functions and the fact that the pivotal
submatrix £,, = 0, not ontly are the ¢ matrices obtained
analytically without the W matrices, but the » matri-
ces can also be determined analytically from the ¢ matri-
ces without numerical inversion of the pivotal submatrix.
The result is the most efficient variant of the R-matrix
algorithm, which can be symbolized simply as 7 — R.
Only one of the four submatrices of ##' takes N? flops to
construct; the rest involve only N2 processes. Thus the
overall operation counts are only (22/3)N3 and (10/3)N3
per layer for the full- and quarter-matrix recursions,
respectively,

D. S-Matrix Algorithm and Classical Modal Method
The S-matrix algorithm can be applied to the classi-
cal modal method, the most efficient variant being algo-
rithm 2a of Table 1. The combination of the S-matrix
algorithm and the classical modal method has a peculiar
problem, which I shall describe below.

In the classical modal method, the ¢ matrices that use
the exponential basis functions can also be obtained ana-
Iytically without the W matrices, but the s matrices in
general cannot. Without going into any detail, suffice it
to say that the elements of #'# at a numerical interface
are all of the form

f w” N f el d (30)

s . . . - ip+1l
where the integration is over one grating period,
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and w.(-m are modal functions in layers p + 1 and p, re-
spectively, and £, is a function that depends only on the
permittivity distribution of the two layers. In what fol-
lows, we consider the evaluation of Eq. (30) under a spe-
cific set of conditions: (1) the permittivity distributions
in two adjacent layers are symmetrical with respect to
the origin of the x axis, (2) the grating is in the first-order
Littrow mount, and (3) N = 2M + 1, where M is a natu-
ral number. Under condition (1), f, is a symmetrical
function. Under condition (2), (II}FHJ and lfh(:p) are either
symmetrical or antisymmetrical functions. Thus if inte-
gers [ and n correspond to modal functions of different
parities, the corresponding ¢ matrix element is identi-
cally zero. In the classical modal method, one normally
indexes the eigenvalues in the order of increasing absolute
values. Let Ni” and N:” be the numbers of even and
odd eigenvalues, respectively. Numerical experiments
show that, under condition (2) and for a given truncation
order N = N + NP, NI® and Ni® never differ by
more than 1. Thus under condition (3), either Ne” = M
and NN =M + 1,or N =M + 1and No" =M. It
can be easily shown that if NP & NPV then all sub-
matrices of {7, in particular the pivotal submatrix e,
are mathematically singular. Numerically, the condi-
tion N¢® = Ni?*V does often occur; therefore algorithm
1a of Table 1 cannot be applied to the classical modal
method when conditions (1), (2), and (3) are met simul-
taneously. It can be verified numerically that the ma-
trix sum that is to be inverted in Eqs. (19a) sometimes
becomes numerically ill-conditioned under the above
three conditions; therefore algorithm 2a fails too, even
though it does not involve the inversion of the pivotal
submatrix t;;".

Fortunately, the singular matrix problem described
above can be easily avoided by the use of an even trun-
cation order. If N = 2M, then the characteristics of
the eigenvalue distribution automatically guarantee that
NI = NP = M.

Another interesting difference between the R-matrix
algorithm and the S-matrix algorithm, as they are applied
to the classical modal method, is that the law of energy
conservation (in the case of dielectric gratings) is satisfied
automatically by the former, but it is satisfied only with
increasing truncation orders by the latter.

E. Other Possibilities

The essence of the R-matrix and S-matrix algorithms is
to avoid the presence of the growing exponential functions
in the matrix manipulations. In this spirit, several other
stable algorithms have recently been presented in the
literature. For example, Montiel and Neviére? presented
an algorithm that they called the R'-matrix algorithm.
In view of the current paper, it can be considered an
S-matrix algorithm that uses the {7 -V basis functions.
In Ref 10 the R-matrix algorithm was used with the
exponential basis functions (maybe it can be called the
S’.matrix algorithm?). The scattering-matrix approach
of Cotter et al.!’ is essentially algorithm 2a of Table 1,
except that their ¢ matrix is the inverse of the ¢ matrix
in this paper. Clearly there are many other possibilities,
but it is pointless to enumerate all of them.

Vuol. 13, No. 5/May 1996/J. Opt. Soc. Am. A 1033

8. SUMMARY

The mathematical formulations of the S-matrix and
R-matrix algorithms have been systematically presented.
The presentation is given in a unified fashion, indepen-
dent of underlying grating models, grating geometries,
and grating mountings. The physical interpretations of
the algorithms are illustrated. In addition, many vari-
ants of the algorithms are presented and their numerical
stabilities and efficiencies analyzed.

The S-matrix and R-matrix algorithms are inherently
stable because they avoid the appearance of the expo-
nentially growing submatrices in the recursion formulas.
However, to further ensure that the algorithms be uncon-
ditionally stable, effort should be made to avoid the expo-
nentially growing submatrices in the intermediate steps,
i.e., in the calculation of the layer s or r submatrices.
Whenever the factorization, as given in Eq. (6), of the
layer ¢ matrix is possible, the interface ¢ matrix should
be used directly in the constructions of layer s (or r) ma-
trix or in the nonnormalized S-matrix (or R-matrix) re-
cursion. When factorization is impossible, the S-matrix
and R-matrix algorithms are stable under the condition
that the layer thicknesses and the truncation order be
kept low, as quantified at the end of Section 4.

The comparative study of the two matrix algorithms
presented here seems to favor the S-matrix algorithm.
The physical interpretation of the § matrix in terms of re-
flections and transmissions is more intuitive than that of
the R matrix in terms of the impedance and admittance.
The exponential basis functions adopted by the S-matrix
algorithm are numerically much easier to handle than the
trigonometrical basis functions adopted by the R matrix
algorithm. Based on the operation counts, the S-matrix
algorithm is more efficient than the R-matrix algorithm.

Many implementation variants of the algorithms are
presented in this paper. The variants that use all in-
termediate matrices, algorithms la and 1b in Table 1,
are the least efficient ones. They-have only pedagogical
value. The variants that bypass some of the interme-
diate matrices, for example, algorithms 2a, 3a, and 2b,
are the most efficient ones. However, as exemplified in
Section 7, which algorithm and variant are more efficient
often depends on the grating model being used. It is the
hope of the author that the information provided here will
enable the reader to apply the maost efficient algorithm to
the grating model at his or her disposal.

APPENDIX A

To derive Eq. (13b), let us imagine that layer p is a sum
of two layers. the first layer has zero thickness, with
the layer ¢ and r matrices given by Eqgs. (7) and (14b),
respectively. The second layer has thickness h,, but it
does not cross a material boundary. Its equivalent layer
! matrix is just ¢‘F), given by Eq. (4b). Denoting the
equivalent layer r matrix corresponding to ¢'* by 7,
from Eq. (14b} we have

pr = — il cotA h,) el ese(hid Ry) | AD
—nof’ esc(Ad’hy) el cot{Am k)

Equations (15b) can be viewed as a set of rules that



1034 J. Opt. Soc. Am. A/Vol. 13, No. 5/May 1996

combine matrix ## in relation
ol ( Vvie+rh
_ 5 ]
Ue 7 i Vi (A2)
and matrix R'? Y in relation
Ulpl lel
— pip-1
w)oee ]
to obtain matrix R'# in relation

U(p+l) V(p+]l
[ L0 J=R'p)[ Vi ] (Ad)

Here we have

U(p+1)(yp + 0 _m V(pﬂ)(yp + 0}
[ Uy, =0) |77 viry, gy |© (4B)
Ulpl(yp - 0} o le](yp -0
[U«m(ypl +0y [ Viriiy, 0y | (46)
and what we want ig the matrix in
Uterbiy + ) Vierliy 1+ g
[U(pl( ’ = #7 () Y at (AT)
Yp-1 +0) Ve gy, +0)

Through comparison of Eqgs. (A2)—(A4) with Eqs. (A5)-
(A7), it is evident that the two sets of equations have
identical algebraic structures. Therefore Eqgs. (13b) can
be obtained from Eqs. (15b) provided that ~ A FPY and
F'# are identified with FeLUR AL and R, respectively.

APPENDIX B

When &) = 0, which happens in the classical modal
method, Eq. (14b) cannot be used to compute r'”, but in
this case for sure z‘2§ "£0. Suppose that ¢35 is nonsingu-
lar and /\{nf’)hp # {7, then Eq. (14b’) can be used to derive
the layer r matrix, After some simple algebra, we have

Fp =
i p) tpy {p) {pl (pl-1 (pl ip) i p)
[tlg -1 T]mp COt(/\rrf hp)]tgg tlf T]mp CSC(Amp hp)
) (p} -1 '
—am esc(And Rty il cot( AL »)

(B1)

This expression of 77, like Egs. (13b), contains no expo-
nentially growing functions, and therefore is suitable for
the unconditionally stable R-matrix recursion.

APPENDIX C

Similarly to the treatment in Appendix A, we consider
that each of the two factors in Eq. (6} corresponds to a
layer, one with zero thickness and the other with the ful]
thickness ,. Substituting ¢'# for 7 # in Egs. (20b), and
making some simple algebraic rearrangement, we obtain

Lifeng Li
an intermediate R matrix, R'®, which is given by

R = - 7,2 cot(APh,) + nla esc(A A )
X @'P'qplP cse(APh,),

5ip (p-1)
Ri5' = qpip CSC(AE,f’)hp)w(P'Ru ,

Bl = Rl 0P g2 csc(a'hy),
Al p (p-1 (p-1) (p-1
Ry =Ry + Ry w'PRYTY, (CL)
where
~1}-
@'? = [P cot(APh,) — RIP VT, (C1)

Clearly, all submatrices of B®' are of order (1) and
numerically stable. To complete the nonnormalized
R-matrix recursion using the interface ¢ matrix, we need
only to use Eqs. (20b) again, this tire replacing R'»-1
by R{?' and F? by t'#). The resuit is

(p} (py | (I3[ A0 | (piaim]!
Ry =[¢12 +t11 Ry ][322 + tg) le] )
(p) (p) (o), ()] mlp)
Ry =[flf - R fzf]Rlzp,

(o) _ piod (m (pr i) 1
Ry =Ry [tzte + i3y Hy ] ,

(p) 51 0) (p),(p)Aip
Ryl = Ry -~ RDeV R (C2)
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The coupled-wave method formulated by Moharam and Gaylord [J. Opt. Soc. Am. 73, 451 (1983)] is known
to be slowly converging, especially for TM polarization of metallic lamellar gratings. The slow convergence
rate has been analyzed in detail by Li and Haggans [J. Opt. Sec. Am. A 10, 1184 (1393)], who made clear that
special care must be taken when coupled-wave methods are used for TM polarization. By reformulating the
eigenproblem of the coupled-wave method, we provide numerical evidence and argue that highly improved
convergence rates similar to the TE polarization case can be obtained. The discussion includes both noncon-

ical and conical mountings.
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1. INTRODUCTION

In a recent publication Li and Haggans! provided strong
numerical evidence that the rigorous coupled-wave analy-
sis {(RCWA) formulated by Moharam and Gaylord® con-
verges slowly for one-dimensional (1-D) metallic gratings
and TM polarization (magnetic-field vector parallel to the
grating vector). They argued that the slow convergence
is caused by the slowly convergent Fourier expansions for
the permittivity and the electromagnetic field inside the
grating. The RCWA computation is twofold. First, the
Fourier expansion of the field inside the grating provides
a system of differential equations. Then once the eigen-
values and the eigenvectors of this system are found, the
boundary conditions at the grating interfaces are matched
to compute the diffraction efficiencies. In this paper we
focus on the eigenproblem of 1-D gratings for TM palariza-
tion. By reformulating the eigenproblem, we report on
highly improved convergence rates even for highly conduc-
tive gratings. We also reveal that the slow convergence
is due not to the use of Fourier expansions but to an in-
adequate formulation of the conventional eigenproblem.
In Section 2 we review hriefly the previous eigen-
problem formulations used in coupled-wave analysis for
nonconical mountings; these include the original formu-
lation provided in Ref 2 and an updated formulation
by the same authors.? In Section 3 we propose a new
formulation for the eigenproblem. This new formula-
tion can be straightforwardly extended to any modified
method*® that is based on a Fourier expansion of the
field in the grating. Section 4 provides numerical evi-
dence that the new formulation significantly improves
the convergence rate. Two examples showing the im-
proved convergence rate are provided. The first one is
taken from Ref. 6 in which Peng and Morris showed
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that a very large number of orders must be retained to
analyze accurately a wire-grid-polarizer problem. The
second example is taken frem Ref. 1, in which poor and
oscillating convergence rates were observed with a highly
conductive grating. In Section § a simple intuitive ar-
gument is used to explain the observed improvement,
and in Section 6 the generalization to conical mounts
is briefly derived. Concluding remarks are given in
Section 7.

2. CONVENTIONAL EIGENPROBLEM

Let us consider a 1-D periodic structure along the x axis
with an arbitrary permittivity profile e(x) (see Fig. 1).
The z axis is perpendicular to the grating boundaries.
The diffraction problem is invariant in the v direction.
Magnetic effects are not considered in this paper, and
the constant uo denotes the permeability of the periodic
structure. e is the permittivity of the vacuum. The
period of the structure is denoted by A, and the length
of the grating vector K is equal to 27/A. An incident
plane wave with wavelength A in the incident medium
makes an angle # with the z direction in a nonconical
mounting. We denote the magnitude of the wave vector
of the incident wave by & (k = 27/A), B (8 = k sin )
is its x component, and %y represents the magnitude of
the incident plane-wave vector in a vacuum. A temporal
dependence of expliwt) of the wave is assumed ( j* = ~1).
€, denotes the mth Fourier coefficient of e(x}/€g, and am
is used to denote the mth Fourier coefficients of €p/&(x}.

Using the Floquet theorem, the x component E, and
the z component E, of the electric field and the y com-
ponent H, of the magnetic field inside the grating can be
expressed as’

© 1996 Optical Society of America
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Fig. 1. Geometry for the nonconical grating diffraction problem
analyzed in Sections 2 and 3 for TM polarization.

E = ZSm(z)exp J(Em + B)x,

E. =) frizlexp j(Km + B)x,

H, = 1/% S Un(zlexp jiKm + B)x. (1)
Maxwell's curl equations are
aE, AE, .

T T ar T Temadly, (2a)
o, __; E (2b)

az - Jwe€liz,

1 8H, .

vk JjwkE;. (2e)

In the following equations we denote the first derivative in
the z variable by a prime. Consistently a double prime
denotes the second derivative. Identified in the quasi-
plane-wave basis, Eqs. (1) and (2) are used to cbtain

—J‘(mK + B,fm + Sm, = _J:kOUmy (3a)
Um', = _jkozem—psp i (3b)
P
Z(pK + B)am-pUp = kofm- (3c)
P

By substituting f., from Eq. (3¢} into Eq. (3a), we obtain?

Sn' = = jkoUn + jimK/ko + B/ko)Y. (pK + Blam-,U,.
p

(4)

Equations (3b) and (4) provide a complete set of first-order
differential equations and constitute an eigenproblem of
size 2(2M + 1) when =M orders are retained in the com-
putation. As was noted by Li and Haggans! and was sys-
tematically exploited by Peng and Morris® and Moharam
et al..® it can be an advantage to solve the set of second-
order differential equations. This solution easily takes
into account the double degeneracy of the eigenproblem
and decreases the computational effort. Using Egs. (3b)
and (4) we obtain the infinite set of second-order differen-
tial equations for the magnetic field:

Un' = —ko2§5m—p|:UP ~ (PR /ka + flkd)

X3 (rK/ko + B/ko)ap_,U,] . 5

P. Lalanne and G. M. Morns

Except for minor notation disparities, Egs. (3b) and (4)
were originally introduced by Moharam and Gaylord.®
Equation {5) can be found in Refs. 3 and 6. Equation
{3) can be written in the compact form

ko Y[U"] = [E(K.AK, — DJU], (6a)

where I is the identity matrix, E is the matrix formed by
the permittivity harmonic coefficients, K, is a diagonal
matrix with the i, i element being (iX + 8)/ko, and A is
the matrix formed by the inverse-permittivity harmonic
coefficients. K,, E, and I are notations of Ref. 3. When
a finite number of orders are retained in the numerical
computation, the authors of Ref. 3 prefer to implement the
eigenproblem by numerically inverting matrix E instead
of directly taking the inverse-permittivity coefficients a,..
Replacing A by E~! in Eq. (6a), we obtain

k7HU"] = [E(K,ET'K, - DJU]L. (6b)

Equation (6b) is the same as Eqs.(35) and (36) of Ref. 3.
For the following comparison, the eigenproblem of
Eq. (6b) is used in the RCWA implementation.

3. REFORMULATION OF THE
EIGENPROBLEM

In this section we derive a new set of differential equa-
tions and reformulate the eigenproblem. Egquations (3b)
and (3c) can be written as

=X ampUp" = jkoSn, (7a)
P

(MK + B)Un = ko 3. €m-pfs - (7b)
p

By substituting f,, from Egq. (3a) into Eq. (7b) and then
eliminating S,, with Eq. (7a), we obtain another infinite
set of second-order differential equations:

S Eme
(mK/ko + B/ko)Un g_ pK/ky + Blky Us

1 €m—plp-i i
= — — [}, (B)
ko? % pK/ko + Blky

Note that Eq. (8) is not valid for normal incidence
(8 = 0) and must be replaced by Egs.(15) as dis-
cussed in Section 5. In a compact form, Eq. (8) becomes
koY EK, AJU"] = [K, — EK, '|[U]}, which is written
by multiplying both sides by (EK. 1A} !:

ko HU " =[A 1K, E'K, — I)[U], (9)

with E, K, A, and I being defined as in Eqs. (6a) and (6b).
Since A™! is identical to E when an infinite number of or-
ders are retained, Eqgs. (6b) and (9) are fully equivalent.
As will be shown with numerical examples in the next
Section, and as will be argued in Section 5, this equiva-
lence is true only when an infinite number of orders is
retained. When truncating the matrices for simulation
purposes, we can see that the two eigenproblem formula-
tions provide highly different convergence-rates.
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Fig. 2. Diffraction efficiency of the transmitted zeroth order of
a metallic grating with TM polarized light. The solid curve is
obtained by using the conventional eigenproblem formuiation of
Eq. (6b). The circles are provided by the new eigenproblem of
Eq. (9). The grating parameters and the geometry prablem are
defined in Fig. 2 of Ref. 6.

4. NUMERICAL EXAMPLES

In our implementation of the new eigenproblem formu-
lation, we form matrices A and E by directly using the
analytical values of the harmonic coefficients €, and an.
Matrices A and E are then inverted, and the eigenprob-
lem of Eq. {9) is solved with standard library programs.
When {2M - 1) orders are retained in the computation,
we obtain (2M + 1) eigenvectors u; and (2M + 1) eigen-
values A;%. Using Eq. (7a), we derive the 2{2M + 1)
eigenvectors [ |4, ] and [ 2 .., ] with eigenvalues A, and
— A;, respectively. The first numerical example is related
to a metallic lamellar grating deposited on a glass sub-
strate, which acts as a polarizer in the visible region. It
was provided by Peng and Morris in Ref. 6. The lamellar
grating is composed of chrome (index of refraction equals
3.18-74.41) and air and is acting as a zeroth-order filter
for normal incidence (see the caption of Fig. 2 in Ref. 6
for more details). Figure 2 shows the transmitted in-
tensity of the zeroth order as a function of the number
of retained orders. The solid curve is cbtained by solv-
ing the eigenproblem of Eq. (6b). A detailed explanation
of the alporithm implementation can be found in Ref. 6.
Note that a slow and oscillating convergence is obtained.
The amplitude of the oscillations decreases as the num-
ber of retained orders increases. The circles are obtained
by solving the eigenproblem of Eq. {(9). No oscillation is
observed. We are grateful to Mike Miller at the Insti-
tut d’Optique Théorique et Appliquée in Orsay, who com-
puted for us the zeroth-order transmitted diffraction effi-
ciency using his modal method.” He found a transmitted
intensity of 70.28% when retaining 90 modes in his nu-
merical computation. If we consider that 70.28% is the
exact diffraction efficiency, it is clear from Fig. 2 that the
new eigenproblem formulation with as few as 20 retained
orders provides a more accurate result than the conven-
tional formulation with 400 retained orders.

The second numerical example is taken from Ref. 1,

where the convergence rate of a highly conductive grating
on gold sub=trate was investigated (see Fig. 1 in Ref 1 {or
additinnal details on the grating geometry). The diffrac-
tion configuration is a 30° incident angle, which cor-
respends to the first-order Bragg conditien. Only the
negative first and zeroth reflected orders are propagat-
ing. Figure 3 shows the diffraction efficiencies of the
negative first and zeroth orders when the new eigen-
problem of Eq. (91 is used for the numerical computation.
As the same scale is used in Fig. 3 of this publication
and in Figs. 3ta) and 3(b) of Ref 1, a visual compari-
san of the convergence rates can be made. It is obvious
that the convergence rate is drastically improved in that
particularty stringent example. For example, when 31
orders are retained for the computation, the conventional
eigenproblem provides diffraction efficiencies of 25% and
55% for the negative first and zeroth orders, respec-
tively. With the new formulation, the diffraction efficien-
cies are 10% and 84%. In Fig. 3 the numerical value of
the diffraction efficiencies obtained with 25, 51, 75, and
125 retained orders are given. They can be compared
with the exact values 84.843% and 10.162%, obtained by
Li and Haggans,! when 125 modes are retained in the
modal decomposition of the field. When only 25 orders
are retained with the new eigenpreblem, the diffraction-
efficiency differences between the modal method and the
new eigenproblem formulation are less than 0.009 for the
reflected zeroth order and 0.002 for the negative first
order (relative errors less than 1% and 2%, respectively).
We conclude that the new eigenproblem formulation pro-
vides highly improved convergence rates.

The improved convergence rates illustrated in Figs. 2
and 3 are not isolated cases. All our simulatioen results
show an improvement even for dielectric and nonlamel-
lar gratings and for small or large period-to-wavelength
ratios.
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Fig. 3. Diffraction efficiencies of the reflected negative first and
zeroth orders of a metailic grating with TM polarization. The
circles are provided by the new eigenproblem method of Eq. (9).
The grating parameters and the geometry problem are defined
in Fig. 1 of Ref. 1. A direct comparison can be applied with
Figs. 3(a) and 3(b} of Ref. 1, where simulation results obtained
with the conventional eigenproblem and modal methods are
presented.
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5. INTERPRETATION

In this section we give a simple interpretation of the
convergence-rate differences between the conventional
and the new eigenproblem formulations. The interpre-
tation is given in the guasi-static limit, i.e., when the
period-to-wavelength ratio tends to zero. We show that,
with the conventional eigenproblem formulation, an ad-
equate description of the quasi-static limit requires that
an infinite number of orders be retained in the compu-
tation. We also show that, with the new eigenproblem
formulation, the quasi-static limit is accurately described
with a finite number of retained orders.

As was shown by Li and Haggans,! the convergence
of RCWA is directly related to the convergence of the
eigensolution. Therefore any method to improve the
convergence of the eigenproblem should improve the con-
vergence of the diffraction efficiencies. Among the eigen-
values there is at least one that can be interpreted
physically. It takes advantage of the equivalence be-
tween gratings and homogenecus media in the quasi-
static limit. By quasi-static limit we mean situations
for which the grating period is infinitely small compared
with the wavelength. The equivalence was rigorously
derived by Bouchitte and Petit.?

For the sake of simplicity we restrict the discussion to
normal incidence. In the guasi-static limit and for TM
polarization, the grating is equivalent to a thin layer with
an effective relative permittivity equal to 1/ag, where a
is the zeroth Fourier coefficient of eo/e{x). The field in
the grating can be written as a linear combination of two
counterpropagating plane waves, namely, exp jko/1/agz
and exp —jkoy1/apz. These two plane waves must be
solutions of Eqgs. (5) and {8). So in the quasi-static limit,
—ko2/ag must be an eigenvalue of Egs. (5)and (8). Letus
note Uy’ = — jkonl)y and S,' = — jkonSn, where —ko2n?
is the degenerated eigenvalue expected to be equal to
—k()2/a().

Let us first start with the conventional eigenproblem
formulation. In the quasi-static limit, i.e., when K/k,
tends to infinity, Eq. (4) reduces to

aS® =y, (10a)

Vm#0, Y pan U =0, (10b)
F)

where superscript (0) holds for the quasi-static notation
of the fields and 8 was taken equal to zero in Eq. (4}
If +M orders are retained in the computation, Eq. (10b)
provides a homogeneous system of 2M linear equations
with 2M unknowns, U}” with p # 0. Except for a pos-
sible unexpected degeneracy, the solutions are zeros. So
in the guasistatic limit Eq. (3b) becomes

Y en pS = —e, 8, (11a)

o

¥Ym=+#0,
- p*0
{

(0}
nUo

Z E_pS:,m + éoSg B (11b)
p*0

1

Multiplying both sides of Egq.(lla) by a_. and then
summing over all m, we gbhtain

z( )3 a_mem-p)sif’ ==Y a-nenSy.  (122)

p*0\ m=0 mz0

When an infinite number of orders is retained, because
Y@ me€m-p =0 as E and A are inverse matrices, the
left-hand side of Eq. (12a) reduces to —ag 3.0 € ,S"
When we truncate the number of orders and retain =M
orders in the computation, this is no longer true, and we
note the left side of Eq. (12a) ~ao" ¥ .0 €-,5%. Simi-
larly, the right-hand side of Eq. (12a} can be written as
—(1 - ao e,,}S(')O) when an infinite number of orders are re-
tained and is noted as —(1 — aq"€,)Sy" during truncating.
So Eq. (12a) can be written as

—ag" Zoe-psl,o’ = —(1 - ao*e,)Sy . (12b)
p*

In Eq. (12b), ap* and ao* denote two slightly different
values of @y, which depend on the truncation rank M.
ag”* and ao* tend to ay when the number of retained orders
tends to infinity. By eliminating 3 ,.q¢-,59 between
Egs. (11b} and (12b), we obtain

a*(nUs" — €88y = (1 — ap’&,)SE - (13)

Using Eq. (10a) to substitute Sy for Ug” in Eq. {13), and
looking for a nonzero solution in S([)O', we gbtain

i ]
=+ 50(1 - 39-.:) (14)
ap as

Equation (14} shows that an infinite number of orders
must be retained for the numerical computation of the
exact eigenvalue —ko’n? = —ko?/ao. The effect of the
truneation is not negligible. Figure 4 shows the real and
the imaginary parts of the absolute error e = n — \/1/a,
as a function of the number of retained orders. It was
obtained by solving the system of Egs. {10) and (11) for the
problem of Fig. 2. The error ¢ is quite large even when
200 orders are retained, especially for thick gratings for
which a small error on »n is responsible for a large error on
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Fig. 4. Effect of the truncation on the accuracy of the con-
ventional eigenproblem. The pluses and circles correspond to
the imaginary and the real parts, respectively, of the error
e =n — \/1/ap. The results are obtained by solving the system
of linear equations defined by Egs. (10a) and (11}.



exp{— jknz) when the boundary conditions at the grating
interface are being matched.

Let us now consider the guasi-static-limit situation
with the new eigenproblem formulation. For normal in-
cidence (3 = 0) the system of second-order differential
equations given by Eq. (8} is not valid. This is because
fo = 0 for normal incidence. It is easily shown that
Eq. (8) must be replaced by

K €m—
Ym=#0, m—U, - U
hy® ;;] P i
€m—pliy—
= Ry, s
p*0,! Pro
ko?Us + Y a_yU," = 0. (15b)
P

Equations (15a) and (15b) constitute the set of second-
order differential equations for normal incidence. Pro-
ceeding to the quasi-static limit in Eq. (15a) results in
UY = (0 for any nonzero m. n? then becomes 1/ap in
Eq. (15b); this result holds for any number of retained
orders.

For nonnormal incidence, a similar arpument can be
provided. The eigenvalue of the quasi-static limit must
be equal to —ke2(sin? @/e¢ + ag cos® #)7! instead of ~ ko?/
ag; this is because, in the guasi-static limit, the equiva-
lent homogeneous medium is uniaxial, with the optic axis
parallel to the x axis (see Ref 8). The faster conver-
gence rate of the eigenvalue problem defined by Eq. (8)
was justified only in the quasi-static limit. For nonzero
period-to-wavelength ratios and for TM polarization, al-
though the eigenvalues are more difficult to interpret, it
is possible to derive an eigenvalue that approximately
satisfies the eigenproblem® This approximate solution
is expressed as a power series of A/A. It is clear that
the power series’ zeroth order, which corresponds to the
quasi-static limit, is given by —k¢%/ag. The result is that
the conventional eigenproblem formulation, which is able
to provide the zeroth-order term only when an infinite
number of orders are retained in the computation, is also
inadequate for accurately describing the eigenproblem of
gratings with nonzero period-to-wavelength ratios. Al-
though the derivation given in this section is restricted
to the quasi-static limit, we helieve that it provides good
insight for understanding the improved convergence rates
for nonzero period-to-wavelength ratios.

6. GENERALIZATION TO
CONICAL MOUNTINGS

The new eigenproblem formulation can be generalized in
a straightforward way to the case of conical mountings.
We have to interpret the conical diffraction eigenproblem
as a combination of TE and TM polarizaticon eigenprob-
lems, and we note that the conventional TE eigenproblem
formulation® must not he changed since it provides good
convergence rates. Also note that the conventional for-
mulation for TE polarization, like the new formulation for
TM peolarization, provides the adequate eigenvalue in the
quasi-static limit for any nuinber of retained orders. Us-
ing strictly the notation of Ref. 3, it is then easily shown
that a useful eigenproblem formulation is

s,
iy
o ! U,
U,
0 0 K,E'K, 1I-KE'K,
0 0 K.E'K, -KE_K,
T KK, A'-K;? 0 0
K.2-E -K.K, ¢ 0
s)’
x| 5| (16)
U,
U,

In Eq.(16) 8,, 8,, U,, U,, K,, K,, E, and I are de-
fined as in Ref. 3. A denotes again the matrix formed
by the inverse-permittivity harmonic coefficients. The
only difference between the conventional formulation (see
Eq. (67) of Ref. 3] and the new formulation of Eq. (16}
is in the third row of the second column, where matrix
E - K,? has been replaced by A™! — K,%. In Fig. 5 the
diffraction efficiencies of the negative first and zeroth or-
ders of a conical mounting are shown as functions of the
number of retained orders. The grating used to obtain
the result in Fig. 5 is the same as that discussed in the
second example of Section 4 (see Fig. 1 of Ref. 1). The
diffraction configuration is a 30° angle of incidence, a 30°
azimuthal angle, and a 45° angle between the electric-
field vector and the plane of incidence. Using the nota-
tion of Ref. 3, 8 = 30°, ¢ = 307, and ¢ = 45°. The solid
curves are obtained with the conventional formulation of
Eg. (57) in Ref. 3, and the dotted curves are obtained with
the new formulation of Eq. (16). As in the two examples
above we note that the new formulation provides faster
and smoother convergence rates. For example, for the
zeroth-order diffracted plane wave the numerical values
of the diffraction efficiencies are 10.58%, 10.11%, 10.08%,

Ditiraction sfficiency (%)
5 B8 3

8

[¢] 20 AQ 80 80 100 120 140
Number of retgined orders

Fig. 5. Diffraction efficiencies of the reflected negative first and
zeroth orders of a metallic grating for conical mount (¢ = 30°,
@ = 30°, and ¢ = 45°). The grating parameters are defined
in Fig. 1 of Ref 1. The solid curves are obtained with the
conventional eigenproblem formulation of Ref. 3. The dotted
curves are obtained with the new formulation of Eq. (16).
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and 10.07% when 25, 51, 75, and 125 orders, respectively,
are retained with the new formulation. With the conven-
tional formulation the corresponding diffraction efficien-
cies are 1.38%, 7.70%, 8.99%, and 9.42%. We conclude
that the new formulation with 25 retained orders provides
more accurate results than the conventional fermulation
with 125 retained orders. By use of the second derivative
of the field vector, the eigenproblem of Eq. (16) reduces to

ko U] = [K)? + K, — EJ[U L,
koS = [K.E'K.A + K2 - A8 an

Equations {17) are new formuilations of Eq. (60} in Ref. 3
and can be used to save computational time.

7. CONCLUSION AND DISCUSSION

By reformulating the eigenproblem of RCWA, we show
that good convergence rates can be achieved for TM po-
larization of 1-D metallic gratings. In Ref 1, Li and
Haggans interpreted the oscillating and poor conver-
gence rates of conventional RCWA by invoking truncation
effects that are due to the slowly convergent Fourier
expansions of the permittivity and the field inside the
grating, but they noted that their interpretation poses
a difficuity in understanding why convergence rates are
much slower with TM than with TE polarization. Be-
cause the new eigenproblem is also based on a truncated
Fourier expansion of the permittivity, the poor conver-
gence rates observed for TM polarization must not be
attributed to truncation effects. In Section 5, by exam-
ining the eigenproblem in the guasi-static limit, we show
that the conventional eigenproblem requires an infinite
Fourier expansion to provide an accurate description of
the quasi-static limit diffraction problem; this can be
considered to be a kind of bad conditioning of the con-
ventional eigenproblem. However, as shown in Fig. 3,
the effect of the truncation remains slightly visible with
the new eigenproblem formulation. When the number
of retained orders increases from 25 to 125, the zeroth-
order diffraction efficiency keeps increasing from 83.96%
to 84.76% and is expected ultimately to reach the ap-
proximate value of 84.84%. This convergence rate is
similar to that observed for TE polarization of the same
grating problem. The approach developed in this paper
can be applied to any numerical techniques using a
Fourier expansion and is not restricted to the imple-
mentation of RCWA,

With respect to computational effort, the new eigen-
problem formulations of Eqs. {9} and (17) are more
demanding than their corresponding conventional formu-
lations [Eqs. (6b) and (60) of Ref. 3). They additionally
require the numerical computation of matrices A and
A~'. However, for a given reasonable accuracy, the new
eigenproblem formulation saves considerable time and
computer memory because fewer orders have to be re-
tained. This is especially true when continuous profile
gratings or stacks of lamellar gratings are considered
or when several grating depths are studied for a given
diffraction problem.
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The recent reformulation of the coupled-wave method by Lalanne and Morris (J. Opt. Soc. Am. A 18, 779
(1996)] and by Granet and Guizal [J. Opt. Soc. Am. A 13, 1019 (1996)], which dramatically improves the con-
vergence of the methed for metallic gratings in TM polarization, is given a firm mathematical foundation in

this paper.

The new formulation converges faster because it uniformly satisfies the boundary conditions in

the grating region, whereas the old formulations do so only nonuniformly. Mathematical theorems that gov-

ern the factorization of the Fourier coefficients of produ

cta of functions having jump discontinuities are given, -

The results of this paper are applicable to any numerical work that requires the Fourier analysis of products -
of discontinuous periodic functions. © 1996 Optical Society of America. L

1. INTRODUCTION

The determination of the eigensolutions of Maxwell’s
equations in a periodie, piecewise-constant medium, as
shown in Fig. 1, is the most crucial step in the analysis of
surface-relief gratings by moda! methods. Among the ex-
isting modal methods, the most popular one is the modal
method by Fourier expansion,’? commonly referred to as
the coupled-wave method (CWM). In the CWM, both the
electromagnetic fields and the permittivity function are
expanded into Fourier series, and thereby the boundary-
value problem is reduced to an algebraic eigenvalue prob-
lem. In an earlier paper® Li and Haggans provided
strong numerical evidence to show that the CWM con-
verged slowly for metallic gratings in TM polarization.
The authors attributed the slow convergence of the CWM
to the slow convergence of the Fourier expansions. How-
ever, they also admitted that “the convergence-rate differ-
ence {between TE and TM] cannot be completely ex-
plained by such a simplistic convergence analysis of the
Fourier expansions” (p. 1188). Recently Lalanne and
Morris* and Granet and Guizal® numerically achieved
truly dramatic improvement in the convergence rate for
TM polarization by reformulating the algebraic eigen-
value problem of the CWM. Their work convincingly
proved that the cause of the slow convergence of the CWM
for TM polarization is not the use of the Fourier series but
the way in which the Fourier series of the permittivity
and the reciprocal permittivity functions are used.

Whenever a = sign is used in this paper without the
summation range explicitly given, a sum from —M to M is
understood. Similarly, a matrix without an indication of
its dimension is understood to be a (2M + 1) X (2M
+ 1) square matrix. The Gaussian system of units, the
coordinate system of Fig. 1, and the time dependence
exp{—iwt) are used.

In the old formulation,"? one solves the coupled first-
order differential system,

1dH,,
? dy = 7k0§ En-mExm!

{la)

0740-3232/96/0901870-07$10.00

n

dy

= ~kopoHon + 3= 3

o m
or better yet, the equivalent second-order system :

&H, N e
V = ; En—au; [am(;)m_;‘_xp L 2._ .

s e (2)
Here, k is the vacuum wave number; uy' =:1;:4,.; is the
Kronecker symbol; , and (Ve), are_the Fourier; coeffi-
cients of the permittivity and the reciprocal pérmittivity
functions, respectively; £, and H,, are the y-dependent -
Fourier coefficients of the fields; and &, = a5+ nK; with
K = 2n/d and ap being the Floquet exponent.” In the
new formulation,*5 one solves the coupled first-order sys-
tem, N Lo .

w e

1 den 11t R
1 dE P S
h o On -1 .
i dy kl)n“’ﬂqu + ko % I;EInmamHzm '
' {(3b)

or the second-order system,
d2H,, :
dy?

11t ) o
% [; lm§ (amlelm}aap - p‘ﬂ#ﬂ%am-p')gzp!
' W

where [f] denotes the Toeplitz matrix generated by, the
Fourier coefficients of f such that its (n, m) entry is
fa-m, and —1 denotes the matrix inverse.  Thus the
only difference between the new and the old formulations
is the manner in which the permittivity function appears
in the equations: The new formulation uses [1/~* and
fef™! instead of Je} and [1/e], respectively. * It should be
mentioned that there is another version of the old formu-

the matrix [I/e] in Eq. (2) is replaced by 47’

lation, recently presented by Moharam et al.%in which

© 1996 Optical Society of America
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Fig. 1. Periodic, piecewise-constant medium. The periedicity of

the permittivity is d, and its discontinuities are located at
x = =d /2

FHu _

o D enom (amlelnba, = roko?bmy)Hap.
m P

(5)

The close similarity in equation structure and the
striking difference in performance between the old and
the new formulations poses an intriguing question:
What is the fundamental difference between the two for-
mulations? The authors of Refs. 4 and 5 did not provide
any answer, although the former offered an ingenious
demonstration of the plausibility of the new formulation
in the quasi-static limit. They also did not say how they
discovered the new equations. Indeed, their discovery
appears empirical.

In this paper I show that the reason for the success of
the new formulation is that it uniformly preserves the
continuity of the appropriate field components across the
discontinuities of the permittivity function; by inference,
the old formulations do so only nonuniformly. I will pro-
vide the mathematical basis for the new formulation.
Furthermore, I will describe the correct procedures for
Fourier analyzing the electromagnetic-field components
in Maxwell's equations such that the required field conti-
nuity is preserved across the discontinuities of the per-
mittivity function.

In Section 2 I give three mathematical theorems con-
cerning the Fourier factorization of a product of two peri-
odic functions. The contents of these theorems are
rather subtle, but they have extremely important impli-
cations to the theory of gratings. The proofs of the theo-
rems will not be given here because they are lengthy.
The reader who is interested in the proofs may refer to
Ref. 7. To help the reader better understand the abstract
mathematical results, some digscussions and several
graphical illustrations are given in the latter part of Sec-
tion 2. The mathematical results of Section 2 are applied
to our grating problem in Section 3, where Eqgs. (3) and (4)
are derived and Egs. (1), (2), and {5) are proven to be in-
correct. The correct procedures for Fourier analyzing
Maxwell’s equations such that the field continuity is pre-
served are also established in Section 3. In Section 4 I
make some remarks on the results obtained from this re-
search.

2. STATEMENT AND ILLUSTRATION OF
THE MATHEMATICAL RESULTS

A. Notation and Statement of the Problem

Let P be the set of piecewise-continuous, piecewise-
smooth, bounded, periodic functions of x with period 2.
For every fix} € P and gix) € P,

hix) = flx)glx) (6}
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is obviously also in P. Let

Uf={xj\f(xj+0)¢f(xj—0), j= 1,2, }

{n

be the set of the abscissas of the discontinuities of f(x),
and let U, be similarly defined for gtx). Then,

Ufg= U,—ﬂ (J‘g (8)

is the set of the abscissas of the concurrent discontinuities
of fix) and g(x). If A{x} is such that

hix, — 0) = hix, + 0) (x, & Ug), (9)

fix) and g(x) are said to have a pair of complementary
jumps at x,. In this case the discontinuity of Alx} at x,
is removable. The amount of discontinuity of f at x; will
be dencted by f;,

fi = flx; + 0) — fix; — 0), (10)

and similarly the jump of g at x, by g,. If we assign the
functional values of f(x), g{x), and A(x) at their respec-
tive discontinuities to be the arithmetic means of their
limiting values from the two sides of the discontinuities,
then these functions are represented everywhere by their
Fourier series. As in Section 1, a function name with a
subscript in lowercase letter is used to denote the complex
Fourier coefficients of the function. The term Fourier
factorization means the expression of A(x) or its Fourier
coefficients in terms of the Fourier coefficients of f{x) and
glx).

For a large class of functions, including those in P, the
Fourier coefficients of 2 (x) can be obtained from the Fou-
rier coefficients of f(x) and g(x) by Laurent’s rule:®

ho= 2 fomBm (11)

The Fourier factorization of A(x) is then given by

+x

Rix)= 2 h,explinx)
= 2 D fumBmexpting).  (12)

To be mare precise, Eq. (12) should be understood in the
following sense:

N ‘ M

hix) = lim E ( lim 2 fo-m&m |€XPlinx),
Nozn=-N\M_xm=-M
13

The above equation, in the way it is written, emphasizes
two important points. First, the two limits are indepen-
dent of each other and the inner limit is to be taken first.
Second, the upper and lower bounds in each sum should
tend to infinity simultaneously; in other words, the sums
converge in general only restrictedly.?

In solving a practical problem on a computer, the trun-
cation of the infinite series is inevitable. In this section
subscript M or superscript M enclosed in parentheses will
be used to denote the symmetrically truncated partial
sums. Then, corresponding to Egs. (11} and (12), we
have
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M
Laurent's rule: h'M" = 2 fo mEm. i14)
.
M
RMxy = E M expiinx), {15)
nos oM
M
hylx) = 2 h, expiinx). {16)
n= -M

Note that in Eq. (15} the same positive integer M is used
both for the summation bounds and for the superseript of
the coefficients, which is the most commonly adopted
truncation convention in numerical analysis. This condi-
tion is of fundamental importance to the validity of the
theorems to be given below. What a practitioner hopes is
that ' M'(x) converges as M — = and that

R''tx) = hix). 17

Although the mathematical theory on the multiplication
of Fourier series is well developed,® to the best of my
knowledge the special and practically important problem
that is posed by letting N and M in Eq. {13) tend to infin-
ity simultaneously has not been addressed in the litera-
ture.

B. Theorems of Fourier Factorization

Theorem 1. Iffix) € P and g(x} € P have no concur-
rent jump discontinuities and 4 'M' is given by Eq. (14),
then Eq. (17) is valid.

Theorem 2. Ifflx) € P and g(x) € P have concurrent
jump discontinuities and A ‘™' is given by Eq. (14), then

RMyx) = Baylxt — E ';p—g; Dylx — x,) +~ 0l 1),
T

xp = Uy
(18)
where the term o(1) uniformly tends to zero, and
¥ cos nx 1
= . 1
P T
Furthermore,
lim ©yix) =0 (x = 0}, (20m
M .o
but
lim (03 = —. (21}

Mo 4

Theorem 3. Let S be a subinterval or a collection of
subintervals of [0, 2m), and S be its complement (5 or §
may be empty). We assume that flx) + 0 and denote by
[1/F 1M the symmetrically truncated Toeplitz matrix gen-
erated by the Fourier coefficients of 1/f. If all the discon-
tinuities of & (x) are removable and if fix) satisfies either
one of the two following conditions: ial Re {1/f] does not
change signin [0, 27), Re [1/f] # 0 1in S, and Im [1/f] does
not change sign in S: (b) Im [1/] does not change sign in

Lafeng Li

[0, 2m, Im [Uf]1 # 0 in S, and Re{1/f] does not change
sign in § —then Eq. (17) 15 valid provided that, instead of
Eq. (14}, the inverse rule

A = waﬁ

is used in Eq. (155

1
Inverse Rule: f Em (22)

nm

C. Discussion

In less formal language, theorem 1 says that if f and g
have no concurrent jumps, then the difference between
hylx), the partial sum of the Fourier series that uses the
exact Fourier coefficients, and A'M'(x), the partial sum
that uses the approximate Fourier coefficients obtained
by the finite Laurent rule, vanishes everywhere as the or-
ders of the partial sums inerease. Theorem 3 says that
the same is true if all the jumps of f and g are pairwise
complementary provided that, instead of Laurent’s rule,
the inverse multiplication rule is used. However, theo-
rem 2 says that if f and g have concurrent jumps and
Laurent’s rule is used, then the difference between the
two partial sums does not vanish everywhere; at the loca-
tions of the concurrent jumps, 2™ '(x) refuses to converge
to hM(I )-

As a manifestation of the nonconvergence of A'M'(x) to
hylx) at x, € Ug, the convergence of RNy to Bpglx)
in the neighborhood of x, is nonuniform. In other words,
for anv € > 0, one cannot find an M* such that
|B*M'(x) = hylx)] < € not only for all M > M* but also
forallx e (x, = 8, x,) U(x,,x, + 8), where § > 0 is a
constant. From Eg. (18) the convergence of
AMx) — hyix) is equivalent to the convergence of
®yix).  The nonuniform convergence of dylx) can be
easily seen because the sum of a uniformly convergent in-
finite series of continuous terms should be a continuous
function. Since ¥, (x) is discontinuous atx = 0, the con-
vergence of $,(x) cannot be uniform in the neighborhood
of x = 0.

The function d,,(x) has many interesting properties.
Its limit as M - = is 7/4 at x = 0 and zero everywhere
else in |0, 2m). Pyix} is unique in the sense that if there
is another function, ®y,(x) that satisfies Eq. (18), then the
difference between ®y,(x) and & y,(x) must converge uni-
formly to zero everywhere. A few graphs of dy(x) will
help the reader to see its general behavior. Figures 2ia),
2tb), and 2(¢} are graphs of ®y(x) in the neighborhood of
x = 0 for M = 10, 100, and 1000, respectively. Note
that although the same vertical scale is used in all three
graphs, the horizontal scales are different from one an-
other by a factor of 10. Although there are visible minor
differences between the two curves in Figs. 2(a) and 2(b),
ne differences between Figs. 2(b) and 2(c) can be easily de-
tected. In other words, in the neighborhood of x = 0, the
graph of &, (x) is approximately the same as the graph
of by {x} for sufficiently large M, if the scale of the hori-
zontal axis of the former is n times as large as that of the
latter. If we index the extrema of &4(x) from the origin
outward, not counting the central maximum, by =*1,
+2, ..., with positive and negative signs for x > 0 and
x < 0, respectively, then these figures suggest that for an
extremum of fixed index, its function value tends to a con-
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Fig. 2. Graphs of @y(x) in the neighborhood of x = 0 for (a}
M =10, (b) M = 100, and (¢c) M = 1000. Note the change of
scale for the horizontal axes.

stant but its position tendstox = 0 as M — =. This ob-
servation is of course consistent with our earlier conclu-
sion that the convergence of ®y{x) is nonuniform near
x=0.

From a graphical point of view, Eq. (18) of theorem 2
says that the graph of 2'M'(x) can be obtained by super-
imposing a series of properly scaled graphs of dy(x) cen-
tered at x, € Uy, on top of the graph of hy(x). Here for
ease of visualization we may assume that both f(x) and
g(x) are real-valued functions. The effect of such a su-
perposition is most prominent when k(x) is continuous,
In that case, A'M'(x) will have an overshoot (if ffpg,, < 0)
or an undershoot (iff”pgrp > 0} from the graph of £ y{x) at
x, € Uy, whose magnitude tends to 1/8 of ifpg,l as
M — =. On the other hand, theorem 3 says that when
hi{x) is continuous, A'"*'(x} calculated by the inverse
rule preserves well the characteristics of A(x), including
its  continuity at x, e Up. If  we set
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flx, + 0)/flx, - 0) = a and again assume that A(x) is
continuous at x, € Ug , then

N - o)’
foBp = ~hixp) ——. (23)

Thus the magnitude of the overshoot can be arbitrarily

large as « — 0 or @ — *=. Ags illustrations of what has

just been said, let us consider two graphical examples.
In the first example, we choose

kia
a Lx| <§
floy =4 . @#0), (@4
a m
— — -
g g K="

and g(x) = Uf. Then it is obvious that the discontinui-
ties of f and g are pairwise complementary and A(x) = 1.
Figure 3{a) shows what happens when the partial sum
R™M)(x) is computed with the coefficients & (¥ given by
the finite Laurent rule. In this and the next example,
M = 200. Figure 3(b) shows an enlarged view of the
same partial sum in the neighborhood of x = #/2. As
the theory predicted, it is just a graph of ®p(x — 7/2) su-
perimposed on hy(x) = 1. The peak value of the over-
shoot is also as predicted because in this case
(~1/8),f, = 1/16 = 0.0625. The straight horizontal

1.08 . .
1.06F
104} _
o)
£ 102t ) .
"= F
100} -
0.98 + .
- /2 0 /2 i
X
{(a)
1.08 T
1.06F .
. l.oa}
X
§: 1.02+ .
VANV ANEAY /\ f\ AN AL
0.98
(9/20)n 2 (11/20)n
X
{b)

Fig. 3. (a) Graph of h'*/(x) that is Fourier factorized by the fi-
nite Laurent rule, with f(x) given by Eq. (24), g{x) = 1/f(x), and
M = 200. (b) Enlarged view of Fig. 3(a) in the neighborhood of
x = /2. The straight horizontal line in Fig. 3(b) is obtained by
the inverse rule.
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Fig. 4. (a) Schematic representations of functions fix) and g(x}
in Egs. {24) and (25) and their product A(x) in order of decreas-
ing line thickness. Here ¢ = 6 and b = 2. (b) Function A Mixy,
with M = 200, in the neighborhood of x = /2. The oscillatory
curve is obtained by Laurent's rule, and the nonoscillatory line is
obtained by the inverse rule.

line in Fig. 3(b) is 2"*’(x) computed with 4 ¥ given by
the inverse rule. The perfect preservation of the continy-
ity of A{x) at x = /2 is evident.

Perhaps the above exampie, in which Eq. (22) gives the
exact Fourier coefficient of A(x), h, = 8,, is too special.
In the second example, we keep f{x) as given by Eq. (24)
but choose

b(l— @) |x|<"2_T

gix) = ) , b % 0),

o
>
—
e
|
2z

b3| g

<lx| =7 (25)

Thus the function A (x) is again continuous. In Fig. 4(a),
fix), g{x}, and kix) are shown schematically in order of
decreasing line thickness. Here,az = 6 and b = 2. Fig-
ure 4(b} shows A'™x) in the region enclosed by the
dashed circle in Fig. 4(a). The oscillatory curve is ob-
tained by using Laurent’s rule, and the straight line is ob-
tained by using the inverse rule. Once again, the inverse
rule gives a perfect reconstruction of k(x), but Laurent’s
rule gives a reconstruction that suffers from overshoot
and ringing in the neighborhood of the complementary
discontinuity.

We say that a product f(x)g(x) can be Fourier factor-
ized only when Eq. (17) is valid everywhere. If the three

Lifeng Li

types of product that theorems 1, 3, and 2 are concerned
with are referred to as products of type 1, 2, and 3, respec-
tively, then from an operational point of view the three
theorems can be summarized as follows:

L. A product of type 1 (two piecewise-smooth,
bounded, periodic funetions that have no concurrent jump
discontinuities) can be Fourier factorized by Laurent’s
rule.

2. A product of type 2 (two piecewise-smooth,
bounded, periodic functions that have only pairwise-
complementary jump discontinuities) cannot be Fourier
factorized by Laurent’s rule, but in most cases it can be
Fourier factorized by the inverse rule.

3. A product of type 3 (twv piecewise-amooth,
bounded, periodic functions that have concurrent but not
complementary jump discontinuities) can be Fourier fac-
torized by neither Laurent’s rule nor the inverse rule.

3. APPLICATION TO THE GRATING
PROBLEM

Strietly speaking, a modal field in a periodic medium is
representable only by a pseudo-Fourier series, which dif-
fers from a Fourier series by the Floquet factor exp{i x,x).
It is easy to verify that the mathematical results of Sec-
tion 2 apply to pseudoperiodic functions as well, except for
a few changes in the terminology. Therefore for simplic-
ity I will uge the term Fourier series in this section {o re-
fer broadly to the pseudo-Fourier series of the fields and
the Fourier series of the permittivity. The piecewise
smoothness and boundedness of the functions required by
the theorems in Section 2 are guaranieed here by the
physics of the grating problem.

The x-dependent equations corresponding to Egs. (1)-
(b} are

1 0H,

2

ay
1 o,
i

= —koeE,, (26a)

5 12 ”H’) (26b)
~kopoH, - ko 5% \e @ )

2H, 3 {1 aH,
5_—),2 o ;_c?xm

™
Now a reader, well equipped with the mathematical
theory of Section 2, can immediately see why Eqs. (1), (2),
and (5) are incorrect and why Eqs. (3) and (4) are correct.
Let us lack at the above three equations one by one.

On the basis of the physics, we know that the product
€E, in Eq. (26a) should be continuous in x. Since ¢ is dis-
continuous at x = *d /2, € and E, must together have
two pairs of complementary jumps there. Equation (1a)
is incorrect because it derives from the use of Laurent’s
rule, which does not apply to a product of type 2. As a
result, the left-hand side of Eq. (1a) is the coefficient of a
uniformly convergent Fourier series, but the right-hand
side is the coefficient of a nonuniformly convergent trigo-
nometric series. The two series converge at different
rates to functions that are not equal everywhere. Hence
the required continuity of X, is not uniformly preserved.
In contrast, Eq. (3a) can be derived by applying the in-

) + #okozﬂz]- 27
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verse rule to Eq. (26a). Both sides of Eq. {3a) tend to the
same mathematical quantity, and the continuity of £ is
uniformly preserved.

The Fourier analyzis of Eq. (26b) can be done similarly.
Here (1/eX3H ,/ox) is a product of type 2. Equation (3b)
handles this product correctly, but Eq. (1b) does not. For
Eq. (27), the term involving (L/eXdH,/ax) should be
handled just as in Eq. (3b), of course. The entire right-
hand side of Eq. (27) should be viewed as the product of ¢
and the term in the square brackets. This product is
once again of type 2, because the left-hand side of Eq. (27)
is continuous with respect to x. It is incorrectly handled
by Eqs. (2) and (5) and correctly handled by Eq. (4). Note
that there is no ambiguity in the way that Eqs. (26) and
(27) can be Fourier analyzed. For example, if the right-
hand side of Eq. (27) is multiplied out to yield two or more
terms, then there will be terms that are products of type
3, which cannot be Fourier factored.

For the sake of completeness, I provide two more ex-
amples. For TE polarization, the z component of the
electric field obeys the Helmholtz equation:

#E, FE, .
- ayﬂ = _3;5— + y.ukg EEZ. (28)
Here the product E, is type 1, so Laurent’s rule can be
applied, just as every author on this subject has done. In
the conical mount the x component of the electric field of
an H, mode (meaning the mode for which H, = 0) obeys
the equation

#E. 9
P

19 2
« o ()

k2E, -

+ ou‘()k OZGE.: »
(29)

where k, is the z component of the incident wave vector.
Based on either the physics or a mathematical analysis,
the products €E, and (L/eld ¢E, )/ 3x] must be continuous.
Therefore by the inverse rule, Eq. (29) becomes

PE,,
Rl 2 (adeltan,

1 -1
—uoko”am)E[;] E, G0
P mp

Equation (30) corresponds to Eq. (60) of Ref. 6, but here
the field continuities are well preserved.

On the basis of the above examples, the procedure for
Fourier analyzing Maxwell's equations that contain a dis-
continuous permittivity function can be summarized as
follows:

1. From the basic Maxwell equations, derive the
coupled first-order equations or the second-order equation
in terms of the vector field component(s) of interest.

2. Arrange the resulting equation(s) in such a way
that the combinations of the permittivity function and the
field components form products of type 1 and type 2 only;
avoid type 3 products.

3. Substitute the Fourier coefficients for the field com-
ponents that are not multiplied or divided by the permit-
tivity function, and apply Laurent’s rule and the inverse
rule to the products of type 1 and 2, respectively.
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4. DISCUSSION

My research into the fundamental reason for the success
of the new formulation discovered by the authors of Refs.
4 and 5 initially led me onto a path different from the one
that has been presented here. Since the convergence of
the CWM depends on the convergence of the solutions of
the algebraic eigenvalue problem, it is natural for some-
one to focus attention first on the coefficient matrices on
the right-hand side of Eqgs. (1)-(5). After all, it is the
structure and composition of these matrices that deter-
mine the convergence rates. However, such an effort
seemed to be difficult and turned out to be unsuccessful
for me.

Looking at the problem from a different perspective led
to brighter prospects. On the basis of physical under-
standing and experience, we know that the difficulty of
the problem lies at the permittivity discontinuities. If
the solutions of the eigenvalue problem converge, they
must converge to the modal fields that, by definition, sat-
isfy the boundary conditions. If, in the construction of
the eigenvalue problem, no assurance of fast convergence
with satisfaction of the boundary conditions is provided,
then it would be hopeless to expect the solutions of the ei-
genvalue problem to converge rapidly. In this sense, the
new formulation provides a much better condition for the
convergence of the solutions than does the old formula-
tion.

The significance of this paper is by no means limited to
the CWM. In a broad sense, any numerical work that re-
quires the Fourier analysis of a product of discontinuous
periodic functions could benefit. In particular, this re-
search may have important implications for the classical
differential method for gratings.'® At first glance, it may
appear that the results here de not apply to the differen-
tial method when the grating profiles are not rectangular.
Indeed, as the differential method does not use the so-
called multilayer approximation, eE, and (YeloH,/dx}
are not continuous across the grafing profile where the
surface normal is not in the x direction. However, since
the method relies on numerical integration, in the y direc-
tion, of the unknown field amplitudes, the permittivity is
assumed to be independent of ¥ within each integration
step. Thus the multilayer approximation is implicitly
used. Therefore I expect that if Egs. (4.30) and (4.31) of
Ref. 10 are replaced by Egs. (3a) and (3b), respectively, of
this paper, the convergence of the differential method will
be improved.

I have successfully applied the theorems and proce-
dures developed in this paper to improve the convergence
of the coordinate transformation methed of Chandezon
et al.’! in the case in which the grating profiles have
sharp edges. This result will be presented in a separate
publication.!?

From Eq. (11), it follows that if e(x) # 0, then

0o

mn

+ A, (31)

where

Apn = HEM emi(%} ) (32)

I-n
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Thus, for discontinuous €(xi, Ay, — O only if m and n
are such that \M = n) — < and (M = m) — =« as
M — = In other words, the matrix elements of 3, in
the vicinity of the two ends of the main diagonal remain
finite as M — <. Therefore
HEH(M\ 1 = ”l
be
The incorrect assumption of equality between matrices
le} ! and [1/€] might have inadvertently played a positive
role in the discovery made by the authors of Refs. 4 and 5.
It might also be the reason that the authors of Ref. 6 de-
rived Eq. (5).

The work of Refs. 4 and 5 has clearly shown that the
improved convergence rate more than offsets the addi-
tional computational effort needed to invert the matrices
[e] and [1/€]. Actually, because these matrices are of the
Toeplitz type, the extra work is minimal. There are effi-
cient numerical algorithms'? that can invert Toeplitz ma-
trices in O(M?) instead of O(M%) operations. Inciden-
tally, the inverse of a Toeplitz matrix is not necessarily a
Toeplitz matrix. This is why double indices nm, instead
of a single index n — m, have been used to denate the ei-
ements of the inverse matrices in this paper.

The subject of thig paper serves well to illustrate cer-
tain aspects of the relationship among physics, math-
ematics, and numerics. The physical laws certainly do
not insist that their mathematical expressions be held ev-
erywhere in the mathematical sense, nor do they require
uniform convergence, if infinite series are used in the ex-
pressions, From a mathematical point of view, both the
old and the new formulations of the CWM are rigorous be-
cause they are equal almost everywhere. However, the
mathematical difference between everywhere conver-
gence and almost-everywhere convergence and between
uniform convergence and nenuniform convergence makes
a world of difference in the numerical implementations,
as demonstrated by the numerical examples in Refs. 4
and 5.

M
ﬂ , M- <. (33)

5. CONCLUSION

The success of the new formulation of the coupled-wave
method (CWM) recently presented by Lalanne and
Morris? and by Granet and Guizal® is due to the fact that
it uniformly preserves the continuity of the electro-
magnetic-field quantities that should be continuous
across permittivity discontinuities. [ have given two dif-
ferent rules for Fourier factorizing two different types of
products. Furthermore, I have described the procedures
for correctly converting Maxwell’s equations into linear
algebraic systems in discrete Fourier space. As a result,
the new formuiation of the CWM is placed on a selid
mathematical foundation.

Fourier series have been used for a long time to repre-
sent the periedic, piecewise-constant permittivity func-
tion and its reciprocal in grating analysis. Ironically, the
mistake of using Laurent’s rule to factor the Fourier coef-
ficient of a product of functions with complementary
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Jumps has been made by every researcher who has useq
these series expansions. The lesson learned from this re-
search is that, in converting Maxwell’s equations in spa-
tial variables to equations in the discrete Fourier space,
one cannot blindly substitute the Fourier series of every
term and every factor into the spatial equations; appro-
priate factorization rules must be applied when disconti-
nuities are present in the factors of the products.
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