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L INTRODUCTION

Adequate management of the environment
assessment of soil quality. Inasmuch as we want
managing agricultural
fertilizers and pesticide
from over-application
soil properties and s
Moreover, to integrat
scales, knowledge of t
essential.

In this chapter, we discuss techniques that allow us to anal
statistically. The concept behind these techni

conducting agronomic experiments. With new approaches

and agricultural resources requires

to protect our global resources when
systems, we have to achieve efficient use of inputs, such as

s, for crop production, as well as avoid pollution risks arising
of agrochemicais. Therefore, spatial and temporal patterns of
oil quality attributes and indicators have to be known.
e and regionalize information from specific points to larger
he nature of spatial and temporal patterns of land surfaces is

yse field observations

agricultural system (Peterson et al.,
derive relevant information directly
manipulate these observations to asses
of entire fields (Nielsen et al,
focus our attention on the u

1993; Nielsen et al., 1994a). Instead, we can
from on-site observations using tools that
s physical, chemical, and biological properties
1994b). These monitoring and analyzing methods help
nderlying processes that account for the spatial and

)- 1997. Soil Quality for Crop
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Fig. 11.1. Soil microbial biomass C along a transect sampled across a moraine catena in NE
Germany,
C(n)
r(h) == (2)
where
r
N 2
2 — %)
e e, 2 i=1
. (3)

In Figure 11.2a, the autocorrelation function for the biomass data is shown. We can
obtain r(4) by plotting the observations x; against the observations x;,,, and can then
calculate the respective correlation coefficient r(h} for this scatter diagram. With
increasing lag distance, the number of pairs x; versus x,,5 decreases, and therefore the
reliability of r(h) becomes small for widely separated observations (large A-values)
unless N is very large.

Another tool reflecting the autocovariance versus lag relation is the semivariogram
or simply variogram y(h), calculated according to the following:

| MR
y(h) = m Z(’Cf — xia)’ (4)
i=l

where N{k) is the total number of sample pairs for the lag interval A. For the chosen
sampling distance (k), half of the average squared difference between all pairs of
observations separated by that distance is calculated. Unlike the autocorrelation
function, the semivariogram is not based on the total sample variance but on
variation betweén pairs of observations. Hence, it is not bound so strictly to
stationarity assumptions as is the autocorrelation function. Stationarity means that
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248 O. WENDROTH et al

temporal variability patterns of soils and crops, rather than looking for a significan
response to a set of imposed treatments that may not be practicable or even h
related to optimal management practices for a particular field (Nielsen and Alemi
1989).

When farmers manage their fields, they intuitively pay attention to local soi
variability within their fields—information that has often been suppressed ir
agronomic studies. Now we have the opportunity to expand the intuitive thoughts o
the farmer using analytical tools to provide better management alternatives designec
specifically for each of his particular fields.

The objectives of this chapter are to iflustrate basic principles, aspects, and
requirements for spatial statistical analyses and to present some applications of
selected geostatistical techniques (Isaaks and Srivastava, 1989) and time series
analysis (Shumway, 1988). This contribution should allow answers to the questions:
For a given area such as a farmer’s field or watershed, what are the patterns of soil
properties, crop attributes, and yields that display spatial variability? How can these
patterns be identified and understood? How can this identification and understand-

ing be used to optimize profitability and agricultural and environmental sustaina-
bility?

II. APPROACHES

A. Autocovariance

Usually when a variable is sampled in the ficld, the mean and the variance are
determined to reflect the sampled population, assuming that sampling occurred
randomly and representatively (i.e., observations are independent of each other and,
in general, are normally distributed).

The set of microbial biomass data sampled along a catena in a landscape ecology
study shown in Figure 11.1 has a mean of 626.8 ug C g™! and a variance of 6811.1
(ug C g™")2. Fifty samples were taken at 1.8-m intervals along a 90-m long transect.
The following analysis shows additional information that a spatial analysis of a
univariate data set can provide when sampling coordinates are considered, rather
than ignoring them as is commonly done in most agronomic experiments. The

autocovariance-lag distance function or simply the autecovariance function C(h) is
defined as

C(R) = =3 (xis — )(xi — %) (1)

where a set of N observations x; at location i with mean ¥ is considered (Salas et al.,
1988). The distance between pairs of observations is 4, the so-called lag. When C(h)
is normalized (i.e., it is divided by the sample variance 5%) it is called the

autocorrelation function r(h), which is bounded between +1 and —1, and is
determined by:

1
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Fig. 11.2. Autocorrelation function (a), and semivariogram (b} for microbial biomass C data.

the mean and the variance of the data do not change appreciably within the samp
region, which implies as a consequence that there are no overall trends or slope:
the data values with position. When stationarity exists the semivariogram (Fig. 11.
is a mirror image of the autocorrelation function. The semivariogram can be used
spatial interpolation purposes such as kriging (as shown in the example below
land evaluation with respect to atrazine leaching).

Between 1.8 and 5.4 m (or between 1 and 3 lags) in Figure 11.1, the a1
correlation of biomass data decreases, and the semivariance increases stee
(Fig. 11.2a,b). The zone of increasing semivariance is called the range. The rar
which reflects the structured variability of observations, is 14.4 m or 8 lags in .
example (Fig. 11.2b). Hence, we can say that up to a distance of roughly i4
microbial biomass observations are correlated with each other. When the semiv:
ance does not change significantly with increasing lag distance, the plateau reache
called the si/l, reflecting the magnitude of random variation, which in our exampl
around 8500 (ug C g~ "%

Although by definition y(4) equals 0 at & = 0 (i.e., the variability of the measu
parameter is zero at zero distance from the location of measurement), the nugget is
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effective value of y(k) at & = 0 extrapolated from values of y(k) for & > 0. The nugget
reflects that fraction of the variance at the shortest sampling distance, that is
attributed to measurement uncertainty (human error, measurement error, repeat-
ability, etc.) and nested structures having ranges smaller than the sampling interval
(Olea, 1991). In some cases, the magnitude of the nugget can be reduced by sampling
at shorter 4 intervals. In the case of our example of biomass determination (Fig. 11.1),
errors may arise from sample augering and preparation, calibration of the analyser
(CO,-detector), and measurement noise. The latter may be reduced by repeated
measurement with the same sample if possible. In view of the small nugget variance in
our example (approximately 1000 (ug C g~')* and only 12% of the sample variance,
Fig. 11.2b), the method for determining biomass is considered sufficiently reliable to
allow satisfactory determination of its spatial structure of variation.

Up to a distance of 14.4 m, observations are spatially correlated (Fig. 11.2b) (i.e.,
having sampled at a location, the variance band is known for the expectation of a
biomass value at a certain location by knowing neighboring values and their
separation distances to that location). One may conclude from the biomass
semivariogram that a structured variability could have been identified even if the
separation distance between nearest samples were increased. On the other hand, if
samples had been taken at distances greater than 15 m across this 90-m transect, they
would have appeared to vary randomly in space. The effect would have been the
same as if their coordinates had been neglected, namely no information would have
been gained on representativity of the sampling for biomass or the spatial continuum
of microbial biomass. In that case, no spatial interpolation would be possible.
Moreover, if the investigator had sampled randomly and had by chance received
only one instead of seven samples from the zone between 45 and 58 m (Fig. 11.1),
where an underlying but unidentified process apparently caused high microbial
biomass values, this sample value would probably have been interpreted as an
outlier. But having gained seven samples close to each other yielding higher biomass
values, and knowing their sampling locations, a degree of certainty is given to the
investigator that a sampling or measuring error had not occurred, and that a process
not yet determined caused higher values in that region of the transect. Next, a study
could follow, investigating: 1) how the spatial pattern of this parameter looks at a
different sampling time; and 2) whether the spatial pattern of microbial biomass is
linked to other soil and agronomic properties.

B. Crosscovariance

Similar to the autocovariance, the spatial relation betweén different variables can
be determined via the crosscovariance, namely the crosscorrelation function rey(h)
(CCF) and the cross-variogram I'(h). The crosscovariance as a function of lag
distance describes the degree of linkage between two variables x and y, where one
variable, the tail variable, lags behind the head variable by the lag distance & (see
Davis, 1986; Shumway, 1988). The CCF is unsymmetric, whereas the crossvariogram
(or covariogram) is symmetric. Because the I'(k) function is symmetric, it produces
the same result regardless of whether the x variable is heading or tailing.
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In the following example, the crosscorrelation function is calculated for almonc
(Prunus amygdalus Batsch) yields, measured for each of 62 trees within twq
neighboring parallel transects in an almond orchard north of Sacramento, Calif.
US.A. The two distributions of almond yield across each transect are simila;
(Fig. 11.3). The relation between the yields at the same position within the transect i:
reflected by the classical correlation coefficient, r = 0.41, which is also the result fo:
the CCF at lag h = 0 (Fig. 11.4). Although the relation between the two variable:
does not seem to be very tight, the crosscorrelation function (Fig. 11.4) indicates tha
the observations are spatially related to each other over a distance of about 40m. Ir
this example the CCF becomes insignificant when —-0.2 < Foy() < 0.2, Hence
although classical correlation indicates a low relation between the variables at the
same position, spatial coincidence of both processes is identified when the local rang:
of spatial correlation is examined. Within a certain local range, one variable i
certainly related to the other, and this relation can be used for estimating a variabl
at an unsampled location by means of the spatial crosscovariance structure, Iy
classical regression analysis, the estimation accuracy of 2 dependent variable depend:
on the uncertainty of the regression coefficients. Spatial regression techniques, on the
other hand, account for correlation structures in the neighborhood of location i
namely within 7+ h. Consequently, the estimation uncertainty of a dependen
variable can often be reduced substantially by using spatial regression techniques a:
opposed to classical regression techniques.

Coregionalization procedures or models for spatial realizations of randon
functions, such as kriging and cokriging, apply this concept. The governing kriginy
and cokriging equations can be found in Alemi et al. {1988) and Deutsch and Journe
(1992). Kriging and cokriging are techniques that are used to estimate unsample

T v ¥ T T i T T
15} .
—e— Transect1 @ ]
-9+ Transect 2 ;
10 .

[}

Gross Almond Yield Per Tree, kg

0 100
) Distance, m

Fig. 11.3. Almond yields across two rows of almond trees in an orchard north of Sacramento
Calif., US.A.
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Fig. 11.4. Crosscorrelation function for almond trees in an orchard north of Sacramento, Calif.,
US.A.

data points from observed data. The estimation for an unsampled location is based
on known values in the local neighborhood of the unsampled location. The amount
that the known values contribute to the estimated value depends on the number
of observed points in the vicinity of the location of interest. The weight of
the contribution of the known values decreases with increasing distance away from
the location of interest. Hence, the estimation is based on a linear combination of the
neighborhood values. This estimation differs from that of classical regression
analysis in which spatial relations between all locations are ignored, and only one
equation reflects causal relations across the entire sampling domain. For kriging and
cokriging, significant information obtained from the structure of variation (i.e., the
variogram and crossvariogram, respectively) is incorporated as a measure of reli-
ability of the estimation, namely the kriging and cokriging estimation variance
(Alemi et al., 1988).

Cokriging can be applied for spatial interpolation, especially in situations in which
sampling resources are limited but one needs to gain information about unsampled
locations. This technique was recently examined as a multivariate geostatistical tool
for yield response and N-pollution by Goovaerts and Chiang (1993). As an example
of cokriging, we assume a scenario for the almond yield data across the two parallel
transects where yield values are known for only 16 locations in transect 1 but for all
locations in transect 2 (Fig. 11.5). In the cokriging procedure, the semivariogram of
the variables of interest (Fig. 11.6a,b) and the crossvariogram (Fig. 11.6¢c) are the
underlying information for the estimation variance in the interpolation procedure.
The spherical model was chosen to fit the variogram data, as follows:

3
y(h)=co+c[1.sg—0.5(§) ] ifh<a -

=¢y+C ,ifh>za.

= W N -

-

T
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Fig. [1.5. Hypothetical scenario for cokriging of “unknown” almond yield values via spatial
covariance.

In equation 5, ¢, ¢, a denote the nugget, sill, and the range (see Fig. 11.2),
respectively. Because values of y(h) and I'(h) are most important at short distances,
the observations in transect 1 were not spaced equally but in a nested structure (i.e.,
nests with short sampling distances were distributed over the entire length of the
transect). The use of nested sampling allows a relatively small number of
observations to adequately determine the semivariance at small sampling distances,
and thereby reduce the nugget.

Like any other interpolator, cokriging smooths the spatial process of data and
tends to fail especially at large fluctuations between neighbors. The standard
estimation error intervals shown in Figure [1.5 become wider with increasing
distance from the formerly observed point and decrease again when approaching the
next observed point. Note that with classical regression the fiducial limits of
estimation would be wider than for kriging, and also constant, regardless of the
proximity of an observed point.

In this one-dimensional example (Fig. 11.5), the power of cokriging cannot be
fully described. In two- or three-dimensional sampling designs, cokriging can be used
for mapping purposes and can help to estimate patterns of variables based on the
crosscovariance with “cheaper” variables. It can be used for coregionalization of
different variables observed at the same location (or in a parallel array of locations,
such as in our example of the two neighboring transects) and for prediction of spatial
patterns-at different times (e.g., relating crop yield patterns to those of soil water
content; Bouten et al., 1992). Cokriging even allows anisotropic variation structure
to be accounted for (i.e., when variograms have different slopes or shapes for
different directions in space). At this point the more interested reader is referred to
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the literature (e.g., Alemiet al., [988; Deutsch and Journel, 1992; Zhang et al., 1995
Halvorson et al., 1995),

Nevertheless, kriging and cokriging are dependent on the validity of the
variograms and crossvariograms upon which they rely. Additionally, stationarity
assumptions have to be met for kriging and cokriging applications, whereas othe:
interpolation tools, such those presented in the following section, are not necessarily
limited to stationarity conditions {Shumway, 1985).

C. State-space analysis

The state-space analysis (Shumway, 1988) demonstrated here is a special kind ol
autoregressive model. State-space analysis can be used, like kriging and cokriging
for spatial interpolation but the philosophy behind this tool is different from that of
kriging. In state-space analysis, a system’s state (i.e., the state of a variable or of a set
of variables) at location /, is considered with respect to the system’s state at focatior
I~ h, where h = 1,2,3,..., n — 1. These kinds of autoregressive tools are used foi
various kinds of forecasting based on the process of a series through the past tc
identify the coefficients linking system’s states (the state coefficients) through space
or time. Economical time series, remote controlled missiles, soil temperature anc
water content series (Morkoc et al., 1985a), crop vield and soil nitrogen statu:
(Wendroth et al, 1992), and lake water storage (Assouline, 1993) are a few example:
of data modeled with state-space approaches.

The basic equation, the so-called state equation, is as follows:

Zi = (DZE—I + (6

where Z, is the state vector (i.e., a set of p variables at location D, ®isap * p matrix
of state coefficients indicating the measure of spatial regression, and w; 15 the
uncorrelated zero mean model error. So far, this is the usual structure of commor
autoregressive models, where coefficients in the & matrix could be calculated viz
multiple regression. Here, Z, is equivalent to the dependent and Zi1 to the
independent variable, respectively, Unlike common autoregressive modeis, however
the *“true” state of the variable or of the state vector in state-space models is
considered embedded in the following observation equation:

Y[ = M,'Z,‘ + ny; (7‘

where the observed vector ¥; 1s related to the true state vector Z; via an observatior
matrix M; and an uncorrelated mean zero observation error ny;. In other words, wha
is measured does not have to be fully taken to be true, but can be considered as ar
“indirect measure” reflecting the “true” state of the variable plus noise (unidentifiec
error). This error is associated with measurement uncertainty arising from
reproducibility and validity of the calibration underlying the “indirect” observation
Note that almost every observation has to be considered as an indirect measure.
Moreover, unlike common autoregressive modeling, the state coefficient and
covariance matrices are optimized via Kalman filtering (Kalman, 1960) within ar
iterative algorithm. Unlike multiple regression, the Kalman filter accounts for




- -, - -, 4

- - E-a|s s

P

STATISTICAL APPROACHES TO THE ANALYSIS OF SOIL QUALITY DATA 257

measurement and model errors by not taking the measurements to be absolutely true
but allowing for the variance of the state. In the state-space coefficient estimation,
1) the value at step i is predicted based on the state at i — | and a given set of
coefficients, 2) the prediction is compared to the measurement, and 3) the prediction
is updated as far as the deviation between measurement and prediction requires,
while accounting for both model and measurement errors. Steps | to 3 are repeated,
while coefficients are optimized iteratively, until a convergence criterion is met. For
further details, see Shumway (1988), Katul et al. (1993) and Nielsen et al. (1994a).
In the following example, observations of a field study from the International
Atomic Energy Agency (IAEA) experimental field in Seibersdorf, Austria, described
in Reichardt et ai. (1987) were analyzed using a state-space approach (see also
Wendroth et al, 1992). In two neighboring transects, a field experiment was
established in order to estimate spatial variation of symbiotic nitrogen fixation of a
legume crop, alfalfa (Medicago sativa L.). Soil and crops were sampled every 1.8 m
across a 96-m long transect. The heterogeneous soil contained 2 considerable volume
fraction of small stones that varied across the site (Fig. 11.7a). Knowing that soil
nitrogen content affects both crop production and the raté of symbiotic nitrogen
fixation, the soil nitrogen has to be considered on a volume basis as effective nitrogen
Nefl (Fig. 11.7b). Therefore, the volume of stones per unit soil volume was accounted
for in the calculations. Based on the 15N-isotopc dilution method, nitrogen fixed
under the alfalfa crop was determined (Fig, 11.7c). The crop yields of ryegrass
(Lolium sp.) and alfalfa are shown in Figure 11.8.

In a scenario where we assume to know every Neff value, but only a cyclic
sequence of three ryegrass yield observations followed by three unknown values the
coincidence of Neff and ryegrass yield processes was determined. The result of the
state-space estimation with the respective state equation is presented in Figure 11.9a.
The underlying system of equations is as follows;

( RY, ) ~ [ Pu ¢12) RYi + wRH) (8)
Neff; S dn )\ Neff_ Wre,

Le., the ryegrass yield at location i is determined as a function of ryegrass yield and
Neff, both at location i - 1, plus a model error w. The estimated state coefficient
matrix incorporates the spatial regression between neighboring locations as well as

the effect due to measurement noise. For the alfalfa crop, both Neff and the nitrogen

derived from the atmosphere (Ndfa) caused variation of crop yield. In this case the
equations take the form:

AY; P ¢ by AY: Wy
Nefli | =1 ¢y ¢ $23 Neffp | + | oner, | - (9)
Ndfa; / P31 b1 P Ndfa;_; W dfa;

For alfalfa, yield values and Ndfa values were assumed to be known only for those
locations with closed symbols (Fig. 11.9b),

The model results show that for those locations where ryegrass and alfalfa yield
values were ignored (Fig. 11.9b; open symbols), the 95% fiducial limits of estimation
increased with distance from the observed location. For both crops, however, the
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Fig. 11.7. Stone content (a), effective soil nitrogen content Neff (b), and the fraction of nitroge
fixed from symbiotic N assimilation Ndfa (¢) in an experimental field in Seibersdorf, Austria.

estimation accuracy of the state-space model was generally sufficient, and the model
tended to fail only when large fiuctuations occurred between neighboring point:
This example also shows that, although many other parameters might hav
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Fig. 11.8. Ryegrass and alfalfa dry matter yield across the transect in an experimental field in
Seibersdorf, Austria.

influenced the spatial process of crop yield and symbiotic nitrogen fixation (e.g., soil
texture, air-filled porosity, soil temperature, soil water status, oxygen deficiency in
the rhizosphere, pH value, organic matter content, micronutrients essential for
symbiotically fixing enzymes, etc.), they do not necessarily have to be sampled. The
importance of their unsampled contributions in causing deterministic influences on
crop growth and yields is integrated into the model error (Nielsen et al., 1994b).
Whenever state-space model errors are small, partial information derived quickly
from on-site monitored observations can improve our understanding of the field
situation and thereby provide a basis for better management decisions. In such
situations the quickly observable variables reflect the main underlying process in
fields. On the other hand, whenever state-space mode! errors are unacceptably large,
additional or different soil or environmental parameters must be measured or
derived either through existing knowledge or deterministic research.

D. Spectral analysis

Knowledge of the spatial pattern of soil properties is necessary for achieving
higher efficiency of input for crop production. Such knowledge can also indicate the
impact of previous agricultural management practices. Most agricultural field
operations occur with a regular pattern. For example, a tractor goes back and forth
across the field with an implement in parallel paths at regular intervals. Also, plants
are grown with a regular pattern in order to decrease inter-crop competition and to
increase water, light, and nutrient use efficiency. Moreover, considering the time
domain, many field soils are subject to a certain crop rotation system, repeating in
cycles of several years. Hence, periodic patterns deveiop spatially, temporally, or in
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Fig. 11.9. State-space estimation of ryegrass yield (a) and alfalfa yield (b) across the transect in an
experimental ficld in Seibersdorf, Austria.

both domains. Nielsen et al. (1983) showed how variation of soil moisture can be
separated into cyclic components, corresponding to management operations. Bazza
et al. (1988) applied a procedure known as spectral analysis to soil temperature data
to show that patterns in these data coincided with the sinusoidal application pattern
of irrigation water with different salt content, Using standard correlation methods,
Kachanoski et al. (1985a) found that microtopography and A-horizon parameters
were not related. However, when they considered the sampling coordinates of the
parameters, and applied cospectral and spectral analysis techniques, it was found
that spatio-periodical relations did indeed exist.

A series of observations can manifest various periodic patterns with different
amplitudes and different lengths of cycles. The length of a periodic cycle is designated
by the wave length (1) or period, which is the inverse of the frequency (Davis, 1986). As
a hypothetical example, three series with wave lengths of 4, 15, and 45 (i.e., one cycle
every 4, 15, and 45 length units), respectively, and different amplitudes are drawn in
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Fig. 11.10. Hypothetical sinusoidal series of different period and amplitude (a, b, c), and the
integrated series, “'sampled’ at 91 locations (d).

Figure 11.10a,b,c. In the literature, short-range variation is often attributed to
agricultural management practices (Trangmar et al., 1985, Kachanoski et al., 1985b,
Moulin et al., 1994), whereas long-range variation reflects geologic components. When
the three patterns are superimposed and sampled at 91 positions with observations
separated by one length unit, one gets the confounded pattern in Figure 11.10d.

The power spectrum (1) of the process x; as a function of wave length 2 is
obtained via Fourier transformation by the following:

f(A) = i C(h) exp|—2miLh] (10)

where i = —1 :

Spectral analysis filters the periodic variance components, shown in Figure 11.11
for the hypothetical example. One can find the three peaks in the power spectrum at
the corresponding frequencies of 1/4, 1/15, and 1/45 (length units)™', respectively.
Having determined a cyclic behavior of a series, one may use the knowledge about
the period to make forecasts (e.g., forecasting the weather or river levels is a common
practice in the meteorological and hydrological sciences; Kite, 1989).

The example here is yields across the two neighboring transects of the almond
orchard considered above (Fig. 11.3), which are later used for cokriging (Fig. 11.5).
Sprinkiers were located after every third tree in the orchard, and the farmer was
interested in whether this sprinkler arrangement affected tree growth. If this was so,
the effect should have accumulated over the years and be manifested in a periodic

i
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Fig. 11.11. Power spectrum for the hypothetical data set in Fig.11.10d.

variation of some easily obtainable tree growth parameters. For this purpose, trun
circurnference of trees within a transect (Fig. 11.12) measured at 50 cm above the so
surface was analysed after the original data had been detrended. A peak appears at
frequency close 10 0.33 in the power spectrum (Fig. 11.13) (corresponding to a perio
of every third tree). That this peak occurs at the same frequency as that of spati:
sprinkler distribution indicates that irrigation design does effect tree growth. Tt
increase of the power at 1/4 = 0.5 (length units)™! reflects the fluctuation from or
tree to the next and is perhaps due to inter-plant competition.

0.50° ' _ 1

0.25 - : .

Tree Trunk Circumference, m

0.00} . . g

0 100 200 300
Distance, m

Fig. 11.12. Trunk circumference of almond trees in a transect north of Sacramento, Calif,, U.5.,
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Fig. 11,13, Power spectrum of detrended almond trec trunk circumference in a transect
(from Fig. 11.12) north of Sacramento, Cakif,, U.S.A.

When conducting spectral analysis, one must use samples at regular intervals in
space or time. Moreover, the sample frequency should be higher than the expected
frequency of the process or pattern being examined. This may cause laborious
sampling, but sampling can be undertaken instantaneously and directly without
designing any experiment or invoking any treatment in the field. Moreover, simple
variables can be examined on-site (e.g., tree trunk circumference) to give direct
information about the specific site to the farmer. In the almond orchard example, it
would have been a monumental effort to design a field experiment in which the
effects of =orinkler position had to be investigated in 2 randomized block experiment
and the assumptions for classical statistics had to be obeyed (i.e., that observations
had to be independent of each other). Had a randomized block experiment been
conducted, still no information for the farmer’s site would have been obtained.

One can also use spectral analysis to determine whether the frequency-dependent
variations of two series of observations coincide (i.e., whether they are coherent).
For example, the squared coherence function x(1), as a measure of frequency
dependent correlation, is determined for the two series of almond yields in parallel
transects (Fig 11.3) according to:

_ )
AOTARY (1D

where fx(1) is the cross spectrum (Shumway, 1988). The squared coherence for
frequency-dependent analysis of variance is analogous to the coefficient of
determination in classical regression and has values between 0 and 1. It indicates
at which wavelengths two series proceed coherently or coincidently. Therefore, the
squared coherence is 1 at all frequencies if one series x, is an exact linear filter of

K (A)
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Fig. 11.14. Squared coherence of atmond yields in two parallel rows (see Fig. 11.3) in an orchard

north of Sacramento, Califl, U.S.A.

another series y,. The spectrum of squared coherence of the almond yields in the
parallel transects (Fig. 11.14) shows a strong coherence for several short wavelengths
and especially for long wavelengths, and may indicate similarities in the periodic
variation of some underlying soil properties and growing conditions in both
transects.

E. Analyzing spatially variable field observations with physically based equations

Thus far in this chapter, we have advocated the use of spatial statistics in addition
to the currently used classical methods. In both cases the statistical analyses exarmine
variance and covariance functions derived from observations and measurements
without explicitly invoking a physically based equation. The various kinds of
observations selected were expected to be correlated based upon a conceptual
knowledge of the processes occurring in the field. If correlations were not found,
other kinds of observations would have to be selected by trial and error. Here we
introduce the idea of using a physically based equation in combination with a set of
observations expected to be correlated in space (or time).

A nonlinear partial differential equation describing a physically based process
occurring at the soil surface can be derived and transformed into a state-space
formulation. The process may be physical, chemical, or biological in nature (e.g.,
infiltration, nitrification, the leaching of soil solutes in the presence of plant root
extraction, etc.). Such state-space models simultaneously examine a theoretical
equation, its empirical parameters, and the observations that embrace the uncer-
tainties of soil heterogeneity and instrument calibration. The usefulness of this
approach lies in the opporturity to be guided by an equation expressing a process
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that occurs at the soil surface and to simultaneously analyze the uncertainty in both
the equation and our field measurements. Examples of progress recently achieved to
improve our assessment of soil quality using state-space approaches include the
examination of evaporation (Parlange et al., 1993) and infiltration and redistribution
of soil water (Katul et al., 1993; Wendroth et al, 1993),

A desirable feature of the state-space methodology is the inclusion of an
observation error that can be treated as a known, measured quantity or, alter-
natively, as an unknown for which a solution is found in the numerical scheme. The
magnitude of a known observation error allows a reconsideration of the state
variable in the equation or an improvement in instrumentation or calibration. On the
other hand, by treating the observation error as an unknown, its behavior in space
and time can be related to spatial and temporal correlation lengths that may
manifest themselves within the domain of the field being studied.

As an example for applying physically based equations in the state-space analysis,
the soil water transport equation is employed in order to determine the hydraulic
conductivity function of a soil layer from time series field observations of soil water
content 8(¢) and hydraulic head difference across depth (i.e., the hydraulic gradient,
(dHdz"')(1)) (Fig. 11.15). These series were determined during water redistribution of
an internal drainage experiment that was undertaken at the Campbell Tract
experimental field of the University of California, Davis. Details of the underlying
experiment are given in Katu] et al. (1993) and Wendroth et al. (1993).

A soil layer between the upper depth z; and the lower depth z,, is considered, for
which we want to estimate the hydraulic conductivity-soil water content relationship
K(f). The soil water storage in this layer is W defined as follows:
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Fig. 11.15. Soil waler content and hydraulic gradient time series in the surface soil layer during
43 days of an internal drainage experiment in Davis, Calif,, US.A.
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Zivt
W= 8dz (12
2

In the experiment, the plot was covered with a plastic sheet to prevent any soil wate
flux at the upper boundary (¢:), hence the upper boundary condition is zero flux. Th
water storage change in time of the upper soil layer that we are interested in hasto b
attributed to drainage flux {(gi+1) at depth z.,,. The water storage change in time i
then:

oW
B 9wt g (12

The force that is driving the flux g4 (i.e., the hydraulic head H difference acros
depth) is measured at the center between zi and z;4; and below z;4y. Using Darcy’
law, Equation 13 can be written as follows:

oW dH
E‘%K(B)-&?_{h% (14

Note, that K(8) is the function in which we are interested. This function reflect
highly relevant soil pore system properties influenced by soil type, land use an
management. It is often used in equations for irrigation control, water budgc
modelling, forecasts, etc.. The following simple two-parameter exponential functio
is employed:

K(6) = Aexp(BW) . (1¢

Combining Equations 14 and 15 yields

oW dH

= A WY—+gq; . 1
3 exXp(BW)— + g (1¢

In order to formulate a state-space equation, soil water storage in the dept
compartment is considered as the state variable X(r). Moreover, model errors «(
are included and can be addressed to misleading assumptions underlying Equatior
14 and 15. The state-space equation is then:

dX(n)
dt

Inasmuch as the true state of soil water storage in the soil compartment cannot t
determined but is estimated indirectly with a neutron probe, an observation equatic
has to be defined as follows:

Z(t) = X (1) + ny(t), k=0,1,2,3,... (1¢

The noise term ny(f;) accounts for instrumental calibration and measurement erro)
of the neutron probe.

In the state-space analysis, an expectation for Equation 17 and the variance bein
the squared difference between state and state expectation are calculated (see Kat
et al, 1993). The propagation of the state and its variance need to be solve
simultaneously. Initial estimates of K(6) model parameters A4 and B, and of sorr

= —Adexp(BX (1)) % (1) + g:{t) + () . {1°
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Fig. 11.16. Hydraulic conductivity as a function of soil water content determined from the internal
water drainage in the surface soil layer (from Fig. 11.15) in Davis, Calif., US.A.

initial conditions are given. These are iteratively optimized via prediction, compar-
ison between the prediction and the observation, and updating of each time step with
respect to the variance. At this point the more interested reader is referred to Gelb
(1974), Katul et al. (1993) and Wendroth et al. (1993).

The resulting K(0) relation is shown in Figure 11.16. In order to achieve an
appropriate prediction of 8(¢), the water content time series was divided into two
domains, one observed during the first 12 hours of the experiment, the other
afterwards, probably manifesting transport phenomena and properties at different
pore domains. In the range of high water contents, mainly macropores contribute to
water transport, whereas K{(J} apparently follows a different relation in the drier
range. For further details, see Wendroth et al. (1993).

This application of state-space analysis and Kalman filtering seems to be similar to
an inverse estimation procedure, such as that of Kool and Parker (1987), where a
transport model equation repeatedly runs in combination with a nonlinear
optimization routine until a convergence criterion for a set of empirical parameters
is met (i.e., the objective function is optimized). Nevertheless, there exist distinct
differences between the inverse procedure and the state-space analysis. These
differences are the same as those mentioned earlier when comparing estimation of
autoregression coefficients in a classical regression analysis versus state-coefficient
estimation in the Kalman filtering procedure. Neither the classical regression nor the
inverse nonlinear optimization of an empirical relation in combination with a
physically based equation account for measurement and model error, nor do they
imply an updating within the range of possible variance resulting from measurement
and model uncertainties. Instead of taking advantage of observations during
prediction of a series wherever they become available, as it is done via updating in
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the Kalman filter, inverse procedures compare observations and estimations only
within the objective function at the end of an iteration step. Unlike Kalman filtering
they do not incorporate any quantity of model error nor yield any measuremen
€rror, respectively,

F. Combining water and solute transport models with geographic information system:

Similar to the state-space approach presented above, the following example alsc
takes advantage of physically based equations. Reynolds et al. (1994, 1995) used :
mechanistic water and solute transport model in combination with georeferencec
soil, weather and crop management data to estimate the potential for leaching of the
herbicide, atrazine, into the ground water under an entire watershed. The model
which was a modified form of the modelling package LEACHM (Hutson anc
Wagenet, 1989) integrated the major processes that occur in the soil profile
including soil horizonation; saturated, unsaturated, steady and transient water flow
crop management, growth, and transpiration; solute sorption, degradation, advec
tion, and dispersion; precipitation and evaporation; soil heat flow; and water table
elevation. Soil survey information was used to obtain the required mode! input dat:
on soil properties. Archived weather data records were used to derive the necessary
model input for weather. Crop management practices for a corn (Zea mays L.) crog
were assumed, with planting, harvesting, and atrazine application dates beiny
determined by both soil properties and weather. All input data were georeferenced tc
the centroids of 119 soil landscape polygons that encompassed the watershed o
interest. The model was run at each of the 119 landscape polygon centroids for :
period of 10 consecutive model years; and model predictions of 1) annual atrazine
loading at the 90-cm (average tile drain) depth, and 2) elapsed time for atrazine tc
reach the 3-ppb concentration (U.S. EPA drinking water limit) at the 90-cm deptt
were collected in space and time. Kriging was then used to convert the 119 irregularly
spaced and highly variable point values of soil properties, weather data, anc
predicted atrazine loadings and concentrations into 1657 interpolated value:
extending throughout the watershed on a regular 2 km by 2 km grid. The krigec
interpolations accomplished the required extension from a point basis {polygor
centroids) to an areal basis (watershed), while still retaining the spatial variabilits
characteristics of the original data. The kriged data also provided the spatial detai
necessary to allow a Geographic Information System (G18) to effectively produc
and overlay maps of atrazine loading and concentration, soil properties, and weathe:
data.

The predicted atrazine Ioadings to the 90-cm depth were found to be highls
variable and complexly distributed throughout the watershed (Fig. 11.17). Com
parison of this loading map to soil texture and summer precipitation maps for the
watershed (texture and precipitation maps not shown) revealed that the lowes
atrazine loadings occurred where soils were clayey and summer precipitation wa
low, whereas intermediate to high loadings occurred on sandy to loamy soils whert
summer precipitation was moderate to high. Correlation analysis showed furthe
that atrazine loading was significantly correlated with many soil and weathe
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Fig. 11.17. Annual atrazine loadings (mg atrazine m™ yr™') at the 90-cm depth for the Grand River
watershed, Ontario, Canada. R

parameters, but the magnitudes of these correlations were generally low. This
suggests that atrazine loading in the watershed was determined by complex
interactions among several soil, weather, crop management, and solute transport
factors, rather than by one or two dominant factors.

The concentrations of atrazine in the soil water at the 90-cm depth were predicted
to be generally low throughout the watershed (Fig. 11.18). The 3 ppb U.S. EPA
drinking water guideline for atrazine was exceeded, however, on or before the tenth
simulation year in about 27% of the watershed area (Fig. 11.18). The areas where
this occurred also have predicted annual atrazine loadings that fall within the top
half of the loading range (i.e., 0.5-2.5 mg atrazine m™* year™', Fig. 11.17), which may
consequently suggest that Figure 11.18 demarks regions of potentially significant
low-level non-point source contamination of groundwater by downward migration
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S }

Fig. 11,18. Predicted time for atrazine to reach the 3-ppb concentration at the %0-cm soil depth
the Grand River watershed, Ontario, Canada.

of atrazine through the soil profile. Further more detailed investigations ma
therefore be warranted in the areas where atrazine concentrations are predicted to £
above the U.S. EPA limit.

Although combined simulation model-geostatistics—GIS analyses are still in th
preliminary stages of development, it is clear from the above example that suc
analyses are potentially very powerful and useful, These analyses could potentiall
be used to determine the importance and spatial-temporal distributions of a proces
(e.g., pesticide leaching); to determine the major soil, land use, and environment:
factors controlling the process; to estimate the potential environmental impact ¢
changes in land use and land management; and to help establish land use and lan
management practices that are both optimal and environmentally sustainable.
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II1. CONCLUSIONS

As a compendium of approaches described in this chapter, Table 11.1 gives an
overview of the main statistical approaches currently being used in soil science. As
Table 11.1 represents only a small proportion of what is possible, many new

statistical approaches will undoubtedly be applied in the future.

TABLE 11.1

Compendium of approaches for assessing soil quality based on spatial and temporal statistics

Tool

Purpose

References

Autocorrelation
Function

Semivariogram
(Variogram)

Kriging

Crosscorrelation
Function

Crossvariogram
(Covariogram)

Plot of the correlation of a variable
with itself across a distance h (lag);
reflects the spatial or temporal
continuum; assumed (o be zero in
ANOVA, regardless of the distance
between observations

Plot of half of the average squared
difference between observations
separated by a distance h; like a mirror
image of the autocorrelation function;
refiects the range over which observa-
tions are correlated; parameterized by
vartous models with nugget, range,
and sill for interpolation (applied in
kriging, and cokriging)

Spatial interpolation; estimation of
values for unsampled locations, based
on values at neighboring locations and
the spatial (or temporal) variability
structure (manifested by the vario-
gram); estimation of confidence bands
for interpolated value; jack-knifing is a
special kind of kriging for validation
of a variogram model

Plot of the correlation between two
variables as a function of their
separation distance (lag); reflects the
distance over which one variable is
correlated with the other; length of
crosscorrelation reflects the distance

over which it is valid to correlate one

variable with another

Reftects the range over which observa-
tions of one variable are related to
another; parameterized in the same
manner as a variogram; used input for
(applied in cokriging)

Shumway (1988),
Morkoc et al. (1985b),
Isaaks and Srvastava
(1989)

Vieira et al. (1981),
Trangmar et al. (1985),
Davis (1986), Nielsen and
Alemi (1989),

Vieira et al. (1981),
Warrick et al. (1986),
Alemi et al. {1988),

Nielsen et al. (1983),
Davis (1986), Shumway
{1588)

Alemi et al. (1988),
Kachanoski and De Jong
{1988), Zhang et al. (1995)

i
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Table 1.1 (continued)

O. WENDROTH -

Tool

Purpose

References

Cokriging

State-Space
Analysis

Power Spectrum

_“w A..,,_._,J_._,......_.i

Coherency

Multivariate interpolation of values at
unsampled locations; often appiied to
eslimate expensive variables {sampled
at low density) based on the spatial (or
temporal} pattern of a cheap variable
(sampled at high density); estimation
of confidence bands based on the
variograms and the crossvariogram

Special autoregressive approach: re-
flects the relation between the state of
one or several variables to the state at
previous locations (or times); spatial
interpolation of unsampled locations,
unlike kriging, not limited 10 statio-
narity assumptions; accounts for
measurement and model uncertainty;
incorporates as much deterministic
inpul as necessary and integrates un
sampled information on the basis of
refations between neighboring
observations.

Decomposing the variation or
fiuctuation of a series of observations,
which is sampled at regular intervals,
inte periodical components; reflects
amplitude and frequency regardless of
phase shift; often used to predict
hydrological time seties; detects effects
due to the regular pattern of
agriculiural operations

Reflects at which wave lengths or
periodicities two series fluctuate
coincidently, regardless of any phase
shift between the two series; equals |,
if a series is linear filter of another
series; analogue to the coefficient of
determination

Alemi et al. (1988),
Deutsch and journel (i
Smith et al. (1993),
Zhang et al. (1995),
Halvorson et al. {19935

Morkoc et al. (1985a),
Nielsen and Alemi (198
Wendroth et al. (1992),
Parlange ev ab. (1993),
Katul et al. (1993),
Wendroth et al. (1993),
Niclsen et al. (1994a)

Nielsen et al. (1983),
Davis (1986),
Kachanoski et al. (198:
Bazza et al. (1988),
Shumway (1988)

Nielsen et al. (1983),
Bazza et al. (1988),
Shumway (1988)

The above examples were intended to give some insight into opportunities
assessing soil quality using spatial and temporal statistical approaches. Overs
number of statistical tools are available for sampling and analysing spatiai
temporal processes in ecosystems and agricultural landscapes. Nevertheless, t

. are no unique answers to questions regarding appropriate sampling schemes
i sampling scales. Most investigators commonly use sampling schemes consistent
' deterministic concepts applied to small areas or volumes at a specific loca’
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Although mindful of the much larger dimensions of the domain, plot, field, or
agricultural landscape across which the observation or measurement will be
interpolated or extrapolated, most investigators think of only one scale—that which
is most convenient for the parameterization of the deterministic soil or crop property
at a specific location. From the information presented in this chapter, it is obvious
that the investigator needs to consider two different scales of observation. The first is
the small scale associated with the minimum distance between pairs of observations
below which interpolation of values can be negiected. The second is the farge scale
associated with the maximum distance between pairs of observations above which
extrapolation of values can also be neglected. As an example for the consideration of
crop production in a farmer's field, the minimum distance might be the distance
between individual plants while the largest distance would be the length of the entire
field managed in the same manner. Hence, after choosing the kinds of measurements
Or parameters to be observed, the researcher must decide upon the minimum
distance to take observations and an adequate sampling method to achieve a spatial
(or temporal) continuum within the entire, larger domain.

Vieira et al. (1981) recommended a spatial density of samples just necessary to
detect the spatial continuum and to take additional samples separated by shorter
distances in order to improve the estimation of a semivariogram close to the
origin for decreasing the estimation variance with spatial interpolation. This
improvement can be achieved with so-called nested sampling. One still has to keep
in mind that spatial structure may vary between different variables, such as crop
yield and soil parameters (Warrick and Gardner, 1983). Moreover, spatial
structure changes with time, especially for agronomically relevant variables such
as NO;-N content (Cahn et al., 1994). On the other hand, Or and Hanks (1992)
found similar spatial structures for soil water, crop height, crop yield variability,
and irrigation water.

The approaches presented here can be easily expanded to different scenarios of on-
site and landscape sampling in the space and time domain. They do not give answers
to every question, and sometimes they fail. On the other hand, applying spatial
statistics on data from field experiments which were originally designed for ANQVA
is usually inappropriate or inadequate. Agricultural designs for ANOVA require that
observations between treatments be spatially and temporally independent and if
observations are not found to be independent in the ANOVA design, there are usually
too few observations to make reliable conclusions using spatially dependent concepts.

It spatially variable concepts and appropriate statistical analyses are initially
considered in the design of assessing soil quality, the kinds of questions and breadih
of answers achievable are more comprehensive and much more flexible than those
limited to the classical ANOVA traditionally used in soil and agronomic sciences.

Imposing treatments and looking for an average behavior of a certain kind of
treatment on a soil assumed to be homogeneous on the average can be avoided with
spatial statistics. Instead, spatial statistics allows direct sampling and analysis of field
information for the benefit of resources management. Moreover, with noise or
variance components (model and error) being accounted for within prescribed
fiducial limits, the results are often much more relevant than average values.
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Around the world, the request upon scientists focuses increasingly on 1
relevance of research for field and landscape scales, and the benefit of their work
Judged on the welfare of the environment and society. The statistical analytical to
presented in this chapter combined with integrative indices of soil quality allow
direct on-site analysis and can be considered as one of several important steps
updating our landscape-ecological research strategies to achieve sustainable cr
production and maintain optimum ecosystem health,
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AN EMERGING TECHNOLOGY FOR SCALING
FIELD SOIL WATER BEHAVIOR

Donald R. Nielsen, Jan W. Hopmans and Klaus Reichardt

INTRODUCTION

In 1955, Miller and Miller created a new avenue for research in soil hydrology when
they presented their pioneering concepts for scaling capillary flow phenomena.
Their description of self-similar microscopic soil particle structure and its
implications for the retention and transport of soil water stimulated many studies to
test how well laboratory-measured soil water retention curves could be coalesced
into a single scale mean function (e.g. Klute and Wilkinson 1958). Because the
results of ensuing tests were not particularly encouraging except for soils composed
of graded sands, their scaling concepts lay idle for several years. At that time, owing
to the fact that the pressure outflow (Gardner 1956) and other transient methods for
estimating the value of the hydraulic conductivity in the laboratory were at their
infancy, few attempts to scale the hydraulic conductivity function were made owing
to the paucity of its quantitative observation. And, it was also during that same
period that the classical works of Philip (1955, 1957) describing a solution of the
Richards' equation shifted attention to infiltration. With field measurements of soil
water properties only beginning to emerge (e.g. Richards, Gardner, and Ogata 1956),
little information was available relative to the reliability of their measurement or to
the variation of their magnitudes to be expected within a particular field or soil
mapping unit.

During the 1960s, the development and accepted use of the portable neutron
meter to measure soil water content spurned research on field-measured soil water
properties. With its availability combined with the well-known technology of
tensiometry, field studies of soil water behavior were accelerated in the 1970s.
However, soil physicists were soon faced with a dilemma — how to deal with the
naturally occurring variability of field soils (Nielsen, Biggar, and Erh 1973) and
concomitantly measure within reliably prescribed fiducial limits, the much needed
soil water functions associated with the Darcy-Buckingham equation and that of
Richards. Extending the concepts of Miller scaling was thought to be a promising
answer. The first purpose of this chapter is to provide a historical and pedagogic
summary of efforts to scale field-measured unsaturated soil water regimes. The
second purpose is to provide additional incentives to continue the research and
development of a reliable field technology for ascertaining soil water functions and
parameters based upon scaling concepts. With many different kinds of invasive and
non-invasive techniques available today to measure soil water and related soil
properties (Hopmans, Hendricks, and Selker 1997), scaling opportunities continue to
appear both promising and provoking.

THE PRINCIPLE OF MILLER AND MILLER SCALING

 Scale-invariant relationships for water properties of homogeneous soils based upon

the microscopic arrangement of their soil particles and the viscous flow of water
within their pores was proposed by Miller and Miller (19552, b). Each soil was
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assumed to be characterized by a soil water retention curve 6(h) where 6 is the
volumetric soil water content and h the soil water pressure head. Through the law
of capillarity, the value of h for a particular @ is related to a function of rt where r is
the effective radius of the largest soil pores remaining filled with water. According
to Miller and Miller, two soils or porous media are similar when scale factors exist
which will transform the behavior of one of the porous media to that of the other.
Figure 5.1 illustrates their concept of self-similar microscopic soil particle structure
for two soils. The relative size of each of the geometrically identical particles is

defined by the particular value of the microscopic scale length A;i. This kind of

similarity leads to the constant relation r1/A; =ry/Ay =r3/A3 =+ =r;/A; and to the
formulation of a scaled, invariant soil water pressure head h, such that
A’lhl - lzhxz = 12."}1,' = i*h* (51)

where I, is the scale mean pressure head and A. the mean scale length. Dividing
each scale length by the mean scale length reduces (5.1) to

oyh = ayhy = - =ohy; = h, ‘ (5.2)
where «; are the scale factors having a mean value of unity. The hydraulic
conductivity function K(8) which relates the soil-water flux density to the force
acting on the soil water is analogously scaled

Ki(6) _K(6) _  _ Ki(6) _K.(6)

A2 A2 FERREY:

where K, is the scale mean hydraulic conductivity function. Written in terms of
scale factors ¢, (5.3) becomes

(5.3)

Ki(6) _K,(8) _ _ Ki(6)_
alz - CC% - 0!;2 K*(B), (54)

Note that the scale length A; has a physical interpretation and that the porosity of
each soil is assumed identical. A constant porosity across "similar" soils is an
important assumption made in this approach.

INITIAL ATTEMPTS TO SCALE FIELD-MEASURED SOIL WATER PROPERTIES
DURING REDISTRIBUTION

Initial attempts to scale field-measured functions K(6) and 8(h) were based upon the
assumption that a field soil is ensemble of mutually similar homogeneous
domains. Owing to the fact that the total porosity of a field soil is highly variable
even within a given soil mapping unit, Warrick, Mullen, and Nielsen (1977) found
it necessary to modify the restrictive, constant porosity microscopic scaling concept
of Miller and Miller (1955a, b). By introducing the degree of water saturation s (=

0651 with 65 becoming a second scaling factor, they provided a more realistic
description of field soils by relaxing the constraint of constant porosity. Moreover,
they avoided a search for a microscopic physical length by merely deriving values of

o that minimized the sum of squares
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N M
2
$=32 (h - o) (5.5)

r=1i=1
for N macroscopic locations within a field soil and M observations of h. For
example, with this minimization, 840 measurements of (8, h) [samples taken at 6
soil depths and 20 sites (N = 120) within an agricultural field and analyzed in the
laboratory with 7 values of & (M = 7)] shown in Fig. 5.2a as h(s) were coalesced into

the single curve
h*=~60ﬂk‘q0—4)—214U—sz}+2040—53)—069@-$4H (5.6)

in Fig. 5.2b Warrick et al. (1977). The 2640 values of (K, 6) stemming from field
measurements analyzed by the instantaneous profile method for 6 soil depths and
20 locations shown in Fig. 5.3a were coalesced and described by the regression
expression
InK, = —23.3+75.0s — 10352 + 55.753, (5.7)

as shown in Fig. 5.3b. Although Warrick et al. (1977) abandoned the microscopic
geometrical similarity concept of Miller and Miller (1955a, b) and based their scaling
method on the similarity between soil hydraulic functions, they noted that values of
a, required for scaling h in (5.6) were not equal to those for scaling K in (5.7). Here, it
should also be noted that the values of h(8) scaled in (5.6) were those measured in
the laboratory on soil cores removed from the field, and values of K(6) scaled in (5.7)
relied on the laboratory measured values of h(6) to obtain estimates of W(t) based
upon tensiometric measurements taken in the field.

During the next decade, several others attempted to scale field-measured
hydraulic properties (e.g. Ahuja, Naney, and Nielsen 1984a; Ahuja, Nofziger,
Swartzendruber, and Ross 1989b; Hills, Hudson, and Wierenga 1989). Rao, Jessup,
Hornsby, Cassel, and Pollans (1983) as well as others found that scale factors that
coalesced field-measured functions of K(8) differed from those that coalesced field-

measured functions of 6(h).

Encouraged by the results of Warrick et al. (1977) and those being discussed
(eventually published by the International Atomic Energy Agency, 1984) with a
group soil physicists from 11 countries, Simmons, Nielsen, and Biggar (1979)
suggested scaling the redistribution of soil water in the instantaneous profile
method (Watson, 1966). They assumed a unit hydraulic gradient at the lower

boundary of the soil profile and used a common value of §in
K(8)=K, exp[[i(e -6,) (5.8)

for all locations within a field. The assumption was based on the knowledge being
found that in a given field, the slope f3 of the InK versus (8 - 6,) graph was normally
distributed and characterized by a reasonably small coefficient of variation. Hence,
for redistribution in the absence of evaporation, the flux density of water at the
lower boundary of the soil profile becomes (Libardi, Reichardt, Nielsen, and Biggar
1980)

d
azd—? =—K, exp|p(6 - 6, )] | (5.9)
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with 8, being the soil water content at the beginning of the redistribution and 4
being defined by
G=ab6+b (5.10)

where b is a constant and 8 the mean soil water content from the soil surface to
depth z from field data. Integrating (5.9) yields
9:90——1-m(1+&5). (5.11)
B az
With a common value of 8 and a common initial value of 8,, observations of 6
measured at different locations and depths as a function of time were scaled with

=6, —%m(u-m(—*fj (5.12)

Z.
where z, is a reference depth, 7= @?z.f{az)"! and o a scale factor defined by K, = @K,

where K, is the scale mean of all K,. Simmons et al. (1979) attempted to use (5.12) to

coalesce 608 neutron probe measurements of 8 at 128 locations within four small
field plots during redistribution for one month following steady state infiltration.
With their assumptions, the necessity of installing tensiometers was eliminated,
thereby allowing a much greater number of locations and depths to be sampled with
only a neutron probe. With this simplified method, it was envisioned that a large
number of scaling factors could adequately quantify the spatial variability of K, and
its scale mean within the experimental site containing the four plots. The 608 values

of @ during redistribution were reasonably coalesced about the scale mean curve
(5.12) only if the value 6, for each depth was adjusted to that of 6,.

INITIAL ATTEMPTS TO SCALE SOIL WATER PROPERTIES DURING
INFILTRATION

Technology to accurately measure water behavior in homogeneous soil columns
improved significantly during the second decade after the pioneering concepts of
Miller and Miller were published. For example, the gamma attenuation method for
measuring soil water content and soil bulk density, minature pressure transducers
to quickly and accurately measure soil water pressure, highly permeable porous
plates and cups for improved measurement or control of soil water pressure, and
more theoretical methods for ascertaining K(8) and D(9) from laboratory
observations all became available in a relatively short period. The improved
technology soon led to attempts to scale transient soil water conditions in both the
laboratory and the field.

Initial laboratory experiments

Using inspectional analysis (Ruark 1935), Reichardt, Nielsen, and Biggar (1972)
extended the microscopic scaling concepts of Miller and Miller (1955a, b) by
attempting to scale macroscopic observations of horizontal infiltration in different
kinds of initially dry, homogeneous soils. For an arbitrary macroscopic length L,
Reichardt et al. used the following scale mean values
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K, = JuKrz D, = KDy h, = M&h_’ t, = _}.'_T_OE (5.13)
pgA? oA, o ul?
to reduce Richards' equation for horizontal flow in the x-direction to
00 Jd ae
—_—= D@ 5.14
gt ox, [ () 8):,..] ( )

where x, = xL1, @ = (8- 8,)(0, - 8,)1, 8, is the initial soil water content, &, the soil
water content at x = 0 for ¢ > 0, g the acceleration of gravity and p ,c and p the density,
surface tension and viscosity of water, respectively. Reichardt et al. chose definitions
(5.13) to achieve a formal resemblance to those for microscopic similarity of Miller
and Miller. [Footnote: From (5.13) through (5.22), we retain the original symbolism A
for scaling length or factor.] With the solution of (5.14) being

x, = 9.(O))2, (5.15)
plots of the distance to the wetting front xversus the square root of infiltration time
for different soils (Fig. 5.4) yielded values of 4, defined by

AN =mim? (5.16)
where m, is the slope xf’t;lf 2, Arbitrarily choosing the value of A for Fresno soil
equal to unity, the distance to the wetting front xs versus ¢1/2 for eight soils shown
in Fig. 5.4a were scaled into the single curve of (5.15) for ¢, defined by (5.13) with L =
1. See Fig. 5.4b. The soil water diffusivity functions D(#) calculated for each soil
given in Fig. 5.5a were successfully scaled (Fig. 5.5b) using the scaled diffusivity
function

D, = 6-107 exp(86). (5.17)
Miller and Bresler (1977) subsequently included the slope m, for the Fresno soil in
(5.17) and made the suggestion that a universal equation

D(8) =10"3m2 exp(86) (5.18)
may exist. Additional research has not been conducted to confirm or reject their
suggestion. It should also be noted that h, and K, defined by (5.13) were not able to
coalesce independently measured values of (k) and K(h) using the scaling
procedures used by Reichardt et al. (1972).

Later, Reichardt, Libardi, and Nielsen (1975) extended their testing of (5.15) for
infiltration into twelve temperate- and tropical-zone soils whose A-values ranged
over two orders of magnitude. They showed that K, derived from (5.13) for all 12
soils could be described by

K.(@)=2.65-107" exp(—lZ. 2302 +29.06 9) (5.19)
as illustrated in Fig. 5.6. Somewhat later, Youngs and Price (1981) also observed that
different cumulative infiltration curves for a variety of porous materials
individually packed into laboratory columns could be scaled to coalesce into a

unique curve. Similar to the results of Reichardt et al. (1972), the scale factors
defined in (5.13) for K differed from those for h as well as those for the sorptivity S.
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Initial field experiments

Using regression techniques similar to those utilized by Reichardt et al. (1972) and
Swartzendruber and Youngs (1974), Sharma, Gander, and Hunt (1980) attempted to
scale the 26 sets of field-measured cumulative infiltration data from a 9.6-ha
watershed shown in Fig. 5.7a. Values of S and A for each of the 26 data sets were
obtained by regression using the 2-term, truncated version of the cumulative
infiltration I into a homogeneous soil (Philip 1957)

I1=8"2 + Ar+ B + . (5.20)
where the first term S is the sorptivity and the remaining terms account for the
force of gravity. The solid line in Fig. 5.7a is calculated from

I=St12 + Ay (5.21)
where § and A are the mean values of each of the respective sets of 5, and A,. The
solid line in Fig. 5.7b is the scaled cumulative infiltration

I.=8112+ Ay, (5.22)
where I, = A, I}, 1, = A3A% , r the site index and A, arbitrarily chosen as unity. Scale

factors A, for each of the r sites were obtained by minimizing the sum of squares

N M )
55= 3 Y [L(t) - L(t:)] (523)
r=1i=1
for all r locations and i observations within the watershed. As shown in Fig. 5.7b,
the 26 sets of cumulative infiltration observations were nicely coalesced into a

unique curve with these values of A, .They also calculated two additional sets of
scale factors. One set was derived from the observations of I(t;) throughout the

watershed using the scaling relation §=S5,4;"2 with (5.21). Another set was

similarly derived using the scaling relation A = 4,A72. Although each of these sets of
scale factors tended to coalesce the original observations I into a single curve,
neither curve was as well defined as that given in Fig. 5.7b. The three sets of scale
factors differed significantly, but were nevertheless correlated. The frequency of each
set of scale factors was log-normally distributed, and each manifested no apparent
spatial correlation.

Russo and Bresler (1980a) also followed the suggestion of Reichardt et al.
(1972) to scale soil water profiles during infiltration. They assumed that cumulative
vertical infiltration into a field soil could be described by (5.20) truncated to only the
sorptivity term provided { approached zero. For a Green and Ampt (1911) piston-
type wetting profile, the truncated (5.20) becomes

xp(6, —07)=Stv2 (5.24)
where xy is the distance to the wetting front. Using (5.16) with field-measured values

of S from (5.24), they obtained scale factors a; for each of the 120 sites in the 0.8-ha
plot (Russo and Bresler 1981). At soil water contents close to saturation, scale factors
for S were normally distributed and highly correlated with those obtained for h(s)
using (5.21).

In addition, Russo and Bresler (1980a) used a scaling technique similar to that

of Warrick et al. (1977) to scale calculated, not measured, values of 8(h) and K(h}.
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They used field-measured values of the saturated hydraulic conductivity K, the
water entry value of the soil water pressure head hy [defined as the minimum

value of h on the main wetting branch of 8(h) at which d6/dh remains equal to
zero], the sorptivity S, the saturated soil water content 85 and the residual water

content 8, to calculate 8(h) and K(h) for each of the above 120 data sets. They
assumed that the soil hydraulic properties were described by

6(h) = (65 - 6, ot} +8, h<hy,

=6 h2hy (5.25)
K(h)=Ks(m i)' h<hy,

= KS h = hw

where hy, is the water-entry value of & (Bouwer 1966) and 8 and n are soil constants
(Brooks and Corey 1964) calculated from

n = —5Kshy (85 - 6, 57(65,6,)] +1.25 (5.26)

B=(n-2)27". (5.27)
Functions (5.25) expressed in terms of degree of water saturation s at each location r
were scaled according to

h(s)=h.(s)e;t (5.28)

K,{(s) = K.(s)a? | (5.29)
using a minimization procedure similar to that of Warrick et al. (1977) where the
field scale means of h(s) and K(s) for N locations are defined as

N -1
ho(s) = N—l{Z[h;l(s)]} (5.30)
r=;r )
K.(s)= N—z{Z[K,(s)]” 2} (5.31)
r=1
subject to the condition that :
N
N1y o, =1. (5.32)
r=1

Here, their results were similar to those of Warrick et al. inasmuch as values of o,
for h(s) were correlated but not necessarily equal to those for K(s). Nevertheless,
they optimistically concluded that the use of a single scaling factor « as a
representative of the soil hydraulic properties of a field remained a practical
possibility provided that the water content was expressed as degree of water
saturation s.

FUNCTIONAL NORMALIZATION - AN EMPIRICAL ATTEMPT TO SCALE SOIL

WATER REGIMES
Tillotson and Nielsen (1984) describing some of the different kinds of scaling
techniques used in the physical sciences and engineering, attempted to clarify the
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differences between the similar media concept of Miller and Miller and other scaling
approaches. Reviewing dimensional methods and noting that no universal
nomenclature exists in the literature for distinguishing each of them, they grouped
all of the methods into two categories (dimensional analysis and inspectional
analysis), provided simple examples of each and introduced the term functional
normalization, a regression procedure by which scale factors for soil processes are
determined from sets of experimental observations.

The scaling of groundwater levels in relation to the rate of water draining
from sandy soil profiles P measured at the outlet of a watershed is an example of
functional normalization (Hopmans 1988). The depth to the groundwater z,, within
the watershed is influenced by topography, spacing between drainage channels and
field soil water properties. Ernst and Feddes (1979) had previously derived the
empirical relation

P = yexp(-£z,) (5.33)

where y and ¢ are parameters determined from measurements of P and z;. Because
P is measured only at the outlet of the watershed and z, is measured with

observation wells at r locations, the values of y differ for each location. Assuming

that a common value of € derived from its average value of all locations £ describes
(5.33) for each location, (5.33) becomes

P, = x, exp{-zz,). (5.34)
Assuming a scale factor o exists such that y, = a,,, the scaled watershed discharge
P.is given by

P, = x.exp(—€z, ). (5.35)
In Fig. 5.8a the discharge rate measured only at the outlet of the watershed is plotted

against groundwater levels measured at 83 locations within the watershed. Equation
(5.35) describes the scaled data where y, is 852 mm d-! and £ is 3.59 m-l. Hence, by

functional normalization, Hopmans (1988) found a set of ¢, values that coalesced a
large amount of data satisfying (5.34) at each location r to be described by (5.35).

Although these values of o, were not directly related to Miller scaling and have no
explicit physical meaning, they were potentially useful to express the variability of
the water table levels in a single parameter that may be correlated with other
parameters, properties or processes operating within the watershed.

ANALYZING INITIAL SCALING ATTEMPTS
With more than a decade of research testing the applicability of the concept of Miller
similitude and related extended theories to laboratory and field-measured soil water
properties, the absence of a capacious theory provoked controversy regarding the
utility of scaling. Criteria for acceptance or rejection of their application to describe
field-measured soil water behavior were without foundation. Moreover, the
situation was exacerbated by the fact that no paradigms for local and regional scales
of homogeneity in pedology and soil classification had yet been developed.

Sposito and Jury (1985) significantly advanced the analysis of scaling concepts
and theories for soil water retention and movement. They improved our
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understanding of scaling soil water behavior, and interpreted the results of many
scaling experiments. At that time, they provided a unified classification scheme for
the three most common macroscopic scaling approaches that had been applied to
Richards' equation for one spatial dimension. They scaled Richards' equation
subject to those initial and boundary conditions for which most scaling experiments
had been performed. Namely, that the initial water content throughout the profile

68(z, 0) = 8,, and that the boundary condition at the soil surface was either 6(0, t) = 6,

or the water flux density described in terms of K[6(h)] and D[8(h)]. They showed that
many scaling parameters developed in an inspectional analysis depend not only
upon initial and boundary conditions, but also upon whatever special or unique
physical hypotheses are assumed. From their examination of inspectional analyses,
three macroscopic similitude approaches were identified ~ Miller similitude,
Warrick similitude and Nielsen similitude. Miller similitude, based upon viscous
flow and capillary forces, differs from the original Miller and Miller microscopic
approach because a scaling parameter for the volumetric soil water content is
required and no hypothesis is made regarding the microscopic geometry of the soil
pore structure. Warrick similitude derives scaling factors based on (4) and arbitrarily
selected expressions for K(s) and h(s). Nielsen similitude is based on a zero-flux
density at the soil surface during redistribution, and the assumption that the
hydraulic conductivity, the soil water diffusivity and the soil water retention are
exponential functions of soil water content.

Jury, Russo, and Sposito (1987) suggested that the description of the spatial
variability of any transient water flow problem involving the scaling of both K(s)

and h(s) requires the use of at least three stochastic variates ~ Kg, « as in (5.28) and 7
defined by K = h~". [Footnote: Twenty years earlier, Corey and Corey (1967)
successfully scaled Richards' equation solved for the drainage of laboratory columns
each packed with different sized sands provided that the hydraulic conductivity was
described by K = h~.] Sposito and Jury (1990) theoretically showed that scale factors
ay and ag defined from equations of the form (5.28) and (5.29), respectively, were
related to a third parameter @ by

og = af (5.36)
Using the theory of Lie groups, Sposito (1990) showed that Richards' equation will
be invariant under scaling transformations of the soil hydraulic properties only
when K and D are both either exponential or power functions of 6. Earlier, Ahuja,
Nofziger, Swartzendruber and Ross (1989b) had proposed an equation similar to
(5.36) relating scaling factors for water saturated hydraulic conductivity Ks and soil
water pressure head hy at the wetting front.

Noting the suggestion of Sposito and Jury (1990) that the microscopic length 4

could be defined as that of the "effective” pores rather than that depicted in Fig. 5.1,
Snyder (1996) introduced the possibility of a porosity scale factor ap. With ap, an
alternative form of (5.36) becomes

g = o,0f (5.37)



where 1 is a constant dependent upon the model used to describe the hydraulic
conductivity function. He suggested that the inclusion of ap would account for

various investigators having obtained values of o, and g which were correlated as
well as not correlated (Rao et al. 1983). He also suggested that (5.37) could account for
the results of Ahuja, Naney, Green, and Nielsen (1984b) and Ahuja et al. (1989a)
where the field-measured values of K5 were proportional to the fourth or fifth
power of the effective porosity.

RECENT ATTEMPTS TO SCALE SOIL WATER PROPERTIES

The scaling approach of Miller and Miller (1955a, b) and that of others discussed
above based on inspectional analysis and functional normalization sought scale
factors that simplified problems by expressing them in terms of a small number of
reduced variables. New scaling concepts with their potential application to field
conditions continue to be developed. For example, Kutilek, Zayani, Haverkamp,
Parlange, and Vachaud (1991) theoretically scaled Richards' equation under an
invariant boundary flux condition. This type of scaling has application when water
is ponded on a soil having a very thin, less permeable crust at its surface - a
condition commonly oberved in many field soils. Warrick and Hussen (1993)
developed scaled solutions more general than those of Kutilek et al. in that
specified boundary and initial conditions were considered and were invariant with
respect to K5 and h,. Nachabe (1996) developed theoretical relationships for
infiltration between macroscopic capillary length, sorptivity and the shape factor — a
measure of the nonlinearity of the soil water diffusivity. He showed that predicted
infiltration rate is not very sensitive to different values of the shape factor
providing the macroscopic capillary length is the same. With shape factors being
difficult to ascertain in the field, the macroscopic capillary length serves as a scale
factor. These and other ideas await field investigation.

Field approaches to scale soil water properties and processes

Recently, however, at least four different approaches have been used to scale soil
water behavior in the field. The first is whereby a vertically heterogeneous or
layered soil profile is transformed into a uniform profile using scale factors to
stretch or shrink the thickness of each of the nonuniform soil layers. The second
approach is that of linear variability scaling in combination with an inverse
technique to solve Richards' equation to estimate in situ soil hydraulic properties.

The third approach is whereby slopes of the log-log h(6) and K(6) relations are used
as scaling factors. The fourth approach is that of fractal scaling.

Time-invariant hydraulic gradient in layered soils. Virtually every field soil is
heterogeneous with depth, and possesses more or less distinct layers or genetic
horizons. Hence the distribution of h(z, t) observed in a field will depend upon the
choice of depths at which  is measured. This scaling approach (Sisson 1987) begins
with an analysis of the redistribution of soil water under a unit hydraulic gradient

(Sisson, Ferguson, and van Genuchten 1980) to estimate K(8) without the need for
calculating hydraulic gradients and water flux densities from differences of noisy



time- and depth-averaged measurements. With a unit hydraulic gradient Richards’
equation reduces to
26 _ dK dé

AR LANAS 5.38

ot  do oz (5.38)
For an initial condition of

6(z,0) = 0,(z), (5.39)
the solution of (5.38), known as a Cauchy problem (Lax 1972), is simply

dK z

- == 540

dblg ¢ (5:40)

where the soil depth z and the time ¢ are those associated with measured values of
8. Assuming that K(6) is an exponential or power function of 8, the function
differentiated with respect to 8 is equated to zt'! and solved explicitly for &z, f). For a
given soil depth, the parameters defining K(6) are obtained by regression of a plot of

@ versus ¢.
Sisson (1987) extended the above analysis to a time-invariant hydraulic
gradient occurring in layered field soils. The layered soil profile is transformed into

a uniform profile by scaling soil depth z in relation to 6 and h such that mass and
energy are conserved. Richards' equation containing the depth-dependent hydraulic

properties h(6, z) and K(, z) is transformed into a scaled Richards’ equation having
hydraulic properties h,(8,) and K (6,) which are independent of soil depth for a
scaled depth z,. Such a transformation is achieved by requiring the following

relationships:
3‘2?{; =1 (5.41)
3’;&3 = -g—:* (5.42)
‘;95 - i‘i . (5.43)

Note that (5.41) requires that all K(6, z) curves are parallel. Shouse, van Genuchten,
and Sisson (1991) assumed a linear relationship between the scaled soil water profile
and the profile measured in the field

8.(z..t) = a(z) + b(2)6(z.1) (5.44)
where the two scale factors a and b depend upon z. Using (5.44) in (5.42) and (5.43),
assuming a unit hydraulic gradient during redistribution and satisfying (5.41) by

selecting a reference depth at which the unscaled hydraulic conductivity K(8, z) is
chosen to equal the scaled hydraulic conductivity K (6,), they obtained the scaled
gravity-drainage equation
36, _ 9K.(6.)
ot oz
which has a solution

(5.45)
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dK, _ z.
de, ¢
similar to (5.40). Using (5.46) to obtain values of 6, for each measured value of 8 at

(5.46)

each soil depth, scale factors a(z) and b(z)were obtained by regression using (5.44).
Shouse, Sisson, Ellsworth, and Jobes (1992a) and Shouse, Sisson, de Rooij,
Jobes, and van Genuchten (1992b) demonstrated the applicability of the above
scaling method for observations of soil water within a 4-m? plot of a layered soil.
Observations of soil water content were obtained during a 3-week period of
redistribution following an initially 30-day ponded condition. 8(h) was estimated
from measurements made in the laboratory on soil cores (5 ¢cm diameter, 7 cm
length). By using (5.40), the original soil water profile distributions to a depth of 120
cm for 11 redistribution times in Fig. 5.9a led to dK/d6 versus 8 for the 5 depths
shown in Fig. 5.9b. Shown in Fig. 5.10a are the scaled soil water profiles that coalesce
the data from all 5 depths into the unique curve of dK,/d6, shown in Fig. 5.10b

using (5.41). Hence, this approach requires one set of reference functions for 8(h) and
K(6) as well as two scale factors for each additional horizon or depth considered. It
should be noted that this kind of linear 6(z) scaling is independent of the form of
K{6) and that the same scale factors scale both 6(k) and K(6).

Inverse solution of Richards' equation. The second scaling approach combines the
linear variability scaling technique introduced by Vogel, Cislerova, and Hopmans
(1991) with an inverse solution of Richards' equation to determine soil hydraulic
properties. After irrigating a 32-ha agricultural field with 0.3 m of water, they
estimated the amount of water draining from the soil based on observations of soil
water content measured with a neutron meter at 44 locations during a period of 125
d (Eching, Hopmans, and Wallender 1994). With rainfall equaling estimates of
evapotranspiration during that 125-d period, net changes of soil water storage from
the soil surface to the 2.1-m soil depth were attributed to drainage only. Hence,
Richards' equation was solved assuming a zero flux condition for the soil surface
and a known flux condition at the bottom of the 2.1-m profile.

At each location r they assumed that the drainage flux density g, was
described by the exponential function (Belmans, Wesselling, and Feddes 1983)

g, = a, exp(=b,t,) (5.47)
where 4, and b, are fitting parameters and f, the drainage time beginning when the
soil water storage in the profile was a maximum. They used the linear scaling
relations proposed by Vogel et al. (1991) for each location r

K, () = g Ku (1)
8, () = B,es, + g, [9.,(h,) - 9,35_] (5.48)
hr = ahrh‘
where 6, is the residual soil water content 8, as in (5.25), and K,(h.) and 8.,(h,) are

the space invariant scale mean soil hydraulic functions. The distributions of o and



ag were defined such that each must have an arithmetic mean of unity, and a; =1
throughout the profile at any location 7.

Derived from (5.48), values of 4, = ag a., b, = a,b,aa}aj and t, =g ag} . were
substituted into (5.47) to obtain the scale mean flux density

g. = a.exp(—b.t.) (5.49)
The cumulative drainage Q, obtained by integrating (5.47) for each location r

Q, = -gi[1 —exp(~b,t,)] (5.50)
was also similarly srcaled to provide the scale mean cumulative drainage Q,

Q. = *[1-exp(-b.t.) (5.51)

In order to meet the constraints that the arithmetic means &gand @, were each
unity, each set of scale factors was normalized by dividing the values by their
respective arithmetic mean. Using the scale mean values a.=0x@ and

b, =a,5(6921')”1 in (5.49) or (5.51) defined the lower boundary condition for which

Richards' equation was solved. Note that 7 and b are the arithmetic means of 4,
and b,, respectively, in (5.47) for the 44 locations. With the inverse solution yielding
scale mean functions 8,(k.) and K,(8,), the soil hydraulic functions at each of the 44
locations were determined from (5.48).

The cumulative drainage Q(t) measured at each of the 44 locations is shown
in Fig. 5.11a and the cumulative drainage Q.(f.) scaled using (5.51) is shown in Fig.
5.11b. Obtaining scale factors from the simple exponential equation describing
drainage from the lower boundary of the soil profiles, the hydraulic functions were
easily estimated with a minimal number of soil data by combining the inverse
solution of Richards' equation with the linear variability scaling concept.

One-parameter scale model for h(6) and K(h). In the third approach, Ahuja and
Williams (1991) started with the one-parameter model for h(6) proposed by Gregson,
Hector, and McGowan (1987). Assuming that 6, is zero and h < -50 cm, Gregson et al.
used (5.25) in the form

In[-h,(0)]=u, +v,In0 (5.52)
to describe h(8) at each location r for a large number of soils representing 41 textural
classes from Australia and U.K. They found that the u, versus v, linear relation

u =6+ (o, (5.53)
derived from these diverse soils coalesced together into one common relation with
only a small scatter. In other words, Gregson et al. found that each of the values é
and ¢ had essentially the same value for all the soils studied. With Ahuja and
Williams (1991) finding similar results for ten different U.S. soils, they were
encouraged to develop an approach for scaling #(6) that would be applicable across



soil types and textural classes. Substituting (5.53) into (5.52) and rearranging, they
obtained

In6 = {In{-#,(6)] - 5}o;1 - . (5.54)

Assuming values & and { are constant and independent of location, the only
parameter in (5.54) that depends upon location is v,. Hence v, serves as a scaling

factor, and for a fixed value of 8, the right hand side of (5.54) is the same for all r
locations.

Ahuja and Williams extended the above approach to also scale unsaturated
hydraulic conductivity K{(l} data derived from sets of field measurements for six
U.S. soils. Assuming that h < hy, they used (5.25) in the form

InK, =U, +V,In(-h) (5.55)
to describe K{#) at each location r. They found that the U, versus V, linear relation
U,=&+¢V, (5.56)

derived from the six data sets shown in Fig. 5.12 coalesced together into a unique
relation with R2 = 0.94. For the individual soils, only the end points of the derived
relations within the experimental data range are shown in the figure. The site U,
and V, values were obtained by regressing (5.55) to the experimental K(h) data for
the respective sites. Substituting (5.56) into (5.55), they obtained
In(-h)=(InK, - &)V;1-¢ (5.57)

and used V, as a scaling factor for each r location. Using constant values of £ and ¢
obtained from data for all soils combined in (5.57), the scaled values were adequately
coalesced into a single curve.

Fractal scaling. For the fourth approach, Tyler and Wheatcraft (1990) provided fractal
scaling insights into the power-law models of soil water retention (5.25) developed
empirically by Brooks and Corey (1964) and Campbell (1974). They considered the
porous structure of a soil to be represented by a simple fractal in two dimensions
known as the Sierpinski carpet generated by starting with an initial square of side
length g and removing one or more subsquares of size aby!. Increasing the values of
b where b = b; to the ith recursive level yields a carpet everywhere filled with holes
as shown in Fig. 5.13 but where only two levels of the recursion are indicated. For i =
1, the large square in the center of the carpet having an edge equal to aby! is first
removed. For the first recursion, by = a3-1. Next for i = 2, eight squares having an
edge equal to ab;! (b; = a3-2 is removed. Assuming the open areas represent the
cross-sections of capillary tubes, and after an arbitrary, large number of recursions,
we have a distribution of pores in a soil having porosity
o(b)=1-pD-2 (5.58)

The parameter b is inversely related to the smallest pore size and D is the fractal
dimension of the soil and is given by

D= log(blz - ll)

o (5.59)
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where b[! represents the size of the largest pore and /1 represents the number of
pores of size b!. The soil water content 6(b) associated with water held in pores of
size b1 or smaller is from (5.58)

8(b) = bP-2. (5.60)
From the capillary rise equation, h is proportional to b, and hence,
6(b) o hD-2. (5.61)

Normalizing (61) in terms of s the Brooks and Corey (1964) or Campbell (1974)
form of the soil water retention curve (5.25) is obtained

s = (hhz)" 72 (5.62)
They demonstrated that soil water retention curves of clay soils would tend to have
large values of D while sandy soils would have smaller values of D.

More recently, Pachepsky, Shcherbakov, and Korsunskaya (1995) extended the
fractal concepts of Friesen and Mikula (1987), Tyler and Wheatcraft (1990) and
Brakensiek, Rawls, Logsdon, and Edwards (1992) to quantify the spatial variability of
8(h) in field soils. They started with the fractal relationship

de
— = AR?-P ‘ 5.63
T (5.63)

where the effective radius R is the scale length measure of pores and A is a constant
reflecting the geometry of the soil. Pores of radius r < R are filled with water. From
(5.63) they derived

6, 1 (h

where h, is the value of h at r,,
Inr, = InF+ 02(3-D), (5.65)
in@, = In(A73-D)+ 02(3-D)* /2, (5.66)

and 7 and o? are the geometric mean radius and variance of the pore radius
distribution, respectively.

Each soil water retention curve measured on 84 samples of a clay loam taken
from a 12,000-m? field were used to determine the parameters 6., h, and o in (64).

Plots of Inr, versus o2 and In @, versus o2 shown in Fig. 5.14a and 5.14b,
respectively, yielded nearly identical values of the fractal dimension D. In Fig. 5.14a
the value of D actording to (5.65) is equal to 2.86 while in Fig. 5.14b its value
according to (5.66) is 2.82. Results obtained from 60 samples of a loam from a 1,500-
m? field were also encouraging. Hence, assuming that the geometric mean radius
and the fractal dimension are constant for the field soil investigated, Pachepsky et al.
suggested that the variance of the pore radius distribution 02 could be used as a
single variable to quantify the spatial variability of a soil water property. They
further suggested that when the probability distribution of o2 and values of
parameters A and 7 are known, the proposed scaling allows the generation of

spatially noncorrelated random fields of 6(h).
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THE EFFICACY OF SCALING FIELD SOIL WATER BEHAVIOR

Although a generalized theory for comprehensively scaling the behavior of field
soil water regimes does not exist, and remains today at the cradle of its
development, scaling has provided an encouraging degree of success for those
coping with the heterogeneity of field soils. For examples indicating the progress
achieved, see Warrick (1990) as well as a few additional examples indicated below.

With the potential to characterize the spatial variability of field soil water
properties captured with one or more scaling factors, several investigators have
used scale factors assumed to be spatially independent to simulate hydrologic
processes as well as the measurement of soil water properties of fields (e.g.
Luxmoore and Sharma 1980; Bresler and Dagan 1983; Dagan and Bresler 1983; and
Tseng and Jury 1993). Recognizing that soil water properties should be spatially
correlated, Jury et al. (1987) also provided a method for obtaining different scale
factors that included their spatial correlation structure, and illustrated its use with
the data sets of Nielsen et al. (1973) and Russo and Bresler (1980a, b).

From scaling observations of infiltration, values of the scaling factor have
revealed differences in cropping management. After measuring the rate of
infiltration at 50 locations in a transect across an agricultural field, Hopmans (1989)
scaled the modified Kostiakov equation in a manner similar to (5.22). The scale
factors, shown in Fig. 5.15, manifest different average values across the transect. The
first portion of the transect was located in a region planted to sorghum while the
remainder had been fallow prior to the infiltration observations. The larger mean
value @ for the region planted to sorghum probably reflects crop-root induced
differences in soil pore structure or soil water content at the time infiltration was
measured.

Rockhold, Rossi, and Hills (1996} successfully used scale factors to
conditionally simulate water flow and tritium transport measured at the Las Cruces
Trench Site. Soil water retention data from 448 core samples were scaled according
to (5.2) into a scale mean curve using the Brooks and Corey model (5.25) to obtain

values of ay. Parameters for soil water retention were used in the Burdine (1953)

relative permeability model to estimate K(8). Saturated values of the hydraulic
conductivity Kg were measured in the laboratory on the 448 soil cores and saturated

values of the hydraulic conductivity Kg; were also measured in the field using a

borehole permeameter at nearly 600 locations. The latter two sets of data were scaled
according to (5.4). The probability distributions of each of the three scale factors were
found to be lognormal. The horizontal variograms of the log-transformed scale
factors for soil water retention and field-measured Ks (Fig. 5.16a, b.) show
remarkably similar spatial structure to about a 5-m lag. Interestingly, the log-
transformed scale factors for Kg; measured in the laboratory on the same cores used

for measuring 6(h) manifest (Fig. 5.16¢.) virtually no spatial structure (a spatially
random behavior).

Although Rockhold et al. (1996) followed the advice of Jury et al. (1987) to
quantify the spatial structure of the soil hydraulic properties of the Las Cruces
Trench Site, they found it not necessary to use three stochastic variates to condition



their simulations of water and solute transport. Using a constant value of 6s,

constant values for the slopes of s(h) and K(s), and the same distribution of a-values
in (5.2) and (5.4) to condition the hydraulic properties of the field, simulations of
water flow adequately agreed with those measured. They were sufficiently
encouraged by their results to speculate that simulating unsaturated water flow at
field scale would evolve from its present-day stochastic analysis to a deterministic
analysis in the future.

EXPECTATIONS

We expect avenues of intellectual curiosity supported or derived from observations
in the field and the laboratory to continue to kindle investigations of scaling soil
water regimes. Because potential avenues for the development of a comprehensive
set of different kinds of scaling theories remain largely unexplored, opportunities to
quantitatively ascertain the efficacy of scaling field soil water regimes must await
additional inquiry and creativity. Without a unified comprehensive theory,
fragmented, theoretical considerations provide inadequate criteria for success.

We do not anticipate abundant progress until a complete set of field-
measured soil water properties for several locations within at least one field is
simultaneously and directly observed, analyzed and published. To date, in every
reference cited or omitted in this chapter, critical field measurements have been
lacking. For example, Nielsen et al (1973) and Shouse et al. (1992a, b) estimated field

soil water contents from laboratory measurements of 6(h} on soil cores. Russo and

Bresler (1980b) estimated functions 6(h) and K(8) from field observations of
sorptivity and other parameters. Ahuja and Williams (1991) and Rockhold et al.

(1996) also estimated field values of 6(h) from measurements on soil cores analyzed

in the laboratory. Although Eching et al. (1994) measured 6(z, {) in the field with a
neutron meter, they made no observations of h(z, t). Moreover, they made no
independent confirmation that the functional relations assumed for the hydraulic
properties in the inverse method were descriptive of the field soil studied. On the
other hand, both Eching et al. (1994) and Rockhold et al. (1996) explicitly showed that
values of Ks measured in the laboratory on soil cores were different than those
measured in situ. In Fig. 5.17 laboratory determined values of Kg are an order of
magnitude greater than those estimated in the field.

Progress toward improved scaling concepts should be accelerated as
investigators take the opportunity to simultaneously study details of both an
experiment and a theory (e.g. Flithler, Ardakani, and Stolzy 1976). Present-day
scaling attempts are confounded by not recognizing that most experimental
observations are subject to space- and time-dependent instrumental responses
(Baveye and Sposito 1985). And, more attention should be given to the
consequences of selecting simplified theoretical models to analyze and scale field-
measured data (Tseng and Jury 1993). Presently, no criteria are established to
ascertain appropriate soil-depth or time intervals at which observations should be
taken. The choice of horizontal spacings between observations remains ad hoc.
Functional forms of soil hydraulic properties remain without theoretical
foundation. Indeed, a dilemma persists regarding how to include "preferential” flow
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near water saturation. If Kg is dominated by "preferential” flow, should the relative

hydraulic conductivity function K(s)K;! be scaled (Jury et al. 1987; Ahuja and
Williams 1991) or should that "preferential” flow be described by equations other
than that in Richards’ equation (e.g. Germann and Beven 1985) and scaled
independently? When and how should laboratory studies complement ficld
investigations? Equipment and methods for ascertaining the essential observations
are readily available to those wishing to make a contribution to the development of
scaling technology. Paradigms for scaling steady-state, one-directional Buckingham-
Darcy flow are anticipated to be less restrictive than those for Richards' equation
describing transient flow in one or more directions.

We believe information derived from laboratory investigations at the soil
pore scale obtained with computed microtomography, magnetic resonance imaging
and other noninvasive techniques will improve the use of fractal concepts by Tyler

and Wheatcraft (1990} to describe 6(f) and by Shepard (1993) to calculate K(6). The
logical next step based on fractals would extend the descriptions and calculations to a
field scale as other fractal properties and processes within field soils become better
known and understood (Burrough 1983a, b).

Eventually, appropriate scale factors of field-measured soil water properties
and processes will be measured in sufficient quantity and detail to analyze and
document their spatial and temporal statistical variance structures across and within
the landscape. With their values being linked to other soil properties through state-
space and other regionalized variable analyses (e.g. Wendroth, Katul, Parlange,
Puente, and Nielsen 1993), we anticipate that new paradigms for local and regional
scales of homogeneity in pedology and soil classification wiil emerge. With soil
mapping units embracing magnitudes and distributions of spatial and temporal soil-
water scale factors, unlimited opportunities will unfold. We expect the numerous
uniquely scaled solutions of Buckingham-Darcy and Richards' equations now only
theoretically available (e.g. Kutilek et al. 1991; Warrick and Hussen 1993; Nachabe
1996) to be extended to specific landscape and field regions categorized by mapping
units described by information containing scale factors for their soil water
properties.
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Figure 5.1. A microscopic geometrically similar soil particle arrangement is the
principle of Millers' scaling (Miller and Miller, 1955a, b).
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Figure 5.2. a. Unscaled observations of s(h) and b. scaled observations s(h ) for

Panoche soil (Warrick et al., 1977).
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Figure 5.3. a. Unscaled determinations of K(s) and b. scaled determinations K (s) for
Panoche soil (Warrick et al., 1977).
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(Hopmans, 1988).
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Figure 5.9. a. Measured soil water content profiles for selected times during
redistribution and b. calculated values of dK/d6 versus 8 for five soil depths
(Shouse et al., 1992).
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Figure 5.10. a. Scaled soil water content profiles z.(6.) and b. scaled values dK, /46,
versus 6, for the observations given in Figure 5.9 (Shouse et al., 1992),
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Figure 5.11. a. Unscaled cumlative drainage versus time and b. scaled cumlative
drainage at the 2.1-m depth in a 32-ha field (Eching et al., 1994).
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Figure 5.13. Simulated soil using Sierpinski carpet as a conceptual model of pore
structure (Tyler and Wheatcraft, 1990).

Figure 5.14. a. Linear plot of Inr, versus the variance of the pore radius distribution

o2. b. Linear plot of In6, versus the variance of the pore radius distribution o2
(Pachepsky et al., 1995).
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Figure 5.15. Scale factors of infiltration rate measured along a 100-m transect in a
partially cropped field (Hopmans, 1989).

| [ I i
1.2+ a
o8 0-9_ [+ o
o ooood)ooooooo
=~ 06 o
o]
o
0 ] { ! ]
0 3 6 9 12

| 1 | |
1.2+ b . oy ]
PP °
0.9 — 00000 o ° —
o []
0.6} *°° -
00
0 } | | !
0 3 66 9 12

| i I l
1.2~ ¢ ~
o 0°°oo
0'96_%00‘300000 o |
=] © oo
0.6 -
0.3+ —
inaKsz
0 | | ] |
0 3 6 9 12

LAG DISTANCE (m)

Figure 5.16. a. Normalized horizontal variograms of In-transformed scaling factors

ay for 6(h) determined in the laboratory on soil core samples, b. axs for field

measured saturated hydraulic conductivity and c. ek for saturated hydraulic
conductivity determined in the laboratory on soil core samples (Rockhold et al.,

1996).
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Figure 5.17. Values of water-saturated hydraulic conductivity Ks measured in the
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