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“This is the only way it clicks ...

[t doesn't make sense otherwise ..,

But this is just a theory, sn'tit? ...

Call it any name you like. It's good enough for me.”

Dashiel Hammett

Gelfand, (.M., Gubennan, Sh.A., Keilis-Borak, V.L, Knepoff, L., Press, F., Ranzman, E.Ya., Rotwain, 1.M. and
Sadovsky, AM., 1976. Paltern recognition applied ta earthquake epicenters in California. Phys. Earth Planet.
Inter., 11: 227-283.

A pattern recognition procedure is explained which uses geological data and the earthquake history of a region,
in this caee Californja, and learns how to separate #arthquake epicenters from other places. Sites of future earth-
quake epicenters are predicted as welt as placas where epicenters will not occur. The problem is formulated in several
ways and control exgeriments arce devised and applicd in order to test the stabitity of the procedures and engender
confidence in the results. Some of the combinations of geological features which the computer recopnized as signifi-
cant discriminapts are discussed.

1. Introduction prediction is importunt in a practical sense as well as
a means of hypothesis testing, Pattern recognition
aoffers a powerful tool for achicving these results. Yet

care must be taken in its application, for pattern

Pattern recognition is not a new subject but its
application to geological and geophysical problems

has been minimal. This is surprising because the
metheds of pattera recognition, though paradexically
simple, can extract more results from a body of data,
by a more intensive analysis, than many alternative
procedures.

Geelogy und geophysics are essentially experimen-
tal disciplines in which large amounts of data are ac-
cumulated and are in need of winnowing, codification,
correlation, and interpretation. More so than in many
other fields, hypotheses flow from data analysis, and

recognition itself is 2n unexplored field lying some-
where between logic and statistics. Its procedures are
net yet formalized and the user must be on guard against
self-deception.

In this paper we examine the possibility that geo-
logical patterns can be recognized which distinguish
places where epicenters of large eurthquakes have
occurred in the past and can oceur in the Future, from
other places which have not been and will not be the
sites of epicenters. The primary data for recognition
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come from California, though insights and procedures
stem from earlier applications of these methods to
central Asia und Anatolia. If we are successful we will
have predicted the sites of future epicenters (but not
the times) and we will have learned something about
the geological environment of epicenters.

2. Method
2. 1. The problem

We place the problem of recognition in the follow-
ing form: a set of objects is given, with each object
described by the answers to a questionnaire. Each ob-
ject belongs to one and only one of several {usually
two) classes. Our goal is to find which class each ob-
ject belongs to. To solve this problem we first need to
go through a “learning phase™ using examples of
objects of each class as “learning material®.

Let us make this specific for our particular problem.

Objects are points on a map, representative of a local
geographic region. The problem is to find those objects
where the epicenters of strong earthquakes may ocecur
in the future. Note that we mean the epicenter or
place where the earthquake is initiated and not the
entire length of faulting. We shall ca!l these objects D,
“dangerous”. The rest of the objects we shall call N,
“non-dangerous”, By strong we mean earthquakes
with magnitude M not lower than some threshold My;
in the text below, “earthquake™ and “epicenter” refer
1o strong earthquakes unless indicated otherwise.

A specific difficulty arises because the learning
material consisting of known epicenters js mixed.
Because of errors in locating epicenters, objects called
Din the learning phase may really be N and vice versa,
Also some objects which are classified N in the learn-
ing phase are really D because they will be the sites of
future epicenters, It is these objects we wish to identi-
fy by pattern recognition in order to predict future
epicentess. This leads us to the following problem:
the objects are divided a priori into classes I and If —
correspondingly close to and far from known epicen-
ters; the goal is to recognize objects D in each class.

2.2, The algorithm

The recognition algorithm consists of three stages:
learning, voting and control experiments.
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Learning: certain critical questions or combinations
of questions, called the distinctive features of objects
D and N, are determined by analyzing the learning
material, as will be described in the next twa sec-
tions.

Voting: the numbers np and ny of distinctive
features characteristic of D and N are determined for
each object. Recognition is based on their difference
& =np - ny. We recognize an object as D if A3 A,
where A is some threshold. Making & smaller wilt
reduce the number of D objects which will be mis-
identified as N. At the same time morc “false alarms™
will occur, i.e. more N will he misidentified as D.

Control experiment: the stability and reliability
of recognition are tested by numerical (logical) ex-
periments, in order to convince ourselves that the
resuits are significent since recognition cannot be
proven either mathematically or statistically. This is
a decisive stage which takes up most of the effort,
after the questionnaire is formulated and answered.

Learning is based on the algorithm CORA-3. This
algorithm in slightly different form has been used in
several other problems (Bongard et al., 1966). For
our particular problem it can be formulated as follows.
The objects, used in learning, are divided into classes 1
and II, correspondingly close to and far from known
epicenters. As stated earlier, each class may contain
objects D and N:

class Lis {Dy, Ay}
class II is {DH, Nl[ }

Here D; and Ny are objects D and N, respectively, in
the ith class; i = Tand IL In other words, Dyand ¥y
are objects D and N, which lie close to at least one
known epicenter. Dy and M are the objects D and N,
which lie far from all known epicenters. Each object
is described in binary code, which contains the
answers to the guestionnaire. All binary digits and the
combinations of two and three digits are considered as
traits of an object.

We repeat this definition more formally.
The object A is described in hinary code:.

A=A4; . Ay (1)

where the component A; is the answer to the ith
question in the questionnaire, expressed as 1 for yes
and O for no. The frait 7is an array of six integers:
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T=p,qrnPOR )

Herep=1,2, ., Lig=p.p+1,. ., Lir=q,qg+1,..,
L; L is the same as in object (1);P=00r 1;@=00r
LR=0orl. Ifg=rthen 2=R,if p=¢q =r, then
P=0=R;ifg=p, ther @ =P. An object (1) has the
trait ), if Ay =P Ay~ 0; 4, = R. Here Ap is the pth
component in {1)etc. In the casesp =g =rand p #¢q,
q = r the trait corresponds to one and two components
of (1), respectively. The cases p =g, ¢ ¥ r are redun-
dant.

As an example, the object A = 0110 has traits as
represented in Table I,

Thus the value of PQR in the trait with pgr equal
to 222, for example, is the response to question i = 2
in A and has been identified in the pgr array by the
value of P; the values of ¢ and r are redundant and
have been set equat to 2 to provide a complete syn-
tactical statement. Similarly, the vaiue of POR in the
trait with pgr equat to 233, for example, is the response
to both questions f = 2 and 3 in 4 and is identified
in pgr by the value of 7 and g, the vajue of 7 is redun-
dant. The value of POR in trait with pgr equal to 134
is the response to questionsf= 1,3 and 4 in A.

Thus, an object (1) has L + Cy + Cp 5 traits, where
Crarls the number of combinations of L things taken
M at a time (Cp, = L). Eight different traits are possi-
ble for fixed p,q,r, if p #g #r: (PQ.R)=(0,0,1) ot

TABLE !
Traits for the object 4 = 0110

r POR

=
£

L PO R N R A A
RN A N s AN '
P SR RN RN NN S )
-
—

3

2%

0,1 0)etc. up to (1,1,1). f p # g, ¢ =», only four
different traits are possible for fixed p.g: (P.Q) = (0,0),
(0,1), (1,0 or {1,1). If p=g =r, vnly two different
traits are possible for fixed p- P=0or 1.

Therefore, the total number of different traits
which are possible in objects of length L is:

2L +4C + 8CF

The features of D and N are selected from among
the traits. A feature of D is a trait which is present
relatively frequently in class I and relatively infre-
quently in class I1. A feature of N is defined analogous-
ly. The formal rule defining features is given in Table
iI.

Next we eliminate equivalent and weaker features,
whose definitions follow. Consider two features of a
class und the objects of this class only. Some set of
these objects has the first feature, another has the
second. If these sets coincide, the features are equiv-
alent. If one set is part of another, the corresponding
feature is weaker than the other. WM /M > 1 - ¢,
these features are called “e-equivalent™. Here M, is
the number of objects which belong to both sets; M,
is the tolal number of objects which belong to both or
to any une of the sets. Evidently, for equivalent fea-
tures, M, =My, ie. e = 0. The defirition of e-equiv-
alence is used later.

We eliminate all but one feature from each group
of equivalent features, and all features which are
weaker than some other one, The features remaining
after this elimination are called distinctive features
and are used in voting. As mentioned above voting
consists of tallying the number of I and N distinctive
features at each object of class I, Il and I

Class T1I consists of objects not used in learning.

TABLE I
Definition of features* in learning by algorithin *CORA-3"

A feature Should be found in the class

of objects — e R
I 1§
D in >k objeets  in < & objects

N in < k3 objects in > k; objects

* Each feature is a unit or a combination of two or three
units in the binary code of the object.
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We could divide all objects into classes [ and i only,
according to whether or net the point lies near an
epicenter. However, we separate some objeets into
class TT1 il we are uncertain ahout their assignment or
if we use them tor control experiments. Objects in
class {3 are censidered I voting. however.

The algerithm assumes that the number of epicen
ters is suffieient for the following two hypotheses tw
haold:

Hypurhesis 1. most objects, which are (ar ftom
known epicenters, are N,

Hypothesis 2: most objects neqr kxnown epicenters
are [,

The second hypothesis will be teplaced by a weaker
one, when we use another algorithei for learning culied
“CLUSTERS”. which we describe nexr

Algorithm “CLUSTERS™ is fully described for e
flest ime in this paper; a brief description was given
in Gelfand et 1), (1974a). The objects of class [ara
subdivided into clusters. Each cluster cotresponds to
a certan epicenter and includes those objects which wre
close to this epicenter. An object may be included in
several clusters. Class 1 is specified as heinro. Thus

Class Tis {C[DEVF]Y
Class 1T is {D[],N“}

Here (s a cluster of objects newr soe epicenter: O
and Nfare the nbjects D and & in the cluster €. The
piobleis is to recognize Dyand Dy

As i CORACD all tiaits of all objects in ihe lesrn-
ing wiaterials ore consileced in the learning phase. We
assume that a cluster hus some traid i at least one ob-
ject in the cluster has this trait. {In another version
this condition is more flexible in that at least VK
chjects in the cluster must have rhis trait. Here Vis
the number of the objects in the clusier, and K is
son coustant casnmon for all clustess; natusaily, if
MK <1 itis replaccd by 1.) Wit these definitions
the features arc selected by the ruies specified i
Tahle 11

As hefore equivalent and weaker fcatures are ther
etiminate:. Aithough they can be dotermined exantly
a8 in CORA-3 we preferred to use the clusters rasher
than objects in testing for equivaler.i or weaker 0
features. After this climination we arz l2{i with the
distinctive features of D and N, which are used in
voting. The voting is carried out separately for each

5
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TABLE 1!

Dielinitioe of featares® in fea

ing by algorithin “CLUSTERS™

A .:v\i\il"
feature -
ot chusters € = ¢
nbjects

wdin the
ingle ghjecty
in clusters
relass 1)

single objects
ourside the
clusters
{chass 1)

Iy in» kyclusters in > &3 objects = £, objecrs
N - in % Ayobjecss 3 kg ubjects

2 IS a unit o a combinstion of two or three

v the binury code of the ahbject.

¥4 luscer bas some 10ait if at least one object in the
«luster hag this trait.

object, whether or not it has been assigned to a clus-
ter.

This voting enabies us to recognize the Gbjects D
near 2ach knows epicenter {05 and far from all of
them (Dqp. In particular we can divids each cluster
iney Op and ). The essential advaniage, compared to
CORA-X is that objects Dyneed not dominate the
clusters. They may even be in the minority in many
chusters, o1 in every cluster if k5 = (.

Formally this algorithm differs from CORA-3 only
by the intreducticn of an additional thrashold (com-
pare Tables 1f and {I1). It may seem therefore, that
the alzosithen constrains the learafng materials more
severely. o fact, the opposite ceeurs, since k5 in
Table Wl oan be much smaller than &, in Table 1.
Frequently we even tuke &y =0 In effect we have
repizced hypothests 2 by o much broader one:

Hyporhesie 31 most of the Known epicenters have
at least one I object nearny .

Hyputheses 1 and 3 seem (o be close to minimally
secessary unes. Without them our problem is liopeless

2.5, Control experinents

The main controi experimeut will now be described.
“etus neglect the date o a specilied pdet of the list
of earthquakes. These earthquakes can be the most
recent ones or can be selected otherwise. Objects
which are near the epicenters of these and only these
sarthiguakes will be reassigned in the learuing stags 1o
class 11. We apply the same algorithms ot leasming and
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voting and check whethier these ohjects will be recoy
nized az Dy If the earthquakes we have neglected are
the most recent ones we refer to this experiment as
experiment EU (“earthquake histeiy™), since it is
equivalent to learning on the basis of an early
un earthguake catalog and testing our ability 1 pre-
dict the subsequent seismic history, ke, recognize the
earthquakes in the later part of the catalog.

We must alse take care that the number of ohjects
identified us dangerous does not grow unduly large
“in thie future”. To check this pessitle instability, we
continue the EH experinent into the future, reassign-
ing into group [ all objecis recognized as ;. This is
referred to as “experiment EF” (“earthquake future™).
This procedure is evidently iterative and can be carried
out on both experiments EH and EF.

As a furthed cheek we have compared our resalts
against those obtained uring variations ol the data, the
questinnnaire and its atswers, the criteria for the
seleetion and classification uf ebiects, the catalog of

art ¢f

TABLE [V
Epteenters of strike-slip carthguakes with M = 6

N Year Day,

Latitude
montk. “N)
3 1836 1S
2 1836 377
3 1§36 378
4 1857 347
3 1906 LY 38.25
f te11 VL 371.25
7 1918 21,V 13.75
8 1522 10,1 3575
9 1923 22,1 AdS
10 1923 23, vl 4
il 1926 1, X 3675
12 1933 14,1 316
13 1934 8, V1L 36
14 1934 3, X7 3225
15 1934 31, X1 kM
16 1937 25, i 335
17 1740 9. v 27
15 1542 21, % 33
9 1948 4, X1l 339
20 1951 8, X 40.25
21 1952 2, X1 ELp:
22 1954 19, 1t 3324
34
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epieenters, and the values of numericsl parameters, in-
cluding &; and &;. We have also used tests involving
randem variation and even random generation «f
data, the use of different algorithms of recognition,
and the appiication of the characteristic features
identified in one region to reeognition in another, but
seismically siniior region,

3. Strike-slip earthquakes of California
3.1 The problem

Here we consider strong (M 2 6.5) strike-slip
eartiquakes in the region shown in Fig. la. The
catalog of earthquakes is given in Tahle 1V, We assuine
that the epicenters are associated with major strike-
slip faults (referred to us faults in what follows). The
system of faults is depicted in Fig. la. The Tecronic
Map of the United Stares (USGS, 1962) is the prin-

Closest poing

Fig. 1y

kS

4

1223 =7 3
1as >7 X
12295 8.25 2
£21.75 6.5 &
1% 6.8 12
12023 6.5 i
124.5 7.2 23
7.25 6.25 iz
122 5.1 7
114 6.25 22
1205 64! ¢
115.5 0.3 20
114.75 7.0 27
116} 6.0 I
1155 5.7 1Y
16 6.5 {8
1164 6.5 14
124.5 6.0 i
121.2 6.0 8
L16.1% 6.2 17
6.2 69 16
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cipal source of fault information, with a few additions
on our part. The problem is to find where on these
faults earthquake epicenters may fall,

3.2, The objects

Cbjects of recognition are points on faults. We
consider peints of the following three kinds:

(1) Projection cf each epicenter onto the closest
fault. Epicenters of all strike-slip earthquakes with
M2 6.0 (Table IV) are used. We call these points
centers. They have ordinal numbers from 7 t0 23 in
Fig. 1b.

ILM. GELFAND ET AL.

(2) Points on faults at distances of 25 km from
centers. They have ordinal numbers from 24 to 61 in
Fig. 1b. To locate these points we drew citcles of
25-km radius around each center. The intersections
of the circles with the faults are these points of the
second kind. We call these points associates of corre-
sponding centers. For example, point 66 is an associ-
ate of point 22 in Fig. 1b. If it occurs that two centers
lie on the same fault with distance in the range
25 <0 r < 30 km from each other, then the two associ-
ates between them lie closer than 25 km. In this case
the two associates are replaced by one point in the
middle. Points 38 and 48 are examples of such points.

124 122 12c {18 16 fiq
r T T T T 1 T T
4z e H1a2
i
! @ M27 Hon-Insir Epicenter |
o | @ M7 L
B O 65<M<7 l
—23 | @ GO<M<ES !
40+ | | 140
San Andreas Fault | 'i
-l 1
Hayward Fault ~ l:
338 3 \‘\ l 138
L .. l
‘ ‘__5?_— Calavaras Fault . ‘
King City Fault ‘
36 Sf\/ 136
Nacimienio Fault——- Helendale Fault ", \
B Suey Fault"———— 4 /Glenwood Féu\t 7
\ Banning Fguli
24 Big Pine Fault - & Migsion C}eek 34
San Gabric! Fault~" Faut
18 )
i i
San .acinto Faul _‘9
Sylmar Fault 0
Elsinore Fault T
33r imperial Fault~" ® 12
(@)
i L L L 1 LN i J. ), L
124 122 26 He li&s Ia

Fig. 1. (2 Major steike-shie fidlts of Califorpiz
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24 122 120 na 16 14
a2} \‘.m,__.‘,i,ﬁﬁ.__._.__..ﬁ.ﬁ,f.—. {az
| & M>T Non-insir. Epicenter |
X | o M27 .
: 0 65<M<7 ‘
| e GOM<BS .
aof i | {ao
| !
a8} I‘ 1ES
i | ]
36} ﬁ\/ {=s
\‘ '\
L \j J
\
p]
L TR EL
/
I LI
T
z2t A izp
{b)
R 0] 7 S 1T STV

Fig. 1. (b} ldentification numbers of objects of recognition {peints).

Il two ceniers lie on the same fault with distance
r 25 km, then we eliminate the associate of each

center which lies in the direction of the other center

on the same fault.

(3) We eloninate from cousideration all parts of
faults between each center and its associates, Le.
parts of the faults within the above mentioned
circles of radins 25 k. On the remuininy parts of
each fault we place the points at intervals of 50 knu,
beginning with the northern end of the fault. These
are points of the third kind.

I it occurs that & point of the third kind is a1 the

¥

distance 7 < 100 km from some associate point on the
same fault, the next point of the third kind is placed
at a distance r{2 km (instead of 50 km) from the preced-
ing point, Examples are points 28 and 59.

The class definitions for objects, in the learning
stage, are as follows: Class [ contains the centers and
their associates (points of the first and second kind),
corresponding to carthquakes with M > 6 5. Each of
these centers together with its assuciates forms a
cluster. Two clusters were eliminated in the learning
stage hecause the corresponding epicenters occur too
far from the nearest fanlt. Points 16 and 20 are the
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centers of these clusters. The remaining 13 clusters
were used for learning. Class 1 contains points of the
third kind {which are at a distance # > 235 km from
all centers).

With this classification of objects we proceed
through o learning stage in which each cluster {formed
of a center and two associate points on the same
fault} is in class T and the remaining objects are in
class 11. We are uncertain about the classification of
objects in clusters assoctated with earthquakes for
which 6.0 €M < 6.5, so we place then in ciass [11.
Some assoclates were recognized as D). These und ondy
these associates were used wiih centers to form clus-
ters in the final variant of learning, leading to the
results described in later sections. Voting was carried
out for ali 100 points shown in Fip, 1b.

3.3. The data

We considered the parameters listed in Table V for
use in churacterizing the objects. Seine comments on
their choice are in order. The diversity ot data that
might ke used is imited in this cuse by the small
nuimher of known epicenters. lncreasing the assort-
ment of data would lead to more distinctive features
and in the subsequent vieting the objects would divide
more readily into two classes. However, this would
also increase the probabiiity that the division is random.
Thus, we canaot include all data which might be
relevant. Our choice depends strongly ou physical and
peological intuition and experience. Paramieters 1--6
and 19--24 (Table V} are considercd because they
characterize the intensity and degres of contiast of
nentectonic movements represented in topography.
Parameters 8- 11 and 18 are considered because they
characterize fracturing of the crust. The rest of the
parameters reflect various hypotheses on conditions
favorable for the occurrence of stropg earthquakes.

Each parameter will be assigned a threshaold in the
form of an inequality, and Table ¥V becomes a question-
naire applied 1o each object, In coding the answers to
the questionnaire which will be used to describe gach
object, “17 will signily that the corresponding inequal-
ity is satisfled, “0™ indicates that 1t is not satisfied
at the objec:.

Two questions now arise. Which ot the parsrmeton
in Table V should be us? for recognition and what
discrete thresholds should we assfyn to them? Two

A
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extreme situations should be avoided. Too narrow a
range for the paramete:s is barred by the limited
learning material because too few objects will fall in
each interval. On the other hand, with too few param-
eters andfor averly wide ranges, much needed informa-
tion might be eliminated and recognition will fail
because few if any distinctive features will be found.
The parametzrs and their assigned thresholds were
selected in the foilowing way: For each parameter we
determined a une-dimensional distribution of its
occurrenge among the objects us 2 function of the
value of the parameter. These are shown as hislugrams
in Fig. 2. Dashed lines refer 10 objects of class [ and
solid lines to objects of ¢lass 1T they are more likely
D and N, respectively. Those parameters for which
the distributions turned out 1o be sulficiently different
were selected for further analysis. They are listed i
Tuble VI, together with the thresholds assigned to
diserirnimate between the twa groups, Some comiments
on the choice of thresholds are in order. For some
parameters, such as No. 12, we could have chosen the
threshiolds in such & wav that classes T and T would
separate better, Such parameters would then play a
deminant 1ole in recogainien. However, the sharp
division of histograms may be random, since the
learning material is rather small. Experience tells us
that in such eases many errors in recopnition of Dy
objects van aceur. We have found that it is safer to
chinose the threshelds in such a way that objecis of
both groups are slightly mixed with no group formiug
too large a majority in any interval. Then more param-
eters will be nsed in distinctive features and revopni-
tion as a rule becones more reliable.

3.4 Results

Distinctive D and N features found by algorithm
CLUSTERS are given in Table VITA, The table lists
eight D features and eleven N features, each a cornhi-
nation of two ar thres parameters. Table VIR lists
distinetive [ and N features for ai EH expeniment in
which learning was bused on a portion of the carth-
quake calaiows cxtending through the yeur 19272,

Resalts of voting are givea in Table Villand in
Table 1X under the column for 1948, We nole that
recognition is form.alh successful i two ways: 1
distinciive fezinres of Dand N are found and voiing
divides tic objeots e owo rether dbtizotive grvnps,

Gy
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TABLEY
Characterization of objects: List of parameters considere:!
N Parameter name
1 maximal elevation, kg x (M)
ra minimazl elevation, ki, (m)
3+ elevation difference, &l = hmgx — Ayig (M)
4* distance between points with minimum and maximumn efevation,
5 “eradient”™, Akl
6* relative ares of soft sedinents, ¢ (%)
T type of rocks (ignecus I, metamarphic M, sediments $)
8 distance o closest fanlt, ry (km}
g distance to closest intersection of faulis, Ry (km)
10 distance to closest end of fault, &7 (km)
1 distunce to closest end er intersection of Fawlts, re (km)
12 distance to geothermal zone r3 (km)
13 distance to a region of large precipitation, R4 (km)
14 distance to closest larpe water resetvoir, rg (km)
15 distance to closest oceurrence of ['ranciscan rocks along the fault, R4 (km)
16 distance to the closest spreading center, rq {km) (40.5°N, 126 6°W or 33.2°N, 115.6°W}
17 distance to the reference point (intersection of San Andreas and Big Pine faults), 7g (Km)
18* the aumber of unnamed fanlts on the Teetonie Map of 1.5, (USGS, 1962), ¥,
15+ the types of reliefl (surface morphology) featured actass the fault
20+ the number of changes of the types of relief along the fault, 2,
21% the types of reliel festured along the fault
23 maximal elevation, g,y (m)
Iyx* minimal elevation, Hypin (md
24 0% elevation difference, AF = foy o — Hingy (00
A5 distance between points with minimum and maximunt elevation, b
264 “gradient”™, Affil;
27w the pumber ol unnatned faults on the Tectonie Map of IS, (USCS, 1962), =,
TR ihe types of relief (surface morphology), featured acruss the fault
29+* the types of relief featured alonyg (he faylt
k1Al the aumber of vontacts betwoen rocks of different age an the Geological Map of North Amierica {USGS, 1965), n3
JLEe the number of paralle! faults, ny
Krha the number of faults, ng
EER the pumber of ends und ntersectiong of faults, ry,
343 the number of iatersections, &3
35 the angle beiweyn the fault and the dominant structural trend in the region

* Measured inside the circle r = 12.5 km.
** Measured inside the circle » = 25 km.
4 Mensured inside the cirele r = 50 km.

with only a small number of “neutral” resulis. The
latter may he seen from the fact that oot of 100 ob-
jeets, 34 have the distinictive featuras of only D or

only N, and oxdy two points in ail ciusters have & < 0.

Experience with recognition based on real as well as
random data (see bolow indicates to us that these
esiilts gre cncnuraging, tho

=L

L NOthing mose.

reshald of recagnition was chosen as follows:

A=A* 7 A* = minlmax A,]
[+
Here max A, is the maximaj value of A for points in
the ¢th clusier; min signifies the smatlest value among
[

all clusters. We subtract 1 to decrease the probubility
of mussing & T} point: atthough this increases the
probubility of false alarms, this is preferable i vur
probien.
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TABLE V)

Parameters wsed for recognilion

Table V

N Number in
.;__.__.., ~ ,;,,, .
z 2
3 3
4 5
3 ]
b 7
7 8
8 1L
Q 12

10 i5
1 17

iz 4

i3 27

14 26

15 22

16 23

17 30

15 21
9 32

20 33

2i EM
2% 13

1% 24

Name of paratneter

iz ximal e!evut-irm
minimal elevation

eievation difference
“gradient™

relative area of woft sediments

type of rocks
distance 10 clogest fualt

distance to closest end or interse. Al faudey

aistanee to peatnermal zone
distance {o ihe closcst zane of divergency

distance to the reference point {intersection of
San Andrear snd Dig Pine faulrs)
distance to closest water reservoir

The rumber of tnnamed fauits o Fecioaic Map
af U8 {USGS, 1960

the number of chaniges in types of relief

maximal elevation

minimal ¢ievtion

ihe nuiber of contacis between rocks of different
ape on Geological Mep of North Ainerica
{USGS, 1965y

the number of purallel faults

the number of faulls

the aumber of eads aad intersectivns

the angle botweon the ot ind the dominung
structurul trend in

disanes o region of
ation it

2 region (")

Symbol

ny

'HIT\.IX

Hil!]ﬂ

ng

s
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Asslyned threshold

= 500
=1,250
50
500
508
=1,000
30
1M
1
50
resence of {
12.5
37.5
125
315
25
5
{0
200
125
373
8}
25
3
5
8
500
1.500

#

B

i

AR

AA PR A AT

A

Fa

i

200
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=
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TABLE ¥l
Distinciise D and N

features

{4} Bazed on entire earthquake catalog for points located on
faults:

147

T } H - =
ig g
N &
=l 1% 0 |8 £g ] -
T2y . 19 wlz s (B} Based e carthquake catalog exrending through 1922:
£ z 3dpn g (88 |5°
2 @ R 2 8r » |Jn [t it =
= - oI sw! o k= - = £ ~ E|E
FR= gl - e 2&. s ElQ_|TT 3 | EQ A
BBy iz 2% £|8s|2r] Ex127.83:] & 8% o sl8e e
EsEl o B°| § | os|eg|eéjadlyzg 5 |38 . Boi3s |5k
SEE| o %2 O Lf| LBl agiERIPES O |3E e . | B w |=E28 |2 h e
ol SE| E |es! B | 38 8| eB8{5E:BE & S H < e @ w3lee | 5= ¢
5E 2 | 2R S22l E8) shiE LR, 2 3 |=f 2 |5 s _ ¢ |23 |5x |81 ¢
B3R 8 lBg) BGBIBS|EXEHE0 5 PEl (gE |TelE | Y| L, |E |E5|EF 280
HES S (23] & | 88|8E| S5 A28 2 a8 B2 55 S| 5| £ |ce1tel82g =5ty
; e 5 T T JeTlvsioE| | 8|22 eg/Ss
Bl * =
K clslolelwilmlal |9eglefizd] | 2lssagselct 5
— I SEFE s 5§ o (5515828815 5=
] T8 <i0 FERERIERI I & |23l 2gF|58¢ FRANE
B g B EL|FL | 0a; 6| & | AE|SE|FE8S2 G
jo2ima
2 o lel3tale 1 ]s|ninls
5 I -
[ T I A =] E Y 1500
i By 1. 375 >8 | o
¥ R - E3 125 B
noo [g 1250 €25 Y
I >20 *5 | %3 521z50)] 1 >30 =8
X 5375 - N ]
Bl 1 »gb ~500 <8 <629
al>800] | [ T i >500 <8
£ N >Z5 255 (3]>500 o 5M <B
% >ig5 278 . (4500 no_SH >375
7 [ .13 >75 ; 51250 525
£ I G T Y 5200 ] Parumeter rumber corresponds to Takle ¥
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(1613500 N FER | = 0% -
HEREE R I T [>tz5 1 i

The points recognized as D with this tireshold and
7=} are shown in Fig. 3z. It is encouraging that these
points du not occur erratically, but form a limited
number of compact segments. This might be expected
however, because of the spatal continuity of some
of the parameters, We see from Fig. 3u that signifizant
parts of major faults are cecognized as N. These should
he segments where epicenters will not occur, thaugh
faniting could extend into these regions frozi epizenters
on adjacent segments of the fault. Among the N sep-
meats the major branch of the San Andreas fauli north
of San Francisco, between the points 62 and 26,
secins especiully surprising as dues the Garlock fault,

D segmunts concentrate at five areas from norih o
south between points 61--25 (lat. 41. 40°N),
27-7(38.5-37°N), 3543 (36--34.5"N), 45 - 97
(34.2-33°N), and /8. 2/ (33--32.2°N). We shall ¢
cuss these aress luter.

2.4

- Cantrol experimonis

3.5.1. Experiment EH

it conducting this experiment the histograms of
parameters arc redetermined (see Fig. 2) because
cataloged earthquakes after a specific year are not
used in learning; their corresponding clusters are
dishanded and their points are placed in class 10 This
may lead to the selection of new thresholds and even
of other parameters In practice, however, such
changes will not oceur at each step of the EH experi-
ment. because the histograms are stable by definition
and because the threshulds are chosen rather roughly.
The histograms, corresponding to several steps, from
1918 ta 1966 we compared in Fig. 2. The only
changes that seeur from histogram ro histogram are
the following: learning ou the basis of carthquakes
through 1918 we would assume different thresholds
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TABLE Viii

Results of voting for poiats on major California faults — main variant

LM, GELFAND ET AL.

2755

s

36,37,6(

e
65,66,73,32,
B k49,
52,54, 76

.

62,83,84,87,
n 2 E5.8467,
N[3i& e,
30,53, 60

2®@ﬁ 8 1

9,5 1538
@& |[Brass® |© 2D 8,28

4
7, 7% ®®@¢202:3 w7 B|@D@| # %z
@ G Q@

G % 3556

L=

GOED 5o 57 29
? 3 4

No

Circled rumber = number of a point in a cluster; italivized number = number of a point ina cluster which has latgest value of npy — ny
in its ciuster; ordinary number with tilde = number of a point not in a cluster used in learning stage; ordinary number withaut

tilde = number of a point not in a cluster, not used in learning stage.

k1=Tk2=9, ky=4,k;=1and k3= 0.

for seven parameters (No.s 6,7, 11, 12, 16, 19 and 21}
and setect for recognition two more parameters (22
and 23). The changes in the values of the thresholds
are indicated in Table X,

The results of recognition in the EH control experi-
ment are shown in Table IX and in Figs. 3b and c.
They are successful since by and large the results
based on a partial catalog agree with those based or the
full catalog (Fig. 3a). At least one poinl in each cluster
was recognized as D befare the corresponding earth-
quake cecurred. Morcover, at least one puint in each
cluster was recognized as D at all steps since 1911 with
three exceptivns: clusters corresponding to the earth-
quakes of 1923, 1940 and 1942 were not recognized
with learning through 1918 and 1923,

However, at Jeast one object in these clusters was
recognized as D before the actual earthquake for 2l
other steps in the EH experiment. The recognition of
the objects in classes ITand I11 also appears to be
stable.

"

L3

3.5.2. Experiment EF

The results shown in Table IX also illustrate the
stability of our procedures. The identification of only
seven points changed. Four Dy points are reclassificd
as My and three My points are reclassified as Dy Thus,
our D objects will neither wander nor preliferate
over all of California, but strong earthquakes are pre-
dicted for the limjted number of Dy peints identified.

3.5.3. Inverse FII experiment

In this experiment we eliminated earthquakes
from learning in the order of their ocsurrence, the
first to occur, the fitst eliminated, beginning with
L836. Tn this and the following experiments we did
not redetermine the histograms of parameters although
we verified the stability of recognition by varying
the learning materials.

The results of this experiment are shown in Table
XI. Recognition remains successful until the 1906
earthquake. The points near its epicenter are not

Tort

PATTERN RECOGNITION IN CALIFORNIA

TABLE IX

Recognition results for control experiments FH and Ef

Nuraber of Year of Learning based on earthquakes from 1836 through the year
point on earthquake -
Fig. 1 which defines 1911 1918 1922 1923 1934 1940 1942 1948 1948+,
chuster
Clusters D+ N, &
14 1948 + + + + + + + + +
49 + + + * o © [} + +
51 a + + [ + o o + +
18 §942 + + + o + + + + +
55 + o o ] © =] + + +
56 + + + o + + + + +
19 1940 + + + a + + + + +
55 + + + a + + + + +
57 + + + 0 + + + + +
58 + + + o + + + + +
21 1934 + a + o + + + + +
20 ) + + + + + + + +
23 1923 o o + + + + + + +
1 + o + + + + + + +
24 o o + + + + + + +
&1 =3 o + + + + + + +
io 1922 = ) o + + + + + +
9 + o + = a e o o o
39 2 + + + + + + + +
13 1918 o + + + + + + + +
12 + + + + + + + + +
47 + + + + + + + + +
6 1911 + + + + + + + + +
31 + + + + + + + + +
32 + + + + + + + + +
J4 + + + + + o + + +
2 1906 + + + + + + + + +
26 + + + o + 2 o o o
27 + o + + + + + + +
1 1857 + + r L) + a o + +
46 + + + + + + + + +
43 o + + + + + + + +
3 1836 + + + + + + + + +
28 + + + + + + + + +
4 + + + + + + + + +
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TABLE [X (conrinued) TABLT X (continued}

Number of Year of Learning based on earthquakes from 1836 through the year Number of Year of Learning based on carthguakes from 1836 through the year
point on earlthquake - —— = —- — point on earthquake e —
Fig. 1 which defines 1911 1618 1922 1923 1934 1940 1942 1948 1948+... Fig. 1. which de- 1911 1918 1922 1923 1934 1940 1942 1948 1948+...
cluster fines cluster
4 1836 + + + + + + + + +
3 + + + + + + + + + Class HI (objects for voting but not for learning):
5 + + + + + + + + + 7 o + F c + + + + +
30 + + + + + + + + + g + ) ) + + + + + +
Is o + IS I o o o o 2
5 1836 + + + + + + + + + 16 o + [ o a o a = el
4 + + + + + + + + + 17 o + + “ o a = 4] o
30 + + + + + + + * + a2 o 9 + 2 o Al @ o o
22 + + + + + + + + + 25 o o 5} + + + + + +
29 + + + + + + + + +
Class I, (Dy + Ny }: 33 + + + + o n + + +
82 + o + o &) o [+] o a 25 + o ¢} + + + + + o
L] c =] + 2 o =} o o a 36 + o + o o o a o e}
&4 =] < o a ) o ) o o 37 + + 5 o o o o o =
65 [} o o o -] ) o a a 38 + o o o o o o’ ° 0
64 + a + o Bl ) o o o 41 o + o o o o o + o
67 + o + a o < o o o 42 + + + + + + + + o
68 + + + o o < + + + 44 [ + + [+ [ o o < a
69 o o o © a o o o o 43 + + + a e o a + +
70 : B E o o o &} o o 46 + + + o o E a + +
71 B o o o ¥ o o] o =3 48 + + + + + * + + +
72 o o B + o o o + o 50 o + + o o o o a o
73 4] o 3 o o + o o 352 o a o o o o o o o
74 + a + I =3 o o a o 53 a o o a o o o 8} o
75 + o o s] [¥] + + + + 54 a o o a a o o o 0
77 + o o o + 4] + + + 36 + + + + + + + + +
78 + c o o 4] a + + + 60 o a + o o " a I3 o
79 5} + + o + + + + = 76 a o o o o o o o 3}
80 o [} o o 5] o [ o o 81 o o " o o) o o o o
53 2 o 0 [5) o =] 4] ] c 32 9 Q a Ps] o 0 [>] o [&]
85 s} + a a o s} <} [a + 84 a I < =3 a9 [} o o (2]
87 bl + [} a =] o a n o 86 o o o I o Q ] a ]
88 <] + o a o o o o o I e e e e e
89 o + + o o @ 2 o o + = object recognized as D; o = object recognized as N; year relers to the data through which earthquakes in the catalog were used
90 © @ o 2 o i o © < for learning; last earthquake used was in 1948; last column (1948+...) refers to experiment BF; blank lines separate the clusters,
9 o o « o o = > ° 2 each identified by the year of the carthquuke associated with the cluster; vertical Lines show the time when the cluster was included
92 + * + ° o “ < “ e in featning; to the left of this line the points of this cluster were'included in class U during the learning stage.
93 + + + + + o o + +
o4 o o 3 o o ) o = o
25 o ) ) o o o [ a 3
96 a a o, o o o o c o
67 n I + + + + + + +
;g : : : : : : : : : recognized as Dy, after we transfer them i the Jearn- 3.5.4. Uniformity of the region
1 N o N o N i . N . ing stage te class 1. However, after we alse eliminate Several areas were selected in Table IX, cach cor-
the 1911 epicenter, a D point is again recognized in responding either to a group of epicenters ar to a
each cluster. Thus, on the basis of learning on seven part of a group, The epiceniers in these areas were
earthquakes (1918— 1948} we recognized as dangerous assumed to be unknown and the corresponding clus-
the sites of the earthquakes for the period 1836--1914, ters were eliminated from learning. The resuits, shown
? {} except for 1906, in Table X1, indicate that recognition is reasonably

L5
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TABLE X
Change in thresholds of discretization in experiment EH

Number in The name of parameter ‘Thresholds for learning
Tuble VE througl: the year
19468 1918
6 type of rocks i not SM
7 distance to closest fault, ry (km) < 1.5 < 125
= 375 < 25
11 distance to the reference point (intersection of San Andreas and <125 & 250
Big Ping faults), rg (km) €375 < 375
12 distance to closest water reservoir, rg (km) = 0
< 25 < 25
16 minimal elevation, Hyjn (m) < 0 0
<200
19 the number of faults < 1
< 3 < 2
21 the angle between [ault and Jominant strike in the region, & (°} < 10 = ]
< 20 < 10
22+ distance to a region of large precipitation, R4 - < 625
23+ elevation difference, AHf (m) - : <1,500

* Parameter used only in learning with earthquakes prior to 1934,

i

#

Fig. 3. Results of recognition for strike-slip earthquakes in California. Hachured regions of faults are recognized as dangerous. All earthquakes except those

stable to variations in learning materia). They also
indicate how homogeneously known earthquakes
should cover a D area for successful recognition. At
least one point near each eliminated epicenter was
recognized as D in variants 1, 5, 7 and 8. These
variants correspond to elimination of earthquakes in
the southern and northern parts of the regions under
study, namely, the Mendocino fault (variant 1), the

end or ar intersection of faults, is most important.

L7

The importance of ry is confirmed in other ways. For
example, to get a decent number of distinetive fea-
turcs with r; eliminated, we had to relax &, to 7 and
k3 to 2. The ohjects separate poorly in the voting stuge
and the results of recognition are unstable with
respect to changes in the threshold A. The reason for
the importance of this parameter is discussed in a

later paragraph.

Ll

B
>
a
£ w
833
s B
= %E '§ intersection of the Garlock and San Andreas faults Recognition is stable with respect to the elimina-
" z o {variant 5), the San Jacinto Mountains (variant 7}, and tion of the other parameters, as Table X1 shows.
2 g wdF the Salton Sea depression (variant 8). With the other
_ z E E E E variants, 2, 3, 4 and 6, where earthquukes in the 3.5.6. Variation of the algorithn
2 3 = -’-5’ 2s central atea between San Francisco and Parkfield In this control experiment we use the algorithm
3 E E '§ '-::. £ were eliminated, the corresponding D objects were CORA.-3 instead of CLUSTERS. In this case class I is
= st 2288 not recognized, composed of the centers of the clusters: class [1 is
= £ 2 bV unchanged. The results are very similar to those dis-
z ;-; EAAA 3.5.5. Variations of the set of parameters cussed before. This experiment confirms that 2 some-
;'5 ~c 4 § § ‘; In this control experiment we eliminated each what different algorithm far our recognition proce-
Z é B E § -’5 -E parameter (one at a time) from the data set and dures leads to similar results. At the same fime it
w5 2EEEE repeated the learning and voting. The results are confirms the advantage of the algorithm CLUSTERS
% g = S % E % shown in Table X111. The order, in which the param- for our particular case because the results obtained
® G0 £33 E eters are listed, corresponds to their increasing role by CORA are much less stable to variations in the
£333 in recognition. We see that ry, the distance to a fuult learning material, and especially to changes in the

threshold A.
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TABLY XI TABLE XI (continued)
Recoynition resulis for inverse FH exporiment Gee Tablg TX For neation) 7 —
e s - - - e e I T e T P B Number af’ Year of Year of first earthquake allowed for in leatning
Number of . Yeur of Year of first carthauake allowed for'inlesring point on earthquake —— e .
point an earthquuke — B I S memn e s e Fig. t which defines 1836 1836 1836 1857 1906 911 o 1918
Fig. 1 which defines 1836 1836 1838 1857 1906 1911 1918 cluster
cluster - S e - o R —
e - —— - -- - S e e e e 5 + ] + + + + + +
14 + + + + + + + 4 1836 + | + + + + + +
44 1948 + + 1 + + 30 + + 3 o n a +
5t + + ; + + + 32 + ‘ + + + + + +
I8 + + + + + + * 62 C =3 o 0 3 + +
55 1942 + + + + + + 463 ) ) a ¢ + r
Sa + + + + + + + 64 o o o o o a +
‘65 ) o > o ) [ +
I9 * + + + + + + 67 c o o [ o o +
56 1940 + + + + + + + 68 + + + + o + +
5 + + + + + + + 69 2 I o =} 3] =} +
58 + + + + + + + 71 o o a o + + +
72 + + o o S + +
21 1934 + + + + + + + iz o 1) o o o o +
20 + + + + + * + 75 + + + + + a +
77 + + + + + + +
22 + + + + + + + 78 + + + + + + +
! 1923 + 4 + + + + + 78 + + + + + o +
24 T 1 4 + + + + 85 o o < a o o +
Al + + + + + + + 87 o ] a © G a +
88 o a o o o o +
i * + + + + t * 20 o o o g 9 o +
¢ 1922 o o “ + + - grI S o o o a > +
39 + + + + + + + @2 9 ) [ o + a +
93 - + + + o “ +
i3 + + + + + < + 64 [} o ) o o o +
i2 19i8 + + + + * - + 95 E o o 3 o o +
47 + + h + * + * 96 o o o o = o +
97 + + + + + + +
[ + + + + + + + 98 + + + + + + +
JI 1911 + + + + + + ! + 99 + + + + + + +
32 + + + t + + , + 150 + + + + ) a +
34 1 [ + + + + | + 7 + + + + + + +
8 + + + + + + +
2 + > * * * i 15 o o =3 o <] o +
26 1906 o © ! + | i + 16 o 3 o a o o +
27 + + t + i “ 17 [ a o o 5 o +
22 = a o o + + +
il + + + | [ + 25 + + + + + + +
el 1857 + + + ! + + + 29 + + + * + . +
43 -+ + + + | + + + 33 + + + o ‘ o +
25 + + + + n + +
3 1836 + + + ' * + kL) o o o o o o +
28 + + ! + + + 37 o o o o o + +
38 o ) 2 a + + +
4 + + + + + + + 47 ° o o o o o v
3 + + ‘ + " + . + 42 + + + + + + +
5 1836 + + + + + + +
30 + + ! o c ' +

)
W
£
ol
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TABLE XI {continued)

LM. GELFAND ET AL.

Number of
point on
Fig. t

Year of
earthquake
which defines
cluster

Year of first earthquake allowed for in learning

1836

1836

1836

44
45
46
48
30
52
53
54
59
60
76
84

G C O %0000+ + + G

+ + 4+ 0

[

Q00+ 000

[y

a9 0+ 0

o

Qa0 4+

1857

C o DG+ 4+ + 0

Qc 4+

Q

191t

+ ¥ 20 C 0O+ + + 0

=

]

DT+ + 4+ C

+ + + < 0

=]

B S S .

row refers to the first carthquake allowed for in learning. The rest of the notation is analogous to Table 1X.

TABLE X11

Recognition in the control experiment “uniformity of the region” {efirmination of groups of clusters from learning), Parentheses
indicate the ¢liminated clusters. Otherwise the notation is the same as in Table IX

No.of  Number of variant

point — —— —

in 4 5 7 3

Fig. 1

Clusters:
14 + + + + + + )+
49 + + + o + + ) &
51 + [ < a [} + ) ()
18 + + + + + + + +)
35 =3 c < + + + + (+3
36 + + + + + + + (+}
19 + + + + + + + (+}
56 + + + + + + + (+}
57 + + + + + + + +3}
38 + + + + + + + +)
21 + + + + + + + +)
20 + + + + + + + {+)
23 )y + o+ o+ o+ v+

i ") + + + + + + +

24 {v) + + + + + + +
61 {<) + + + + + + +

The earthquakes are eliminated cumulatively from learning in the order of their vccurrence: first one, then 1wo, ete.

Year in top

Mo.of  Number of variant
point —
in A 3 4 5 6 7
Fig- 1
10 + + + + + {0} + +
9 o [l o + a (>} o +
30 + + + + +* () + +
i3 + o o + a + (+} +
iz + + + + + + +) +
47 + + + + + + (t) +
& + + + () + a + +
i + + + {2) + + + +
32 + + + {) + + + +
34 + + + {e) + + + +
I I R
26 (@ © @ ) e o o+ o+
27 ® ) ) ) o+ o+ o+t
11 + + + + {c) + + +
40 + + + + {+) + + +
L
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TABLE XII (eontined)
No.of  Number of vuriant No.of  Number of variant
point o point
in 13 2 3 4 5 6 7 8 in 1 2 3 4 5 6 7 8
Fig. 1 Fig. 1 '
43 + 5} o + {+) + + + 92 o ) o + o o o o
83 + + o Q o + + +
3 + * ©)  (©) + + + + 94 o o o o Q = o o
28 + < 0y (=) + + + + a5 o o o o a o o o
4 + + ) o+ + + * 946 o o & o o o [ o
97 + + + + + + + +
4 + N B+ + + + 98 + + + + + + + +
E) + L (5 I ) + * + 99 + + + o + + + +
5 + L € T =) S + * + 160 + 2 o o + + + +
36 + + ey (@) + + + +
Group II1:
3 + + +y () + + + +
4 + + +) ) + + + + 7 + o o o + + + +
Jo + + ) + + + + F:d + + o + + + + +
32 + ) () o+ + + + i3 o a a o o o a a
16 o o a ) o ] a o
Group II: i7 E o [ o o 0 o o
22 o o -3 + o o o a
62 ] a o + B a a o 25 + + + + + + + +
6.7 =] o =4 + G o o @ 29 + + + a + + + +
64 -] o = + o o o o 37 * o o o " o + +
65 o e o ° o ° ° E 15 + + + + + + + +
56 o @ o < o @ € © 36 o o o + o c G o
67 © ° o + ? ° © ° 37 o ° o o o o o o
68 + sl o a o + + + 38 o o o ¥ o o ° *
69 S ° [ o £ o o o 41 o o o o o o a -
70 o <] o o < a 2} o 42 + + + + + + + +
71 0 o o + o o o + 44 o o o o a o o o
72 o a o o + < a o 45 + + + o + + + +
73 ° e o o & G ) o 46 + + + a * + + +
74 [} o o o Is) o s} o 48 + + 5 " + + + +
75 + o o o + + + = 50 o o a o o a o o
77 + o o + + + * o 52 o o o + o o 5 o
78 + + + + * + * o 53 o o o a o o a o
79 + = o + o + =) [ 54 o o o o a o o o
&§0 v o ] a o © o o 59 + + n + + + + +
83 e @ ° o a o B © 60 o o o + o a a o
&) e o o © e o o @ 76 ) a o o ) o o o
87 © @ o & Q ° ° @ 81 E Bl = o B ° ° o
88 o o o o ) ) @ o 82 o o a o a ° a o
8 ° @ @ e 2 ° < o 54 ) a o o ) a o o
90 ° o &) o <] o o ] 86 o ° o o o a o o
QI o a =) o ) n o o

3.5.7. Recognition of randomly described objects

The binary codes, which describe points, are re-

placed by random binary nambers in this control ex-

periment. Learning proceeds using the algorithm

- ta

2%

CLUSTERS. In a first siep we use the same &; and

k;, as with the real data described eartier. Tn this case
32 distinctive D features and no N features are found,
an unsatisfactory result. This js not sufficient (o
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TABLE X1l

Contral experiment: change of recognition due 1o the eliminaiion of paramerers

LM. GELFAND ET AL.

After Recognition of the following peints chunped: Class in

eliimination of the ——— e e e learning
parameter D changed to N N changed to D
Pingxs e Ba
or ng (onky 85 or 96 1]
one at a jime}
o 72 11
41 m
ra 87 and 94 i
44 i
type of rocks 72 96 n
25 and 35 n
q 51 1
72 85 and 92 1
45 and 46 i
Hmin 5i. 26 l
72 fi
22 and 60 111
rz 49 and 6 9and 26 1
68, 77, 79 and 100 66,67, 71, 87, 62, 63, 64, 65 und 92 il

45 und 46 17,22, 36, 38, 41, 32, 60 and 76 I

reject the possibility of recognition with random: data,
because the values of k;and &; in the processing of
real data are not predetermined; they are varied until
sufficient and comparable numbers of distinctive D
and N features are obtained. The only limitation is
that ky should be sufficiently farge and k; not too
large. Therefore, k; und I_c,‘ should be varied in this
control experiment. With k=12, &k, =9, k,=5,

fc; = 2 we find twelve distinctive features of D and
fifteen of N, However, the separalion of points by
voling is rather vague, as is seen by comparing Tables
VI and X3V, Fach feature oceurs in fewer points;
for example, each distinctive D feature is found at an
average of fourteen points, whereas for real data the
correspanding number is 21.

Also, the results are unstable, in that experiment
CF results in twelve new D points in contrast to theze
peints tor real data. Furthermore the D sogments of
major faults are more scattered.

7is

In this way the experiment with randum data sup-
parts the sesults found with real data. We also leamn
that reliable results show up in a high degree of sepa-
ration of the ehjects by voting.

3.6. Geological implications

To understand the geclogical implications of this
wark we pose the question: what makes a place D and
not N? To answer this question, we review the patam-
eters which make up the D and N features. We must
review not only distinctive leatures, but also their
equivalent and c-equivalent features which were
identifled but not wsed in voting. Let us recall the
definition of these features. Consider two {eatures of
some class Fy and F; The sets of objects of the same
class, which have £y vt Iy, are called 8§y or 8y, respac-

tively, £y and £5 are equivaient, if §y and 8, coincide.

They are escgauuvalent . if only the sth fracticns of the

1
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TABLE X1¥
Results of voting ater learning on randem data
64,7,73
>7 |a1.8,3
%
B 1]
5| % |®m [ 7
NErRE @
Nyl (%8 (@ 7G5 i |u
360 lso94e
25'3,% Tie (@6 (@ |Re
] 54 ]
@# 0N |80 @ ]
| 22,50 00,25, |@DBH(GED e
37,50
BO (0N B 5 B |2 (% 2% 2
0 DE (= ] RN
(48,88 e 2 &
56,8
0 | 4 3 4 5 § |21

o

ky=12,ky=7,k =5and ky=2 tjand k; are rcluxrdi.'trsﬁrparcd o main v);xriam}:

objects is §) and 57 do not coincide (the Traction is
relative to the total number of objects in $y and $,;
each object is counted once), Equivalent und e-equiv-
alent features, like distinctive features, carry signifi-
cant information of geologic interest. They were not
used in voting in order not to bias the vote by repeut-
ed contributions by some subsets of objects.
Although 21 parameters indicated in Table V1 were
considered in the learning siage, only cleven wes:
selected for incorporation m distinetive feanires. Since
we are exarnining features for their “geological con-
tent” we night as well broaden the number, using
mors parameters in the process. We do this by rerun-
ning the algonthm, relaxing the kb, slightly. We also
used objects recogneed a8 D or N orather than points
assigned to class Toc I in this new learning stage
ained at finding muore features. We will niext discuss
177 distinctive, equivalent und e equivaleat features,

involving all 21 parameters of Table VI, found this
way. Table XV summarives these features.

First consider the leM-hand side part. Parameters
arce indivated in the uppermost row, with notation the
same gs in Tables ¥ and VI The second row indicates
the thresholds for the parameters. All parameters used
in the original learning stage (Table VI} are considered;
parameters, which were selected for recognition in this
earlier stage (Table VIZA) are marked by un asterisk.
The features are divided into groups, separated by
thin horizontal lines. Each group consists of one dis-
tinctive feature (from Table VIIA) and its equivalent
and e-equivalent Features. A distinctive feature is indi-
cated by 2 heavy number at the top of the group. The
digit *17 means that the parameter must satisly the
threshold condition in row 2, Y0 means that it must
not. The numbers to the leit of the tuble indicate the
ordine! number of the distinctive feature in Table

2
o2
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TABLE XV

Distinctive features, examined for geological content for points located on faults. Left-hand side displayed in tabular form, right-
hand side as flow diagram. (See paragraph 3.6 for explanation.)
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TABLE XV {continued)

e

8
]
"
M

&7 g

[FFF 5585 = = o589
Sigracaciwwanees

LM GELFAND ET AL.

N1O

Nl 2 10" |—-—|ri>\?5 Hi‘mul’m
R i

VIIA. D and N indicate which type of feature it is.
Spand 8y to the right of the tabiz indicate how many
objects of class [ and 11, respectively, have this feature.
£ s the number of objects which have buth this feature
and the distinctive fzature associated with it

Now consider the right-hand side of Table XV, It
shows onother representation of the sane proups
which we calt “the structure of the group”. This form
of representation becomses cleur alter comparsson
with the left-hand side of Table XV. Arv grou. of
three consecutive rectangles which are udjacent to
ane another in the direetion of the arrows corresponds
o some feature made up of a triplet of statements,
which ueeurs un the lefi-hand side of Tadle XV (the
direction of arrows can be reversed of course, but
only simultzaneously for all zrrows). Rectangles,
connected by donble arrows, correspond to a feature
consisting of a doublet of statements; the second arrow
should be ignored in determining the trinlet featurss.
Distinctive features are indicated by heavy lines For
the two arrows and three rectangles involved We can
now proceed to the peological interpretation o the
features summarized in Table XV,

The distance to the closest intersection of Faults,
or to the closest end of a fault {r;) is a domisant
parameter for the followirg reasons:

(1) In 6 out of 8 D-groups sl features, excupt one,
contain the condition that 7- is smaller than the thresh-

old, in th? two remaining exceptings, D3 and D8,
hall of the features has this cendition.

(2) In 8 out of 11 M-groups at least two features
have the condition that r; is larger than the thresh-
old,

(3} In the groups 33 and D8, the exceptions men-
tioned is (1), all featuses which do not have limitations
on ry have instead either one or both of the condi-
tions: The distancs 7y fiosn the closest major fault 14
smetl o the number ig of major faclts nearby is > 1.
Both ol these conditivns indirectly indicate provimity
to ait infersection,

(43 r; plays a dominant role u the test for stability
of recognition {Table X1

This result (that #; is sinail for D und large for N)
suppurts the hypothzsts (Gelfand cial, 1972, 1973a,
b, 1974a, b) that epicenters of strong earthquakes terd
to be situated near the intersections of major linea-
ments Beeause of this support for the hypothesis we
are epeoutaged to apply it o Califoinia in Section
4.

‘The distance 7y from the end of a fault or an inter-
section of major Faultz which we have just considered,
though important, is not sufficiert by itself in that not
all ends an:d intersections are found in Iy areas. It
may be seen, for example, from ¥ig, 2 that the situa-
tion r3 <X 37.5 km occurs not oaly for all I points,
bt olso for 14 cot of 2 tutal 44 N puoints (Fig. 2,
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histogram No. 8, 1968+). This is why r, must be
used only in combination with other parameters in
farming features.

The statistics of some of the parameters of D and
N features are summarized in Tahle XVI The 1abie
dees not consider r, and r, which have already been
discussed in order to highlight other features. In Table
XVt is interesting te compare features of three
types:

D: points which are always close to the end of or an
intersection of fauits

NC: N points which may be close to the end of or an
intersection of faults (ry not specified or 212.5 km
only)

NF: N points, which aze far frosn the end of and an
intersection of faults (r, = 37.5 km)

The difference between D and NC is the difference
between points D which are certainly near intersec-

in how ruany D [ how many NC

TABLE XV|
Suminary of the role of different psrameters (excluding rqand ri}
Parameter
groups  featuros
Elevation is (gyuy, of Bmip, o1 stealdl 6 17
Hrax 0 Fmind Larye 1 i
Teneous rocks present -
(¥ are abaent 3 11
qis siall | 5
large 2 11
Large water resesvoir close 2 2
(ryis far - Z
ais small 2 2
large - -
Nurnber of contacts {iz3) on stall 1 2
geclogicai map is larpe - -
Rufurence point close —
ir5)is far 5 . 18
"
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tions and such points N which may be close to inter-
sections. The difference betwseen D and NF is the
difference between B points and puints far from ends
and intersections, which are always N. We note first of
all that some measure of elevation is small for most D
puints and large for NC points. For NF points the
feaiwres show both large and small elevations, signify-
ing that no clear dependence on height is established
far from intersections,

An examination of geological maps of the region
suggests that most of the other characteristics of I
features in Table XVI may also be interpreted as an
indirect indication of low elevation. These include
thie absence of igneous racks, proximity to a targe
arca of recent sediments, and the small number of
contacts {73 on a geological map. At first sight the
fast parameter behaves contrary to expectations in
that large 7 should be associated with intensive frac-
turing of the crust, which is a characteristic for D

in Dand N fealures

In how many NF

{with #2 > 12,5 km) no conditioa oa ry Awithry =37.5 kan)

groups  features groups  features  groups  fesiares
. - _ 5 30
2 5 1 18 2 19
3 7 1 5 2 7
1 1 1 1
i 2 - L 9
- - - - I 11
1 2 1 4 L 1
- - - - i i
3 12 1 4 1 1
2 3 1 3 1 2z
- . . 4 6
=
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(Gelfand et al., 1972, 1973a, b, 1974b), However,
only nectectonic fracturing is characteristic of D
according to Gelfand et al. (1972, 1973a,b, 1974a, b),
whereas 713 represents the integrated tectonic history.
A survey of places with large and small 1, indicates
that small 14 tend to go with subsidence and low ele-
vations,

The small distance r4 to a large water reservoir
(parameter 12, Table V1) is another characteristic of
D. This indirectly implies relatively low elevation, and
recalls some modern ideas on the role of water in
triggering earthquakes, However, for many points
small r, indicates proximity to the ocean, so that these
interpretations are by no means firm.

Small values of the angle « between the strike of
the fault and the dominant strike of the San Andreas
system is characteristic of D. This suggests the reason-
able notion that the strike-slip earthquakes cousidered
in this paper tend to oceur away from bends in the
San Andreas fault system. Earthquakes with dip-slip
components might be more characteristic of bends in
the fault.

Large distance from the reference poini (defined by
the intersection of the San Andreas and the Big Pine
faults) is characteristic of D, perhaps for the reason
that earthquakes with dip-stip tend to occur in the
Transverse Ranges which are adjacent to a bend in the
San Andreas fault,

Other parametess which play a rcle in D or N fea-
tuges oceur. We defer offering possiblz explanations
for them. Among these pararueters are the distance r
to a geothermal zone, the numker ny of parallel faults.
Parameters which are present in the same way in both
Dang N features (for example ny < 3} are puzeling.
Perhaps they were selecied as features by chance, due
to a random interplay of events, independent of their
geological meaning, Perhaps they take on meaning
only in combination with the other parameters they
link up with, which are different for D and N features.

The qualitative conclusion which emerges is that D
areas are characterized by proximity to the end or to
an intersection of major faults in association with low
relief and often with some kind of downward neotec-

tonic movement, expressed in topography and geology.

Apparently, we did not formulate an adequate single

parameter for such movements, so that the indication

shows indirectly through several difterent parameters,
Also the fact that minimal and maxirnal elevations

+
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are simultaneously smail for many D points suggests
that D paints for these strike-slip earthquakes are often
characterized by relative low relief or subsidence on a
hackground of weak uplift. N peints near the inter-
sections or ends of major faults are characterized hy
higher elevations or uplift with less contrast in

relief.

4, Intersections of major fineaments
4.1. The probiem

The results of Section 3 (see paragraph 3.6) suggest
the hypothesis that the epicenters of strong earth-
quakes in Californiu are associated with intersections
of major Yineaments (Gelfand et al., 19472, 1973a, b,
1974a,b; Briggs and Press, in preparation). More specific
formulation of this hypothesis as well as the definition
of lineaments is given in the Appendix. The major
lineaments of California and adjacent regions, based
on a synthesis of published data (Atwood, 1940;
Richter, 1958 USGS, no date, 1962, 1965; Wright and
Frey, 1965; Cook, 1966; Hamilton and Myers, 1966,
Hill, 1966, Thompson, 1966; Dickinson and Grantz,
1968; King, 1969; Hain, 1971), are shown in Fig. 4.
Explanaticn 1nd justification is provided in Ranzman
(in prepuration). The transverse lineaments in Fig. 4
may raise seme doubts, since they are to a large extent
based on geomorphic evidence. We believe that ERTS
photographs of the regicn suppott these interpreta-
tions (Ranzran, in preparation).

Tire objects of recognition, according to the
hypothesis, are now the intersections of the linea-
ments. The problem, formulated exactly as in para-
graph 2.1, is to find such intersections (2 and D)
near which the epicenters of strong earthquakes mity
oceur. However, new objects are defined. A larger
arct is considered, and dip-slip and strike-glip carth-
quakes sre not distinguished. The last difference is
not significant, since the area contains only two strong
dip-slip earthquakes (1952, ne intersection 165: and
1971, near intersection 7 /9; the first spicenter is near
that of a strong strike-slip earthquake). In the numer-
ical experiments (paragraph 4.5} we eliminated these
two earthquakes from learning. The distinctions
between recognition of San Andreas and Dasip~
Range earthquake sources are considered iu Briggs
and Press (in preparation),
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Fig. 4. Major lineaments of California {for definitions, see Appendix}.

(1} Lincaments of first rank (boundaries of morphostructural countries).

(2} Major branch of San Andreas system; salid sepments are reasunably certirin, dashed segments are uncertain, underwater or
huried under soft sediments,

{3) Uincaments of second rank (boundaries of morphastructural countries) megablocks.

{4) Lineaments of third rank {boundarics of marphostructural countries) blacks.

{5) Transverse lneament.

(6} The mumber of marphostrucrugal country o (he description of the scheme (second puragraph of Appendix); epicenters are
shown s in fevend. o
LR
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TABLE XVI1
Parameters of intersections

M. GELFAND ET AL.

N Parameter Parameterization
learning for Yearning for
California Anatolia
1 absolute elevation, 4y (m) < 206 < 00
<1,200 <1,200
2+ maximal elevation, gy (m) -
3s* maximal difference of elevations, Ak {m) -
4+ the distance between points with maximal elevations, {; (km) -
5* ahfly -~ < 75
< 125
‘e* the number of lineaments, departing {rom intersection, ny - < 3
7 morphology (most contrasting combinations in the forms MM {mountuin—mountain)
of relief) MP (mountain—plain)
and ail the rest
8 types of {ectonic structures -
9* relative area of soft sediments, g (%) -
10 type of intetsection xorl
11 how pronounced is the lineament strong strong
feeble feeble
12 the distance o the closest lineament, ry (km} = 0 = ki
< 25
13 the distance 1o the second closest Lineament, ry (km} < 25 < 25
< 315 < 375
14 the distance to the closest lineament of the first rank, £, ; {km) -
15 the distance to the second closest lineament of the first -
rank, R o (km)
16 the distance to the closest lineament of the second rank, -
Ry (km)
17 the distance to the second closest lineament of the < 50 « 50
second rank, Rq 3 (km) < 100 < 100
18 the distance to the closest lineament of the thitd rank, Ry, (km)  —
1% the distance to the second <closest lineament of the third -
rank, R4z (km)
20 the distance to the second clesest longitudinal lineament, - = 0
r3 (km) < 25
n the distance to the second closest transverse lineament, 74 (km} - < 625
< 100
22 the length of longitudina! lineament, 5 (km) -
23 the length of the transverse lincament, /4 (km) -
24 the distance to the closest intersection, rg (km} = 0 = a-
< 375 < 375
25 the distance to the second closest inlersection, rg (km} - « 375
< 50
26 the distance to the closest interscction inside some cluster, -
rq (k)
ry maximal elevation, gy (M) <1,500 =1.500
<3.,000
28 minimal elevatior, Hpiy (m) % 100
19%s maximal difference of elevations, AH {m) - <2,000
3,000
30%* the distance hetween points with maxima! and mimmal -

elevations, I (km}
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TABLE XV1I {centinued)
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N Parameter Patanmeterization
learning for tearning for
California Anatotia
£} R AR, < 40
3o relative area of soft sediments, @ (%) -
33w morphology -
34> the number of intersections, 113 < 4 < 4
< T < 7
A5k the weighted runk of lineament, M < 15 5 15
< 17 < 17

36 the distance from San Andreas fault, fg (km)

Thresholds are indicated onty for parameters used in learning.

* Pyrameter is determined in a circle of 12.5-km radius around intersection.
** Parameter is determined in a circle of 62.5-Km radivs around intersection.

"

kN = 2(»1,-1'62.5)(62.5 — Rjj) where i is the rank of the lineament; m; is the weight of the tank (1, = 5, mz =4, ma=3); R,'f
i=1

is the distance to the jth lineament of the rank i; # is the number of lineaments in the circle of 62.5-km radius around the

intersection.

We apply recognition to the land part of California —

the tesritory between the latitude of the Mendocino
fault on the north, the Mexican border on the south
and the axis of Great Valley on the east. In Fig. 4
this territory is bounded by lineaments 76—13-20-
106 -107-123—125 and the oceanic shore to the
south of intersection 76.

4.2. The data

4.2.1. Definitions

As in Section 3, we use for recognition only certain
parameters which roughly characterize tectonic frac-
turing of the crust or the intensity and degree of con-
trast of neotectonic movements. This selection does
not imply lack of significance to other factors, such us
seismicity, geophysical anomalies, tectonic histery, the
structure of the crust, etc. The parameters used for
recognition are listed in Table XVII. Parameters 6, 11,
21, 24-26, 34 and 35 characterize tectonic fractur-
ing. Parameters [ -5, 7,9 and 27—33 show the inten-
sity and degree of contrast of the vertical neotectonic
movements. Paraineter 10 characterizes the presence
of strike-slip Faults. Some additional comments {oiluw.

4.2.2. Conditipns on lincaments

All linearnents are continvous and may change
only at intersections; if the rank of a lincament
changes at an interscction we consider it as two linea-
ments; if the strike of a lineament changes by more
than v degrees we consider it as two lintaments (in
practice we took v=15").

4.2.3. Separate intersections

H the distance between intersections was less than
& we replaced them by one intersection at the mid-
point (in practice we took § =125 kmor 5 mm on a
map with scale 1:2,500,000; not more than three
intetsections were merged by this rule).

4.2.4. Vicinity of intersections

Parameter | is determined directly at the point of
intersection. Paramcters 211 are determined within
the circle of radius €; = 12.5 km with a center at the
intersection. Parameters 27—35 are determined in a
larger circle of radius €; = 62.5 km.

4.2.5. Continuity of parameters
Since the lincaments are drawn approximately, all
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paramete;s are defined in such 2 way that they are
continuous with respect to displacement of lineaments.
They should also be continuous in the arbitrary param-
eters €, and €, Parameters 12—19 and 24--34 may
become discontinuous if an intersection is formed by
three or more lineaments, since after the displace-
ment of any lineament sevesal new intersections will
appear and the considered characteristics will change
sharply. To preserve the continuity we specify the
definition of these parameters in the following way.
Let us imagine that we displace the axes of lineaments
slightly in such a way that they will not be parallel,
will intersect only in pairs and that a T-intersection
will not become a crossing. Each parameter converges
to some limit when this displacement decreases. This
limit is taken as the value of the parameter. [n practice
it is equivalent to the following rules (Table XVII):

Parameter numbers N = 12,13and 24: 7 =p; =r; =0
if more than two lineaments depart from intersection,
N=34:n3=1,3 and 6 if the number of intersecting
lineaments is 2, 3 and 4, respectively,
N =25:r5 = 0 if more than four lineaments intersect.
N=14,16 and 18: R; , =0 if a lineament of rank ;
goes through the intersection.
N=15,17 and 19; R; 3 = 0 if more than one lineament
of rank { goes through the intersection.

For example intersection 716 has ri=r=0,n3=
6, intersection 143 hasr, =0, Py #EQ =2

4.2.6. The length of neaments (parameters 22 and
23).

Suppose that all the longitudinal lineaments are
placed in order of rank, with highest rank first.
Lineaments of the same rank are placed in order accord-
ing to their length, with greatest length first. After
that ordering the first length will be f;; 14 1s specified
similarly,

4.2.7. One-dimensional distributions

The parameters specified in the preceding section
can be determined from the scheme of lineaments
(Fig. 4) and topographic and tectenic maps. Their
one-dimensional distrihutions are shown in Fig. 5.
Dashed lines correspond to the intersections closest
to epicenters; solid lines correspond to all the remain-
ing intersections. We see that the histograms for the

LM.GELFANDET AL.
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Fig. 5. Examples of one-dimensional distributions of param-
eters for intersections of lineaments shown in Fig, 4. The num-

ber and notation of parameters correspond to Table X Vil
Otherwise, the notation is the same as in Fig. 2.

iwo groups are very similar for parameters 2—4, 7-9,
14 -16, 18,19, 22, 23, 28 and 30—33. These param-
eters were not used. The parameter /s, distance from
the San Andreas fault, was not selected for the
opposite reason that it would dominate the character-
istic features; the histograms separate too well. Since
most known epicenters are close to this fault, the
resulls of recognition would be trivial. Discrete values
were assigned to the remaining parameters as shown
in the third column of Table XVII.

Fig. § contains the histograms for the whole area
shown in Fig. 4. Histograms based only on Califarnia
data separate better, allowing thresholds such thai the
two groups have few or no common values of some
parameters. This is undesirable for the reason indicat-
ed in paragraph 3.3; this is why we assumcd thresholds
corresponding o the data for the entire area in Fig. 4
although recognition was carried out for only a portion
of the area.

4.3. Results

Algorithm CLUSTERS was used. Intersections
within 50 km of an epicenter formed a cluster. The
division of intersections between the clusters and
classes 11 and 111 in fearning is indicated in Table X1X.

4.3
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TABLE XVHI

Distinictive D and N features for points located at intersections of lineaments
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TABLE XX

Recogmition for control experiments EH and EF. The notation is the same as in Table IX. Uncertain (“neutral”) voting: £ corre-
spondsto 4= 4; < corresponds to A= 3 — |

TABLE XX (¢ontinued)

Number of Year of Learning based on earthquakes from (836 through the year
- - T T T T intersection earthquake - - -
Number of Year of Learning based oo earthquakes from 1836 through the year on Fig. 4 which defines 1934 1940 1942 1948 1952 1968 1971 1973+...
intersection earthquake — - M T T cluster
on Fig. 4 which defines 1934 1940 1942 1948 1952 1968 1971 1973+, I ——
cluster 80 + + + + + + + +
J— — — == S PR i - 79 ) o ) * a + &) o
Clusters {0y + 8} 89 + + . & + n + +
119 & o ’ B L ? 88 1911 + + + + + + o o
120 B K “ : ¢ e, 0 * 8! 5 o + + + + + +
118 1971 = B o < = o “ 77 e + + + + + + +
13 + * ‘ * N MR N 78 0 © 3 + e + c 0
117 o ) o + + + 1 + + z
122 M . + + + 0+ + 70 1906 o o u b3 o b4 o @
71 + + + + + + +
144G 1968 © + + + * | + + + — R -
139 el c o + + + Number of Year of Learning based on carthquakes from 1836 through the year
intersection earthquake . e e
165 i + + * | i + * * on Fig. 4 which defines 1940 1947 1948 1954 1954 1959 973+
116 3 o o + + + * r cluster
103 1952 2 o o o+ + + + -
103 o + + | + + + + .
1os - ’ . .’ N M . Class if {Dy + N3 }:
3 & + + o o ) [?
128 o i SO . + + * + 5 + + + + + + +
129 o @ ' L3 + * * * [ + + + + + + +
139 1948 o o v + + + * * 8 + + + + + + +
140 o + + t+ + * + + g o + + + + o o
166 2 e ° 2 “ 25 o o + + * o +
26 o + + + + + +
167 2 o |+ + + + + * 27 > + + + + + +
151 1942 B3 B + + + + * * 46 + + + + + + +
150 B ] > + g 2 ¢ 2 50 + + + + + + +
155 = L + * + * * 57 + + + + + + +
59 + + + + + + +
156 t | + + t t + * I 61 [ + + + ) = o
157 1940 o b+ * * + : . 68 + + + + + + +
155 EEE + * * * 59 o + + + + + +
) 94 o + 3 5 ) ) a
158 1934 + * * * * * t N 95 + + + + + + +
157 o + + + + + + + _ - - S e - S
1 . N . . N . N . The remaining intersections weie recognized only as N.
g 1923 + + o o 1 E © o
14 o o o o + + 4 o
101 - 2 2 t : + : * * The characteristic features are shown in Table most of the intersections are divided by voting into
+ + 5 3 g = repd .
;f); o - 7 o L ot - XVHI. two rather distinctive groups, with only a smal! num-
= h The results of voting are shown in Tables XIX and ber of intersections given a “neutral” vote. Bach clus.
158 1915 + + + + + t * XX, and in Fig. 6b. ter has at least one I intersection (Table XX). The
__ The threshold for recognition was chosen as Follows: majority of D and N intersections betong ta elass 1
A= A* with A* having the same definition as in (clusters) and to class 11, respectively. The results are
paragraph 3.4, also encouraging for the following reasens.
We note that the recognition is successful in that (1) Non-instrumnental data for the [9th century

o
g
* N

L
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show four earthquakes in the avea of interest with
estimated magnitude 7 or more. Epicenters of all
these earthquakes are clese to intersections recogaized
as 1.

(2) Among D are the intersections closest to epi-
centers, with only two exceptions. One of the excep-
tions is the San Francisco earthguake of 1906, Inter-
scetion 70 which is closest to the 1906 epicenter was
recoguized as N; however, intersection 71, which is
slightly farther away, was recognized as D. The second
exception is the epicenter of the 1971 earthquake,
which is of the dip-slip variety. The closest intersec-

TABLE XXI

Distintive featyres for cecogmition in Anatolia (Gelfand et al, 1974)

LM GELFANDET AL.

tion {19 is recognized as N, intersection 136 is
recognized as D in the same cluster,

4.4. Interchangeubility of distincrive features from
different regions

Let us apply to California the distinctive features
obtained for Anatalia, and vice versa. In this way we
check our ability to recognize iniersections near
which epicenters of strong earthquakes actually fall,
using criteria developed elsewhere. This is an impor-

tant control experiment, since the features in the two
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regions were obtained completely independently.
Success would have important geological implications.

The characteristic features, obtained in Gelfand
et al. (19744, b) for Anatolia, are shown in Table XXI,
They were applied to California with one natural
exception: the parameter threshoids were reset to
valees appropriate for California.

The results of voting, shown in Fig. 7e, are quite
good. We first note that the intersections in California
receive many votes; the average {np+ Ry is 8, despite
the fact that the distinctive features were derived
from Anatolian data. The intersections are distinctly
divided by voting into two groups, so that recognition
is stable with respect to the choice of 4.

Second, with A = 0 (the same threshold used in
Gelfand et al. (1974a, b}, for Anatoiia) we recognize
as [ all intersections closest to each epicenter, even
number 70 near the 1906 epicenter.

Third, we recognize as D all the same intersections,
as in paragraph 4.3 as well as a few additional oaes,

We can reverse the procedure and apply to Anatolia
the characteristic features found for Califoraia (Table
XVII). Again, we changed the thresholds assigned to
the parameters. The results are anaiogous. The inter-
sections have many votes and are digtinctly divided by
voting. With A = 0 we recognize the intersections
near each known epicenter (Fig. 8) except one (near
intersection 33). D areas are in good agreement with
those found in Gelfand et al. {19743, b}, where learning
was based on Anatclian data.

The ability to transfer the criteria of high seismicity
from Anatolia to California secins natural, since most
of the Anatolian earthquakes are connected witth:
strike-slip movements, as is the case in Call"snia.
However, the complete recognition of intesections
near all known cpicenters and the good agreement
with results based on Californjan data is astonishing
and implies some generality to the distinctive features
which were found. This particular eontrol experiment
argues against the criticisms that the pattern recogni-
tion results were fortuitous, or simply 2 restatement
of the idea that future epicenters otcur near previous
ones.,

For the Sierra Nevada and Basin and Range (regions
1V and Vin Fig. 4) the Anatolian criteria give negative
resubts in that ro intersections are recognived as 13 in
the vicinity of 2 out of 5 epicenters. This failure is
expected since the eastern California - Nevada regions

are dominated by dip-slip focal mechanisms, This
result underlines the success for California.

4.5 Conrrol experiments

Experiment £H (Figs. 6¢, d and Table XX) shows
quite satisfactory results. Learning from earthquakes
through the year 1940, we would have recognived at
least une dangerous intersection in the cluster around
the epicenter of each subsequent strong earthguake.
After the 1942 earthquuke, we would miss only one
cluster, namely that corresponding to the 1971 earth-
quake. This ¢luster would be recognized by learning
on all shocks up to and including the 1948 carthquake.
To save time we did not redetermine the histograms
of parameters at each step as we did in paragraph 3.5.
The parameters and their thresholds were the sarme For
each step. Therefore the results of this experiment
only illustrate the stability of recognitiun with respect
to the learning material.

Experiment EF (Fig. 6a) also shews the stability
of recognition in that only four more intersections
were recognized as D (120, 15, 130 and 133); and
twe intersections were transferred to N (74 and 158).

To test the sensitivity of results to the particular
algorithm used, CORA-3 was applied. Class I conltain-
ed the intersections closest to an epicenter, class 11
included all the rest, The threshold A = 0 was choscn.
The results of recognition are shown in Fig. 9b. They
basically confirm the results of paragraph 4.3, Experi-
ment EH was successful up to 1942,

In another test we assumed other thresholds for
parameters, obtained from histograms based on
Califorrua data only, The results of recognition by
algorithm CLUSTERS are in satisfactory agreement
with paragraph 4.3, The control experinient results
were good, though somewhat degraded. Thus vur
results are stable to changes in the thresholds, but
the thresholds assumed in paragraph 4.3 are preferable,

4.6. Clarifying experiments

4.6.1. Epicenters or total fardt breaks?

Does the epicenter have some special meaning, or
is it just a random point cr 3 fault break, say the
place where by chance the stress first reaches the
critical fracture strength? To check this we replaced
the epicenters by the intersections ¢n the entire fault

49
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break of the San Francisco earthquake, 1906 (hetween
intersections /7 and 89). Clusters were formed around
each of these intersections, exactly as was done around
epicenters in the preceding sections. The results of
recognition, shown in Fig. 9¢, are unsuceessful. No
intersections are recognized as D near 9 known epi-
centers out of 12. The three exceptions are the epi-
centers near the fault break, which are predetermined
by learning. The next experiment indicates that this
failure is due not 10 an uneven coverage of the terri-
tory by the objects of class [, but to the replacement
of epicenters by the fault break.

4.0.2. Uniformity of the region

The analogous experiment was described in Section
3. The purpose is te see if we can recognize dangerons
areus even if the epicenters in their vicinity are
eliminated during the Tearning stage. Three cases were
considered as shown in Fig. 10. The number of known
strong earthquakes in the three cases is 6, 6 und 7,
respectively, According Lo our experience with EH
experunents, this number is marginal for successful
learning. Nevertheless, the results shown in Fig. 10
are quite good in that at least one point was recogniz-
ed as dangerous in almost all clusters not used in
learning. The only exceptions arz: two clusters near
intersections 704 and I3 in Fig. 10b; one cluster near
138 in Fig, 10a. This confirms the conclusion reached
in the analogous experiment in Section 3.

4.6.3. Effect of dip-slip earthquakes

Twe of the earthquakes, used for learning, are of
dip-slip varicty (years 1952 and 1971; epicenters near
intersections 165 and {19}. The clusters, correspond-
ing to these earthquakes, were climinated from learn-
ing in this experiinent. The distingtive features did not
change noticeably. The results of recognition (with
the sume thresheld as in main variant, & = A%} are
shown in Fig. 7h. We see that the number of D inter-
sections decreased significantly, from 25 in the main
varmnt to 17 Only three points outside of clusters are
recognized as D (72, 7% and 104), slightly expanding
already known clusters. Fig. 6 shows that the main
effect was the elimination of a group of D poinis in
the Transverse Ranges,  geologically reasonable
resuft.

M. GELFAND ET AL.

4.7. Comparison with Section 3

D areas recognized for intersections and for points
on major tauits (Figs. 3 and 6} basically coincide in
that the same five groups of D-points show up in both
cases. The slight differences are due to the fact that
the study of intersections covers a larger territory.

The characteristic features (Table XVIQ) show that
D and N intersections are often characterized by low
and high elevations (A, g and Hp,.), respectively.
This reinforces the wlea derived from the resulis in
Section 3 that D intersections are often associated
with neotectonic subsidence against a background of
weak uplift. Two more chservations may be made.

(1} Additicnal evidence of the importance of verti-
cal movements at £) intersections are the large gradients
(AH[2,) und the mountain—plain contacts which
show up in many D features, with opposite conditicns
holding for N features.

{2) The fracturing of the crust is more pronounced
for D than for N intersections. This is shown by the
vceurrence of lineaments of high rank in D features
and low rank in N [eatures. Also many N features
show small values of #y — the number of intersections
within 62.5-km distance.

5. Conclusions

Using pattern recognition, we have divided Califor-
fia inte two types of areas: T areas where epicenters
of strike-:lip earthquakes with M 2 6.5 can occur and
M aress where these epicenters cannot occur. Distine-
tive feaiures for each of these areas were identificd.
The D areas are characierized by proximity to inter-
sections of ends of major fauits and by relatively low
elevation or subsidence against a background of weaker
uplift. The N arcas ulten show higher clevation or
stronger uplift but less contrast in relief. D areas con-
centrate in five places. These results were tested against
numerous control experiments and seem to be stable
and reliahle.

Tt is swiprising that the relatively simple and crude
parameters which make up the distinctive features
suffice ta achieve these results. Perhaps large earth-
quakes occur on faults which penetrate signiticantly
into the lithosphere and fault movements on such a
scale cat: be recognized in simple ways. Perhaps param-
eters hused on systems of faults and other types of

PATTERN RECOGNITION IN CALIFORNIA

lineaments summarize more geophysical and geologi-
cal information than their simplicity implies. Perhaps
the result that epicenter locations cccur at identifi-
able places along faults and not at arbitrary locations
on fauits implies the existence of a special property
or agent in the epicentral region which acts to injtiate
rupture, This special property might be one which
concentrates stress to weaken rock, or to ““lubricate”
a fault.

Our results arc not useful as they stand for earth-
quake hazard mitigation since they identify epicenzers
and not the entire length of fault rupture, which may
extend well beyond a D area. However a search for
short-term precursors may be promising in T areas
and future efforts in earthquake control by fluid in-
jection and withdrawal could make use of D and N
information.

Over the years many efforts have been made to
characterize earthquake-prone regions by the cecur
tence of certain relationships in the field. For exam-
ple, “earthquake country™ has been characterived by
topographic and geomorphic forms, by intersecting
faults and by other ways in the geclogical literature.
Our procedure seems to be a more precise formulation
of many ideas which have been vaguely recognized
in the past. {t allows one to get more definite results,
providing a method for recognizing differences
between geologically different areas rather than de-
scribing each area by uself. 1t employs past experience,
intuition and/or hypotheses; but it uses a losical
framework to formulate explicitly the pertinent and
reliable parts of these elements. The procedure eon-
sists of five steps.

{1) Preliminary separation of objects into zroups.

{2) Sepavation of promising parameters by fiisto-
gram analysis.

(3) The combination of parameters into features,
singlets to triplets, and the analysis of all possible
features to identify distinclive ones.

{4) The use of distinctive features in recognition.

(5} The analysis of distinctive fentures for their
geological or geophysical meaning.

(6) The design of control experiments to prevent
self-deception.

Statistical procedures are alternalive methods to
pattern recognition hut in this case they ure difficuit
to apply because the nuniber of strong earthquakes is
inadequately small.
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In the future we intend to apply pattern recogni-
tion to time prediction vather thun space prediction
and to ather geophysical applications.
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Appendix — Major merphostructures and lineaments
of California and adjacent regions

1. Basie definitions

Morphostractures are structures in the earth's crust (or its
upper part) expressed in present day topographic relief. Tec-
tonic and geomorphic maps often deseribe strustures, based
only on either geclogical or geamorphic evidence. For the
study of earthquakes, however, actively developing structures
arg important. These structures are expressed in topographic
relief; geomorphic evidence may therefore be impartant for
their reconstruetion, together with geological data.

Rank of morphostructure, The following subdivision
seems adequate for tectonically und seismically active regians.
Each regron is divided into morphostructural countries (1).
countries into megablocks (1), and megablocks into blocks
(1II). The rank assigned to each type of morphastructure is
indicated by brackats.

Corneeries differ by the type of oragenesis andfor by the
large-seale fectonic features.

Mogablarks inside » country ditfer either by the dominant
type of reliel, or by the average patameters of the relicf (such
as heights of peaks, dominant strikes. relutive wrea oconpied by
basing and ranges, cfe. ) or by the pattern of the main clements
of relief.

Blocks inside megablocks ditfet in neotlectanic history; for
example, large separate ranges or depressions in contrust to a
caomplex of simaller canpes, depressions and valleys can be
outlined as separate hlocks,

Morphostruciural provinees. nsome large countries, such .
tihe Pamir and Tien-Shan regions, where the history of relief is
long und complicated, an intermediate morphostructure
a province — was introduced (Gelfand et al, 1973a). A
province is a group of megablocks which have similar pre-
orogeniv histaries, and accordingly, stk general festuzes of
relief. The same first rank, as for countries, was assigned i
provinces, (For example, un iniernal depression nside a plat-
form may be transformed after activation into o large inter-
mounlain basin and regarded as a province.)

¢k
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Lineaments. The boundary zones between morphostruc-
tures are called lineaments. They have the same rank as the
morphostructures which they separate. Lincaments of the
first rank have widths from about 10 1o 50 km. perhaps more;
they may be thousands of kiJometers in length. A linsament
is the surfuce trace of an active Tauit {or flexure), penelrating
deeply into the earth's crust and perhups through the entire
lithosphere. Different paris of a lincament muy be expressed
in different ways: geological. peomorphic or both: the evidencs
for a lincament may nol necessarily be as direct as faults shown
on a tectonic map. Let us describe some of the evidence for
lineaments, which may differ for longitudinal and transverse
lineaments.

Longituding! lincaments are appioximately parallel 1o the
main efements of relief (such as ridges, basins, elongated
intra-mountain depressions, ete.), Usually they Form the
boundarics between these elements. They are ofien expressed
directly by zones of tectonic faults. Detailed tecianic maps
show them asa system of narrow, elunpated biocks. [lowever,
some parts of longitudinal iinewnents are not iruced by faults,
but by geomorphic evidence: direct contact of contrasting
{forms of relief such as steep mountain front and fiag plain,
finear form of valley between ridges, cte.

Transverse fneaments form a large angle with Lhe dominant
serike of the main elements of relief and tectonics. They are
traced mainly by terminatiuns of these elemeats, ervechelon
patterus, relative displucements of ¢lements, shary changes
in height or strike, sharp changes in types of relief. A repnlar
linear pattern of these features is evidence for u transverse
lineament. Transverse lincarments may alsn show as patterns
in the occurrence of volcanoes, the highest peaks o1 saddle
points in parale] ridges, ete. Somstimes the evidence for
transverse lineaments may show simpiy as a straight-line river
on the slope of a ridge, which does not Mow in the direction
of steepest descent of the slope. or distinct, short TAGEES, o
narrow intrusive podies with transverse strike. of tansverse
faults of limited ¢<tent, shown on 1ectonic nups. Transverse
fincaments are not always marked by the clear truditional
evidence of long murrow ndues, valleys and tectonic fanlts
The evidence for these liaranicnts may be ind tect, subtiy
ang disconiinuous. However, the general patters of evidence
allows one to draw transverss lincoments with roasonahle
certainly, especiully with the aid of satellite photography. The
name “transverse™ vould be misleading in that the main dis
tinction is apt the strike, but evidence of the king just describ-
ed. For example, the Trunsverse Ranges of California, though
perpendicular to the dominant strike of the region, are nover
theless classified as a longitudioyl lincanent, since the strue-
ture carries its own faults, ridges and vallevs.

Disjunctive knots. Specific morphostructures of disjunctive
knots are formed areund the infersections of lneaments. They
are zones of especially intensive fracturing and conlrasting
neo-tectonic mavements. Following along a linsament one cun
notice the appearance of a disjunctive knot hy a set of apecific
phenomena, connected with a general increuse of nea-tec-
tomic activity and with manifestations of mterecting inea-
ments: the types of relief becine mors diverse {ty pes vorre-
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spotding to each Sneument show ep¥and appear in new
combinaiions; the heights of ridges and height differences
chonge drastically | boundaries of contrasting forms of relief
assume 2 brokenline form; rivers flow along faukts and their
valleys struighten; the orientation of valleys carresponds to the
direction of both intersecting lineaments; fault activity in-
creases, the lineaments inside the knots are ysually cxpressed
by faults; the topographic and eeclonical maps show muosine
patterns; a pric of surface fauliy expressed tectonically or
peomorphically is not 2acommon.

As a rule a knot is wider than the lincaments from which
i is formed. The lincar dimensions of knots depend on the
rank of the component lineaments and may vary from 20 to
200 ki or mote. Gne knot may inclede several intersections
of lineaments.

it is clear from this description that though the knots have
rather distinet boundaries the determination of these bounda-
ties demands quits specialized research — in the field and on
detailed maps. In the absence of snch researcis we must con-
sider in our problem “inteisections” instead of knots. An
inteisuetion s the point of interseetion of the axes of linea-
meais, Teis a much more formal abject than a knot but i is
wr te imdle, Fach intersection Eelomgs to some knot: but
it s vnknown o priori which intersections belong to the samge
kinat. Algorithim CLUSTERS was especially devised to Jeal
with this difficuly,

L

2 Pl scheme o1 nagor fincasents (Fyg. 4)

The area of intevest is divided into morphostructures of
three ranks: countries, negablocks und blocks (see first
paragraph of this Appendix ), Their houndaries are the linea-
munts of corresponding ~ank, shown in Fig. 3. The five follow-
g COURLTIES are represented:

§= Coust Ranges; 7 Transverse Ruanges; /7T = southern
Catifornum-northern end of *he Peninsula Ranges and the
entire Mexican sectior of the Condilleras; £17 = Sierta-

Nevadu; ¥ = western par of the Basin and Runge Province.

Country S betongs (o ihe Facific orogenic belt, with active
Cenezoic folding, The four other conntries bilong ro the
Cordilleran crogenic belt where the folding was mostly
finished in the Mesazohe area. Thes
Plincene Quaternary cragenic divelopment. Faults of the
Sen Andreas system cross countrics, £, Jf and fi7. ts width is
about 68 km in rhe norch, nea: San Franciseo Bay snd up {0
16 km, if net more, in southern California. The dotails ar
driceibed elsewhere {Ranzman. in peepurition).

four countries differ in
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