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The Maslov-type Index and its Iteration Theorey
with
Applications to Hamiltonian Systems

Yiming Long!' 2
Nankai Institute of Mathematics, Nankai University
Tianjin 300071, People’s Republic of China

Abstract

In this paper we give an introduction on the Maslov-type index the-
ory for symplectic paths and its iteration theory with applications to
existence, multiplicity, minimal period, and stability of periodic solution
problems in for nonlinear Hamiltonian systems, and instability of lin-
ear Hamiltonian systems, including a survey on recent progresses in this
area.

Since the pioneering work of P. Rabinowitz in 1978, topological and variational meth-
ods have been widely and deeply applied to the study of nonlinear Hamiltonian systems.
On the other hand, as well known Morse theory is a very powerful tool in mathematics.
For example, based upon the work [Bo} of R. Bott in 1956 on iteration theory of Morse
index, there have been many deep results obtained in the study of closed geodesics on Rie-
manntan manifolds. Therefore in the study of periodic solutions of nonlinear Hamiltonian
systems, it is natural to consider applications of the Morse theory. But unfortunately, for
functionals on loop space corresponding to Hamiltonian systems, its positive and negative
Morse indices are always infinite and usual Morse theory is not directly applicable. For this
reason, further understanding and development of possible homotopy invariants for linear
Hamiltonian systems as well as for paths in the symplectic matrix group starting from
the identity become necessary again. Interests on such invariants started from the earlier
works on the stability problems for linear Hamiltonian systems of M. Krein, 1. Gelfand, V.
Lidskii, J. Moser and others in 1950’s (cf. [GL], [Mo], YS]). Since early 1980’s, efforts on
index theories for Hamiltonian systems have appeared in two different directions. One is
the index theory established by I. Ekeland for convex Hamiltonian systems, including its
iteration theory with successful applications to various problems on convex Hamiltonian
systems (cf. [Ek3] and the reference therein). The other development is the so called
Maslov-type index theory for general Hamiltonian systems without any convexity type
assumptions, which was defined by C. Conley, E. Zehnder, Y. Long, and C. Viterbo in a
sequence of papers [CZ2], [LZ], [Lol}, [Vi2], and [Lol0].

1 Partially supported by the NNSF and MCSEC of China, and the Qiu Shi Sci. and
Tech. Foundation.
2 Associate Member of the ICTP.



Motivated by the studying of the minimal period, multiplicity, and stability problems
of periodic solutions of nonlinear Hamiltonian systems, in recent years we have systemat-
ically developed the iteration theory of the Maslov-type index for symplectic paths. This
iteration theory unifies the above mentioned iteration theory of Bott and Ekeland, and has
turned out to be a powerful tool in the study of various problems of Hamiltonian systems.

In this paper, we give an introduction to this Maslov-type index theory, its iteration
theory, and applications to linear and nonlinear Hamiltonian systems, together with a
survey on recent progresses in this area.

This paper includes the following parts.

Chapter 1. A Maslov-type index theory for symplectic paths.

1. Definitions and basic properties.

2. Maslov-type index and Morse index.

3. An intuitive explanation of the Maslov-type index theory for symplectic paths in
Sp(2).

Chapter 2. Iteration theory of the Maslov-type index.

4. The w-index theory and splitting numbers.

5. Bott-type iteration formulae and the mean index.

6. Iteration inequalities.

7. Precise iteration formulae.

Chapter 3. Applications to Hamiltonian Systems.

8. Rabinowitz’ conjecture on prescribed minimal period solutions.

9. Hyperbolic closed characteristics on compact convex hypersurfaces in R?",

10. Multiple periodic points of the Poincaré map of Lagrangian systems on tori.

11. Indexing domains of instability for Hamiltonian systems.
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Chapter 1. A Maslov-type index theory for symplectic paths.

Let N, Z, R, and C be the sets of natural, integral, real, and complex numbers

respectively. Let U be the unit circle in C. As usual for any n € N, we define the
symplectic groups on R?" by

Sp(2n) = {M € L(R*") | MTJM = J},

0 I,
I, O
omitted when there is no confusion. L£(R?") is the set of all 2n x 2n real matrices, M7T
denotes the transpose of M. The topology of Sp(2n) is induced from that of R". For
T >0 and H € C*S, x R* R) with S; = R/(rZ), we consider the 7-periodic boundary
value problem of the following Hamiltonian systems:

where J = ( ), I, denotes the identity matrix on R"™, the subscript n will be

#(t) = JH'(t, 2(1)), (1.1)

where H'(t, z) denotes the gradient of H with respect to the z variables. Suppose z = z(t)

is a T-periodic solution of (1.1) for some 7 > 0. Denote by ~, the fundamental solution of
the linearized Hamiltonian system

y = JB(t)y, (1.2)

where B € C(S,, L;(R?™)) is defined by B(t) = H"(t,z(t)), and L,{R*") is the subset
of symmetric matrices in £{R?"). Then =, is a path in Sp(2n) starting from the idetity
matrix I. Based upon the work {AZ] of H. Amann and E. Zehnder in 1980 on the index
theory for linear Hamiltonian systems with constant coeflicients, C. Conley and E. Zehnder
in their celebrated paper [CZ1] of 1984 defined their index theory for nondegenerate paths
in the symplectic matrix group Sp(2n) started from the identity when n > 2. This index
theory was extended to nondegenerate paths in Sp(2) by the author and E. Zehnder in
[LZ] of 1990. Then C. Viterbo in [Vi2] and the author in [Lol] of 1990 extended this
index theory to degenerate symplectic paths which are fundamental solutions of linear
Hamiltonian systems with continuous symmetric periodic coefficients. In the work [Lo10},
the author further extended this index theory to all continuous degenerate paths in Sp(2n)
for all n > 1 and gave an axiom characterization of this index theory. We call this index
theory the Maslov-type index theory in this paper. The Maslov-type index theory assignes
a pair of numerical invariants to the periodic solution x through the associated path v, in
Sp(2n) and reflects important properties of the periodic solution z.

§1. Definitions and basic properties.

We start from some notations introduced in [CZ2], [LZ], [Lol], [Lol0], and [DL]. Define
Dy(M) = (-1)""tdet(M - I), VM € Sp(2n).
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Let
Sp(2n)* = {M € Sp(2n) | + D;1(M) < 0},

Sp(2n)* = Sp(2n)* U Sp(2n)~, Sp(2n)° = Sp(2n)\Sp(2n)*.

For any two matrices of square block form:

Ay Bl) (Az Bz)
My = . M, = ,
' (Cl D1/ ivas : Cy D, 27 %23

the o-product of M; and M, is defined by the 2(i + 7) x 2(i + 7) matrix MyoM,:

A1 0 By 0
0 Ay 0 B,
Ciy 0 D 0
0 C; 0 D,

M10M2 =

Denote by M°* the k-fold o-product Mo-.-oM. Note that the o-multiplication is asso-
ciative, and the o-product of any two symplectic matrices is symplectic.
We define D(a) = diag(a,a™!) for a € R\{0}. For 4, A, and b € R we define

R(g):(COSG —sinG), Nl(/\,b)=(3 f)\)

sinf cosf@

Define two 2n x 2n diagonal matrices
M} =D(2)°, M7 = D(-2eD(2)*"1),

Lemma 1.1. (cf. {CZ2], [LZ], and [SZ2]) 1° Sp(2n)* contains two path connected
components Sp(2n)* and Sp(2n)~, and there hold ME € Sp(2n)*.

2° Both of Sp(2n)* and Sp(2n)~ are simply connected in Sp(2n).

Idea of the proof. Since Di(M)Di1(M,7) < 0, Sp(2n)* contains at least two
path-connected components.

For any given M € Sp(2n)*, by a small perturbation we can connect M to a matrix
M, with only simple eigenvalues within Sp(2n)*. Then there holds

PMP—I — MlO“'OMPONlO"'ONq = N’

where P € Sp(2n), M; € Sp(2) for 1 < i < pand N; € Sp(4) for 1 < j < q, each M ahs
the form R(6) with 8 € (0,7) U (7, 27) or D(a) with a € R\{0}, each N; has four simple
eigenvalues \;, A;, A7', and X" out side RUU.

By connecting P to I in Sp(2n), we get that M can be connected to N within Sp(2n)?™.
Then it can be proved that these M;’s and N;'s can be connected to D(2), D(-2}, or
their o-products within Sp(2)* or Sp(4)*. Note that D(—2}oD{—2) can be connected to
D(2)oD(2). This proves that N can be connected to one of M;* and M, within Sp(2n)*.
Then Sp(2n)* contains at most two path connected components, and 1° is proved.

4

-7

W WN s T T ¥ W

TWT

WE e T T Y W

TET

HTE =ik T TY WO

Ty



We refer the readers to [SZ2] for the proof of 2°. i
Fix 7 > 0. Let

PT(Qn) = {'7 € C([01 T],Sp(zn)) !7(0) = I}:
Pr(2n) = {y € P.(2n) | v(r) € Sp(2n)*},
P2(2n) = P, (2n)\P*(2n).

The topology of P,(2n) is defined by the C0([0, 7], Sp(2n))-topology induced from the
topology of Sp(2n). Note that the following subset of P (2n) consists of all foundamental
solutions of linear Hamiltonian systems (1.2) with symmetric continuous and T-periodic
coefficients:

Pr(2n) = {y € C([0,7],Sp(2n)} | 4(0) = I, #(1) = %(0)y(1)}.

The topology of P,(2n) is defined to be the C'([0, 7}, Sp(2n))-topology induced from the
topology of Sp(2n).
Definition 1.2. (cf. [Lol]) For every v € P,(2n), we define

vr(7v) = dimg kerg (y(7) — I).

Definition 1.3. (cf. [Lol]) Given two paths vy and v, € Pr(2n), if there is a map
6 € C([0,1] x [0,7],Sp(2n)) such that 6(0,-) = ~o(-), 6(1,-) = 1(:), 6(s,0) = I, and
v7(0(s,-)) is constant for 0 < s < 1, then o and v, are homotopic on [0, 7] along 4(, 7)
and we write yo ~ 1 on [0,7) along 6(-, 7). This homotopy possesses fized end points if
8(s,7) = vo(7) for all s € [0, 1].

As well known, every M € Sp(2n) has its unique polar decomposition M = AU,
where A = (MM7T)'/? is symmetric positive definite and symplectic, U is orthogonal and
symplectic. Therefore U has the form

-3 7)
Ua U1
where u = u; + /—1uy € L(C™) is a unitary matrix. So for every path v € P,(2n) we
can associate a path u(f) in the unitary group on C™ to it. If A(t) is any continuous real
function satisfying det u(t) = exp(v/=1A(t)), the difference A(r) - A(0) depends only on
7 but not on the choice of the function A(t). Therefore we may define the mean rotation
number of y on [0, 7] by
Ar(7) = A(r) = A(0).

Lemma 1.4. (cf. [LZ]) If vo and v, € P,(2n) possesse common end point vo(7) =
11(7), then A-(vo) = A,(71) if and only if vo ~ 71 on [0, 7] with fired end points. 1

By Lemma 1.1, for every path ¥ € P?(2n) there exists a path 3 : [0,7] — Sp(2n)*
such that §(0) = v(7) and B(7) = M;} or M. Define the product path 8 * vy by

Bxy(t) = {ﬁ(’gf_ﬂ;), AL

r
5<tST.
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Then k = A, (B*~)/x € Z and is independent of the choice of the path 3 by 2° of Lemma
1.1. In this case we write ¥ € P; ,(2n).
Lemma 1.5. (cf. [LZ])) These P ,(2n)’s give ¢ homotopy classification of P: (2n).
Definition 1.6. (cf. [CZ2], [LZ]) If v € P;4(2n), we define ir(y) = k.
We define the standard non-degenerate symplectic paths by

Grs() = DA+ 5),  for0st<m,
&1 g = (D(2)¢kn,r) ¥ G10,7, Yk € Z\{0},
where ¢g - (t) = R((8t/7). When n > 2, we define
bin0,r = (62,0-)",
n e = (D(2)km,r) * G1,0,7)0(a1,0,)° " Y, Wk € Z\{0},

Then there hold
Gnir € Pri(2n),  VkeEZ.

The following lemma is crucial in the study of degenerate symplectic paths.

Lemma 1.7. (cf. [Lol}, [Lol0]) For any v € P(2n), there erists a one parameter
family of symplectic paths v, with s € [-1,1] and a ty € (0, T) sufficiently close to T such
that

Yo =", 7s(t)=(t) for 0 <t <to, (1.3)
vs € PX(2n) Vs € [-1,11\{0}, (1.4)
ir(Ys) = ir(vs), O s8' >0, (1.5)
ir(m1) — i (v-1) = v (7), (1.6)
Yo =y =7 in P(2n) as s—0. (1.7)

When v € P.(2n), we also have

+e € Pr(2n) vs € {-1,1], (1.8)
Vs =+ in Pr(2n) as s— 0. (1.9)

Idea of the proof. Among these properties of {7,}, the most important one is (1.5).
The construction of {,} uses the results on normal forms of symplectic matrices proved
in [LD] and [HL]. Here we briefly indicate how this family of paths {.} is constructed.

For every integer m, 1 < m < n, and 8 € R, a 2n x 2n rotation matrix Ry () = (ri;)
is defined in [Lo1} and [Lo2} by

Tm,m = Tn4mmnim = cos 8,
Tadmm = —Tmnt+m = sin§,
Tii = 1, if 1 # m and n + m,
i = 0, otherwise.



Fix v € P2(2n). Then there exist an integer g, 1 < g < n, astrictly increasing subsequence
{my,...,mq} of {1,...,n}, 6, € (0, g5 ) small enough depending on ¥(7), and P € Sp(2n)
such that for 1 = 1,..., ¢ the m; is the least positive integer which satisfies for 0 < 18] < 8q:

dimp kerg (Y(7)PRm (8) - - Ry, _, (8)P~1 = I)

~ dimp kerg (Y(7) PR, (0) - - Ryn,_, () Ry, (O)P™ = 1) > 1
dimg kerp (Y(7) PRy, (0) - Rin (O)P~' = I} = 0.

b

Here we set R,, () = I. Note that the integers q, my, ..., Mg, and P are determined by
the normal form of the matrix v(r).

For ty € (0,7), let p € C*([0, 7], (0, 1}) such that p(t) = 0 for 0 < ¢ < tg, p{t) > 0 for
0<t<7 p(r) =1, and p(r) = 0. For any (s,t) € [-1,1] x [0, 7], the path 7, is defined
by

Vs (t) = Y(t) PR, (sp(t)00) - - - R, (5p(t)86) P2, (1.10)

When {9 € (0, 7) is sufficiently close to 7, the properties (1.3) to (1.9) hold. )
With lemma 1.7, we can give
Definition 1.8. (cf. [Lol]) Define i.(v) = i,(v) for s¢ [-1,0).
Definition 1.9. For every path v € P, (2n), the definitions 1.2, 1.6 and 1.8 assign a
pair of integers
(ir (1), v2 (1) € Z % {0, .., 2n)

to it. This pair of integers is called the Maslov-type index of v. When~y =+, fora
solution x of (1.1), we also write

(ir(z), v-(2)) = (tr (V2 ) vr(vz)).

The following theorem shows that the Definition 1.8 of ir(7y) for v € P2(2n) is inde-
pendent from the way which is defined.

Theorem 1.10. (cf. {Lol], [Lol0}) For any~ € P2(2n), and every 8 € Pr(2n) which
18 sufficiently close to -y, there holds

() = i (v-1) <4 (8) Cir(m) =i () + v (y). (1.11)

Specially we obtain
ir(7) = inf{i-(8) | B € P}(2n) and B is sufficiently close to v in P(2n)}. (1.12)

Idea of the proof of (1.11). Fir stly we reduce the general case to the case of that
all the paths in consideration are in P, (2n). Then the later case can be proved by using
Theorem 2.1 below and a perturbation argument on the Morse index for finite dimensional
symmetric matrices. ]
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The following theorem characterizes the Maslov-type index on any continuous sym-
plectic paths in P, (2n).

Theorem 1.11.(cf. [Lo10]) The Maslov-type indez ir : UnenPr(2n) = Z, is uniquely
determined by the following five aztoms:

1° (Homotopy invariant) For vy and v, € Pr(2n), if o ~ 71 on {0, 7], then

ir (Vo) = ir(m1)- (1.13)

2° (Symplectic additivity) For any v; € P, (2n;) with i =0 and 1, there holds

7;7 (70071) = iT(’YO) + z"r(’)"l)‘ (114)

3° (Clockwise continuity) For any v € PO(2) with v(r) = N1(1,b) for b = £l or
0, there erists a g > 0 such that

()6 sl x ) = in(y), YO <6< (1.15)

4° (Counterclockwise jumping) For any v € PY(2) with v(t) = N1(1,b) for b =
+1, there exists a 6y > O such that

i ([y(T)per] xv) =i (v)+1,  V0<8<6o (1.16)
5° (Normality) For the standard path .-, there holds
ir(61,0.r) = O. (1.17)

Idea of the proof. Using normal forms and perturbation techniques together with
the properties 1° and 2° to reduce the uniqueness to the case of paths in P,(2). Then it
follows from the R3-cylindrical coordinate representation introduecd in the section 3 below
immediately. The proof for the sufficiency can be found in {Loll]. 1

The following theorem is very useful in the study of the iteration theory for the
Maslov-type index.

Theorem 1.12. (Inverse homotopy invariant) (cf. [Lol0]} For any two paths
Yo and v1 € Pr(2n) with i;(v) = i,(71), suppose that there erists a continuous path
h :[0,1) — Sp(2n) such that h(0) = v(7), h(1) = 11(7), and dimker(h(s) — I} = v+(vo)
for all s € [0,1]. Then yo ~ 71 on [0,7] along h.

Idea of the proof. Note that v ~ (h * ). Since (h* 7o) ~ 71 and 71 have the
same end points and index, they must be homotopic. This proves the theorem. ]

§2. Maslov-type index and Morse index.

Fix 7 > 0. Suppose H ¢ C%(S, x R?" R} and || H||¢= is finite. Recall 5r = R/(TZ).
The classical direct functional corresponding to the system (1.1) is

flz) = /{:(—%Jﬁ: .z — H{(t,z))dt, (2.1)

8



for x € dom(A) C L, = L*(S,,R™) with A = —J%. It 1s well-known that critical points
of f on L, and t-periodic solutions of (1.1) are one-to-one correspondent. The Morse

indices of f at its critical point z is defined by those of the following quadratic form on
L.:

Bly) = [0 (=Jiy— By - y)at, (2.2)

where B(t) = H"(t,z(t)). Note that the positive and negative Morse indices of [ at its
critical point z, i.e. the total multiplicities of positive and negative eigenvalues of the
quadratic form (2.2}, are always infinite. Using the saddle point reduction method on the
space L. (cf. [AZ] and [Ch2]), we obtain a finite dimensional subspace Z C L. consisting
of finite Fourier polynomials with 2d = dim Z being sufficiently large, an injective map
u:Z ~ Ly and a functional a : Z — R, such that there holds

a(z) = f(u(z)), Vze Z, (2.3)

and that the critical points of @ and f arc one to one correspondent. Note that the following
important result holds.

Theorem 2.1. (cf. [CZ2], {LZ], [Lol], [Lol0]) Under the above conditions, let z be a
critical point of a and x = u(z) be the corresponding solution of the system (1.1). Denote
the Morse indices of the functional a at z by m*(2) for « = +,0, —. Then the Maslov-type
indez (i, (x),v.(z)) satisfy

m=(2) =d+i.(z), m(2)=v.(z), mT(z)=d-i, (z) — v (z). (2.4)

Idea of the proof. 1° For the non-degenerate case with n > 2 or n = 1 and
ir{xz) € (22 4+ 1) U {0} as in [CZ2] , it suffices to use the homotopy invariance of the
Maslov-type index to reduce the computation of the indices to the case of liner Hamiltonian
systems with constant coefficients.

2° For the non-degenerate case with n = 1, we first couple the given linearized Hamil-
tonian system Hg with a linear Hamiltonian system #y on R? with constant coefficeint
and Maslov-type index 1 to get a new linear Hamiltonian system H, on R%. Then the
index formula (2.4) for H, follows from that for H; subtract from that of H,.

3¢ For the degenerate case, use the paths 7, and perturbation techniques to reduce
the problem to the comparison of non-degenerate cases of y; and v_;. [

Note that from (2.4), the Maslov-type indices can be viewed as a finite representation
of the infinite Morse indices of the direct variational formulations. Note also that for
general Hamiltonian H whose second derivative may not be bounded, results similar to
Theorem 2.1 was proved via Galerkin approximations in [FQ] by G. Fei and Q. J. Qiu.

Next we consider the periodic problem of the calculus of variation, i.e. finding extremal
loops of the following functional

F(z) :fo L{t,z,&)dt, Yz e W, = W3S, R"). (2.5)



& a R - AdJda s

et

A a -

- A

A SS = A.XA i

Here we suppose 7 > 0 and L € C*(S, x R" x R™,R) such that L (¢, ,p) is symmetric
and positive definite, and L, z(¢, 2, p) is symmetric. An extremal loop z of F corresponds
to a l-periodic solution of the Lagrangian system

1
%Lp(t, z,2) — Lg(t, z,2) = 0. (2.6)

Fix such an extremal loop x, define
P(t) = Lpp(t,2(t), (1), Q) = Lop(t,2(t),2(1)),  R(t) = Leu(t x(2),2(8).  (2.7)
The Hessian of F at x corresponds to a linear periodic Sturm system,
—(Pj+Qy) +QTy+ Ry =0. (2.8)

It corresponds to the linear Hamiltonian system (1.2) with

(P _PI)Q()
B(t) = B.(t) = (—Q(t)TP‘l(t) QTP (1)Q(t) - R(t)) ' (29)

Denote by ~, the fundamental solution of this linearized Hamiltonian system (1.2). The
Morse index and nullity of the functional F at an extremal loop x in Wy are always finite.
We denote them by m™(z) and mP°(z) respectively.

Theorem 2.2. (cf. [Vi2], [LA], [AL]) Under the above conditions, there hold

m”(z) = 1:7'('73:)’ mO(x) = V-r('Ya:)- (2‘10)

Idea of the proof. We apply the index theory of {Du]. Using the homotopy invari-
ance properties of this index theory and the Maslov-type index theory to simple standard
cases, then (2.10) is proved by concrete computations on these simple cases. |

Remark 2.3. Note that in the sense of Theorems 2.1 and 2.2, our Definition 1.9 of
the Maslov-type index is natural.

§3. An intuitive explanation of the Maslov-type index theory for symplectic
paths in Sp(2).

At the last part of this section, we give an intuitive interpretation of the Maslov-type
index theory in terms of the cylinderical coordinate representation in R3 of Sp(2) firstly
introduced in [Lo2] of 1991 by the author as follows. As well known, M € Sp(2) if and
only if det M = 1. Via the polar decomposition of each element M in Sp(2),

r z cosf# —sind
M = (z (1+22)/'r) (sinQ cos @ )’ (3.1)

10



we can define a map & from the element M in Sp(2) to (r,8, z) € Rt x S5 x R, where
R* = {r ¢ R|r > 0}. This map ® is a C*-diffeomorphism. In the following, for
simplicity, we identify elements in Sp(2) and their images in R\{z—axis} under .

Remark 3.1. Note that a different representation of Sp(2) was given by I. Gelfand
and V. Lidsikii in [GL] of 1955 which was based on the hyperbolic functions and which
maps Sp(2) into a solid torus.

By this R3-cylindrical coordinate representation of Sp(2), it is easy to see that Sp(2)
is homeomorphic to §' x R2. This can be generalized to general Sp(2n) which is homeo-
morphic to a product of S and a simply connected space. Therefore any path y € P,(2)
rotates around the deleted z-axis in R3 in someway. There are infinitely many topolog-
ically meaningful ways to count the rotation number of . But the key point here is to
find a natural way to count this rotation so that the rotation number reflects intrinsically
analytical properties of the corresponding Hamiltonian system when v € ’f%(?).

Under this R3-cylindrical coordinate representation we have

Sp(2)* = {(r,8,2) e R* x S' x R|(r? + 22 + 1)cosf > 2r},

Sp(2)° = {(r,6,2) € R* x S' x R[(r?+2° + 1) cos§ = 2r},

Sp(2)” ={(r6,2) e R* x S' x R|(r? + 22 + 1) cosd < 2r},

Sp(2)% = {(r,6,2) € Sp(2)° | £sinf > 0} = {PNi(L, )P |P ¢ Sp(2)},
Sp(2)* =Sp(2)T USP(2)7, Sp(2)° = MIU{T}, ML =Sp(2)% USp(2)°.

Figure 3.1. Sp(2)° in cylindrical coordinates of R3\{z — axis).

Note that Sp(2)? is a codimension 1 hypersurface in Sp(2), M} is its regular part. Note
that M3 contains two path connected components Sp(2)$ and Sp(2)°, which are two

smooth surfaces both diffeomorphic to R?\{0} as shown in the Figure 3.1. The following
Figure 3.2 shows the picture of Sp(2)° N {z = 0}.

11
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Figure 3.2. The intersection of Sp(2)® and the plane {z = 0}.

Note that for the case of Sp(2), Lemma 1.1 follows from these two pictures immedi-

ately.

Now based upon the standard non-degenerate symplectic paths defined in the section
1, from Figures 3.1 and 3.2, it is obvious that for any given v € P; (2), there exists one
and only one k € Z such that

¥~ Gk

This proves Lemma 1.5 for the case of n =1, and then makes the Definition 1.6 become

meaningful.
Now for v € P2(2), from Figures 3.1 and 3.2, we immediately obtain the following

results:

If v(r) € Sp(2)°\{I}, all paths 8 € P;(2) which are C%close to v belong to two
homotopy classes, one contains y_; and the other contains y; defined by (1.10), and there
holds

ir(y-1) + 1 =i (1)

If v(7) = I, all paths 8 € P;(2) which are C®-close to -y belong to three homotopy
classes, one contains y_;, and another one contains 7, defined by (1.10). We pick up a
path G in the third homotopy class. Then there holds

ir{y-1)+2=(f) +1= ir (1)
These results shows that the following definition (1.10) makes sense:

ir(y) = inf{i,(8) | B € Pr(2) and B is sufficiently close to 7y in Pr (2)}-

12



Note that the definition of the Maslov-type inedx for non-degenerate paths can also
be defined via the algebraic topological intersection theory as follows. Let us give an
orientation to Sp(2) as shown in Figure 3.2. Suppose 7 > 0. Let v € P;(2) be a Cl-path.
We define the positive orientation of v at 7(t) to be the direction of 4(¢).

to see that the Maslov-type index of v can be represented by the followi
number:

Then it is easy
ng intersection

i (7) = (Sp(2)" 1 (G1,0,,) 71 %), (3.2)

where (G1,0,)7'(t) =D(2—t/7)for0<t<r. In general, for any v € P;(2), it is easy to
see that all C'-paths in P(2) homotopic to ¥ must possess the same intersection number

(3.2). Thus it can be used as the definition of ir(7). The situation is illustrated in Figure
3.3.

Figure 3.3. Intersection number definition of the Maslov-index theory.

This method can also be used to define the Maslov-type index theory for paths in
Sp(2n) starting from the identity with general positive integer n. The key point is to
prove that Sp(2n)? is a codimension 1 cycle in Sp(2n) and possesses a natural orientation

which can be used to define the required index theory. This has been done by C. Zhu and
the author in [LZh1].

13
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Chapter 2. Iteration Theory of the Maslov-type Index.

For + > 0 and any v € P,(2n), the iteration path 4 € C([0,40c0),Sp(2n)} of v is
defined by

A(t) = ~(t — j'r)*y(’r)j, for jr<t<(j+1)7and j€ {0} UN,

and ™ = f}|[0,m73 for all m € N. Then we can associate to v through 4 a sequence of
Maslov-type indices

{(imr(g/)a Ve (7)) }meN-

When ~ : [0, +00) — Sp(2n) is the fundamental soluton of (1.2) with B € C(5-, L, (R™)),
where £ (R2") is the set of symmetric 2n x 2n real matrices, there holds (vlo,,))” =7
When z is a 7-periodic solution of (1.1), we define the iterations of = by

M) =zt —j), Vi<t<ji+1,5=01,...,m—L

Denotes by
(imf(mm),vm.r(xm)) = (tmr (¥2)s Vmr (¥z))-

Thus the corresponding index sequence with v = v, reflects important properties of the
r-periodic solution z of the Hamiltonian system (1.1).

In the celebrated work {Bo] of R. Bott in 1956 as well as [BTZ], the iteration theory
of Morse index for closed geodesics is established. In the works of I. Ekeland (cf. [Ek1}-
[Ek3]) the iteration theory of his index for convex Hamiltonian systems is established.
In [Vil] of C. Viterbo, the iteration theory for an index theory of nondegenerate star-
shaped Hamiltonian systems is established. But for our purpose in the study of general
Hamiltonian systems, for example Hamiltonian systems defined on a 2n-dimensional torus,
all these results are not applicable. The only paper we know which studied certain iteration
properties of certain Maslov index in such a generality is [CD] of R. Cushman and J.
Duistermaat in 1977. But their result is not good enough for our purposes and contains
some flaws in certain cases. Specially, Bott-type formulae and mean index of the Maslov-
type index theory are still unknown.

Motivated by the study of minimal period problem, multiplicity problem, and stability
problems for nonlinear Hamiltonian systems with no any convexity assumptions, we need
to establish the Bott-type formulae and certain sharp enough increasing inequalities for the
Maslov-type index theory of symplectic paths. This study ends up to our iteration theory
of the Maslov-type index established in [DL], {Lo11]-[Lo15}, and {LL3] which is introduced
in this chapter. Note that in the recent [LZh1], [LZh2], and [ZL], this iteration theory has
been established via the spectrul flow method for paths in Sp(2n, C).

14



§4. The w-index theory and splitting numbers.

As we have mentioned in the Section 1, the Maslov-type index theory is defined via
the singular hypersurface Sp(2n)° in Sp(2n). This hypersurface is formed by all matrices
in Sp(2n) which possesses 1 as its eigenvalues. In the study of the iteration properties
of the Malsov-type index theory, as in [Lol13] for any w € U it is natural to consider the
generalization D € C*®(U x Sp(2n), R) of the determinant function defined by

Du(M) = (=1)""'w " det(M —wl), Ywe U M e Sp(2n), (4.1)
and the hypersurface
Sp(2n)] = {M € Sp(2n) | D, (M) = 0}, (4.2)

which contains all symplectic matrices having w as an eigenvalue. Similarly for any w € U

we define
Sp(2n)s = {M € Sp(2n)| + D, (M) < 0},

Sp(2n);, = Sp(2n)F U Sp(2n); = Sp(2n)\Sp(2n)°,
Pr.(2n) = {y € P.(2n)|v(r) € Sp(2n)}},
PP (20) = P (2n)\ P>, (2n).

—Sp (2);’_

Figure 4.1. Oriented Sp(2)° for w = +1 and w € U\R.
In [Lol1], for w € U, the w-nullity of any symplectic path is defined by

Vrw(7) = dimg kerg(M — wi), Yy € P.(2n). (4.3)

15
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In {Lo13], the author proved the following result similar to Lemma 1.1.

Lemma 4.1. (cf. {Lol3]) For any w € U, Sp(2n);, contains two path connected
components Sp(2n)} and Sp(2n);, and M € Sp(2n)Z. Both of these two sets are simply
connected in Sp(2n).

Based upon this result, the index i, ,(7) is defined in [Lol1] for any v € P; ,(2n) in
a similar way to that used in the Definition 1.6.

Then based upon the results obtained in [Lo13] on the properties of and near Sp(2n)g
in Sp(2n), for any w € U and v € PP (2n) it is defined in [Loll] that

irw(v) = nf{i; o (B) 1B € P; ,(2n) and B is sufficiently close to 1y in P(2n)}.

In such a way, the w-index theory assigns a pair of integers to each v € P.(2n) and
we U:
(ir,u('Y)a V-r,w('Y)) €4 x {0, ceey Zn} (44)

When w = 1, the w-index theory coincides with the Maslov-type index theory. Similarly to
Theorem 1.11, an axiom characterization of the w-index theory can be given as in [Loll].
Now let us fix a path v € P-(2n), and move w on U from 1 to —1, and study the
properties of the w-index of v as functions of w. In {Lol1], the following result is proved.
Lemma 4.2. (cf. [Loll]) For fized v € Pr(2n), i, (V) as a function of w is constant
on each connected component of U\a(y(7)}. There holds

vrw(1) =0,  Vwe U\a(y(r). (4.5)

Idea of the proof. It follows from that the index functions are locally constant. &

By this lemma, in order to understand the properties of the w-index as a function of
w € U, it is important to study the possible jumps of i, (7) at @ € U\a(y(7)). These
jumps are usually called splitting numbers, which play a crucial role in iteration theory
of the Maslov-type index theory for symplectic paths. The precise definition of the splitting
number is contained in the following result.

Theorem 4.3. (cf. [Loll]) For any M € Sp(2n) and w € U, choose 7 > 0 and
v € P,(2n) with y(r) = M, and define

sz\t/.f (w) = EE%L 2‘1‘,exp(:|:e\/—_1)m (’7) - iT,w(’Y)‘ (46)

Then these two integers are independent of the choice of the path y. They are called the
splitting numbers of M at w.

In order to further understand the splitting number, new concepts of the homotopy
component of M € Sp(2n) and the ultimate type of w € U for M € Sp(2n) is introduced
by the author in [Loll] as follows.

Definition 4.4. (cf. [Loll]) For any M € Sp(2n), define the homotopy set of M
in Sp(2n) by

QM) = {N € Sp(2n) |o(N)NU =o(M)N U, and
dime kera (N — M) = dimg kere (M — M), YA € o(M) N U}.
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We denote by Q°(M) the path connccted component of M) which contains M, and call
it the homotopy component of M in Sp{(2n).
For any M € Sp(2n), definc its conjugate set by

[M] = {N eSp(2n)| N =P *MP for some P e Sp(2n)}.

Then [M] C Q% M) for all w € U.

Definition 4.5.(cf. [Loll]) The following matrices in Sp(2n) are called basic nor-
mal forms for eigenvalues on U:

Ni(A, b} with A = 1, b= =+1, or 0,
R(8) with w=¢V"Tc U\R,

No(w, b) = (Rg’) R?@))’ with b = (g; gj) & L(R?),

by —bs #0, and w=e%V"1¢g U\R.

A basic normal form matriz M s trivial, if for sufficiently small a > 0, MR((t - 1)a)*"
possesses no eigenvalue on U fort € [0,1), and is nontrivial otherwise.

Note that by direct computations, Ny(1,—1), N1(~1,1), Ny(w, b), and Na(w, b) with
dimg kerc(M —wl) = 1, w = exp(6v/~1) € U\R and (b; — b3)siné > 0 are trivial, and
any other basic normal form matrix is nontrivial.

Theorem 4.6.(cf. [Loll] Forany M € Sp(2n), there is a path f € C([0, 1], Q%(M))
such that f(0) = M and

J(1) = Myo- - oMyoMy, (4.7)

where the integer p € [0,n], cach M; is a basic normal form of eigenvalues on U for
1 £ ¢ < k, and the symplectic matriz My satisfies a(My) U = .

Idea of the proof. Firstly we connect M within Q%(M) to a product of normal forms
via the results of [LD] and [HL]. Then by carefully chosen perturbations and connecting
paths, we connect all these normal forms to basic normal forms within QO(M). |

Recall that (cf. Section 1.2 of [Ek3] or [YS]) for M € Sp(2n) and w € Uno(M) being
an m-fold eigenvalue, the Hermitian form (/—1J.,-), which is called the Krein form, is
always nondegenerate on the invariant root vector space E,, (M) = kerc (M —wI)™, where
(-, -} denotes the inner product in C?*. Then w is of Krein type (p,q) with p+g=m if
the restriction of the Krein form on E, (M) has signature (p, q). w is Krein positive if it
has Krein type (p,0), is Krein negative if it has Krein type (0,9). f w e U\ g(M), we
define the Krein type of w by (0,0).

Definition 4.7.(cf. [Loll}) For any basic normal form M € Sp(2n) end w € U N
o(M), we define the ultimate type (p,q) of w for M to be its usual Krein type if M 1s
nontrivial, and to be (0,0) if M is trivial. For any M € Sp(2n), we define the ultimate
type of w for M to be (0,0) if w € U\o(M). For any M € Sp(2n), by Theorem 4.6 there
extsts a o-product expansion (4.7) in the homotopy component QM) of M where each
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M; is a basic normal form for 1 < i < k and o(Mp) N'U = 0. Denote the ultimate type
of w for M; by (pi,q:) for0 < i < k. Letp= Zf:o p; and ¢ = Zf:o q;- We define the
ultimate type of w for M by (p,q).

Tt is proved in [Lol1] that the ultimate type of w € U for M is uniquely determined
by w and M, therefore is well defined. It is constant on 9(M) for fixed w € U.

Lemma 4.8. (cf. [Loll]) Forw € U and M € Sp(2n), denote the Krein type and
the ultimate type of w for M by (P, Q) and (p,q). Then there holds

P-p=Q—-q=>0. (4.8)

The following theorem completely characterizes the splitting numbers.
Theorem 4.9. (cf. [Loll]) For any w € U and M € Sp(2n), there hold

Suw)=p and Sy(w)=q (4.9)

where (p, q) is the ullimate type of w for M.

Idea of the proof. Use Theorem 4.6 to reduce the proof to the case of basic normal
forms. Then carry out the direct comnputation for each basic normal form. The difficulty
part is the computation for No(w,b)’s. We refer to [Lol1] for details. i

Corollary 4.10. Ifw e Uno(y(r)) is of Krein type (p,q), there holds

lim (z} (Y tw) — i.,(e_e‘/‘—lw)) =p—q. (4.10)

e—0

Corollary 4.11. For anyw € U and M € Sp(2n), there holds
0 < S (w) < dimg kerc(M — wi). (4.11)

Remark 4.12. Theorem 4.9 and Corollary 4.10 generalize Theorem IV on p.180 of
[Bo], which contains a sign error, and Proposition 9 on p.44 of [Ek3]. Note that there is
a sign difference between our J and that in [Ek3]. Note also that the conclusion of our
Theorem 4.9 coincides with the Example II on p.181 of [Bo].

§5. Bott-type iteration formulae and the mean index.

Based upon our preparations in the above subsection, next we establish the Bott-type
formulae for the Maslov-type index theory.

Fix 7 > 0 and B € C(S;, Ls(R*™)). Let vy € P.(2n), i.e. v is the fundamental solution
of (1.2) for some B € C(S., Ls (R?™)). Fix k € N. The bilinear form corresponding to the
system (1.2) is given by

1
brr(z,y) = 5((,4 — B)z, )y, vz, y € Exr = WV3(Skr, R*™)) C L. (5.1)
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For w € U define
EkT(Taw) - {y € Ek'r |y(t + T) = wy(t)! Vt}
For simplicity we identify Ey,(r,w) with E.(r,w). Define wp = exp(2pn/kyv/—1) for 0 <

p < k. Then wg = 1. By direct computation we obtain that Eyr(T,wp) and Ey, (7, wq) is
¢r+-orthogonal for 0 < p # ¢ < k, and there holds

Epr = @k Brr (1, 0). (5.2)
Thus we obtain
k-1 k=1
¢k'r|Ekr = Z¢kTIEk,{T,w") =k quTlET(T,Wi)' ('53)
=0 =0

Now we carry out the saddle point reduction for ¢x, on Eyr, and obtain the functional
Akr = Grr © Uy defined on Zy,. Simultaneously this induces saddle point reductions for
¢r on E (7,w;) for 0 <7 < k — 1, and yields the functional Qrw; = ¢r © Ur,, defined on
Zr.. By the orthogonality claim (5.3), the Morse index of ¢x, on the left hand side of
(5.3) splits into the sum of the Morse indices of the functional on the right hand side of
(5.3). Note that the dimensions of spaces appeared in (5.3) satisfy

der = Y dro (5.4)

wh=1

Thus by Theorem 2.1, we obtain the following Bott-type formula for v € P (2n).
Theorem 5.1. (cf. [Loll]) For any 7 >0, v € P,(2n), and m € N, there hold

imr (:Y) = imﬂr,l(;?) = Z i‘r,w('Y)a (5'4)
wm=1
Vme(7) = Umea(3) = Y vrwl7): (5.5)

Idea of the proof. For the general case of v € P,(2n). Choose 8 € P,(2n) such
that B(r) = v(r) and 8 ~ . We obtain i, ,(8) = i, .(v) for all w € U. From g~ v
with fixed end points, this homotopy can be extended to {0,1] x [0,k7]. By the inverse
homotopy Theorem 1.12, we then obtain % ~ v*. Thus i, (8%) = ikr(v¥) holds. Then

the Bott-type formulae (5.4) and (5.5) for 8 imply those for 7. This completes the proof
of Theorem 5.1. -

As a direct consequence of Theorem 5.1, we obtain

ikr(’yk) _ 1 : 27

E T an 2 eI
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By Lemma 4.2, the function i, (w) is locally constant and wr (w) is locally zero on U except
at finitely many points. Therefore the right hand sides of above equalities are Riemannian
sums, and converge to the corresponding integrals as k — oo. This proves the following

result.
Theorem 5.2. (cf. [Loll]) For any 7 > 0 and v € Pr(2n) there hold

2 o . ikr('?) . _1__/ K

()= Bm == 7w (Y)dw, (5.6)
. L Vs (F) 1 f

() = ki{]-:-loo r oy Vr w(y)dw = 0. (5.7)

Specially, 1-(7) is always a finite real number, and is called the mean Maslov-type index

per T fory.
As a direct consequence of Theorem 5.2, for any v € P, (2n) we obtain

U (V) = ki (v),  VkeN. (5.8)

Then through the fundamental solution v, of (1.2) with B(t) = H" (¢, z(t)), the mean
index per period 7 of a 7-periodic solution z of the nonlinear system (1.1) can be defined
by

ir(z) = 1 (Va)- (5.9)

When 7 is the minimal period of z, we denote by i(z) = i, (z). This yields a new invariant
to each periodic solution of the system (1.1).

Remark 5.3. As proved in [Loll}, for a fixed Sturm system (2.8) and the corre-
sponding path y € P-(2n) as the fundamental solution of the system (1.2} with coefficient
B defined by (2.9), our w-index pair (ir.u(7), ¥rw(7)) and the index functions A{w) and
N(w) of R. Bott defined in [Bo] satisfy

iro(7) = Aw), vru(y)=Nw), Ywel. (5.10)

Note that in [Ek3] the standard symplectic matrix is given by —J. For the fundamental
solution v of a fixed linear Hamiltonian system (1.2} with negative definite coefficient
B € C(S;, Ls(R?®™)), our w-index and the index functions jr{w) and n,(w) of I. Ekeland
defined in the section 1.5 of [Ek3] satisfy

Vrw(7) = nir (W), VweU, (5.11)
i'r,l("Y) + V-r,l(’Y) - _jr(l) -, (5'12)
br (V) + V() = —Jr(w), Vw e U\{1}. (5.13)

By (5.10) and (5.11)-(5.13), our above theorems generalize the well known Bott formu-
lae (Theorem A of [Bo] with periodic boundary condition) for Morse indices of closed
geodesics, and the Bott-type formulae of Ekeland indices (Corollary 1.4 of [Ek3]) for convex
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Hamiltonian systems, and corresponding result of C. Viterbo in [Vil] for non-degenerate
star-shaped Hamiltonian systems.

§6. Iteration inequalities.

In many of our applications, we need sharp increasing estimates on the iterated

Maslov-type index im,(y™) for v € P,(2n). These results are proved in {LL1] based
on results in [DL] and in [LL3] based on results in [Lol1].

Theorem 6.1.(cf. [LL1] and [LL3]) 1° For any v € P,(2n) end m € N, there holds
Mir(7) =1 i (V") < i (7) + 1= v (7™). (6.1)
2° The right hand side equality in (6.1) holds for some m € N if and only if
LpoN:y (1, =1)°(P) & OO~ (7))

for some integer p € [0,n]. Specifically in this case, all the eigenvalues of v(7) equal to 1
and v (y)=n+p>n.

3% The left hand side equality in (6.1) holds for some m € N if and only if
IrqoN1(1,1)°079 € QO((r))

for some integer q € [0,n]. Specifically in this case, all the eigenvalues of v(7) equal to 1
and v (v)=n+q > n.

4° Both equalities in (6.1) hold for some m = m; and m = my € N respectively if
and only if y(7) = I,.

Theorem 6.2.(cf. [LL1] and [LL3]) 1° For any v € P, (2n) and m € N, there holds

Tn’(i'r (7) T Ur (7) o n) TN = v (7) < i'm‘r("ym)
S m(?"r (’7) + ﬂ) - N - (me(,ym) - ‘UT(’Y))‘ (62)

29 The left equality of (6.2) holds for some m > 1 if and only if there holds
IZpONl(]-) —-l)quK = QO(’}’(T))

for some non-negative integers p and q satisfyingp+q < n and some K € Sp(2(n—-p—q))
satisfying o(K) C U\R. In this case, all eigenvalues of K on U+ (on U~ ) are located on

the open arc between 1 and exp(27/~1/m) (and exp(—27y/—1/m)) in Ut (in U~) and
are all Krein negative (positive) definite.
3¢ The right equality of (6.2) holds for some m > 1 if and only if there holds
IppoN1(1,1)°"0K € Q°(y(7))
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for some non-negative integers p and v satisfying p+r < n and some K € Sp(2(n—p—1))
with o(K) C U\R satisfying the following conditions:

If m > 2, all eigenvalues of K locate within the closed arc between the points 1 and
exp(2my/—1/m) (and exp{—27v/—=1/m}) in UT\{1} (in UT\{1}) possess total multiplicity
n—p—r, and are all Krein positive (negative) definite.

If m = 2, there holds (—I5,)oN1(=1,1)%H € QYK for some non-negative integers
s and t satisfying0 < s+t <n—p—r, and some H € Sp(2(n —p —r — s —t)) satisfying
o(H) ¢ U\R and that all elements in o(H) N U* (or o(H)N U~ ) are all Krein positive
(or negative) definite.

4° Both equalities of (6.2) hold for some m = m, and m = my € N respectively if and
only if v(7) = I2n.

Remark 6.3. 1° Note that there holds vy, (™) = v, (v) for any v € P;(2n) and
m € N.

9° By Theorem 2.2, our above theorems also work for the Morse index theory in
the calculus of variations and closed geodesics. Note that in particular, our Theorem 6.1
improves the inequality of Morse index theory for closed geodesics

Iim'r (’Ym) - mar(7)‘ <n,

proved by H. Rademacher in [Rd] of 1989.

3° When v € P,(2n) is the fundamental solution of a linear Hamiltonian system (1.2)
with B € C(S;, Ls(R?")) being negative definite, the Ekeland index (cf. Section L4 of
[Ek3]) is also defined for v which we denote by

(2 (), vE(7)) € ({0} UN) x {0, 1,...,2n}.

By (5.11) and (5.12) as proved in [Br] and [Lol2], the following relation between the
Maslov-type index theory and the Ekeland index theory holds:

v () = vE (7), (6.3)
ir(7) + vs (v) = _if(’Y) - n. (6.4)

As a direct consequence of (6.3), (6.4), and Theorem 6.2, we obtain the following inequal-
ities for such a v and any m € N,

m(EZ () + vE(y) - vE () < i5.(v™)
< mGE(y) +2n) — 2n — (WE (v™) = vE(), (6.5)

with the corresponding equality conditions. Here the left hand side inequality in (6.5),
which follows from the right hand side incquality of (6.2), recovers Theorem 1.5.1 of [Ek3].
Ekeland's this theorem can also be obtained from the left hand side inequality of (6.2).
Our proof of these theorems is based on the following result proved in [LL3]. In partic-
ular, this proof uses the properties of the w-index theory, splitting numbers on homotopy
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components of symplectic matrices, and mean indices are very crucial in the proofs. Let
U™ and U~ denote the upper and lower closed unit semi-circle in the complex plane C.

Proposition 6.4. (cf. [LL3])) 1° For any v € P,(2n) andw € U\{1}, there always
holds

() (V) - S i) Sie(r) - vru (). (6.6)

2° The left equality in (6.6) holds for some w € U+\{1} (or U~\{1}) ¢f and only +f

there holds
Topo Ny (1, —1)°T0 K € Q% ~(7))

for some non-negative integers p and q satisfying 0 < p+ g <nand K € Sp(2(n — p—q))
with o(K) C U\R satisfying that all eigenvalues of K located within the open arc between
1 and w in U™ (or U~ ) possess tolal multiplicity n — p — q and are all Krein negative {or
positive) definite.

3% The left equality in (6.6) holds for allw € U\{1} if and only if

IQ;JOIVI(]-) —1)0(’1_;)) € QO(’Y(T))

for some integer p € [0,n]. Specifically in this case, all the eigenvalues of v(7) equal to 1
and v.(y)=n+p>n.
4% The right equality in (6.6) holds for some w € UT\{1} (or U\{1}) if and only
only if there holds
I;poN1(1,1)°0K € QO('y('r))

for some non-negative integers p and r satisfying 0 < p+r <n and K € Sp(2(n—p—r))
with a(K) C U\R satisfying that all eigenvalues of K located within the closed arc between
1 and w in UT\{1} (or U~\{1}) possess total multiplicity n — p ~ r; if w # -1, all
ergenvalues in o(K)NU* (or ¢(K) U~ ) are all Krein positive (or negative) definite; if
w = —1, there holds
(—Ias)oN1(—~1,1)%H € Qo(K)
for some non-negative integers s and t satisfying 0 < s+t < n — p—r, and some H ¢
Sp(2(n —p—r — s —t)) satisfying o(H) C U\R and that all elements in o(H)YNUt (or
o(H)NU~ ) are all Krein positive (or negative) definite.
5% The right equality in (6.6) holds for all w € U\{1} if and only if

IpoN1(1,1)°P) ¢ Qo(v(T))

for some integer p € [0, n]. Specifically in this case, all the eigenvalues of v(7) must be 1,
and there holds v, (y) =n+p > n.

6% Both equalities in (6.6) hold for all w € U\{1} if and only if v(7) = I2,.

Idea of the proof. The proof of (6.6) is based on the estimate of the difference
between i.(y) = i, () and i, ,(v), which is expressed by a sum of splitting numbers
when the parameter runs from 1 to w on U:

k
irw () = 6 (7) + S5 (1) = DI85 (wy) = Sy i)l ~ Sy (W),

=1
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Then apply properties of the splitting nunbers to get (6.6). For proofs of other parts of
the theorem, we refer to [LL3] for details. 5
Now based on the Proposition 6.4, we can give the proofs of 1’s of Theorems 6.1 and
6.2 below. The necessary and sufficicnt conditions of these two theorems follow from the
corresponding claims in Proposition 6.4 which we refer to [LL3] for details.
Proof of 1° of Theorem 6.1. By Theorem 5.2, integrating (6.6) on U we obtain

ir(7) + o (1) = n < i (7) S ir(7) + (6.7)

Replacing 7 by m7 in (6.7), by (5.8) we obtain (6.1). |
Proof of 1° of Theorem 6.2. By Theorem 5.1, summing (6.6) up over all m-th
roots of unit, we obtain

(m — 1) (y) +vr(v) — 1) + ir(7) < s (Y7)
< (= D)(i-(7) +n) + i (7) = Wme (™) = v2 (7))

This yields (6.2). 1
The following result follows from Theorems 6.1 and 6.2 immediately.
Lemma 6.5.(cf. [LL3]) For any v € Pr(2n) and m € N, there hold

imT('Ym) - T:T('Y) .
T = M) =n>0, (6.8)

tmr (’Ym) + Vm-r(’Ym) — UT(’Y) - i'r('Y)

m<1l+

m<1+ i . if () +n <0, (6.9)
sﬁﬂﬁ%if,ﬁ%4ﬂ>m (6.10)
= e (/") -: IE:)T(W) i L) <o (6.11)

A direct consequence of these estimates is the following
Corollary 6.6.(cf. [LL3]} Suppose for v € Pr(2n) and integers m,p € N, g€ Z,
there hold

imr(YM) Snt g, (V) (7)) 2t (6.12)
Then there holds om 4
m < np g (6.13)

In particular, if p = ¢ = 1, we obtain m < 2n + 1.

From Theorem 6.2, we obtain

Theorem 6.7.(cf. [LL3]) 1° Suppose for v € P-(2n) and integers m,h € N and
l,s € Z, there hold

l_
e S ) 2s B EnMEhzadl [f2E <1 619
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where {a] = max{k € Z |k < a} for anya € R. Then there holds
1<m<2 and 0<I[-s. {6.15)
2° Moreover, L+ n < s+ h and m = 2 in (6.14) only if there holds
LpoN (1, =1)°%0K € Q0 (~y(r), (6.16)
for some non-negative integers p and q satisfying) < p+q<n and K € Sp(2{n~p—q))
with o(K) C U\R satisfying that all eigenvalues of K located on U™ {or U~ ) possess

total multiplicity n — p — q and are all Krein negative (or positive) definite. In this case
there exists an integer k > 1 such that there hold

ir(v)=2k+n—-2p—g=3s, (6.17)
ve(y)=2p+qg=h — s, (6.18)
i (v7) =4k +n—2p-q =1, (6.19)
h—n={-—s=2k>2 (6.20)

3% There exists a path v € P,(2n) satisfying the conditions in 2° such that (6.14)
holds withl +n = s+ h and m = 2.

A direct consequence of Theorem 6.7 is the following
Corollary 6.8.(cf. [LL3]) Suppose for v € P,(2n) and some m € N and peEZ,
there holds
P Zim- (7", i(v) 2 p -1, (Y v (y) 20+ L (6.21)

Thenm = 1.

Corollary 6.9.(cf. {DL] and [LL3]) Suppose for v € P,(2n) and some m € N there
holds

n+1l2im(v"), (¥)>n, v (v) = 1. (6.22)

Then m =1.

Remark 6.10. Corollary 6.9 was first proved by D. Dong and Y. Long in [DL] by
a rather different method. Corollary 6.8 also generalizes the Theorem 3.3 of [WEF| which
requires p =n + 1 in (6.21).

§7. Precise iteration formulae.

The Bott-type formula Theorem 5.1 is a powerful tool to compute and estimate the
Maslov-type indices for iterations of paths in Pr(2n). Note that a different method of
computing and estimating the Maslov-type indices for such iterated paths have been de-
veloped in [DL], [Lo15], and [Lo16]. The main idea is to reduce the computation of the
index of a given path to those of paths in Sp(2) and some special paths in Sp(4) ending
at the basic normal forms by a sequence of homotopies in the sense of Definition 1.3. But
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in terms of the cylinderical coordinate representation of Sp(2) in R3, the computation of
the Maslov-type index of any path in Sp(2) starting from [ is almost obvious. The cases
in Sp(4) can also be reduced to the case of Sp(2). This method yields rather precise in-
formation on the Maslov-type indices for iterations with very simple proofs. This method
is equivalent to the method of Bott-type formulae. For example, a different proof of the
Bott-type formulae {2.17) and (2.18) can be given by computing both sides of {(2.17) and
(2.18) on paths in P, (2) U P,(4) endiug at basic normal forms in Definition 4.5.

The following is the main result in {Lol6].

Theorem 7.1. (cf. [Loll]) For any M € Sp(2n), there is an f € C([0, 1], Q%M))
such that f{0) = M and

f(]_) :Nl(l, 1)019_ OIQPOONl(l, —1)0p+0N1("1, l)oq_ O(—IQQO)ONl(—l, _1)oq+
OR(al)o e 'OR(QT)ON‘Z (wh ul)o ce ONZ(WT. ) ur.)
oNg()\l,’Ul)O- --ONQ(/\,.U,‘U,.D)OMD, (7]_)

where p_,Po, Pard—, 40, 44,7 s, aned 19 are nonnegative integers; w; = evTlai Ay =

eV=18i - 0 a;, B; € (0, m)U(m,2m); No(w;, uz)’s are nontrivial and Na(Aj,v;)’s are trivial
gr Xgs Mj 3y Uj AR

basic normal forms; o(My) N U = 0. We denote by

I(m,8) = —[[m8/(2r)] — mB/(2w)] € {0,1}, VmeN,0 € R. (7.2)

The integers p—, Do, P+, >0, G+ 7 sy 70, Z;‘:ll(m, ;) — T, and Zgil I(m,3;) — 1o,
and the real numbers 6; for 1 < j < r, are uniquely determined by M.

Note that I(m,8) = 0 if m§ = 0 mod 2m, and I(m,6) = 1 otherwise. The following is
the main result in this section.

Theorem 7.2. (cf. {LolG]) For 7 > 0, let v € Pr(2n). In Theorem 7.1 we let
M = v(7) and use notations there. Then for any m € N there hold

imr(7™) = m(ir(v) + p= + Po —T) + 2> _[mb;/(2m)]

i=1
~p- —Ppo— 1+—(2_1_)2(QO+(I+) +2) I(m,8;) —r
=1
+ 2(2 I(m,a;) — 1), (7.3)
=1
e (™) = )+ D 0 2g0 4 0.) + 20(m, (), (7.4

where we denote by

o(ma (1)) = (r = S 1(m,8) + (e = 3 I(mya)) + (ro = D I(ma B)). (7.5)
j=1 J=1

=1
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Remark 7.3. Note that usiug Theorem 7.2, results in the Section 6 can also be
proved.

Based upon Theorem 7.1, the proof of Theorem 7.2 is reduced to paths in Pr(2)
and P, (4) with end matrices listed in (7.1). To illustrate the computations of Maslov-type
indices for iterated paths, next we give a pictorial proof of the iteration formulae for several
most important cases which we shall need in the later sections of our applications. For
more details about this computation, we refer to [Lo16] as well as {DL] and [Lo15]. In the
following we fix a 7 > 0 and use simply v to denote its iteration path 7.

Let Sp(2)3 = Q%M (1, 71)).

Case 1. v € P2(2) and (1) € Sp(2)°.

In this case we must have k = () being odd and vr(v) = 1. From the fact
(Sp(2)°)™ < Sp(2)°, we obtain Ymr(y) = 1 for all m € N. From the Figure 7.1 we
obtain i-(y) = (k+1) — 1, and iy, (v) = m(k + 1) — 1 for all m € N. Thus in this case we
obtain

imr(Y) =mliz(V)+ 1) =1, vm,(y)=1, VYmeN. (7.6)

Note that this formula can also be obtained from the Bott-type formula (2.17).

TN

»

¥]
S 561°

Tx

Figure 7.1. Computation of indices for iterations of the path v in the Case 1.
Case 2. v € P.(2n) and v(7) = I.

Similar to the case 1, we must have i.{v) being odd and v, (y) = 2. In this case we
obtain

Z."’l"l"'("Y) = Tn(iT(FY) + 1) -1, v (7) =2, VmeN. (77)
Case 3. v € P,(2n) and vy(7) € Sp(2)Y.
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In this case, we must have i,(y) being even and v, (v) = 2. Similar to the case 1 we
obtain

imr(’Y) = mi, (7)7 Vm'r('Y) =1, VmeN. (78)

Case 4. 7 € P,(2n) and o(y(7)) = {a,a™'} with a € R\{0, £1}.
In this case we have that i-(v) is odd if @ < 0 and i.(7) is even if @ > 0. Similar to
the case 1 we obtain

b (V) = M (), Vme(7) =0, VmeN, (7.9)
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Chapter 3. Applications to Hamiltonian Systems.

We have introduced the iteration theory of the Maslov-type index in the previous sec-
tions. We believe that this theory is important to many problems related to Hamiltonain
systems. In this chapter, we introduce three applications of this iteration theory to the
prescribed minimal period problem, stability problem, and multiplicity problem of nonlin-
ear Hamiltonian systems obtained by D. Dong and the author in [DL], by the author in
[Lo12] and {Lol4], and one application of the Maslov-type index theory to the instability
problem of linear Hamiltonian systems obtained by T. An and the author in (LA]

§8. Rabinowitz’ conjecture on prescribed minimal period solutions.

Let us consider the following periodic boundary value problem of the autonomous
Hamiltonian systems,

T =JH (x), (8.1)
z(r) = z(0). (8.2)

Suppose the Hamiltonian function H satisfies the following conditions:
(H1) H € C}(R**,R)
(H2) There exist x4 > 2 and ¢ > 0 such that there hold

0 < pH(z) < H'(z) -z, V|z| = 7o,

(H3) H(z) = of|z|?) at = = 0.

(H4) H(z) > 0 for all z € R?".

In his pioneering work [Ral| of 1978, Rabinowitz proved the existence of non-constant
period solutions of (8.1)-(8.2) with any prescribed 7 > 0 under these conditions. Because &
7/k-periodic function is also a T-periodic function for every k € N, Rabinowitz conjectured
that this problem possesses a non-constant solution with any prescribed minimal period.
Since then, a large amount of contributions on this conjecture have been made by many
mathematicians. Among all these results, two kinds of methods are used to determine the
minimality of the period of a solution. The first method depends on a priori estimates on
the solutions, and is used by many authors (cf. [AM)], [CE1], [CE2], [De], [Ek3], [GM1],
[GM2], [Lo7]). The second method depends on the dual action principle of convex Hamil-
tonian systems, the iteration inequality of Morse-Ekeland index theory, Bott’s formula,
and Hofer’s topological characterization of Mountain-Pass points. This method is firstly
introduced by Ekeland and Hofer in their celebrated paper [EH], and has been used by
many other authors to various convex Hamiltonian systems (cf. [AC], [Ek3], [GM3]).

Different from these two methods, in [DL] D. Dong and the author introduced a
new method, the iteration method of Maslov-type index theory, to study this prescribed
minimal period solution problem. In this section we apply the iteration formula of the
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Maslov-type index theory to this problem and describe two recent results obtained in [DL)
via the iteration formula of the Maslov-type index theory.

Example 1. n =1, i.e the problem on R2.

Under suitable conditions on H, using the saddle point theorem, the saddle point re-
duction method or Galerkin approximation method, one can find a 7-periodic non-constant
solution zo of (8.1)-(8.2) such that there holds

n41—vr(mg) <ir(ze) <n+1, 1< w(zg) <2n (8.3)

Denoting the minimal period of @ by 7/m = § for some m € N, and the restriction of x
to the interval [0, 7/m] by z. Since in our case there holds 7 = 1, we obtain

2~ Vnu‘i(a:?”) _<_ i?né(ﬂjm) S 21 1 i Vrnﬁ(:nfn) S 2. (84)

Let v = vz. Then we distinct onr further study n two cases:
Case 1. v(6) € Sp(2)% or v(8) = 1.
By (7.6) and (7.7) we obtain

is(z) isodd, ims(z™) = m(is(z) + 1) =1, 1 <yps(z™) <2 (8.5)

Plugging (8.5) into (8.4) we obtain 0 < m(is(z)+1)—1 < 2. This yields 1 < m(is(z)+1) <
3. Thus is{x)+1 > 1. But is(z) is odd, there must hold i5(z)+1 > 2. This implies m = 1.
Case 2. v(§) € Sp(2)2 orv(8) = 1.
By (7.8) we obtain

i5(x) is even, ims(z™) = mis(z), vms{z™)=1. (8.6)

Plugging (8.6) into (8.4) we obtain 1 < mis{x) < 2. This yields is{z) > 1. But is{z) is
even, there must hold 75(z) > 2. This implies m = 1.

Therefore we have proved

Theorem 8.1. For r > 0 suppose T is a non-constant T-periodic solution of (8.1)-
(8.2) satisfying (8.3) with n = 1. Then x possesses T as its minimal period.

Note that by Example 11.6 given in [DL], when n > 2 the condition (8.3) is not
sufficient to yield the minimality of 7 as the minimal period of z.

Example 2. Controlling the minimal period via Maslov-type indices.

The main tool in our following study is the Corollary 2.21.

Theorem 8.2. Suppose the following condition holds:

(H1’). H € C*(R*",R).
For v > 0, let z € C*(S,,R*™) be a 7-periodic solution of the problem (8.1)-(8.2) with
minimal period T/k for some k € N. If the Maslov-type indices of © satisfy the following
conditions:

(X1) i.(r)<n+ 1.

(X2) irs(zlio,r/x)) 2 70
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Then k =1, t.e. the solution x possesses minimal period 1.

Proof. Note that (8.1) is autonomous, and z is not a constant function. Thus T i
a nontrivial 7/k-periodic solution of the linear system (1.2) with B(t) = H"(z(t)). This
proves that the following condition holds:

(X3) Veausr(zlio,r /) > 1.

Now we can apply Corollary 2.21 to the solution z, and conclude that k=1,1le x
possesses minimal period 7. 1

Note that the condition (X1) is satisfied by solutions obtained via the saddle point
theorem, the condition (X2) is satisfied if H is convex along the orbit of z, and the condition
(X3) is satisfied if (8.1) is autonomous and z is not constant. Thus our Theorem 8.2 actually
already contains all the results on Rabinowitz’ conjecture so far under various convexity
conditions mentioned earlier. Specially, Theorem 8.2 points out that the minimality of the
given period 7 is completely determined by the Maslov-type indices of the solution, and
does not depend on the particular method which was used to obtain the solution.

The following result with more accesible condition on H is proved in [DL].

Theorem 8.3.(cf. [DL]) Suppose the Hamiltonian function H satisfies (H1’), (H3),
(H4), and for some 7 > 0 the following conditions hold:

(HT) There exists a positive definite matriz B € LR such that

H'(z) = Bz + o(|z|) as |z} — oo.

with i, (B) > n and v, (B) = 0.

(H5) H"(z) >0 for all z € R?".

(H6) The set D= {z € R¥|H'(z)#0, 0 € o(H"(z))} is hereditarily disconnected,
i.e. every connected component of D contains only one point.

Then the problem (8.1) and (8.2) possesses a nonconstant T-periodic solution with =
as its minimal period.

Idea of the proof. Note that (H1'), (113), (H4), and (HT) imply the existence of a
T-periodic nonconstant solution zp of (8.1)-(8.2) such that (X1) holds. By (H5) and (H6)
we obtain (X2). Thus Theoremn 8.2 can be applied to conclude that 7 is the minimal period
of zg. (]

Note that using the method of [DL], G. Fei and Q. Qiu proved the following result by
the Galerkin approximation method.

Theorem 8.4.(cf. [FQ2]) Suppose the Hamiltonian function H satisfies (H1’), (H2),
(H3), (H4), (H5), and (HG). Then for any T > 0, the problem (8.1) and (8.2) possesses a
nonconstant T-periodic solution with T as its minimal period.

Note that the conditions (H5} and (H6) are weaker than the condition H"(z) > 0 for
all z # 0 used in [EH] and [Ek3]. Thus Theorems 8.3 and 8.4 generalize corresponding
results of 1. Ekeland and H. Hofer. In [LL3], Theorem 8.4 was slightly generalized.

Remark 8.5. Note that recently a new method has been introduced into the study of
the prescribed minimal period solution problem for the second order Hamiltonian systems
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without convexity conditions by [Lo5, [Lo6], and [Lo8]. We consider the existence of non-
constant periodic solutions with prescribed minimal period for the following autonomous
second order Hamiltonian systems,

T+ Vi) =0, Yz € R", (8.8)

Then we have the following result under precisely Rabinowitz’ original structure conditions.
Theorem 8.6.(cf. [Lo5] and [Lo8]) Suppose V' satisfies the following conditions:
(V1) Ve C*R",R).

(V2) There exist constants p > 2 andry >0 such that

0< puViz) <Viz) =z viz| > rg.

(V3) V{z)=>0 Y € R,

(V4) V(z)=oflz*), at z=0.
Then for every v > 0, the systemn (8.8) possesses a non-constant T-periodic even solution
with minimal period 7/k for some integer k satisfying1 < k <n+ 1.

Theorem 8.7.(cf. [Lo5] and [Lo8]) Suppose V' satisfies conditions (V1)-(V3) and
the following condition,

(V5) There exist constants w > 0 and rq > 0 such that

Viz) < |::;|2, V|z| < r1.

o | &

Then for every positive 7 < 3\/—%, the conclusion of Theorem 8.6 holds.
Our proofs of these theorems depend on a new iteration inequality of the Morse index
theory for the functional corresponding to the system (8.8) defined on even function spaces.
We refer readers to {Lo5} and [Lo8] for more details, and to [Lo6] for further results in this
spirit.
Remark 8.8. Results for the first order Hamiltonian system (8.1) similar to Theorems
8.6 and 8.7 are still unknown. We suspect that this may reflects a substantial difference

between first order and second order Hamiltonian systems.

£9. Hyperbolic closed characteristics on compact convex hypersurfaces in
R2".

In this section, we introduce a result proved in [Ek2] and [Lol2] on the stability
problem of closed characteristics in prescribed energy surface in R?", which depends on
the precise iteration formula of the Maslov-type indices of hyperbolic periodic solutions of
Hamiltonian systems.

Let ¥ be a C? compact hypersurface in R2" bounding a convex set C' with non-empty
interior. We denote the set of all such hypersurfaces in R2* by H(2n). For z € ¥ let
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Ns(z) be the unit vector on the outward normal to T at z. We consider the given energy
problem of finding 7 > 0 and an absolutely continuous curve z : [0, 7] — R2" such that

{ B(t) = JNs(e(t), z(t)e X, VteR, (9.1)

z(7) = 2(0).

A solution (7,z) of the problen: (1.1) with 7 being the minimal period of z is called
a closed characteristic on . Denote by J(Z) the set of all closed characteristics on X,
To cast the problem (9.1) into a Hamiltonian version, we follow the Chapter V of [Ek3].
For a given £ € H(2n) bounding a couvex set €. Without loss of generality we assume
that the origin is in the interior of C. Let jo : R2 - [0, +00) be the gauge function of C
defined by

je(0)=0 and  jol(z)=inf{A] % €C} for z#0.

Fix a constant « satisfying 1 < « < 2 in this section. As usual we define the Hamiltonian
function H, : R*™ — [0, +00) by

Ho(z) = jo(z)?, Vi e R,

Then H, € C*(R>™, R) N C*(R*™\{0}, R} is convex and & = HI1(1). It is well known
that the problem (9.1) is equivalent to the following problem

{:i:(t):.]H;(g:(t)), Hy(z(t)) =1, Vi € R, ©.2)

z(1) = x(0).

A solution (7, z) is hyperbolic, il in o(y,(7)) except that 1 is a double eigenvalue all
the other eigenvalues are not on the unit circle U in the complex plane C.

Note that if we use our matrix J through out all the discussion in [Ek3], by [Br] and
[Lo12] we obtain (6.3) and (6.4). Thus by Theorem V.4 of [Ek3], there exist o & (1,2)
sufficiently close to 2 and ¢y > 0 sucl: that for every k& € N there are a solution (r,z) of
(9.2) and an m € N satisfying

ir(x)
R Sad P .
- =~ Cp, (9 3)
I (2™) <2k = 24 10 <A (2™) + e (2™) — 1. (9.4)

In this case we call (7, z) being (k, m)-variationally visible.

Next we study the structure of the associated symplectic matrix v, (7) of (7,z) for
any (1,z) € J(Z,0) with 1 < a < 2.

Now by Lemma 1.7.3 of {Ek3], the non-zero vectors 4(0) and z(0) satisfy

{%(T)i‘(o) = z(0),
Ve (7)2(0) = 7(a ~ 2)3(0) + z(0).
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Define
& =7(a—2)2(0), & =z(0). (9.6)
Then (9.5) becomes

{'YJ:(T)EI = &1, (97)

'7:1:(7-)52 = &1 + &2,

Lemma 9.1.(cf. [Lol12]) Forl < a < 2 and (1,z) € J(Z, ), there exist matrices
P € Sp(2n) and M € Sp(2n — 2) such thal there holds

755(7) = P(Nl(l’l)oM)P_l’ (98)

where N1(1,1) is defined in the Definition 4.5. Note that there holds Ni(1,1) € Sp(2)°
(cf. The section 3).

Idea of the Proof. Fix (r,z) € J(E,a) and define &, and &; by (9.6). Firstly, we
use the star-shape property of & and 1 < o < 2 to show

€17 = (o — 2)(H,(x(0)), 2(0)) < 0. (9.9)

Secondly, we use (9.9) to show {£1,&2} form a Jordan block of v5(7). belonging to the
eigenvalue 1. Then (9.8) follows from these result by choosing a symplectic coordinate
system suitably. 1

Remark 9.2. Lemma 9.1 holds for & = 2 or @ > 2 with Ny(1,1) in (9.8) being
replaced by I or N1(1, —1) respectively.

Note that Lemma 1.7.3 of [Ek3] and the discussions on the pp.407-408 of [Ek2] only
proves that the vectors #(0) and z(0) satisfy (9.5). Our Lemma 3.2 further proves that
they actually form a 2-dimensional invariant subspace of vz(7) belonging to the eigenvalue
1, no matter whether z is hyperbolic or not. Specially our Lemma 9.1 on 7,(7) is stronger
than (7) of (Ek2].

Suppose (7, ) is a hyperbolic solution of (9.2). From (9.8), since P can be connected to
I in Sp(2n), there is a path k : [0, 7] — Sp(2n) such that h(0) = 7. (1), dimker(h{s)—I) =1
for all 0 < s < 7, and h(7) is of one of the following forms:

N1(1,1)oD(2)0 - -oD{2)oD(-2), (9.10)
Ni(1,1)eD(2)0---oD(2)oD(2). (9.11)

Then by the homotopy invariance of the Maslov-type index theory described in the Theo-
rem 1.11 for any m € N there hold

imr (V) = mr (B ¥ Ye)s Vs (Yz) = Vmr(h * Ye)- (9~12)

Here for notational simplicity, we identify a path + and its iterations. Therefore from
(9.10)-(9.12), (7.6), and (7.9) {or by (7.3) and (7.4)) we obtain

ime(2™) = m(ED +1) = 1+ mi? + -+ 4 mil™ (9.13)

=mii-(z)+1) -1, ¥Ym e N, (9.14)

vme(z™) =1, ¥m € N, (9.15)
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and i,(z) is even if (9.10) happens, i,(z) is odd if (9.11) happens. Here in (9.13) we use
i) to denote the index of the k-th path in P, (2) corresponding to the k-th 2 x 2 matrix
in (9.10) or {9.11).

Remark 9.3. As proved in [Lo12], similar to (9.14) and (9.15) for hyperbolic (r,z) €
J (%, a}, there hold i, (x) > n and

tme (27} = mir(2) + 1) = 1, vp,(a™) =2, VYme N, if a=2,

tmr (Z™) = mi (), Vme(z™) =1, Vme N, if a> 2.

Note that all these iteration formulae for hyperbolic paths are special cases of Theorem
7.2.

Now from (9.4) and (9.15), every (k, m)-variationally visible hyperbolic solution (r,xz)
of (9.2) satisfies

imr (™) =2k — 2 + n. (9.16)
Definition 9.4. Define the variationally visible hyperbolic index cover set Ih(Z, a)
of (£,a) by
I(E,a) = {ge N[3Im,k € N and (7,z) € Vi x(Z, a) such that
q € [imr(2™), e (™) + Ve (2™) — 11}, (9.17)

and the variationally visible hyperbolic indez cover set Ip(Z, a) of (T, @) by

In(¥,a) = {g € N|3Im, k € N and hyperbolic (1,z) € Vi (2, @)
such that ¢ = i, (z™)}. (9.18)
Now we can describe the main result obtained in [Lo12]:
Theorem 9.5. (cf. [Lol2]) For eany ¥ € H(2n) and 1 < a < 2, suppose the minimal
periods of all hyperbolic variationally visible solution of (9.2) are uniformally bounded from

above. Then there holds
I(Z,a) \ Ih(Z, o) £ 0. (9.19)

Proof. Suppose (9.19) is not true, we prove it by contradiction. In this case by (9.3)
there there holds an integer go > 0 such that there hold

IN-2+nCI(Z,0) =Tn(Z, a)
C {m(i;(z) + 1) — 1| {7, z) is hyperbolic variationally visible}. (9.20)

By (9.3) and the uniformly boundedness assumption on the minimal periods, there exists
an integer go > 0 such that all {7, z) appeared in the right hand side of (9.20) satisfies
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If n is even, so is 2k — 2 + n. By (9.14), (9.15), and (9.21) all hyperbolic (r,z) €
J(, ) with odd i,(z) can not be variationally visible. Therefore there exists go € N
such that any hyperbolic (7,z) € V(I,a) must satisfy ¢, (z) = 2¢ with ¢ € [n/2,go] and
ime(z™) = m(2¢ + 1) — 1 for all m € N. This implies that the right hand side of (9.20)
must fall into only finitely many possible patterns:

{m(2¢ + 1) — 1}en. for n/2 <g < qo. (9.22)
Together with (9.20) there holds
ON —24nC{m(2¢+1)—1|n/2 <q<q}. (9.23)

Now we choose a prime number p > max{n,2qp + 1}, and define k = (p +1 — n)/2.
By (9.23) there must exist integers ¢ € [n/2,qo} and m € N such that there holds

p=2k—1+n=m(2q+1). (9.24)

Since p > 2go + 1, we must have m > 1. This contradicts to the choice of p, and proves
the Theorem when n is even.

The proof for odd = is similar and can be found in {Lo12], thus is omitted. 1

A direct consequence of this theorem is:

Theorem 9.6. (cf. [Lol2]) On every C*-compact hypersurface T in R?" bounding
a conver set with non-empty interior, either there exists a sequence of variationally visible
hyperbolic closed characteristics with their minimal periods tending to infinity, or there
exists at least one variationally visible nonhyperbolic closed characteristic.

Remark 9.7. The existence of at least one closed characteristic on any X € H(2n) was
first established by P. Rabinowitz [Ral] (for a much wider class of hypersurfaces) and A.
Weinstein [We] independently in 1978. The question of whether there exists nonhyperbolic
closed characteristic on any ¥ € H(2n) is a long standing problem in Hamiltonian dynamics
as mentioned at the end of [Ek3] by I. Ekeland. We refer the readers to [Del], [DDE], and
[Ek3] for further results and references therein. Note that in the recent paper [LL2] of C.
Liu and the author, Theorems 9.5 and 9.6 have been generalized to star-shaped compact
smooth hypersurfaces in R?".

§10. Multiple periodic points of the Poincaré map of Lagrangian systems
on tori.

In this section, we use the iteration inequality (6.1) together with other techniques to
study the multiplicity of periodic solutions of Lagrangian systems on tori.
We consider the following Lagrangian system

d
aLi(t,a:,:t) — Ly(t,z,z) =0, z¢&R", (10.1)
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where L; and L, denote the gradients of L with respect to £ and z respectively. We
consider the following conditions on the Lagrangian function L:

(L1) L(t, z,p) = 3A(z)p-p+V(t. x), where TA(z)p-p > Ap|® for all (r,p) € R®* xR"
and some fized constant A > (.

(L2) 4 € C3(R™, L(R™)) 15 synunetric, V € C3R x R™, R), both A and V are
1-periodic in all of their variables.

Let L satisfy the conditions (L1) and (L2). The system {10.1) can be viewed as
defined on the standard torus T" = R™/Z". We search for T-periodic solutions of the
system (10.1) with 7 € N. Solutions () of (10.1) on 7™ determines a one parameter
family of diffeomorphisins ®f € Diff (I'T™) satistying &% (x(0), (0)) = (z(t),z(t)). We
call the time-1-map ¢, = ®} the Poincaré map of the system (10.1) corresponding to
the Lagrangian function L. The following Theorems 10.1 and 10.2 are main results in
recent {Lo15] of the author and [LLu] of G. Lu and the author.

Theorem 10.1. (cf. [Lol5]) Suppose the function L satisfies the conditions (L1) and
(L2). Then the corresponding Poincaré map &y, of the Lagrungian system (10.1) possesses
infinitely many periodic points on T™ produced by contractible integer periodic solutions.

Two solutions z; and 23 of the systemn (10.1) on 7™ are geometrically distinct, if
their orbits O(z;) = U{z;(t) € 7" {t € R} for i = 1,2 are not the same.

Theorem 10.2. (cf. [LLu]) Suppose the function L salisfies the conditions (L1),
(L2), and is independent of the time {. Then the autonomous Lagrangian system (10.1)
possesses infinitely many geometrically distinct contractible integer periodic solution orbits
on T™.

These theorems can be viewed as the generalizations of the corresponding contractible
solution structures of the foilowing simple pendulum equation:

Z 4+ Asinz = 0, (10.2)

where A = g/l, g is the gravitation constant, and { is the length of the pendulum. The
flow defined by (10.2} is shown in the Figure 10.1, where the circular orbits indicated in
the island are those found by Theorem 10.2.

The study of integer periodic solutions of the system (10.1) under the conditions
(L1) and (L2) possesses a very long history. The most standard model is the pendulum
type systems with periodic forcing terms (cf. [CLZ]). We refer to [Ral] and [FW] for
further references. Note that in Theorems 10.1 and 10.2 we have no any non-degeneracy
restriction on any solutions of (10.1). This is rather different from the many known results
for Lagrangian system (10.1) as mentioned in [FW] and those for first order Hamiltonian
systems in [CZ2], [CZ3], [LZ], [SZ1], and [SZ2]. Our these two theorems can be viewed as
a confirm answer and generalizations to the Lagrangian system analogue of C. Conley’s
conjecture on periodic points of Hamiltonian diffeomorphisms mentioned on the pages 1304
to 1305 of [SZ2]. We suspect that (10.1) always possesses infinitely many geometrically
distinct contractible integer periodic solutions with mutually distinct solution orbits on T™
provided (L1) and (L2) hold.
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Figure 10.1. The dynamics of a simple pendulum.

In this introduction of these results, we give the idea of the proof of Theorem 10.1.
Here special emphasis is given on how the iteration theory of the Maslov-type index plays a
role in such a proof. For the details of the proof of Theorem 10.1 and the proof of Theorem
10.2, we refer the readers to [Lol5] and [LLu].

In the following we fix an L satisfying (L1) and (L2). For any v € N, let S; = R/(7Z)
and E, = WL?(S,, R") with the usual inner product and the norm:

,
{z,y) = / (z-y+z y)dt, |zl = (3:,.7:)1/2, Vz,y€ FE,.
0

Define ,
fr(z) = [ L{t,z, T)dt, VzeE,. (10.3)
0

By the conditions (L1) and (L2), it is well known that f, € C3(E,,R) satisfies the Palais-
Smale condition and that critical points of f correspond to contractible 7-periodic solu-
tions of (10.1) on T™. But for distinct h,k € N, although two critical points z € Ep of
fr and y € Ey of fy are different in this analytical setting, they may produce the same
periodic point for ®; on T™. To get over this obstacle, we consider the following analytic
concepts of iterations and towers.

Let z € E, with 7 € N. For any m € N, the m-th iteration z™ € Ep, of © is
defined at the beginning of Chapter 2. We define the iteration map Y™ : Er — Ems by
¥™(z) = z™. In this case, we call {z™}men C Inen B the tower based on z € E;. A
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tower {z7} based on 2 € E, is called a subtower of another tower {y?} based on y € E,,
if there exists £ € N and j € 2" such that z = y* + j. Two towers {z?} based on z € E;
and {y?} based on y € E, arc called T"-distinct |, if there exists no tower {z™} based
onz € Eg, h,k e N, and 4,5 € Z" such that 2 = 2" + 4 and y = zF 4 j. Note that the
functional f, defined by (10.3) satisfies

fuel@™ £ j)=mf (2).  VzeR, jeZ" r,meN, (10.4)

Here the solution tower is an analytic conceps, and is not a geometric concept. Using this
concept, Theorem 10.1 can be replirased as the following

Theorem 10.3.(cf. [Lol5]) Suppose the function L satisfies the conditions (L1) and
(L2). Then the systemn (10.1) possesses infinitely many T™-distinct solution towers based
on integer periodic solutions in R™.

We prove Theorem 10.3 indircctly by supposing the following assumption:

(LEF') The system (10.1) possesses only Sinately many T -distinct solution towers based
on contractible integer periodic solutions in ™.

Therefore under (LF) we can assuine that there exist positive integers 7 and p such
that (10.1) possesses only finitely many Z"-translation independent 7-periodic solutions
{z1,...,zp} on R™ and all the other mr-periodie solutions of (10.1) on R™ for m € N are
Z™-translations of iterations of these x.°s, i.e. the critical point set K(fmr) of frur in B,
has the form

K;(f'm.‘r) = {ﬂ"xi +.7|1 < k < .7 S Zn}’ (105)

and the critical value set f,,, (K(fn-)) C R is a finite non-empty set.
The critical module of f. at its isolated critical point z is defined by

Colfryz) = H (W, W), Vg € Z. (10.6)

where (W, W) is a Gromoll-Meyer pair of f, at z and W™ is the exit sel which are
introduced in {GM], and we refer to Definition 1.5.1 on p.48 of [Ch2]. In this discussion,
we always choose the coefficient field of the homology to be R, and omit it from all the
homological notations.

Note that E,,, possesses an orthogonal decomposition

Emr =R" @ I1/'.'11”'

with Wy, formed by functions in 5,,, possessing zero mean value. Using Lemma I1.5.2
on p.127 of [Ch2] and our (10.4), we obtain that there exist two real numbers m < dm
depending on f,,, such that

CTTJ. < foLT("L‘) < dm? v x e }C(fTHT)! (10'7)

and the following isomorphisms hold:

Hn((fmr)dm , (fm?')cm) = Hn(EmT: (fm'r)cm) = Hn(Tn) ?é 0: (10~8)
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where (fimr)e = {2 € Emr | fmr(2) < c}. By the isolatedness of points in K(fmr), a slight
modification of J. Q. Liu’s theorem (Theorem I1.1.5 on p.89 of [Ch2]) which makes it work
for critical modules defined by (10.6) yields the existence of at least one critical point z of
fm~ such that

Em < fmr(Z) < dm, and Crn(fmsz) #0. (10.9)

Together with Example 1 on p.33 of [Ch2], this critical point z must be a non-minimal
saddle point. From (10.9) and the shifting theorem of [GM] (cf. also p.50 of [Ch2]), we
then obtain immediately,

Lemma 10.4.(cf. [Lol5]) By the assumption (LF), for everym € N, there erists an
mr-periodic solution yn, of the system (10.1} such that

Cn(fm‘n ym) #0 and n- er(ym) < im-r(ym) < n. (10-10)

Next we consider the homological injectivity of the homomorphism induced by the
iteration map 1™ under the assumption (LF).

By (LF) and (10.4), if necessary replacing the Lagrangian function L by L +b with a
large enough constant b > 0, we always assume in the following that there exists a constant
Ag > 0 such that for every m € N and every critical point z of frr in Ey, there holds

Fmr(T) > Ao > 0. (10.11)

Note that the following Lemma 10.5 is crucial for our proof of (10.17) below and thus
for the homological injection Theorem 10.6. The proof of Lemma 10.5 is the only place
in this paper where we need the iteration inequality (6.1) of the Maslov-type indices (i.e.
Morse indices here) proved in [LL1].

Lemma 10.5.(cf. [Lol5]) Suppose (LF) holds. Then there exists a constant Ay > Ao
such that for every m € N and every mr-periodic solution x of (10.1) there holds

Cpi1(fmr,x) =0, whenever fum.(z) > A;. (10.12)

Proof. Note that there holds z7* + j = (zx + j)™. By the shifting theorem and the
generalized Morse lemma (cf. [GM]), and the Kiinneth formula, we obtain

Cni1(fme, T + J) = Cry1-i,.. (zp) (degenerate part, 0) ® Cy,,. (z)(nondegenrate part, 0)
o ﬂJrl_im(mza)(degenera’ce part,0) ® R
& Crg1ipn, (op)(degenerate part, 0). (10.13)
Note that the dimension of the domain of the degenerate part is vm,(z}') which always
satisfies 0 < v, (27) < 2n.

If 3, (zx) > O, then for sufficiently large m € N, the right hand side of (10.13) must
be killed because of the iteration estimate (6.1). If i,(zx) = 0, then for any m € N, the
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right hand side of (10.13) is still kiiled because of the iteration estimate (6.1). This proves
the lemma. |

By (LF) and Lemma 10.4, we obtain an infinite subsequence @ of {2™|m € {0} UN},
some k € Nandanzin {x,..., iy} such that for every € Q there hold Co(frr, %) #£ 0,

Imkr (27F) = 1, (25), and vy, (27%) = 1, (x%).

To simplify notations, without loss of generality, from now on we rename kr by 7 and
suppose 1 € 0, = € {wy,...,2,}, aud for any m € :

Cn(fr,fb') # 0, ims (-’f-"m) = ?:T(:L‘)a Vi (-'Em) = VT(:E)' (10-14)
Then it is proved in [Lo15] that the iteration map ¢ induces isomorphisms
0 % Cn(fk‘ra JJk)iGﬂ.(f?nkTa -"E?“k)s v ‘l'"'a mk = Q

Let ¢ = f,(x).

Note that X(fm-)) contains only finitely many points. By Theorem 1.3.2 on p.23 and
the idea of the proof of Theorem 1.4.2 on pp.35-36 of [Ch2], there exists ¢ > 0 sufficiently
small such that

Jine (K(fonr)) 0 [m{e = 3¢), m{c + 3¢)) = {mc},

and the inclusion map

h,'z o] h,]_ : (W(Jf’n), W(-T:Tn)-)ii_}((fﬂlT}nL(c-{-Ze)a (an-r)m(c_gg))
e o
_-')((fm?')m(c+2e_)a (fm'r)m(c_ﬁ)), (1015)

induces a monomorphism on hiomology modules:

(}12 o h'l)* : Cn(fmq—,l'ﬁl) — Hn((fmT)m(cwl-Qe)'n (fm'r)?n{c_g))a (1016)

where B° denotes the interior of 5.

If Hor1(Emr, (fr)miet2ey) # 0, using (LF), a slight modification of J. Q. Liu’s
theorem (Theorem II.1.5 on p.89 of [Ch2]) as in the discussion on (10.9), we would obtain
a critical point z of f,,, such that Crs1{finr,2) # 0. When m is sufficiently large, this
violates Lemma 10.5. Thus there exists mg > 0 such that

Hn+1(E1nT: (fTTlT)?n(C+2E)) =, Vm e Q(mo) (1017)

Here we denote by Q(k) = {m € Q|m > k}. Then the exact sequence of homology
modules for the triple

(Em‘ra (an.T)m(c+2£): (fnw):n(cue))

shows that the inclusion map

}13 . ((fmv“)m(c+2e)a (f‘-"n?',s):n(c—e)) - (Em-r: (fmr)?n(c_e)) (1018)
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induces a monomorphism on homology modules:

(h«3)* : Hn((fm'r)m(c+2e): (fmr)?n(c_e)) - Hn(Enrr: (fmr)?n(c_e))- (1019)

Summarizing our discussion now, there exist a 7-periodic solution of (10.1) with 7 € N,
an integer mg > 0, an infinite integer set (@ containing 1, and a small ¢ > 0 such that for
Jmr = hzohaohy and all m € Q(mg) = {k € Q| k > nin} we obtain the following diagram

vl 3 iy (Gmr)e ] ) —
0 # Cn(f.,—,:f) —* Cn(f””,.fc ) (J__; HTL(E?T?.‘T} (fmr)m{c—e)) = Hm- (1020)

where %™ is an isomorphism, and (fmr)s i & monomorphism among the homology mod-
ules. Specially let [0] be a gencrator of Cy, (fr, ). Then going through the diagram (10.20},
there holds

(Grar )« © 7o) # 0, in - Hop. (10.21)

This completes a half of the proof of Theorem 10.3. Now, we can use a Lagrangian
version of a technique of V. Bangert and the topological Lemma 1 of V. Bangert and W.
Klingenberg in [BK] to show that the left hand side of (10.21) must vanish provided m is
sufficiently great. This gives a contradiction to (10.21) and proves the Theorem 10.3. For
details of this argument we refer to [Lol5).

Remark 10.6. The idea in the above proof of Theorem 10.3 comes from (Lol4]
of our proof for C. Conley’s conjecture, which claims as mentioned in [SZ2] that every
Hamiltonian diffeomorphism on 72" generated by smooth periodic Hamiltonian functions
always possesses infinitely many periodic points produced by contractible integer periodic
solutions of the corresponding Hamiltonian system on T2n.

§11. Indexing domains of instability for Hamiltonian systems.

In this section we introduce our study in recent paper [LA] on the homotopy classifi-
cation problem for unstable linear Hamiltonian systems via the Maslov-type index theory.

Definition 11.1. For any matriz M € Sp(2n), the hyperbolic index (M) of M
is defined to be the mod 2 number of the total multiplicity of negative eigenvalues of M
which are strictly less than 1.

Definition 11.2. A matriz M € Sp(2n) is hyperbolic, if all the eigenvalues of
M are not on the unit circle U in the complez plane C ezcept two of them which are 1.
Denote by Sph(Qn) the subset of all hyperbolic matrices in Sp(2n). A path v € P1(2n) s
hyperbolic, if v(1) € Sp"(2n). Denote by P"(2n) the subset of all hyperbolic paths in
P1(2n). A system (1.2) in H(2n) is hyperbolic, if its fundamental solution yg € P"(2n).
Denote by H"(2n) the subset of all hyperbolic systems in H(2n). In this case we also write
B ¢ H"(2n).

Note that this concept of the hyperbolicity comes from the study of periodic solutions
of autonomous Hamiltonian systems. As we proved in [LA], P*(2n) and H"(2n) contain
countablly infinitely many path connected components which are called the domains of
instability of symplectic paths and linear Hamiltonian systems respectively.
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Definition 11.3. Two patis vo and v; € P"*(2n) belong to the same domain of
instability, if vo and v, can be connected by a continuous one-parameter family of paths
{73}0951 i Ph(2n). In this case we write Yo ~n 71- Two Hamiltonian systems of the
form (1.2) with B; € C(SY, L(R*)YNH"(2n) fori=0,1 belong to the same domain
of instability, if By and By can be connected by a continuous one-parameter family of
{Bstocs<t in C(SY, LR®*)) N HM(2n). In this case we write By ~y, By

Note that for vo and vy, € P*(2n), the facts that Yo ~ 71 on [0,1] along &(-,1) in the
sense of Definition 1.3 and that §(-, 1) being a path in Sp™(2n) together imply g ~p v;.

Note that by definition there holds Sp"(2) = Sp(2)°, where Sp(2)° is defined in the
section 1 and is path connected as shown in the Figure 1.1.

Theorem 11.4. For n > 2, the set Sph(2n) possesses precisely two path connected
components defined by

Spt(2n) = {M € Sp”(2n) | o(M) = i}, fori=0,1. (11.1)

Idea of the proof. It suffices to note that every matrix M e Sp™(2n) can be
connected to one of the following two matrices within Sp”*(2n):

I;0D(2)0---0D(2)0D(2), (11.2)
LoD(2)o---oD(2)oD(—-2). (11.3)
Note that these two matrices possess hyperbolic index 0 and 1 respectively. I

Theorem 11.5. Two paths vy and v, € Ph(2n) belong to the same domain of
instability, i.e. vo ~p, 1, if and only if both of the following two conditions hold:

e(v(1)) = o(m (1)), (11.4)
1(v0)y i1(m) € {2k — 1+ 0(v0(1)), 2k + o(0(1))} for some k € Z.  (11.5)

Idea of the proof. We give a pictorial proof for the case of n = 2. The proof of the
general case is just an analytical interpretion of this special case.

Given any v € P%(4), by the basic normal form Theorem 4.6, there exists a path
f€C(0,1],Q%(1)),a =2 0r -2, and b=1, 0, or —~1, such that f(0) = ~(1) and

f(1) = N1(1,b)oD(a). (11.6)

We only consider the case of b= 1. The cases of b = 0 and —1 are similar and left to the
readers. Using the nondegenerate standard paths in Sp(2) of (3.2), we define

= @1‘0‘1, if a'z 2, (11.7)
O = @1,1,1, if a=-2. (11.8)

Let k = i1(7y). Note that we must have

ke2Z+1, if a=2,b=1, (11.9)
ke2Z, if a=-2b=1. (11.10)
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Choose a path g € C([0,1},5p(2)°) such that g(0) = I, and g(1) = N1(1,b). Using ¢g, in
(1.15), we define

ﬁ=g*¢(k+l)w,l! if a=2:b: 13 (1111)
ﬁzg*(,bkvr,ly if a = --*2,!): 1. (1112)
Then we obtain
2 —
o(fea) = pla) = == = o(v), (11.13)
w(foa)=4(f)+i(a)=(k+1-1D)+0=14(y), ifa=2b=1, (11.14)
(Bea) =i (B)+ule)=(k-1)+1=14(y), ifa=-2,b=1, (11.15)

Thus by Theorem 1.12, we obtain

¥ ~ Poa  along f.

By the definition of f this implies
¥ ~p Boa. (11.16)

Now by Definition 11.3, we can move S(1) within Sp(2)° and still keep (11.16) hold. This
shows that the condition (11.4) is necessary for (11.16) to hold, and (11.5) gives the range
of i1 (7y) which can still keep (11.16) to hold. This is shown in the Figure 11.1.

The sufficiency part is easier and left to the readers. |

S'f (3 N, (1,1) Si’ (;)i

Figure 11.1. The path goa with b= 1 and a = —2.
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Theorem 11.6. Two Hamiltonian systems of the form (1.2) defined by By and
By € H™(2n) belong to the same domain of instability, t.e. By ~p By, if and only if both

of the two conditions (11.2) and (11.3) in the Theorem 11.5 hold for ; = vp, withi =10
and 1.

Based upon Theorems 11.5 and 11.6, we define the index of the domains of instability
as follows.

Definition 11.7. The hyperbolic index indy : P%(2n) — Z, x Z for any path
v € P"(2n) is defined by

indp () = (e(v(1)), k), if i1(y) € {2k — 1+ o(v(1)), 2k + o(v(1))} for some k € Z.

We index the domains of instebility by

Ple(2n) = {y € P*(2n) |indn(v) = (i, k)}, Vie {0,1}, ke Z,
Hi(2n) = {B € H"(2n) |indu(vs) = (4,k)}, Vie {0,1}, ke Z.

By Theorems 1.5 and 1.6, we obtain that P"(2n) and #"(2n) are disjoint unions of
their path connected components ”Pffk(2n)’s and ?{g‘l «(2n)’s respectively.

As an application of our index of the domains of instability, in the section 3 of this
paper, we consider the periodic problem of the calculus of variation, i.e. finding extremal
loops of the following functional

1
F(z) = f L{z,z)dt,  Vze W, =WDH3(§ R, (11.17)
0

An extremal loop z of F corresponds to a 1-periodic solution of the Lagrangian system

(2.6). In this section we always suppose the Lagrangian function L € C?(R?",R) and
satisfies the Legendre convexity condition

L;i{z,p)z-z >0, vz € R*"\{0}, (z,p}e R*™. (11.18)

Theorem 11.8. An estremal loop x € W of the functional F is a nondegenerate
local minimum if and only if the corresponding lincarized Hamiltonian system (1.2) with
B given by (2.9) is hyperbolic and belongs to H% ((2n) or HE o(2n).

Note that V. Bondarchuk [Bn] in 1980 studied the same problem of indexing the
domains of instability in #*(2n). But our Example 2.10 of [LA] showes that the Lemma
4 in {Bn] and his indexing of domains of instability are incorrect, and therefore the main
results in [Bn] are not complete. Note also that Theorem 11.8 generalizes an old result of
H. Poincaré in [Po], who studied the problem when n = 2.
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