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On the Symmetry Theory for Stokes Waves
of Finite and Infinite Depth

J.F. Toland !

Background

In 1965 Garabedian [5] was among the first to suggest a modern global variational
approach to the theory of steady water waves on flows with finite depth. The inde-
pendent variable was a periodic function representing the boundary of the unknown
flow domain and necessary conditions for an extremum gave a stream function which
satisfied the correct kinematic and dynamic boundary conditions for water waves in
the absence of surface tension. Based on the variational formulation, §3 in [5] consid-
ered the symmetry of waves with one crest and one trough per wavelength on each
streamline.

For reasons discussed at the end of this note we began a study of [5] with a view to
understanding its contribution in the light of recent developments, [1, 8]. In particular,
we were interested in the symmetry theory because of the proof in [1] that symmetry-
breaking bifurcations do not occur on the primary branch of Stokes waves on infinite
depth. What has emerged is that the key use made of symmetrisation and convexity in
[5] can be combined with the divergence theorem and Dirichlet’s principle for harmonic
functions to yield a simple direct proof of the symmetry result, which has a natural
extension to the case of infinite depth.

Surprisingly perhaps, although Garabedian’s variational principle motivates and
underlies the present treatment, it per se plays no role in the symmetry question here.
However, the continuous symmetrisation introduced by Garabedian remains central to
the discussion.

Symmetrisation and Dirichlet’s Principle

Let 7 > 0 be a 2A-periodic function on R which is differentiable with Hélder continuous
derivative (that is, n € C1*(R) for some « € (0,1)} and let

St = {(z,n(z)) : z € R} and Q(n) = {(z,4): 0 <y <n(z),z € R}.

Now let C(n) denote the set of all infinitely differentiable functions on (n) which are
2A-periodic in = and zero in a neighbourhood of the z-axis {y = 0} and of &(7). Let
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H(n) be the metric completion of C(n) with respect to the norm defined by

= [ 1vuldsdy,
n"?
where Q, denotes {(z,y) € &(n) : —A <z < A}. Put

Am) = {v: Q(n) = R:v(z,y) = ulz,y) +y/n(z), u € H(n), (z,y) € Q(m}.

The elements of A(n) satisfy the boundary conditions v = 0 on the z-axis and v =1
on S(n) in the sense of trace. Let

D(n)= inf / |Vv|2dzdy. (1)

vEA(R)

It is a familiar observation that this infimum is attained at a unique point v, € A(n)
which satisfies the periodic-Dirichlet boundary value problem:

v € CH*(Q(n)) N C*HQUn)); (2a)

Av =0 on Q(n); (2b)

u(z,y) =v(z +2A,9), (z,v) € Qn); (2¢)
v=1onS(n); (2d)
=0ony=0. (2e)

Conversely (2} has a unique solution which is to be found in .A(n) and which is the
minimiser of D(n). This correspondence is known as Dirichlet’s Principle [2}.

Suppose now that n = o where 7o has exactly two critical points, a maximiser and
a minimiser, in each half-open interval of the form [b, b+ 2A), b € R. Without further
loss of generality suppose that A are local minimisers of ny and that A* € (—A,A), a
maximiser, is the only critical point of 7 in (—A, A). Let 7= no(A) and 7 = no(A*).
Then there are two injective continuous functions z* : [,7)] — R, each of which is
locally Hélder continuously differentiable on (n,7), such that

zH(y) > 27 (y), with equality only if y =7,



z*(n) = £A, (W) = A and no(2*(y)) =y, y € [, 7).
For any 8 € [0,1], let

25 (y) = 1 - 0)z*(y) - 927 (y), v € [n,7).

Note that, for 8 € (0,1), x5 (y) = z; (y) only if (1 — 8)(z* () — 2~ (¥)) = Oz (y) -
z*(y)), which is possible only if y = 7%, irrespective of the value of 8. Note also that
(8/0y)a7 (y)] < 00, y € (n,7), and that |(8/8y)z; (v)| — oo as y — 7, 7.

The curve comprised of the two branches {(z7 (v),y), (z; (¥),v) : ¥ € [5,7]} can
therefore be extended as the graph of a 2A-periodic, continuously differentiable func-
tion 7 : R — R. It is easily confirmed that ny € C**(R} and that in this notation
is the reflection in the y-axis of 7.

Before proceeding, note from the Maximum Principle that 0 < v,, < 1 on £(n,) and
hence, by Hopf’s Boundary Point Lemma, (8/0y)v,, > 0 on the z-axis and on S(mp).
Therefore, again by the Maximum Principle, (3/8y)vn, > 0 on Q(n). It follows, from
the Implicit Function Theorem and the hypotheses introduced so far, that each point
of Q(np) lies on a unique level line of v,,. Such a level line, {(z,y) : vyo(z,y) = @} for
o € [0, 1] say, is the graph of a function {(z, Y (@, z)) : € R}, where Y is 2A-periodic
in z, infinitely differentiable on (0,1) x R and continuous on [0,1] x R. (Note that in
this notation 79(z) = Y'(1, z) is a Holder continuously differentiable function of z.)

Suppose, in addition, that every level line of v,, (except for the bottom one) has
one maximum and one minimum per wavelength. More precisely, for each a € (0,1}
suppose that x*, x* : (0,1] — R are continuous functions such that x*(1) = %A,
x"(1) = A%,

x*H(@) = x(a) =24, (8/05)Y (o x*(a)) = 0,

and
(8/8z)Y (o, ) = 0 for z € (x (), x*()) implies that =z = x*(a).

Let Y(a) = Y(a,x (a)) = Y (o, x{(2)) < Y(o,x*(a)) = Y(a).

Proposition 1. There ezists a conver function d : [0,1] — R such that, with D
defined in (1) and 1y defined above,

d(0) = D(n) = D(m) =d(1)} and D(n) <d(6), 6¢€]0,1].
Proof. It will suffice to find a family of functions v? € A(ng), ¢ € [0,1], with

0 _ 1_
U = Up, and v° = vy,



for which v! is the reflection in the y-axis of v® = v,, and

d(9)=f |V?|*dzdy
o)

e

is a convex function of 8 € [0, 1]. The result of the proposition with then follow from
the definition of D(ns). The following construction is in Garabedian [5]. Let v® = vy,
let

R={(a,y) ¥ € (¥(a),Y(a)),a € (0,1)}

and let X* : R - R be defined by
X*(a,y) = max{z € [x (o), x*(a)] : V°(z,9) = o}

and
X~ (a,y) = min{z € [x"(a), x* ()] : v°(z,y) = a}.

In other words, {(X*(a,%),y) : y € (Y(a),Y(e))}, are the two branches which
describe one period of the level set {v°(z,y) = a} as the graph of a function of y €
[Y(a),¥(a)], where X*(1,y) = z*(y) introduced earlier. Note that X*(a, Y (o)} =
x*(a) and X*(a,Y(e)) = x*()

For 8 € (0,1} let

X;t(a, y) = (1 - H)Xi(aay) - HX;(a:y): (a’y) € Rs Qi = X;t(R)r
and let
Qo =y = QU U{(x"(a),Y(a)): € (0,1)}.
Then §; is the reflection of £ in the y-axis and the mappings from R to Q,,:E given by
(z,a) = (XF(e,y),y) are smooth bijections. Now define v Q= Rby

v (z,y) = aif (x,y) € Qf U, and z = XF (e, y),

V(x* (), Y(e) = e
When €, is identified with its 2A-periodic extension in the z-direction, the function
v? has a continuous 2A-periodic extension to the closure of {2y so extended. Moreover,
elementary calculus yields that '

1
(B/Bm)val(x,*(a,y).y) ~ (8/80) X3 (a, y)




e (0/03)X;
yIX
(3/39)U8‘x;h(a,y).y) = _-(%)T}(a’ y)-

By the change of variables formula,

_ 1+ ((9/0y) X5 )*
]s;* [Vo? Pdydz = :l:/R (a/aa)ths dady

4

so that, by periodicity,

[ rottate o [ {1 @EXD? | 1+ ()27
0= [, Pavts= [ { atnat t Taareg deds ©

]

That
D(no) = d(0) = d(1) = D(m)
1s immediate from the construction.

The convexity of d on [0, 1] follows because (s,t) — (1 +¢2)/|s| is convex on the
half-planes {(s,t) € R? : s > 0} and {(s,t) € B : s < 0}, and because the derivatives
with respect to y and @ of X ‘;t are one-signed affine functions of 8. {This follows from
the geometrical hypothesis that each level line of vy has only one maximum and one
minimum per wavelength.)

Finally, we need to show that for 8 € (0,1), v* € A(n). Since ns € CH*(R) and
d(6) < oo, putting w(z,y) = v*(z,y) — y/ne(z) defines a function w € Hy ,,.(Qy, ).
Therefore v° € A(np) and hence , from the definitions, D(r,) < d(6). This completes
the proof. O

In connection with the convexity of (s,t) — (1 + ¢2)/|s|, note in particular that

1+t 1+

1+ ({1 +82))?
+ )
151| |32|

51, 82>0 4
%|31+52I 1y =2 + ()

<

b3l

L
2

and equality holds if and only if s; = 35 and £, = {5

Stokes Waves

A regular Stokes wave {on a flow with finite depth over a horizontal bottom) is given
by a function € C'*(R) and a function v which, in addition to satisfying (2) on Q(%)
also satisfies the constant-pressure condition given by Bernoulli’s theorem, namely that

|Vv| # 0 and L4|Vou|* + gy = P on S(n), (5)



where P € R is a constant and ¢ > 0 denotes the acceleration due to gravity. The
word regular refers to the non-vanishing of Vv on S(n). The function v is called the
stream function and its level lines are streamlines. According to Lewy’s Theorem [7],
(2a), (2b), (2d) and (5) together ensure that the function 7 is real-analytic on R and
that the function v has a harmonic (and therefore real-analytic) extension to an open
neighbourhood of Q(n) in R2.

In what follows suppose, with the hypotheses and in the notation of the preceding
section, that 7y and vy = v,, together comprise a solution of the Stokes wave problem
(2) and (5) and that vy has a harmonic extension ¥ to  (an open, periodic in ,
neighbourhood of ).

Then let 75 and £y, 8 € [0,1], be the functions and the sets defined earlier, and
suppose that 6 € (0,1] is such that Q% c  for all 8 € [0,0]. Let S be the boundary
portion of 99y given by {(z,7s(z)) : = € (—A,A)} and let ny denote the outward
normal to 8§ at points of Sp.

Proposition 2. There ezists a function ¢ : [0,6] = R such that c(0) = d(0) = D(np),

() < D(mp), 8€10,8], and {I)I\I% 9-(9)—;(:(—0—)— = 0. (6)

Proof. Note that from the definition of v,, (we do not mean v?) and the divergence

theorem,
av f a0 ‘ /‘ , . I
—dS| = Uy, —dS| = div{v,, V1) dzd
[ 25| = | [ vugmes| =| [ avtun Vi) daay
%
= f Vg, - Vo dzdy S\/D(T]g){ |Vf)|2d1:d'y} .
s g
Let 0
Js, 2eas|

O = L P

Clearly ¢(0) = d(0) = D(no) and ¢(6) < D(f), 0 € [0,4]. To complete the proof
of (6) we use the the Bernoulli boundary condition (5). Notice first that, by the
divergence theorem and the periodicity of 7,

/ -?—U—dS is independent of 8 € [0, ).
Sy OTlg



Now let C(0) = [, |V@|*dzdy. Then

Y1) )
/ / Vo]’ dzdy + f / |V [*dzdy.
Y(1) Ty (¥)

Therefore, by the Bernoulili condition,

Y =+ (y)
=— [ @@+ a
’(1) == (v)
*’(U _ *(y)
-2 f =) dy=0.
Y1) z=(y)
This completes the proof of (6), and the proposition is proven. O

Stokes Wave Symmetry

Now we can follow Garabedian’s reasoning to infer the symmetry of Stokes waves with
one maximum and one minimum per wavelength on every streamline, as follows.

The two propositions imply that the function d : [0,1] = R is convex, has d(0) =
d(1) and d(8) > ¢(8), 0 € [0,8)], where ¢/(0) = 0. It follows immediately that d(6) is
independent of # € [0,1]. In particular, d(0) = d(1) = d(1). When these values are
substituted into the expression (3) for the convex function d it follows from equality
n (4) that

(9/0y)X¢ (a,y) = (8/0y)X{ (e, y),

for all & and y. Therefore

@/oy{X (e, y) + X (2, 9)} =0, (a,y) €R.

Hence Xt (a, y)+X (o, y) is independent of y and the wave profile is symmetrical. O

Infinite depth

The problem of Stokes waves on flows of infinite depth can be stated as follows. Let
n € C1*(R) be 2A-periodic as before and let Q(n) = {(z,y) : y < n(z)}. We want
a function defined on Q(n) which satisfies (2)and (5), but with (2e) replaced by the
condition at infinite depth that

Vu(z,y) — (0,9) = (0,0) as y = —oo. (7)



Here g is the flow speed of the steady wave at infinite depth.
For each n € C*2(R), a Dirichlet principle for the fixed boundary value problem
(2a)-(2d), (7) may be formulated as follows. Let

loc

Ay = {ve WA n) :v =1 on S(7) in trace / |Vv = (0, ¢)|*dzdy < oo}
n'l
and put

D(n) = inf f Vv — (0, q)|*dzdy. 8
() = inf | in (0,9)*dzdy (8)
The Dirichlet principle is that D(7n) is attained at a point v, € A(n) which is the
unique solution of (2a)-(2d), (7). By the Maximum Principle, the convergence of
[Vun(z,y) — (0,g)| to 0 as y = —oo is exponentially fast and uniform in z. Also there
exists a constant @ such that, uniformly in z,

vp(T,y) — qy = Q as y — —oo. (9)

A Stokes wave on flows of infinite depth is therefore a solution (7, v,) of (2a)-(2d),
(7) which, in addition, satisfies the dynamic boundary condition given by (5). The
previous symmetrisation construction and convexity argument can be adapted to prove
the analogous result on the symmetry of certain Stokes waves on flows of infinite depth
as follows.

Let 7o and vy = v,, denote a solution of the Stokes wave problem on infinite depth
with one maximum and one minimum per wavelength per streamline, let Q(n) be
defined as in the present section, and let ¥ denote a harmonic extension of vg to an
open neighbourhood §2 of Qg = Q,,,, where Q5 C Q for 8 € [0,8]. For 9 € [0, 1], let +°,
N6, S, ng and p = ., be defined by analogy with the notation in Proposition 1 and
let

d(8) = [ [Vv® —(0,q)["dydz > D(np).
7
Proposition 1 still holds and it suffices to find a function c(f) with the properties
described in Proposition 2. We are led to it by the following considerations.
Because # is harmonic and periodic, it follows from the definition of v,, that

8 3
0= | = (6 —gy)dS= | v,,— (¥ — qy)dS,
/; e ana(” qy) /S Ve ang(” qy)



by the divergence theorem,

= div(v,, V(8 — qy)) dzdy = f Vi, - V(3 - qy) dzdy

Qg Qg
= /Q Vg, — qy) - V(0 — qy) dzdy + q_/n (D~ qy)ydzdy
A
= [ V(o ~au)- V(0 - qu) dudy + g [ (o)) - amfe))dz - 2400,
| (10)
by (9). Therefore, by the Cauchy-Schwarz inequality,
[ ] 8(z, mo(x)) — ao(z))dz — 2chz’ { ) [ 1900 qyn?dydz}i.
A
F6) = —q ] (o, 0(2)) — amo(z))dz + 20q@ (11)
and
g(8) = A V(5 - gqy)|’dzdy = /Q (Vo] — ¢*)dzdy — Zq]n (6 — qu),dydz
A
= fn (IVD]? - ¢*)dzdy — 2q / A(@(a:, n6(z)) ~ qne(z))dz + 4AqQ
= [ 49l - )aady +25(6). (12)
2y

Therefore c(8) < D(ns), where

c(6) = f(6)" 9 € [0,6).

By (10), f(0) = g(0) # 0, and it follows that ¢’(0) = 2f'(0)—¢’(0). (That ¢'(0) exists is
straightforward from the quotient rule and the calculation which follows.) To complete
the proof we use {12) and observe that, because 9 satisfies the Bernoulli condition (5),

it follows, exactly as in the proof of Proposition 2, that

< { ] (IVaf2 - qZ)dzdy}

e

= Q.
=0




Thus 2f'(0) = ¢'(0), whence ¢’(0) = 0 and the required symmetry result for Stokes
waves on infinitely deep flows follows as before.

Solitary Waves

One might be tempted to try extending these arguments to cover the case of solitary
waves. However there is little point since Craig & Sternberg 3] have used the method
of moving planes (4, 6] to prove the much stronger result that for all solitary waves
each streamline has a unique critical point which is a maximiser about which it is
symmetrical. A similarly strong statement cannot be made for periodic Stokes waves
in general, without some further constraint such as the one about each streamline
having one maximum and one minimum per wavelength.

Discussion

Our primary motivation was to understand the contribution of the variational principle
for the water wave problem in [5] in the light of [1] and [8]. The simplified argument
for symmetry given above arose because of the following considerations.

In [5] a functional M is first defined by equation (2) on page 162 as the conformal
modulus of a domain D, but then used in equation (23), page 167, as if it were a
functional which depends, not on D alone, but also on a function 4 (which in general
does not realise the conformal modulus of D). The variational principle for water
waves depends on the former definition, whereas the theory for symmetry hangs on
[5, equation (24)], which refers to the latter interpretation. By showing that the
symmetry argument may be based on simpler and more direct considerations, it is
hoped to remove any possibility of confusion about this point, and to bring the result
to a wider audience.

Some further clarification is in order. Garabedian [5, last two sentences of §3] re-
marks that uniqueness of symmetric waves with given crest heights and trough heights
is a corollary of the method which gave symmetry. It seems clear from the proposed
proof that this must refer to waves for which every streamline (not just the free stream-
line) has crests and troughs at prescribed heights. From the viewpoint of uniqueness
theory the distinction is irrelevant, since either hypothesis is difficult to establish for
water waves. If it were correct, then Stokes waves would lie on a two-dimensional sur-
face (parametrised by the crest and trough heights of the free surféce), and this would
be important. (That remark in [5, §3] may however have been slightly misleading; see,
for example, [3, last paragraph, §1].)

While Garabedian’s variational principle for water waves on finite depth is not in
any question there remain aspects of [5] which lack rigorous justification; the interesting

10



Section 2 on existence theory using minimax principles is an example. Here are further
questions.

Open Questions

1. If the free surface profile has one maximum and one minimum per wavelength,
does it follow that every other streamline has similar geometry?

2. Can the methods be adapted to show the convezity of the Stokes Wave of Great-
est Height, periodic or solitary?
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