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Summary

In the first part of these notes we describe and prove in detail results con-
tained in the work [12] on the asymptotic behavior of (global) least energy
solutions of an elliptic equation involving a small parameter, respectively un-
der Neumann and Dirichlet boundary conditions. These solutions are known
to develop a so-called spike-layer pattern. as the parameter goes to zero. In
the second part we summarize, without providing details, some results con-
cerning single and multiple spike-layer solutions which are not of a globally
least-energy nature.



Part .- Least-enegy spike-layer solutions
in a degenerate setting

The material contained in the first part of these lectures is included in
the work [12]. Here we deal with the study of solutions to a class of nonlinear
singularly perturbed elliptic problems of the form

eAu—u+ flu)=0 in Q, (0.1)

where the simplest model for the nonlinearity f is given by f(¢) = tP with
l<p< N+2 if N >3, and 1 < p < +00 otherwise. Here Q is a smooth
bounded domam £ > 0 is a small parameter and we are interested in positive
solutions to this equation satisfying zero Dirichlet or Neumann boundary
conditions on 4%2.

The study of solutions to this and related equations has received consid-
erable attention in recent years. A very interesting feature of (0.1} is the
appearance of solutions exhibiting a “spike-layer pattern” as € — 0. To mo-
tivate informally the meaning of this type of concentration phenomena we
observe that if u, solves equation (0.1) in © and z. is a point in ) where
u, maximizes, then the function v.(y) = u.(Z. + €y) maximizes at the origin

and satisfies
Av—v+ fv)=0 (0.2)

in the expanding domain e~1{Q — z.}, which as € — 0 becomes the entire
space IR" or a half-space. Now, when e.g. f(t) = t, equation (0.2) possesses
a least energy solution w (ground state) in entire R"  maximizing at zero and
vanishing exponentially at infinity. When restricted to a half-space passing
through the origin, this function is a least energy solution on that domain
under Neumann boundary conditions.

More generally, a least energy solution of (0.2) in RN existsif f: R— R
is continuous and satisfies the following structure assumptions.

(£1) f(t) =0 for t < 0 and f(t) = o(t) near ¢t = 0.
(f2) f(t) = O(t*) forsome 1 < s < FEZif N >3,and s> 1 N =1,2.



(f3) There exists a constant § > 2 such that 6F(¢) < tf(t) for t > 0, in
which

Ft)= [ *F(s)ds. (0.3)

(f4) The function ¢ — f(t)/t is strictly increasing.

More precisely, the energy functional defined as

I(w) = - / Vo2 + 02 — j F(v), ve H\(RM), (0.4)
RN RN

has a least positive critical value ¢, characterized as

Cy = ;ggs’:gop I(tv). (0.5)
An associated critical point w actually solves equation (0.2) and is called a
least energy solution. It also decays exponentially at infinity.

If it happened that the scaled solution v, converged to one of these w's
as € — 0 in, say, the H'-sense, then the actual look of u, would be that of
a very sharp spike, centered at the point z., while approximating zero at an
exponential rate in 1/¢ away from it.

A natural question is that of finding solutions exhibiting this type of
notable behavior as well as locating their asymptotic spikes. A number of
works have appeared in the literature in this subject in recent years. Among
the most remarkable results in this line are the works by Ni and Takagi [21],
[22] for equation

e2Au—u+flu)=0 in Q (0.6)
vu>0inQ, du/On=0 on 389, '
and that by Ni and Wei [23] for the Dirichlet problem
E2Au—u+ flu)=0 in Q 0.7)
>0 in), u=0 on I '

In those papers the behavior of a least-energy solution to the problems, for
a class of nonlinearities including the subcritical power u?, has been well
understood. Those solutions are characterized by means of the mountain
pass value of the associated energy functional.
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In more precise terms, associated to {0.6) (resp.(0.7)) we have the “en-
ergy” functional

L) =5 [Vl +u - [ Plw), (0.8)
Q Q

whose nontrivial critical points in the space H*(§2) (resp. Hj(£1)) represent
solutions of (0.6} (resp.(0.7)). The structure assumptions (f1)-(f4) guarantee
the validity of the P.S. condition for this functional, so that the mountain
_ pass theorem applies providing a positive critical value characterized as

c. = inf sup I.(v(¢)) (0.9)
7€l ¢ef0,1)
where v € T if and only if v € C([0,1], H} and v(0) =0, L(v(1)) £ 0. It
was observed in [14] that this number can be further characterized as
¢e = inf sup I (tu), (0.10)
u#0 >0
which can be shown to be the least among all nonzero critical values of I..
Here H corresponds to H'(2) or H3(2).

In [21], [22], it is shown that a solution u. at this least energy level for
the Neumann problem possesses just one local maximum point, which lies on
the boundary, and concentrates (up to subsequences) around a point where
mean curvature maximizes.

On the other hand, Ni and Wei [23] show that a least energy solution of
the Dirichlet problem (0.7) necessarily concentrates around a “most centered
point” of the domain, namely around a point of maximum distance to the
boundary.

In both problems the method employed consists of a combination of the
variational characterization of the solutions u. and exact estimates of the
value of the energy functional based on a precise asymptotic analysis of u..
This process is technically delicate. It amounts to finding sharp estimates of
the error commited when approximating the scaled function v, by its limit
w. In order to carry out this process an extra assumption is needed. It is
assumed that the solution to the limiting problem

Aw—w+ f(w)=0 inRY
w >0, w(0)=maxw, (0.11)
lim|x|_.°o'UJ(.’17) = 0,
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1s unique. Moreover, it is assumed that w is nondegenerate, in the sense that
the linearized equation

A¢p— ¢+ fllw)p =0 (0.12)

does not have nontrivial solutions which tend to zero at infinity other than
linear combinations of the functions 37“:, i=1,...,N.

These facts are indeed nontrivial. They are known to hold true for f(s) =
s¥ as well as for other nonlinearities like sum of powers, but they are not yet
- known for, say, a C" nonlinearity satisfying (f1)-(f4).

Our main purpose in this part is to show that Ni & Takagi and Ni &
Wei results hold without this delicate technical nondegeneracy-uniqueness
assumption, thus enlarging considerably the class of nonlinearities for which
they are known. In fact, not even differentiability of the nonlinearity will
be needed so that a linearized problem may not even make sense. Only the
structure assumptions (f1)-(f4) will be required.

On the other hand, the proofs we present here are relatively short and
elementary. They rely on a slight but somewhat fundamental change of point
of view with respect to the method in the above mentioned works, which
simplifies the main step of estimating from below the energy of a least energy
solution. Rather than working out a precise asymptotic estimate on ¢ of the
solution itself, step relying on a linearization process where nondegeneracy
is used in essential way, we analize further the mountain-pass variational
characterization in order to obtain appropriate lower bounds on the energy
of the solution. To do this only rough “zero-th order” information on the
concentration phenomena will be required.

We would like to emphasize the fact that the nondegeneracy assumption
on the limiting equation has played a basic role in the study of point concen-
tration phenomena associated to this kind of equations. It seems to appear
first in the work by Floer and Weinstein [15] on concentration on nonlinear
Schrodinger equations in one space dimension, extended by Oh [24] to higher
dimensions. More recently it appears in works on study of these phenomena
in Ambrosetti-Badiale-Cingolani [1] and in recent works by Li [17], [18] and
Li & Nirenberg [19]. Essentially this assumption allows in those works the lo-
cal transformation of the original problem into a finite dimensional one via a
Lyapunov-Schmidt reduction. Instead, the direct use of variational methods,
relying on more general topological features than the splitting of the space



into a direct sum of good invariant subspaces for the linearized operator, per-
mits to obtain good localization results under relatively minimal assumptions
in situations where the finite dimensional reduction does not seem possible.
In this direction we may also quote the works by the authors [4], [5] and
[8] on nonlinear Schrédinger equations, which we will briefly describe in the
second part of these lectures.

Next we state our main results in this part of the lectures, which recover
the main results in [21], [22] and [23]. The first of them concerns the behavior
of a least energy solution of the Neumann problem. We will state a special
* case under an extra assumption on the nonlinearity while in Theorem 1.1 in
§1 the general version will be provided.

We assume:

(f5) The function f is locally Lipschitz in R.

Under this hypothesis problem (0.11) possesses only radially symmetric so-
lutions, as it follows from the classical result of {16].

Theorem 0.1 Under the hypotheses (f1}-(f5), let u. be a least energy solu-
tion of (0.6) and z. € Q a point where u. reaches its marimum value. Then
for sufficiently small €, x. lies on 001 and

(1)
H(z.) — max H(z),

where H denotes mean curvature of the boundary.

(2) The associated critical value can be estimated as
NyCs
Ce=¢€ {—5 —yeH{z,) + o(e}} (0.13)
where 7 is a constant depending on f and N and ¢, is given by (0.5).

(0.11).

For the Dirichlet problem, our result is the following.

Theorem 0.2 Assume (f1)-(f4) hold. Let u. be a least energy solution of
(0.7) and z. € Q0 a point where u. reaches its maximum value. Then



(1) dist{z., 902} — max,cq dist(z, 95).

(2) The associated critical value can be estimated as

cfwwa+mwé%m (0.14)

where . = dist(z., Q) + o(1) witho(1) -0 ase — 0. (0.11).

We will devote the rest of this first part these results. In §1 we prove
Theorem 0.1, while in §2 we prove Theorem 0.2.

1 The Neumann Problem

This section is devoted to the study of the concentration phenomenon in the
case of the Neumann problem. We will first state our general result, from
which Theorem 0.1 follows as a corollary. We need some preliminaries. In
what follows we will always assume f satisfies (f1)-(f4) and that §2 is smooth.

Since we are not assuming hypothesis (f5), solutions of (0.11) may not be
radially syminetric. Then, it is necessary to consider explicitely the limiting
problem in the half space § = RN x R, that is

Aw—-w+ flw)=0 inS
w>0in S, w(0)=maxssw, (1.1)
limyz oo w(z) = 0, ‘g—:‘: = { on 0S.
We observe that given a solution w of {1.1), we can construct a solution of
(0.11) by reflexion with respect to S (except for the condition w(0) = maxw).
The solutions of (1.1) can be characterized as critical points of the func-
tional

h@:%LNW+¥—LFM

over the space H'(S). We are interested in least energy solutions of (1.1),
that is solutions with critical value given by

S -
cl = inf sup Ig(tv). 1.2
o veHY(S) 0 t>¥)) sitv) (12)



We denote by S the set of all such least energy solutions. Using Schwartz
symmetrization techniques, it is not hard to see that S is a non empty com-
pact subset of H'(S) and that ¢ = ¢*/2 where c, is given in (0.5).
Consider next the description of Q on the boundary. Given a point z €
09, there is a neighborhood V of z so that 2NV is as the epigraph of a smooth
function. More precisely, after an appropriate rotation and translation we
may assume z = 0 and we can find a smooth function G : B — R, where B
is a ball in RV~!, such that G(0) = 0, G'(0) = 0 and QNV = {(¢,yn) €
V/yn > G}
* Qiven a solution w of (1.1) we define its restricted energy density as

E(w,y) = (5Vul + 307 - F@))(¥',0)

for Y € IRY~!. Then we define the generalized curvature at z as the following
number

]' ! " / !/ !
H(z) =max > | (¢, G"(0))E(w,y)dy, (1.3)

where (-, ) denotes the usual inner product in RN~ and G”(0) denotes the
Hessian matrix of G at 0. Since the set S is compact, the function H(z) is
well defined. One can check that H(z) does not depend on the particular
choice of G, but only on z.

In case S consists only of radially symmetric functions, as would be if
(f5) holds, then

fRN_l(y’,G”(O)y')E(w,y’)dy’ = H(z)(N - 1) fo T E(w Vi, (1.4)

where E(w,r) = (1/2|w'|? + jw? — F(w))(r), and H denotes the usual mean
curvature. Thus in this case

H(z) = vH(2),

where N -1
y="——max | E(w,r)rVdr
wes Jp

Now we can state our general concentration theorem for the case of equa-
tion (0.6)



Theorem 1.1 Under the hypotheses (f1)-(f4), let u. be a least energy solu-
tion of (0.6) and z. € Q a point where u, reaches its mazimum value. Then
z. — T € 0N, after passing to a subsequence, and

(1)

H(z) = max H(z),
where H denotes the generalized curvature defined above.

(2) The associated critical value can be estimated as
Ce = EN{% - eH(Z) + o(e)}, (1.5)

where ¢, is giwen by (0.5). (0.11).

Proof. Let ¢, be the least energy critical value of the functional I, in
H(§2), given by (0.10). Actually one has

¢ = inf I.(u), (1.6)

where
M, = {ue H{Q)/u>0,u+ o,/naﬂvu[z +ul= /ﬂf(u)u}.

as observed in [14], Proposition 2.14. First we obtain a rough upper estimate
of c.. Let us consider w?(z) = w((z — z)/¢), where z € 9Q and w is a
least energy solution of equation (1.1), properly reflected with respect to S,
if necessary. Then, by definition of ¢, and simple calculations, we find

e < sup L (tw) < ¥ {Z +o(1)}. (1.7)

10 2
Let u. be a least energy solution of (0.6), namely a critical point of I, at
the level c.. If x, is a point where u. reaches its maximum value, then,
passing to a subsequence, we may assume r. — I € {). Actually Z must lie
on 9! and moreover dist(z.,d)/c must remain bounded, for otherwise v,
defined as v.(y) = u.(z. + ey) would converge in the H'-sense, passing to a
subsequence, to a nontrivial solution of

Av—v+ f(v)=0
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in entire space. This is not possible, for I{v) would be at least c, in (0.5),
and (1.7) implies I{v) < ¢./2.

Thus £ € 80 and v, converges in the H'-sense to w, a least energy
solution on the half-space. Moreover, for certain positive constants a and
b we have v.(y) < ae~®¥. Let Z. be the closest point to z. in Q. After
a rotation and a translation e-dependent we may also assume that £, = 0
and that © can be described in a fixed neighborhood V of Z as the set
{(z',zn) | zv > Ge(z')} where G, is smooth, G.(0) = 0 and G{(0) = 0.
Further, we may also assume that G, converges locally in a C%-sense to a G,
" a corresponding parametrization at .

For an open set A, we denote

In(v) = % J v+ - [ Fl)

Let us also set Q. = £~1(Q) — Z.). From the variational characterization of
ce = I.(ue) in (0.10) we have that

e NI (u) > e NI (tue) = I, (tve),

for all £ > 0. Let us define the function @, on SNV as 0.(¥, yn) = ve(¥, yn)
if Ge(ey') > 0 and 5.(v/, yn) = v (¥, Ge(ey')) if Ge(ey') £ 0.
Then

I, (tve) 2 Isnw, (t0e) + Lin.ovans(tve) — Isnvona. (E0e)-

Let us choose t = ¢, so that Igny, (7.} maximizes in t. Then, by definition of
the number ¢¥ = ¢,/2 in (1.2) and the exponential decay of v, one gets that

Isnvi(tefe) 2 5 + 0™, (1)
for some a > 0. Using again the exponential decay of v, we obtain
I = —Larvps(teve) = (1.9)
0 1 1 , —on/e
[y [ GVl + 50 = F)) uw)dun +O(e7),
. c(ey)_fe 2 2
where B, = {|v'| < §/¢}. Similarly, we find that
Ir = Iisnvena. (tefe) = (1.10)

’ GE(EU')‘F/E ]_ 1 I 1] —dofE
fB dy /0 (§|V'vel2 + 5?)3 — F(u))(¥, Geley))dyn + O(e™2/¢).
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Here we have denoted ay = max{a,0}, a_ = min{a,0}. Now we note that
v — w C'-locally with uniform exponential decay. Then since G.(0) = 0
and G.(0) = 0 and G, converges in a C? local sense to G, an application of
dominated convergence yields

IN 1 2 1 2

i (B = 5% [, GO GITul+ 30t~ F)(, 0y
1 ! i ? ! ! —

=3 RN_l(y:G (0)y)E(w,y)dy’ < H(z). (1.11)

" Thus we conclude that
Ce > 22: — eH(T) + o(e).
On the other hand, a direct computation along the same lines yields
ce < ?.l;g I{tw?) = 62—* — eH(z) + o(e),

for any z € 9X2. Here w} a the function in S that realizes the maximum in
(1.3).

Combining these two estimates directly provides assertions (1) and (2) of
the theorem, since in particular we conclude H(Z) > H(z) for all z € 9. O

Now we can easily derive Theorem 0.1.

Proof of Theorem 0.1. By an argument given in [21] one can prove
that the point z,., where the function u, reaches its maximum lies on 8Q2. In
fact, if this is not the case, using that Z € 02 we find that the limit v of
the rescaled function v, has a degenerate maximum. This is impossible since
v is radial and the radial equation has local uniqueness property because of
assumption (f5). The result thus follows from the previous theorem and the
observation after equation (1.4). O

Remark. We observe that the above computations still apply in cases
where the domain is not of class C?. In fact, let us say for instance that the
domain is smooth everywhere except at 0, where it is described locally as
the epigraph of G{z') = |z/|'*¢ with ¢ € (0,1). Then a similar computation
provides that the least energy value can be estimated as

*

Ce = sN{% — ke’ + o(e%)},

11



for some positive constant .

Remark. The method described here applies to other problems with
simple nonlinearities but without fine structure information in the limiting
equation. Let us consider for instance the problem of estimating the best
constant and extremals in the subcritical sobolev trace embedding

3A||”||Lp+1(am) < !|UI|H1{AQ):

with 1 < p < %, where 0 is a bounded, smooth domain and A a large
. parameter. It turns out that similarly to the result considered in this section,
8\ — S, where Sy, is the corresponding constant for the half space. Besides,

Sy = So — A lymax H + o(A7H)

where H is mean curvature and ~ a universal positive constant. Moreover,
in the scale 1/ the extremal constitutes a sharp spike around a point of
maximum mean curvature. Here the relevant limiting equation is

Aw—w=0 inH

QE:wP. on 0H
on

These results are part of the work [13]. A positive least energy solution in
this case is not radially symmetric, hence it seems very difficult to prove
uniqueness or nondegeneracy as in Kwong’s result.

2 The Dirichlet Problem

In this section we study the behavior of a least energy solutions of the non-
linear elliptic equation (0.7} and prove Theorem 0.2.
The least critical value ¢, associated to I, in H}(§2) can be characterized
as
Ce = uznﬂge I (u) (2.1)

where M, = {u € H}{(Q)/u > 0,u # 0, f[oe?|Vu]? +u* = [, f(u)u}. We
observe that thanks to hypothesis (f4), given v € H3(2), u > 0 and u # 0,
there exists exactly one t > 0 such that tu € M,. See for example [14],
Proposition 2.14. At this ¢t one has I, (tu) = max,.q I.(Tu).
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Our proof of Theorem 0.2 is based on energy comparisons with the cor-
responding problem in a ball B, = {z € R"/|z| < p}, where p > 0. Thus
we consider the equation

Au—u+ fluy=0 in B, (2.2)
u>0 inB,, u=0 on 08B, ’
and its associated functional J, : H}(B,) — IR given by
1
Jp(u) = 3 ] |Vul? + ? — fF(u) (2.3)
B, B,

This functional has a least positive critical value, denoted by ¢, Which can
be characterized similarly to (2.1). Using Schwarz’s symmetrization, we find
at least one radially symmetric least energy solution of (2.2).

The following lemma is a crucial step in the proof.

Lemma 2.1
p = cu + expl=2p(1+ o(1))], (2.4)

where ¢, is given by (0.5).

Here where o{1) approaches 0 as p — cc.
We postpone the proof of this result to the end of this section. Next prove
Theorem 0.2.

Proof of Theorem 0.2 Let u. be a least energy solution of (0.7) and
T. a maximum point of it. Standard compactness arguments yield that the
scaled function v.(y) = u.(x. +£y) converges locally in the C'-sense to a least
energy solution w of the limiting equation. Moreover, this convergence is also
uniform and in the H! — sense globally. Furthermore v, and its derivatives
has a uniform exponential decay for large |y|.

To prove statements (1) and (2) we first observe that the previous lemma
provides an upper estimate right away. In fact, we consider a ball of maximal
radius contained in (2, centered at a point Z. Then since the least energy
values for I; in 2 and that in the ball are ordered, namely ¢, < £%c, with
p = dist(Z, 0Q) /e, we obtain from Lemma 2.1,

ce <eMe, + exp[—gdist(a‘:, o} (1 + o(1))]}. (2.5)
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Next we will estimate ¢, from below. We may assume, passing to a subse-
quence, that z. converges to a point z, € {1. Thus

d. = dist(z,, 00) — do = dist(z0,02) ase - 0.
Given § > 0, let us choose a number dj > 0 so that
vol(B(xo, dy)) = vol(§2 N B(zqg, do + 6)).

Next we take a & > 0 slightly smaller than & with dj < do + &'.
: Let us consider a C* cut-off function 7, such that
Ne(s)=1for 0 < s<d,+68 and n.(s}) =0if s > dc + 6,
with 0 < 1, < 1 and with uniformly bounded derivative. Let us set Uy =
UM (|Te — z|). We find that

e > Ie(tue) > L(t.) — exp["%(ds + &), (2.6)

for all ¢ € [0, 2], for ¢ sufficiently small. Here we have used the fact, obtained

from the maximum principle by comparison with a suitable test function,

that u.(z) < ellF=2cl+o(1N/e A similar estimate also holds true for |Vu,(z)|.
Let us consider the number R, = d./¢, where d, is chosen such that

vol( B(z.,d.)) = vol{Q N B(z., d. + 8)).
Using Schwarz’s symmetrization we then obtain
L(ti.) > eV Jp, (tul) (2.7)

for all ¢ € [0, 2], where u} is the standard radially decreasing rearrangement
of % and Jg, is given by (2.3) for p = R,. Next, let us take a number ¢* >0
so that Jg, (tu?) < Jg, (t*u?) for all £ > 0. Then combining the lower estimate
in Lemma 2.1, (2.6) and (2.7) we obtain

e 2 ¥ ferrexpl2R,(1+o(1)|—expl—— (de+8)]) 2 ™ {evtexpl—=(d+8)]}

Thus we have proven that given § > 0 this inequality holds if £ is small
enough. Therefore,

e 2 ¥ {e. + exp[~=(de + o(L)]}. (2.8)
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From (2.5) and (2.8) Statements 1. and 2. follow, thus finishing the proof.0

It only remains to prove Lemma 2.1. To do this we will make use of the
elementary estimates contained in the following two lemmas.

Lemma 2.2 Ifw and w, are solutions of equations (0.11) and (2.2), respec-
twely, then the following estimates hold

wy(p ~ 1) = exp[~p(1 + o(1))] and w(p — 1) = exp[—p(1 + o(1))],
where o(1) — 0 as p — 0.

" Proof. The proofs of both estimates are similar, so that we only perform
that for w,.
Given numbers R > 0 and € > 0, we consider the solution of the equation

u' —(1—¢/2Ju=0 1in(R,p)

with boundary conditions u(R) = 1 and u(p) = 0. Clearly u(p — 1) <
exp{~(1 — €)p] is p is large enough. Let us choose a fixed number R, inde-
pendent of p, so that w,(R) < 1,. This is always possible since w, converges
up to subsequences uniformly over compacts to a radial least energy solution
of the equation in entire IR" and the set of such solutions is compact in
HY(RM).

Making R larger if necessary, we also obtain that u is a supersolution of
(2.2} in [R, p). Therefore w, < u in that range, and the estimate from above
readily follows.

As for the lower estimate, given R > 0 and € > 0, we consider the solution
of the equation

N-1
R
such that u(R) = w,(R) and u{p) = 0. We can easily see that for a large
enough R we have u(p — 1) > exp[—~(1 ~ €)p), for all large p. Let us observe
that this u is a subsolution of (2.2). From here the desired lower estimate
immediately follows.O

u’ + v —u=0 in(R,p)

Lemma 2.3 Let u and v solutions of the equations

N-1
Wt —u'—u = 0 in (p—1,00) (2.9)

v+ T_v’ —elplv = 0 in{p—1,p) (2.10}



with boundary conditions u{(p — 1) = v(p— 1) =1 and u(+o0) =0, v(p) =0,
where e(p) — 1 as p — oo uniformly. Then for some Ao >0

d{p—1) —v(p—1) 2 Ao,
for large p.

Proof. The proof consists of finding upper and lower solutions similar to
those in the previous proof. We omit the details.O

" Proof of Lemma 2.1. First we find an upper estimate for ¢, with the
required form. Let v, be the solution of the equation

Au—u=0 (2.11)

in B, \ B,_1, with boundary conditions v,{p — 1) = w(p — 1}, and v,(p) = 0.
We define w,(r) = w(r) if 0<r <p—1,and @,(r) = v,(r)if p—1 <r < p.
Then we have

¢p = Jp(wp) = max Jp(tw,) < max Jp(t,) = Jp(to0,).- (2.12)

Since @, converges in the H 1 sense to w, it is easy to see that {, — 1 as
p — o0. Next we see that

2 t
2 Vuwl? + w? —f F(t,w) + —”f Vu,|? + v2
2 Jp, |Vwl|” +w ( .ow) BB, | '”p' + v,

Jp(t."mp) S 9

£—1
t2 Sv

I(t _E/ it
( pw) * 2 8Bp-1 aU vp

< Gy — aNTN_lti'U;,(T)Up(T)|1‘=p—1'

IA

On the other hand, Lemma 2.2 plus the use of an appropriate supersolution
of the equation yields that

vpp — 1), —v,{p — 1) < exp[—p(1 + o(1))}.

The upper estimate then follows directly from the above two inequalities.

As for the lower estimate, let 7, be the solution of equation (2.11) in
RN\ B,_,, with boundary conditions @,(p—1) = w,(p— 1} and #,;(+00) = 0.
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Let us define @y(r) = w,(r) if 0 <7 < p—1, and Wu(r) = Go(r) if p— 1 <
r < +oo. Then we have, for all ¢ > 0 that

t2
c, = Jo(w,) > I(tw +—/ Vuw,|? + ep, t)w?
P olws) 2 I( p) 5 Bp\B,a—-ll wpl* + e(p, ) .
t2
E RN\B,,_1

|V5,|* + o2, | (2.13)

where e{p,t) = max{(1 — F(tw,(r)}/(tw,(r)}*) /p—1<r < p}. Now we
- choose t, so that I{t,@,) > ¢. Since w, — w in the H! sense, we see that
t, = 1 as p — oc. We then also have e(p,t,}) — 1 as p — oo. We consider
next the comparison function z, given as the solution of the equation

Au—e(p,t,)u=0 in B,\B,,

with boundary conditions z,(p — 1) = w,(p — 1) and 2,(p) = 0. Then, it
follows from (2.13) that

£2 5z o, t2 _ _
Cp2 = /;B,,_l(a_;zﬂ“ —afvp) = C*—EpaN”‘N "o (r)(25(r) = T, (1)) |rmpe1.

But one has

T(p— 1) — 2,(p = 1) 2 w,(p ~ 1)Ao = exp[—p(1 + o(1))]

as it follows directly from Lemmas 2.2 and 2.3. The desired lower estimate
is then a consequence from the above two relations, and Lemma 2.2. O
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PART II.- LOCALIZING SPIKE-LAYER PATTERNS IN
SINGULARLY PERTURBED ELLIPTIC PROBLEMS

Let Q be a domain in JR”, not necessarily bounded, with smooth or empty
boundary. In this part we will review some results concerning the problem
of finding nontrivial, finite energy solutions to an equation of the form

e2Au—V(z)u+uwP =0, u€ Hy(Q), (0.1)

" where 1 < p < (N +2)/(N —2) and V() > a > 0. Equations of this form

arise in different models where the presence of a small diffusion parameter €
becomes natural. For instance, in the study of standing waves of the nonlinear
Schrodinger equation

P e M P 0
ot 2m
Namely solutions of the form (z,t) = exp(—iEt/h)v(z), reduces to an equa-
tion like (0.1). See [15], [24].

Again, we are concerned with the study of solutions exhibiting “spike-
layer patterns” as ¢ — 0. Let us observe, that similarly to the type of
phenomena described in the first part of these lectures, if u. solves equation
(0.1) in © and a. is a point in € where u. maximizes, then the function
v (y) = u.{a. + ey) maximizes at the origin and satisfies

Av, — V(ae + ey)ve + 02 = 0. (0.3)

in the expanding domain £'{Q — a.} which as ¢ — 0 becomes entire R" or
a half-space. Let us assume for instance that a. — @ as ¢ — 0. Equation
(0.3) thus becomes in the limit

Av— v +1P = 0. (0.4)

in entire IRY, where # = V(@) > 0. Let us recall that equation (0.4) for sub-
critical p posseses a unique solution wg in entire IRV maximizing at zero and
vanishing at infinity which turns out to be radially symmetric and radially
exponentially decreasing. If indeed v. converged to wg as € — 0, in some
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appropiate sense, then it would be natural to expect u.(z) to look approxi-
mately like ws((z — a.)/¢), a function exhibiting a sharp spike shape near
while vanishing at an exponential rate in 1/¢ elsewhere in Q.

The first result in this line for the Schrédinger equation when N = 1 and
p = 3 seems due to Floer and Weinstein {15}, who found such a concentrating
family via a Lyapunov-Schmidt reduction, around any nondegenerate critical
point of the potential V(). Later Oh [24], [25] extended this result to higher
dimensions when 1 < p < §£%, with potentials V which exhibit “mild be-
havior at infinity”, also constructing multiple-peaked solutions. Ambrosetti,
~ Badiale and Cingolani [1] partially lifted the nondegeneracy assumption, ob-
taining existence of a single peak solution when the potential has a local
minimum or maximum with nondegenerate mth-derivative. The first result
for equation (0.1) in R" in the possibly degenerate setting seems due to
Rabinowitz [26], see also Ding and Ni [14] for an independent related result.
In [26] it was shown that if inf gv V < lim infiz—oe V' (), then the mountain-
pass value for the associated energy functional provides a solution for all
small £. This solution indeed concentrates around a global minimum of V as
€ — 0, as shown later by X. Wang in [29]. Moreover, Wang observed that
concentration of any family of solutions with uniformly bounded energy may
occur only at critical points of V.

The work [4] seems to be one of the first attempts to attack the degenerate
case in (0.1) in a local setting. Here a penalization approach was devised,
which permitted to find local mountain passes around a local minimum of V
with arbitrary degeneracy. More precisely, given a bounded open set A such
that

infV < inf V, (0.5)
A A

a family u, exhibiting a single spike in A, at a point z. such that V{z.} —
infa V), is constructed.

In [5] this approach was extended to the construction of a family of so-
lutions with several spikes located around any prescribed finite set of local
minima of V' in the sense of (0.5). More precisely, the following result holds.

Theorem 0.1 Assume that there are bounded domains A;, mutually disjoint,
compactly contained in 2, i =1,... K, such that

nfV < infV. (0.6)
A; ANy
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Then there is an g¢ > 0 such that for every 0 < € < g9 a positive solution
u, € HY(Q) to problem (0.1) exists. Moreover, u, possesses exactly K local
mazima T ;, with z.; in A;. We also have that V(z.;) — infs, V, and

~
ue(z) < aexp(——lz — zeil), (0.7)
Jor all z € Q\ U;4A;, where o and <y are certain positive constants.

We shall next describe the main points in the proof of Theorem 1. We
. consider first the case K = 1, so that we are searching for a single peak
solution concentrating in A such that (0.5) holds.

Associated to equation (0.1) is the “energy” functional

1 1
E.(u) = 3 f52|Vu|2 + Viz)u® - ol /uﬂ“. (0.8)
0 Q

1t is standard to check that the nontrivial critical points of E, correspond
exactly to the positive classical solutions in H}(2) of equation (0.1). On the
other hand, E, has 0 as a strict local minimizer and it is unbounded below,
so that it satisfies the assumptions of the mountain pass theorem except
possibly for the P.S. condition due to the unboundedness of the domain.
We define a modification of this functional, introduced in [4], which sat-
isfies the P.S. condition and for which the mountain pass theorem applies.
Let a > 0 be the value at which a?~' = §, where V' > a. Let us set

= sP if s<a
f(s)z{%s if 5>a,

and define 3

g(z,8) = xa(2)s” + (1 — xa(z)) £ (5),
where A is a bounded domain as in (0.5) and xa denotes its characteristic
function. Let us denote G(z,€) = f§ g(z, T)dr, and consider the modified

functional

1
Jelu) = 5 f 2| Vul? + V(z)u? — / Glz,u) . (0.9)
) 0
whose critical points correspond to solutions of the equation

e2Au—V(z)u+g(z,u)=0 in Q (0.10)

20



It is shown in [4] that J. satisfies the Palais-Smale condition, no matter
whether {2 is bounded or not. The reason for this is the boundedness of A
plus the choice of f which roughly speaking, makes J, “coercive outside A”.
‘The mountain pass lemma yields a nontrivial solution u. to (0.10}. Let us
observe that a solution to (0.10) which satisfies that v < a on Q\ A will also
be a solution of {0.1). The main point of the proof is to establish that wu,
indeed satisfies this for sufficiently small . Note that . satisfies outside A
an equation of the form

2Au — W, (z)u = 0,

where W,(z) > a/2. This and the maximum principle imply that it suffices
to check that u, < a on JOA.
The latter fact is an immediate consequence of assumption (0.5) and the
following statement: If £, | 0 and 2, € A are such that u,_(z,) > b > 0, then
Jim Viza) =V = i%fV. (0.11)
This also shows that the maximum point of u tends to minimize V in A
as desired. Assume, passing to a subsequence, that z, — z € A and by
contradiction that V(z) > V5. We consider the sequence v, (z) = un (2, +&52)
which satisfies the equation

(0.12)

i

Avy, — V(z, + £,2)0, + g(zp + €02,v,) = 0in O,
Up 0 on 39,

where Q, = ;{2 - z,}. It can be checked that v, is uniformly bounded in
HY(R"), and from elliptic estimates it can be assumed to converge uniformly
on compacts subsets of R to a function v € H'(RY). v will satisfy an
equation of the form

Av—-V(Zw+glz,s) =0  in RY. (0.13)

where §(z,s) = x(2)s? + (1 — x{2))f(s). Here 0 < x < 1 a.e. Thus v is a
nontrivial critical point of the functional

Jw) = = / IVul? + V(2)w? - ] Glz,u) , ue H(RY)  (0.14)



whete G(z,s) = [; g{z, 7)d7. Via concentration-compactness type arguments

one can show that )
lim inf e N T (un) = J(v).

On the other hand, an explicit upper estimate for the mountain pass value of
J. using a suitable test path of functions supported near the minimum set of
V in A yields that necessarily lim sup,_,.o €5V Je,. (un) < J(v), a contradiction
which finally gives the result in the case K = 1. In the general case one
considers a similar modification of the energy which penalizes concentration

. outside the A}s but with an extra term added which also avoids to have two

local maxima of the solution in one of these sets More precisely, one takes
Jo(w) = Je(u) + MP.(u)

where J. is defined as in (0.9) but with A replaced by the union of the As.
M is a large constant and the further penalization term F; is built as follows.

K

Pu)=3, {(J:(u))'l“ - s%(cf)%}i. (0.15)

1=1

Here J! is defined as J, except that the integrals are taken just in small
neighborhood of A;. The numbers ¢; may be chosen so that a critical point of
J. with more than one concentration point in one A; makes the corresponding
term in the sum “big” independently of M.

Then a min-max quantity for J. taken over a suitable class of K-dimensional

maps is defined which provides a critical value at the right energy order. Dou-
ble concentration in one A; is discarded thanks to the term F. which even-
tually makes the total energy larger than an explicit a priori upper estimate
of the minmax quantity if M was chosen large enough. O

It should be remarked that in this result uP can still be replaced by a non-
linearity f(u) which satisfy appropriate growth and convexity assumptlons
The homogeneity of the power nonlinearity is not used.

The results described above are certainly connected with the those de-
scribed in the first part of these lectures.

We recall that Ni and Wei in [23] have considered the Dirichlet problem
in a bounded domain when V = 1 and found that the least energy solu-
tion concentrates around a global maximum of the distance to the boundary.
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Reciprocally, a strict local maximum of this function yields a concentrating
family, see [30]. Multiple spike solutions around a finite number of local
maxima of this function have been constructed in [9] using again a penal-
ization approach like the one already described plus estimates originated in
the work [23]. More precisely, let us assume Q is a smooth domain in RV,
not necessarily bounded, and there are K smooth bounded subdomains of
2, A1, -+, Ax, compactly contained in Q, satisfying

(H1) maxd(z,d0Q) > max d(z,890),i=1,2,.--- K,
2EA; TEAA;

(H2) I_Iigcld(A,-, Ay) > 2max max d(z,00)
where d(A;, Ay) is the distance between A;, Ay.

Under (H1) and (H2), there exists a solution u. which possesses ex-
actly K local maximum points z.), - -, T with z.; € A;.  Moreover
d(ze 4,0 ) —-»ngxd(a:,a Q),ase—0,foralli=1,..., K.

EASH N

Another related example where the penalization approach has shown use-
ful is the Ginzburg-Landau equation in a bounded domain in IR?,

2Au+(1—|uPHu=0 inQ

u=g¢g on dQ

where g : 900 — 5! has degree d > 0. It was proven by Bethuel, Brézis
and Hélein in (3], that if Q is star-shaped, then the global minimizer of the
associated energy converges smoothly to a harmonic map from  into S!,
away from d points, its singularities, all of them with degree 1. These d
points happen to minimize globally a certain finite-dimensional functional
called the renormalized energy. The star-shapeness assumption was lifted by
Struwe in [27).

By studying the associated heat flow, F.H. Lin in {20] proved that a non-
degenerate local minimizer of this functional determines a family of solutions
exhibiting asymptotic singularities at the corresponding points. The vari-
ational penalization method in [4], {5], was extended in [7], to show that
actually at a possibly degenerate local minimizer of the renormalized energy,
in the same sense as in (0.5), the same answer is true, with the additional
information that the associated solutions are local minimizers of the energy.
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The penalization method is also useful to capture single point concen-
sration at points that are not, loosely speaking, local minimizers of the un-
derlying finite dimensional object determining the concentration phenomena.
Coming back to Schrédinger equation, it has been established in [8] that a
single-spike concentrating family of solutions for equation (0.1) exists around
a region where a nontrivial change of topology of the level sets occurs, includ-
ing as a special case a degenerate local maximum or saddle point situation.

Locally we consider the following setting. We assume that there is an
open and bounded set A with smooth boundary such that A c Q, and closed
" subsets of A, B, By such that B is connected and By C B. Let I" be the class
of all continuous functions ¢ : B — A with the property that ¢(y) = vy for
all y € By. Define the min-max value c as

= inf v , 0.16
¢ érelr ilelg (6(y)) ( )
and assume additionally:
(H1)
sup V(y} < c.
vE€Bo

(H2) Forall g €T, ¢(B)N{yeA|V(y) >c} #0.

We observe that in the standard language of calculus of variations, the
sets By, B, {V > ¢} linkin A.
(H3) For all y € &A such that V(y) = ¢, one has 3,V (y) # 0, where ;
denotes tangential derivative.

Standard deformation arguments show that these assumptions ensure
that the min-max value ¢ is a critical value for V in A, which is topologi-
cally nontrivial. In fact, assumption (H3) “seals” A so that the local linking
structure described indeed provides critical points at the level ¢ in A, possibly
admitting full degeneracy.

It is not hard to check that all these assumptions are satisfied in a general
local maximum, local minimum or saddle point situation. Our main resultin
8] asserts that there is a family of solutions to problem (0.1) concentrating
around a critical point at the level ¢ in A.

In fact, with the aid of the penalization method developed in [4], we find
that the above min-max quantity for V inherits a min-max value for the
energy associated to (0.1) which provides the desired solutions.
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This method is also applicable in the case V = 1, for Dirichlet and
Neumann boundary conditions to predict existence of spike-layer solutions
around a topologically nontrivial critical point situation of, respectively, the
distance function to the boundary [10] (say, a domain exhibiting a “neck”)
and of the mean curvature [11]

Finally, we remark that in the works by Y.Y. Li [17], [18] and by Li
& Nirenberg [19], a similar program has been carried out for respectively
the Schrodinger and the autonomous Neumann and Dirichlet problems via
an alternative notion of topological nontriviality, and a finite dimensional
" reduction method which lead to similar concentration results.

Also to be mentioned is that we do not know whether these results hold
only under conditions (f1)-(f4) stated the introduction. The question of con-
structing spike-layers which are not of least energy nature, without any extra
assumptions on the limiting equation is basically open.

On the other hand, there are recent results concerning existence of solu-
tions in the Schrodinger equation having infinitely many spikes. We refer the
reader to the recent paper [2] and the references therein. See also [28].
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