$\widehat{\mathbb{H}}$
united national, scient and culti- organization
(6
international ator

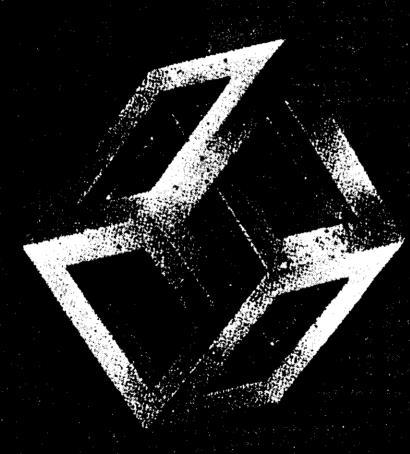
the

abdus salam international centre for theoretical physics

SMR.1073-2

ICTP-UNU-Microprocessor Laboratory Fifth Course on Basic VLSI Design Techniques

9 November - 4 December 1998


VHDL, ALLIANCE

Nizar ABDALLAH Actel Corporation 955 East Arques Av. Sunnyvale, 94086-4533California U.S.A

These are preliminary lecture notes intended only for distribution to participants

: .
4
,
· •
· · · · · · · · · · · · · · · · · · ·
;
;

The ALLANGE System

NIZAR ABDALLAH

LABORATOIRE MASI - EQUIPE CAO-VLSI

UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)

4, PLACE JUSSIEU, 75252 PARIS CEDEX 05 FRANCE

: Nizar.Abdallah@masi.ibp.fr

2:33 - 1 44 27 53 99

OUTLINE

- INTRODUCTION
- II DESIGN METHODOLOGY: AN OVERVIEW
- III ABSTRACTION LEVELS IN ALLIANCE
- IV VHDL: A HARDWARE DESCRIPTION LANGUAGE
- Y YHDL: THE ALLIANCE SUBSET
- VI ALLIANCE: A COMPLETE DESIGN SYSTEM
- VII- TODAY'S CHALLENGES IN CAD TOOLS

THE MASI LABORATORY

UNIVERSITY PIERRE ET MARIE CURIE NATIONAL CENTRE OF SCIENTIFIC RESEARCH

168 RESEARCHERS

ARCHITECTURE	59	NETWORKS & PERFORMANCES	30
DISTRIBUTED SYSTEMS	36	PARALLEL ALGORITHMS	17

THE MASI LABORATORY

UNIVERSITY PIERRE ET MARIE CURIE NATIONAL CENTRE OF SCIENTIFIC RESEARCH

168 RESEARCHERS

• Architecture	59	 Networks & Performances 	30
----------------	----	---	----

• DISTRIBUTED SYSTEMS 36 • PARALLEL ALGORITHMS 17

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 3

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

THE ARCHITECTURE GROUP

CAD FOR VLSI		ARCHITECTURE	
PORTABLE LIBRARIES	9	SUPERSCALAR PROCESSOR	5
VERIFICATION	7	RCUBE ROUTER	8
LOGIC SYNTHESIS	5	RAPID COPROCESSOR	6
ARCHITECTURE SYNTHESIS	4		
TEST	5		

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 4

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

EDUCATION TARGET

- Undergraduate Students: (≈ 80 Students and 72 Hours)
 - **◆ ELECTRICAL ENGINEERING**
 - **◆ COMPUTER SCIENCE**
- Postgraduate Students (≈ 60 Students and 300 Hours)
 - **♦ DEA MEMI**
 - ♦ DESS CIMI

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

THE ALLIANCE SYSTEM

- A COMPLETE SET OF CAD TOOLS FOR DIGITAL CMOS VLSI DESIGN.
- PROPOSES A DESIGN METHODOLOGY.
- PORTABLE, COMPACT AND EASY TO LEARN.
- ALLIANCE IS TOTALLY FREE.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996 First Course on Advanced VLSI Design Techniques: The ALLIANCE System

OUTLINE

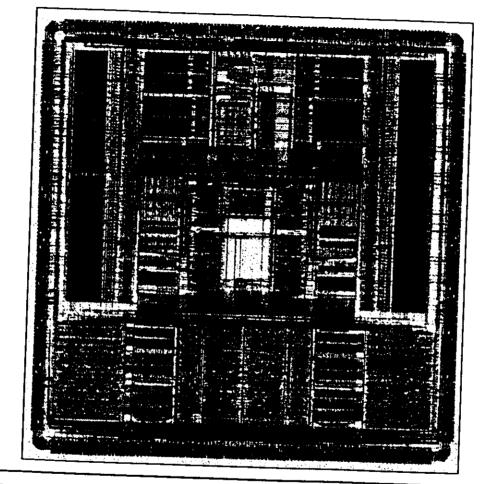
I - INTRODUCTION.

II - DESIGN METHODOLOGY: AN OVERVIEW.

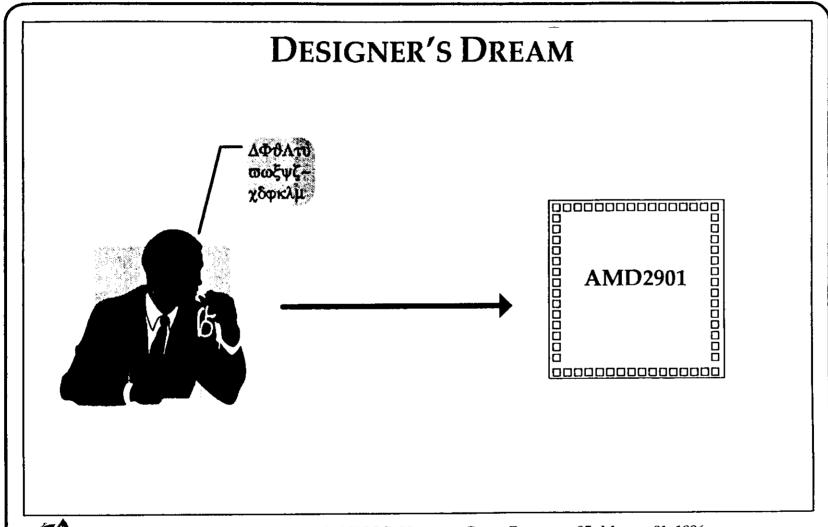
III - ABSTRACTION LEVELS IN ALLIANCE.

IV - VHDL: AN OVERVIEW.

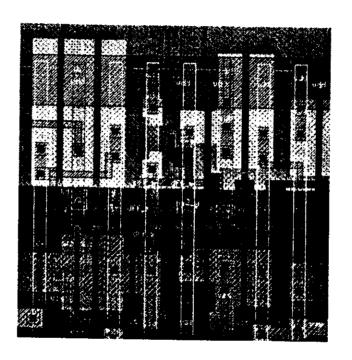
V - VHDL: THE ALLIANCE SUBSET.


VI - ALLIANCE: A COMPLETE DESIGN SYSTEM.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996


First Course on Advanced VLSI Design Techniques: The ALLIANCE System

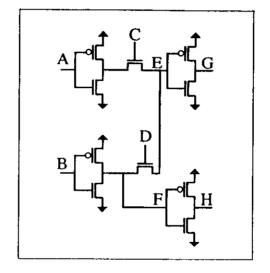
UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System



UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

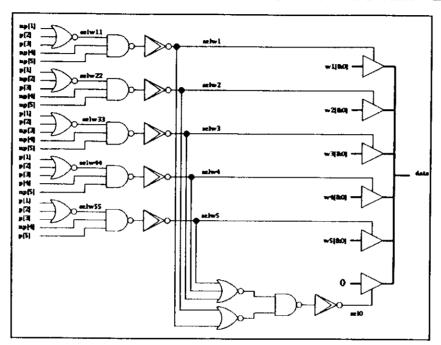
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

MILLIONS OF SEGMENTS PUT TOGETHER.


HOW TO DEAL WITH SUCH COMPLEXITY?

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

ONE MILLION OF TRANSISTORS CONNECTED TOGETHER.


ß STILL TOO COMPLEX....!!!

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

HUNDRED THOUSAND OF CELLS CONNECTED TOGETHER.

★ STILL TOO COMPLEX....!!!

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

DOZEN OF FUNCTIONAL BLOCKS THAT COMMUNICATE TOGETHER.

✓ I UNDERSTAND (OUF!!!)

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

A SET OF EQUATIONS THAT REFLECT THE WHOLE FUNCTIONALITY OF THE CIRCUIT.

```
entity adder is
port (

a, b: Bit;
c, d: bit
);

architecture adder is

a <= b or c
d <= b and c;
end;
```

✓ I UNDERSTAND WHAT THIS CIRCUIT IS SUPPOSED TO DO.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

SO,

HOW TO DEAL WITH SUCH COMPLEXITY?

- **✓ ABSTRACTION**
 - **✓** HIERARCHY

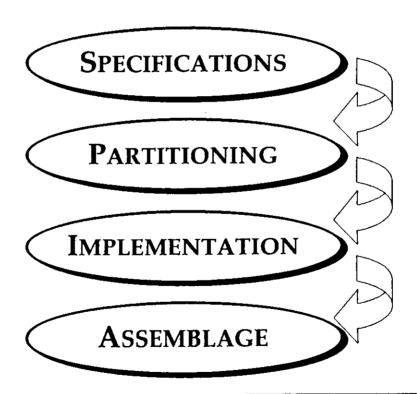
UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

LEVELS OF ABSTRACTION

TO GO ACROSS THESE DIFFERENT LEVELS OF ABSTRACTION

I NEED


A DESIGN METHODOLOGY

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

DESIGN METHODOLOGY TOP-DOWN METHODOLOGY

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

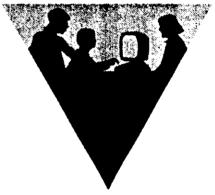
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 1: SPECIFICATIONS (1)

PUT DOWN THE CIRCUIT CONCEPT.

TWO REASONS:

- TO BE ABLE TO CHECK IT BEFORE MANUFACTURING.
- TO HAVE A REFERENCE MANUAL FOR COMMUNICATION.


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 1: SPECIFICATIONS (2)

COMMUNICATION LANGUAGE.

BETWEEN DIFFERENT PEOPLE ON THE PROJECT AND BETWEEN PEOPLE AND COMPUTERS.

- * NO ORDINARY LANGUAGE.
- ✓ ACCURATE LANGUAGE.
- ✓ A LANGUAGE THAT CAN BE SIMULATED.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To ?(1)

VERY DIFFICULT STEP: RELAYS ON THE KNOW-HOW OF THE DESIGNER.

MAIN IDEA: TO SPLIT INTO SEVERAL SMALL PARTS.

DIVIDE AND CONQUER STRATEGY.

HIERARCHY.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To ? (2)

THE CUTTING IS GUIDED BY:

1. REGULARITY OR NOT.

- IDENTIFY REGULAR BLOCKS.
- IDENTIFY RANDOM LOGIC BLOCKS.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To? (3)

THE CUTTING IS GUIDED BY:

- 2. TIMING ASPECTS.
- COARSE ESTIMATION OF TIMING.
- LOOKING FOR A GOOD BALANCE.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To? (4)

THE CUTTING IS GUIDED BY:

3. Topology.

- ALREADY IN MIND THE CIRCUIT FORM.
- AN IDEA ABOUT THE SIZE OF EACH PART.
- AN IDEA ABOUT THE ROUTING.
- OPTIMIZING SILICON AREA USAGE.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To? (5)

THE CUTTING IS GUIDED BY:

4. TECHNOLOGY.

- Using GAAS or CMOS?
- USING PALS OR STANDARD CELLS?

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 2: How To ? (6)

THE CUTTING IS GUIDED BY:

5. CAD TOOLS.

• What tools do I have to make my circuit?

EX: NO SYNTHESIS TOOLS SO I TRY TO REDUCE THE RANDOM LOGIC PART.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

STEP 3: IMPLEMENTATION

EACH PART WILL BE IMPLEMENTED USING A PARTICULAR METHOD. WHEN I SPLIT MY CIRCUIT, I HAVE ALREADY DECIDED WHICH ONE.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STEP 4: ASSEMBLAGE

THE ASSEMBLAGE IS DONE IN A HIERARCHICAL WAY, STARTING FROM THE LOWEST LEVEL.

CONCLUSION (1)

AT EACH STEP, THE INFORMATION IS ENHANCED:

- 1. From the idea down to the specifications.
- 2. WHEN STRUCTURING THE MODEL IN AN OTHER WAY.
- 3.
- \Rightarrow AT EACH STEP, A <u>VERIFICATION</u> IS TO BE DONE.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

CONCLUSION (2)

ALL ALONG THE METHODOLOGY, WE HANDLED DIFFERENT VIEWS:

- 1. EQUATIONS.
- 2. Netlists.
- 3. LAYOUT.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 23

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

CONCLUSION (3)

THERE IS A METHOD.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

OUTLINE

I - INTRODUCTION.

II - DESIGN METHODOLOGY: AN OVERVIEW.

III - ABSTRACTION LEVELS IN ALLIANCE.

IV - VHDL: AN OVERVIEW.

V - VHDL: THE ALLIANCE SUBSET.

VI - ALLIANCE: A COMPLETE DESIGN SYSTEM.

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

3 DIFFERENT VIEWS

ALL ALONG THE METHODOLOGY, WE HANDLED DIFFERENT VIEWS:

- 1. BEHAVIORAL VIEW (EQUATIONS).
- 2. STRUCTURAL VIEW (NETLISTS).
- 3. LAYOUT VIEW.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BEHAVIORAL VIEW (1)

LOGICAL EQUATIONS

• DESCRIPTION FORMALISM.

A SET OF LOGICAL EQUATIONS (BOOLEAN) REPRESENTING BOOLEAN FUNCTIONS.

EXAMPLE:
$$U = A.(A+B)$$
 $V = C.D$ $T = D \oplus E$

$$X = U.V$$
 $Y = V + T + X$ $Z = T.E$

BEHAVIORAL VIEW (2)

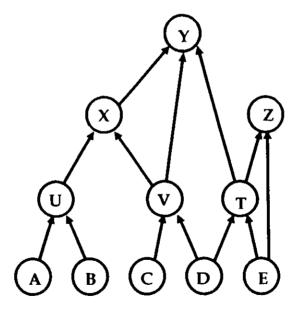
LOGICAL EQUATIONS

• REPRESENTATION.

A DIRECTED ACYCLIC GRAPH INCLUDING THREE KINDS OF NODES: INPUT, INTERMEDIARY, OUTPUT.

EACH INTERMEDIARY OR OUTPUT NODE IS ASSOCIATED TO A LOGICAL EXPRESSION.

EACH NODE IS ASSOCIATED TO A VARIABLE NAME.


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BEHAVIORAL VIEW (3)

BOOLEAN NETWORK

• REPRESENTATION.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

STRUCTURAL VIEW (1)

FOR ALL THESE VIEWS, WE ARE LOOKING FOR BASIC CONCEPTS: COMPLETELY INDEPENDENT FROM A GIVEN LANGUAGE.

IN THE STRUCTURAL VIEW:

- CONNECTORS: ID, DIRECTION, ETC....
- SIGNALS: ID, TYPE (EXTERNAL OR NOT), ETC....
- INSTANCE: ID, MODEL NAME, PORTS, ETC....

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

LAYOUT VIEW (1)

SYMBOLIC LAYOUT: PRINCIPLES

- PORTABILITY
- SIMPLICITY
- ROBUSTNESS

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

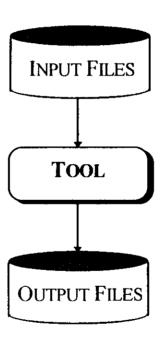
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

LAYOUT VIEW (2)

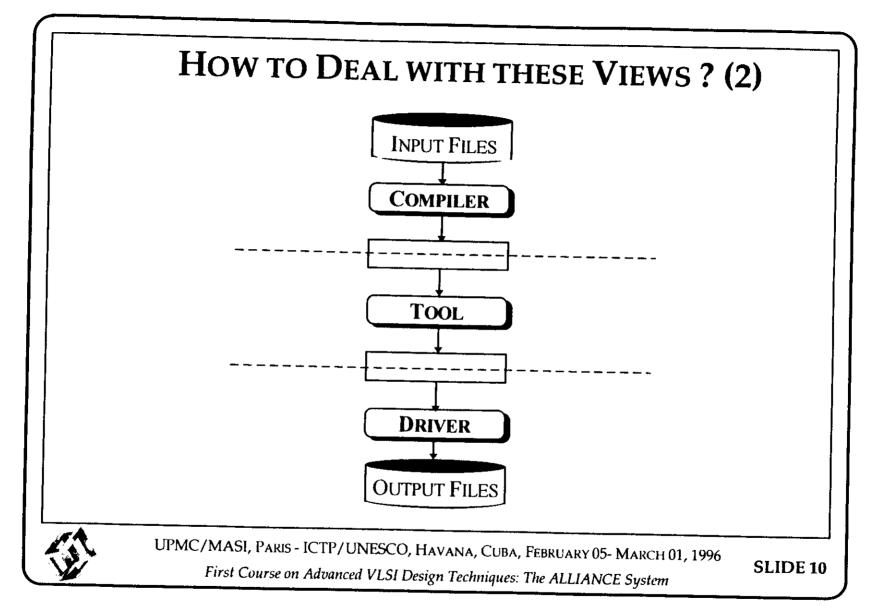
SYMBOLIC LAYOUT: OUR APPROACH

THIN FIXED GRID, SYMBOLIC LAYOUT.

DISTANCES FORM CENTER TO CENTER \Rightarrow GOOD DENSITIES.


SPECIAL SYMBOLIC LAYOUT EDITOR.

AUTOMATIC TRANSLATION FROM SYMBOLIC TO PHYSICAL.

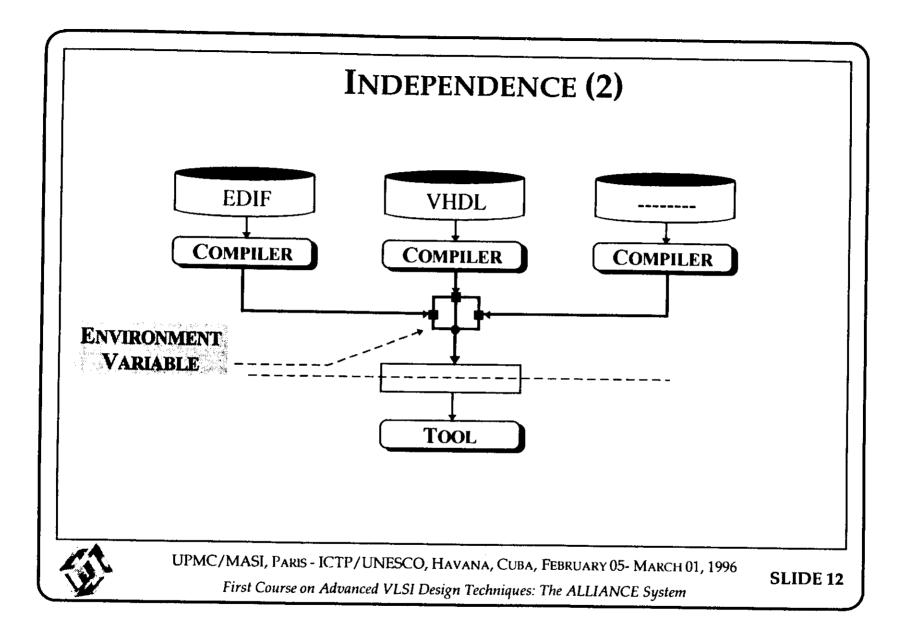

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

How to Deal with these Views? (1)

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INDEPENDENCE (1)

A MAJOR IDEA IN ALLIANCE IS ITS <u>INDEPENDENCE</u> FROM ANY GIVEN LANGUAGE.

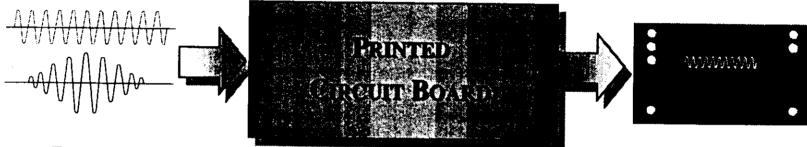

IDENTIFY THE CONCEPTS THAT:

- DO NOT DEPEND ON A LANGUAGE.
- ✓ DEPENDS ON THE ABSTRACTION LEVEL.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

OMITTIME


- I INTRODUCTION
- II DESIGN METHODOLOGY: AN OVERVIEW
- III ABSTRACTION LEVELS IN ALLIANCE
- IV VHDL: A HARDWARE DESCRIPTION LANGUAGE

Why an hat ?(小)

X Hardware Solutions Limits

I NPUT
WAVEFORM
GENERATOR

DIGITAL ANALYZER

May 410 HDL ? (2)

- **✗** Increasing Complexity
- ✗ Increasing Cost in Time & Investment
 - ✗ Increasing Knowledge Requirement

A Software Solution is Needed

Why 部肿(多)

* Programming Language not Suited

A Special Purpose Language: HDL

Circuit Manufacturers
Fully Satisfied with their
Proprietary HDLs...

Why VHDL ?(2)

Problems for system manufacturers

- ★ Different vendors different incompatible HDLs
- ✗ Impossible to verify a whole mixed-system

Why KHIDIT 5 (39)

- ✗ Vendor dependency
- ✗ Design documentation exchange

A Standard HDL from the System Manufacturer's Point of View: V H D L

VHDL

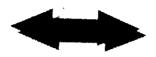
Very High Speed Integrated Circuits (VHSIC)

Hardware

Description

Language

History


- 1981: an Extensive Public Review (DOD)
- 1983: a Request for Proposal
 (Intermetrics, IBM, and Texas Instruments)
- 1986: VHDL in the Public Domain
- 1987: a Standard Language VHDL'87 (IEEE-1076)
- 1992: a New Standard VHDL'92

Advantages & Drawbacks

Standard

Open language

- ✓ Vendor independent
- ✓ User definable
- ✓ Wide capabilities

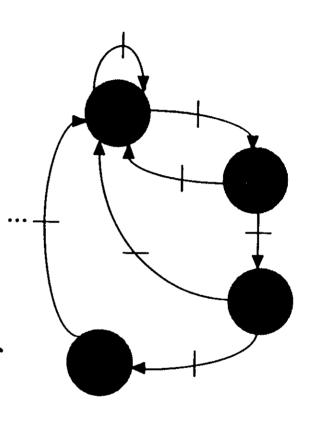
- **X** Complex tools
- **X** Slow tools

i d**ala i da i limba di** differenti

Abstraction revels (4)

Algorithmic Lexel

- > Very High Abstraction Level
- > Functional Interpretation of a Discrete System
- > No Implementation Details
- > Sequential Program-Like Description
- > Programmer's Point of View

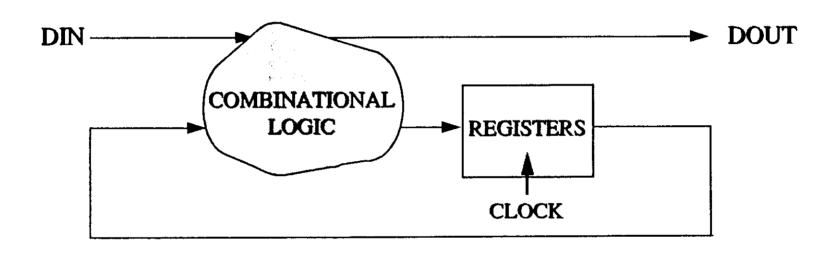


Abstraction Levels (2)

Finite State Machine Level

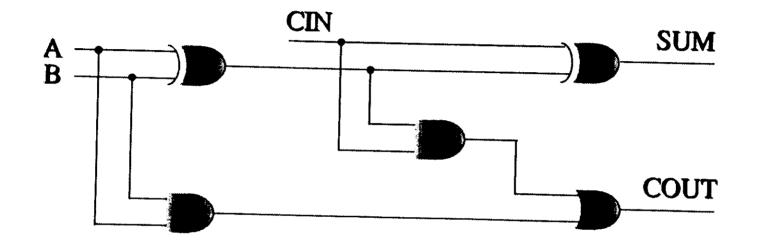
ck.

- ➤ Controller Part of a Digital Design
- > Internal States
- > State Changement Driven by:
 - **♦** Status Information



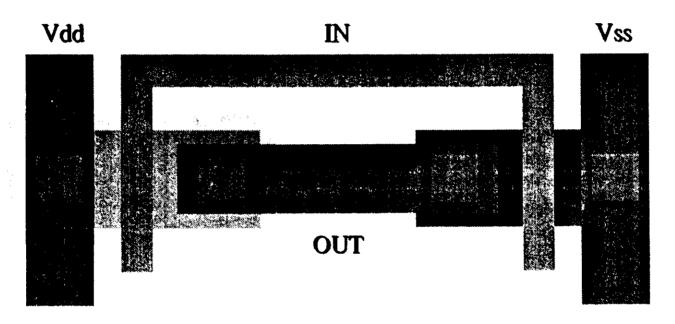
Abstraction Levels (3)

Register-Transfer-Level


- > Registers Connected by Combinational Logic
- > Very Close to the Hardware

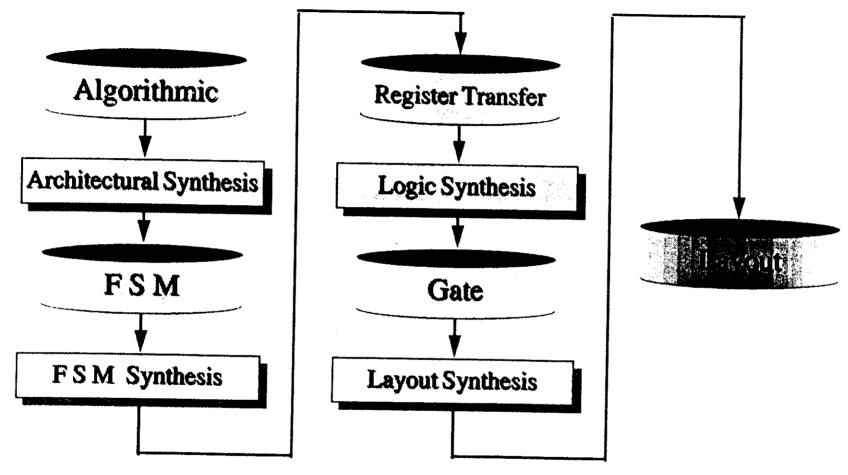
Abstraction Levels (4)

Gate Level


➤ A Gate Net-List Describing Instantiation of Models

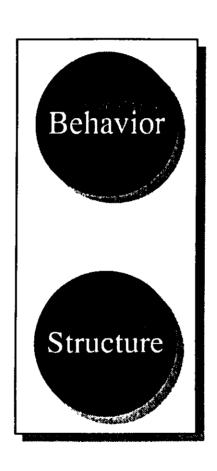
Appetraction revele (2)

Чахоны Чехен

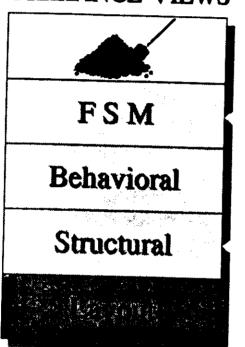


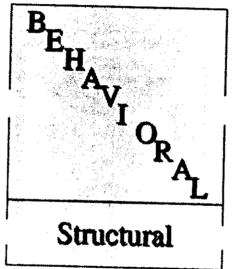
➤ A Set of Segments and Layers

Synthesis Flow



VHPL Wain Features




WHADIT VAIGHIFFE STATION TRAINER

ALLIANCE VIEWS

and the first of the

VHDL ARCHITECTURES

DESIGN LEVELS

Algorithmic
FSM
Register Transfer
Gate

A Dataflow Language (11)

CONTROLFLOW

DATAFLOW

EX: C language assignment

X = A & B;

X is computed out of A and B ONLY each time this assignment is executed

EX: VHDL signal assignment

A PERMANENT link is created between A, B, and X

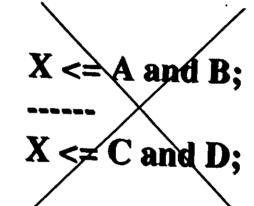
X is computed out of A and B WHENEVER A or B change 5

A Peterrow Language (2)

CONTROLFLOW



DATAFLOW


EX: C language assignment

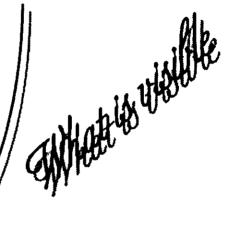
$$X = A \& B$$
;

X = C & D;

EX: VHDL assignment

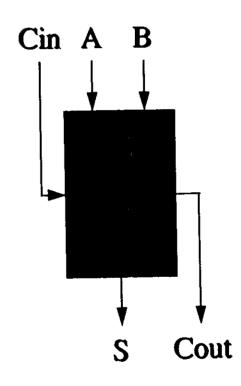
Basic Structures

Basic Building Blocks


- > Entity
- > Architecture
- > Configuration
- > Package
- > Library

Entity Declaration (4)

The External Aspect of a Pesign Unit



Entity Declaration (2)

Example

entity FULL_ADDER is port (A, B, Cin: in BIT; :(out)BIT S, Cout end FULL_ADDER; MODE: in, out, inout... **DATA TYPE**

Arichitectures (11)

The Internal Aspect of a Design Unite

architecture architecture_name of entity_name is
{architecture_declarative_part}
begin
{architecture_descriptive_part}
end [architecture_name];

- Collection of <u>CONCURRENT</u> Statements Executed in <u>PARALLEL</u>
- ➤ Concurrent Statements Communicate through <u>SIGNALS</u>

Arichitectures (2)

A Behavioral Style

```
entity FULL_ADDER is
  port (A, B, Cin: in BIT;
        S, Cout : out BIT);
end FULL_ADDER;
architecture DATAFLOW of FULL_ADDER is
  signal X : BIT;
begin
  X \ll A \times B;
  S <= S xor Cin after 10 ns;
  Cout <= (A and B) or (X and Cin) after 5 ns;
end DATAFLOW;
```


Arichitectures (3)

A Structurali Style

architecture STRUCTURE of FULL_ADDER is component HALF_ADDER

port (I1, I2 : in BIT;

Carry, S: out BIT);

end component;

component OR_GATE

port (I1, I2 : in BIT;

O : out BIT);

end component;

signal X1, X2, X3: BIT;

PARTINA; PARTI

· ...

Arichitectures (4)

A Striucturali Style

```
begin
```

HA1: HALF_ADDER port map (

I1 => A, I2 => B, Carry => X1, S => X2);

HA2: HALF_ADDER port map (

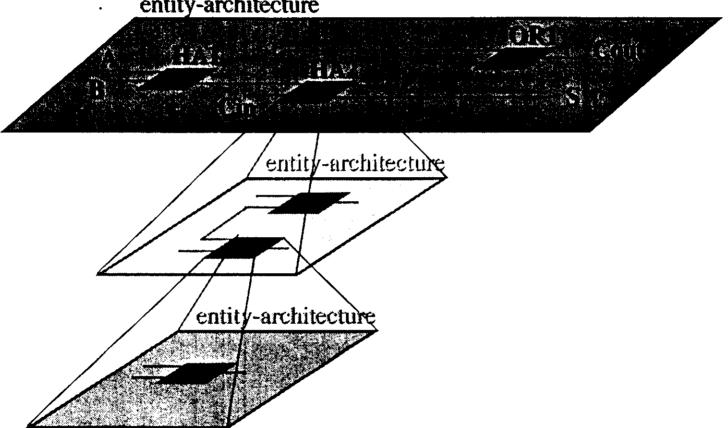
I1 => X2, I2 => Cin, Carry => X3, S => S);

OR1: OR_GATE port map (

I1 => X1, I2 => X3, O => Cout);

end STRUCTURE;

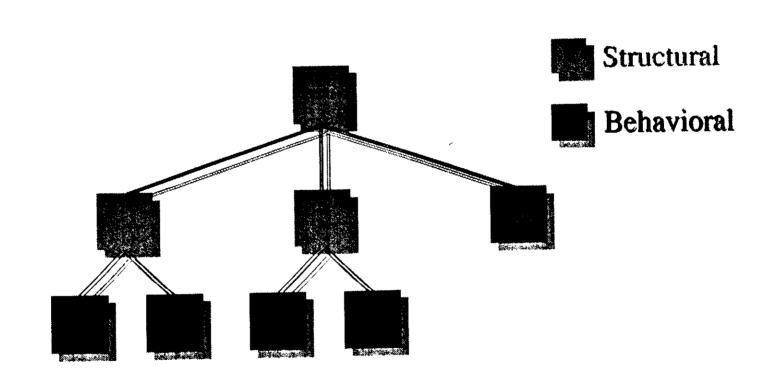
DESCRIPTIVE PART



Arichitectures (5)

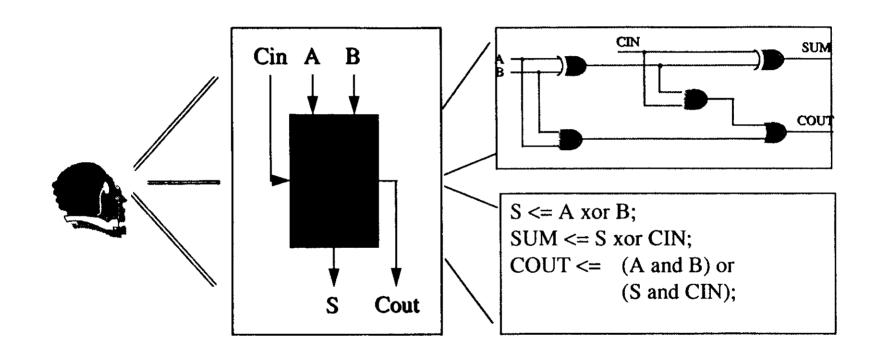
Structural Style to represent Hierarchy

entity-architecture



Arichitectures (6)

Structural & Behavioral in a Design Tree



Arichitectures (77)

entity/architecture: a One to Many Relationship

Configurations (4)

Specification Inside the Architecture Body

for instantiation_list: component_name use binding_indication;

use library_name.entity_name [(architecture_name)];

> Binding a couple "entity/architecture" to each instance

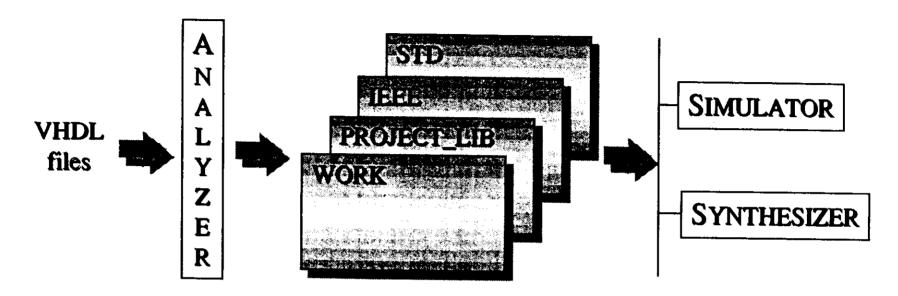
Configurations (2)

Peclaration as a Separate Design Unit

configuration configuration_name of entity_name is
 for { architecture | component } binding_indication;
end [configuration_name];

- > Can be compiled separately and stored in a library
- > It defines a configuration for a particular entity

Packages


Globali Pesign Unik

- > Same declarations visible by a number of design entities
- > May contain subprograms, components, signals, ...

Design Libraries

library library_name;
use library_name.package_name.all;

> May contain: packages, entities, architectures, configurations

Optifects (4))

Three Classes

- > Constants
 - ♦ Initialized to a specific value and never modified constant MSB : INTEGER := 5;
- > Variables
 - ♦ Used to hold temporary data
 - ♦ Only used within processes & subprograms variable DELAY : INTEGER range 0 to 15 := 0;

Dette Objects (2)

Three Classes.

- > Signals
 - **♦ Used to communicate between processes**
 - **♦ When declared in a package : Global Signals**
 - **♦** Also declared within entities, blocks, architectures
 - Can be used but not defined in processes and subprograms

signal CLK: BIT;

Pate Trypes (h) Frumeration Types

> The first identifier is the default value

type COLOR is (RED, ORANGE, YELLOW);

type TERNARY is ('1', '0', 'X');

variable X: COLOR;

signal Y: TERNARY;

Poetra Trypes (2)

Integer Types

- > The range must be specified
- ➤ No logical operations on integer type MEMORY_SIZE is range 1 to 2048;

Dette Trypes (3)

Predefined VHDL Data Types IEEE 1076-1987 Standard Package

- > BOOLEAN: (false, true)
- > BIT: ('0', '1')
- > CHARACTER
- > INTEGER: range -2 147 483 647 to +2 147 483 647
- > NATURAL : Subtype of INTEGER (Non Negative)
- > POSITIVE : Subtype of INTEGER (positive)
- > BIT_VECTOR: array of BIT values
- > STRING: array of CHARACTERS
- > REAL: range -1.0E+38 to +1.0E+38
- > TIME: Physical type used for simulation

Dette Trypes (41)

Array Types

> Constrained Array

type VEC_64 is array (0 to 63) of INTEGER;

variable S: VEC_64;

variable S1: INTEGER;

S1 := S(1);

> Unconstrained Array

type BIT_VECTOR is array (POSITIVE range <>) of BIT; signal S : BIT_VECTOR (4 downto 0);

Multiple Dimentional Arrays type TWO_D is array (0 to 7, 0 to 3) of INTEGER;

Pete Types (5) Record Types

type DATE is

record

YEAR: INTEGER range 1900 to 1999;

MONTH: INTEGER range 1 to 12;

DAY: INTEGER range 1 to 31;

end record;

signal S: DATE;

variable Y: INTEGER range 1900 to 1999;

Y := S.YEAR;

Poetra Trypes (6)

STD_4.061C Pata Types IFFF 1164-1993 Standard 4.0gic Package

type STD_ULOG	IC is (
${f U}'$	***	Uninitialized
'X'		Forcing Unknown
'O'		Forcing Low
'1'		Forcing High
'Z'		High Impedance // Unresolved
'W'		Weak Unknown // Pata Type
'L'		Weak Low
Ή'		Weak High
(1-1)		Don't Care
7.		Used in Synthesis

VHDL: A HARDWARE DESCRIPTION LANGUAGE

Dete Types (7)) STD_4964C Data Types IFFF 4164-1993 Standard 49gic Package

- > STD_LOGIC: Resolved (Resolution Function provided)
- > STD_LOGIC_VECTOR
- > STD_ULOGIC_VECTOR

Dette Trypes (77)

Also,

- > FILE: Useful for RAM Values or Stimuli Files
- > ACCESS: Like "pointers" in High Level Languages
- > TEXT: FILE of STRING (TEXTIO package)
- > LINE: access STRING (TEXTIO package)

Subtypes

Subsets of Other Types

- > To Insure Valid Assignments
- > Inherit All Operators and Subprograms from the Parent Type

subtype DIGIT is INTEGER range 0 to 9;

Operators Six Classes

LOGIC OPERATOR	and, or, nand, nor, xor
RELATIONAL OPERATOR	=,/=,<,<=,>,>=
ADDING OPERATOR	+,-,&
SIGN	+,-
MULTIPLYING OPERATOR	* , / , mod , rem
MISCELLANEOUS OPERATOR	**, abs, not

PRECEDENCE ORDER

- > Literals: 'x', "1100", 752, B"11001", O"277", X"4C"
 - ♦ numeric, character, enumeration, or string
- > Identifiers:
 - ♦ starts with (a-z) followed by letters, '_', or digits
 - **♦ Not case-sensitive**
 - **♦** Some are reserved words
- > Indexed Names: S(3), DATA (ADDR)

Operands (2)

- > Slice Names: variable ORG: BIT_VECTOR (7 downto 0)
 - **♦ Sequence of elements of an array object**
- > Aliases: alias MSB: BIT is ORG (7)
 - ♦ New name for a part of a range of an array
- > Aggregates
- > Qualified Expressions
- > Function Calls
- > Type Conversions

Operands (3)

Attributes Names A Pata Attached to VHD4 Objects

- > S'LEFT: Index of the leftmost element of the data type
- > S'RIGHT: Index of the rightmost element of the data type
- > S'HIGH: Index of the highest element of the data type
- > S'LOW: Index of the lowest element of the data type
- > S'RANGE: Index range of the data type
- > S'REVERSE_RANGE : Reverse index range
- > S'LENGTH: Number of elements of an array

Operands (4)

Attributes Names A Data Attached to VHDL Signals

- > S'EVENT : A change value at the current simulation time
- > S'STABLE : No change value at the current simulation time if (CK = 0 and not CK'STABLE)

>

Natural Concept for Describing Hardware

- > Concurrent Signal Assignment
- > Conditional Signal Assignment
- > Selected Signal Assignment
- **▶** Block Statement
- > Concurrent Assertion Statement
- > Process Statement

Concurrent Signal Assignment

Represent an Equivalent Process Statement

target <= expression [after time_expression];</pre>

- > Signals are associated with <u>Time</u>
- > With "after", the assignment is scheduled to a future simulation time
- ➤ Without "after", the assignment is scheduled at a <u>Delta</u> <u>Time</u> after the current simulation time

Conditional Signal Assignment

More than One Expression.

```
target <= { expression [ after time_exp ] when condition else }
            expression [ after time_exp ];
```

- > Condition / expression except for the last expression
- > One and only one of the expressions is used at a time

Selected Signal Assignment

Only One Target

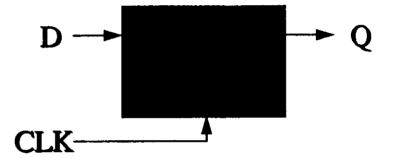
> "when others" is used when all the cases were not treated

Block Statement (1)

A Set of Concurrent Statements

> Used to organize a set of concurrent statements hierarchically

Block Statement (2)


In Synchronous Descriptions.

latch: block (CLK = '1')

begin

 $Q \leftarrow GUARDEDD;$

end block latch;

计有9067年42

Assertion Statement

Only One Target

assert condition

```
[ report error_message ] [ severity_level ];
```

- > If the condition is false, it reports a diagnostic message
- > Useful for detecting condition violation during simulation
- > Not used in synthesis

Process Statement (11)

A Set of Sequential Statements.

- > All processes in a design executes **CONCURRENTLY**
- > At a given time, <u>ONLY ONE</u> sequential statement executed within each process
- > Communicates with the rest of a design through signals

Process Statement (2)

A Pseudo, Infinite Loop,

```
process
begin
     sequential_st_inent_1;
     sequential_s = rent_12;
     sequential_st_nent_n;
end process;
```

> A Synchronization Mecanism is Needed

Process Statement (3) Synchronization, Mecanism,

wait

```
[ on signal_name { signal_name } ]
[ until boolean_expression ]
[ for time_expression ];
```

> Objects being waited upon should be **SIGNALS**

Process Statement (4)

The Sensitivity List

Equivalent to a "wait" statement as the last statement wait on sensitivity_list;

Sequential Statement

Insight Into Statements within Processes.

- > Variable Assignment
- > Loop

> Signal Assignment

> Next

> **If**

> Exit

> Case

> Wait

> Null

> Procedure Calls

> Assertion

> Return

Variable Assignment Statement

Immediate Assignment

target_variable := expression;

- > Always executed in **ZERO SIMULATION TIME**
- > Used as temporary storages
- > Can not be seen by other concurrent statements

Signal Assignment Statement (1)) Defines a DRIXER of the Signal

target_signal <= [transport] expression [after time_expression];

- > Within a process, **ONLY ONE** driver for each signal
- ➤ When assigned in multiple processes, it has <u>MULTIPLE</u> <u>DRIVERS</u>. A <u>RESOLUTION FUNCTION</u> should be defined

CONCLUSION (1)

VHDL IS AN OPEN LANGUAGE WITH MANY FEATURES.

WITH VHDL, ANY DISCRETE SYSTEM CAN BE MODELED.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

CONCLUSION (2)

EACH USER HAS ITS OWN NEEDS DEPENDING ON:

- HIS BACKGROUND.
- HIS ENVIRONMENT.

WE DEFINED A SUBSET OF VHDL.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

CONCLUSION (3)

WHY?

Complex language \Rightarrow Developing a compiler is hard and time consuming.

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

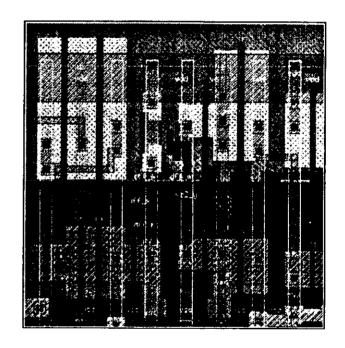
SLIDE 22

CONCLUSION (4)

WHY?

EDUCATIONAL NEEDS:

- Understanding time.
- Univocal (One way for describing a register).


UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 23

CONCLUSION (5)

WHY?

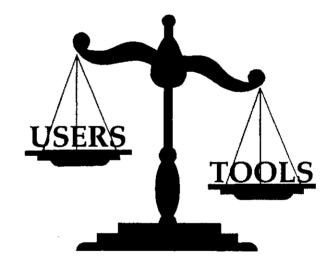
OUR ENVIRONMENT: VLSI.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

OUTLINE

- I INTRODUCTION.
- II DESIGN METHODOLOGY: AN OVERVIEW.
- III ABSTRACTION LEVELS IN ALLIANCE.
- IV VHDL: AN OVERVIEW.
- V VHDL: THE ALLIANCE SUBSET.
- VI ALLIANCE: A COMPLETE DESIGN SYSTEM.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996


SLIDE 1

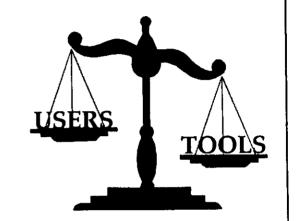
WHY AND How?

WHY?

- DEVELOPMENT TIME.
- EDUCATION CONSTRAINTS.
- THE CURRENT ENVIRONMENT.

CRITERIONS FOR THE SUBSET DEFINITION.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996


First Course on Advanced VLSI Design Techniques: The ALLIANCE System

TOOLS REQUIREMENTS (1)

WHICH TOOLS USE VHDL?

- SYNTHESIS.
- FORMAL PROOVER.
- PLACER & ROUTER.
- SIMULATOR.
- FUNCTIONAL ABSTRACTOR.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996 First Course on Advanced VLSI Design Techniques: The ALLIANCE System

TOOLS REQUIREMENTS (2)

SYNTHESIS TOOLS.

- * A REGISTER MUST BE IDENTIFIED IN A SYNTACTICAL WAY.
- * A BUS MUST BE IDENTIFIED IN A SYNTACTICAL WAY.
- SIGNALS MUST HAVE THE **BIT** TYPE ('0', '1').
- X NO TIMING.

FORMAL PROOVER.

- A REGISTER MUST BE IDENTIFIED IN A SYNTACTICAL WAY.
- A BUS MUST BE IDENTIFIED IN A SYNTACTICAL WAY.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

TOOLS REQUIREMENTS (3)

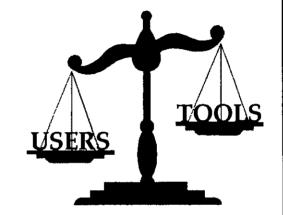
FUNCTIONAL ABSTRACTOR.

THE VHOL SUBSET MUST BE AS CLOSE AS POSSIBLE TO THE HARDWARE.

PLACER & ROUTER.

NO MIXING BETWEEN STRUCTURAL AND BEHAVIORAL VIEWS. SIMULATOR.

- NO ABSTRACT TYPES.
- X NO TIMING.


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

USERS REQUIREMENTS

LOOKING FOR THE LARGEST SUBSET.

THE GOOD VHDL SUBSET:

- ✓ LETS THE USER DESCRIBE HIS CIRCUIT EASILY.
- DO NOT DETERIORATE THE TOOL WITH A COMPLEX LANGUAGE.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

SLIDE 6

THE EXTERNAL ASPECT

IN VHDL A CIRCUIT (DESIGN UNIT) HAS TWO ASPECTS:

1. The external aspect: (External visibility)

ALLIANCE

✓NAME

✓INTERFACE (PORT)

×COLOR

≭ Temperature

X _____

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

THE INTERNAL ASPECT (1)

IN VHDL A CIRCUIT (DESIGN UNIT) HAS TWO ASPECTS:

2. THE INTERNAL ASPECT: (FUNCTIONALITY)

ALLIANCE

✓STRUCTURAL

✓ DATA FLOW

how it works

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

THE INTERNAL ASPECT (2)

IN THE STRUCTURAL INTERNAL ASPECT, WE DESCRIBE THE CIRCUIT AS A NETWORK OF SMALLER CIRCUITS.

THE FOLLOWING OBJECTS ARE USED:

- SIGNAL.
- COMPONENT (MODEL).
- INSTANCE.

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

EXTERNAL ASPECT: EXAMPLE (1) ENTITY PARITY IS PORT (Input/output mode A: IN BIT; C: IN BIT; C: IN BIT; P: OUT BIT

END PARITY;

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 10


```
EXTERNAL ASPECT: EXAMPLE (2)
ENTITY ADDER_32 IS
PORT (
      A: IN BIT_VECTOR (31 DOWNTO 0);
      B: IN BIT_VECTOR (31 DOWNTO 0);
      CIN: IN BIT;
      SUM: OUT BIT_VECTOR (31 DOWNTO 0);
      COUT: OUT BIT
END;
```


UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 11

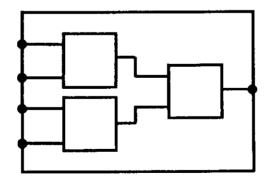
INTERNAL STRUCTURAL EXAMPLE (1) ARCHITECTURE PSTRUCT OF PARITY IS COMPONENT XOR_Y PORT (I0: IN BIT; I1 : IN BIT; T: OUT BIT **DECLARATIVE PART** END COMPONENT; SIGNAL PARITY_AB : BIT; SIGNAL PARITY_CD : BIT;

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

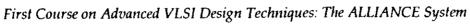
INTERNAL STRUCTURAL EXAMPLE (2)

```
BEGIN
      INSTANCE_AB: XOR_Y
            PORT MAP (
                             I0 \Rightarrow A
                             I1 \Rightarrow B,
                             T \Rightarrow PARITY\_AB
                                                              DESCRIPTION
                                                                   PART
     INSTANCE_CD: XOR_Y
           PORT MAP (
                             I0 \Rightarrow C
                             I1 \Rightarrow D,
                             T \Rightarrow PARITY\_CD
```

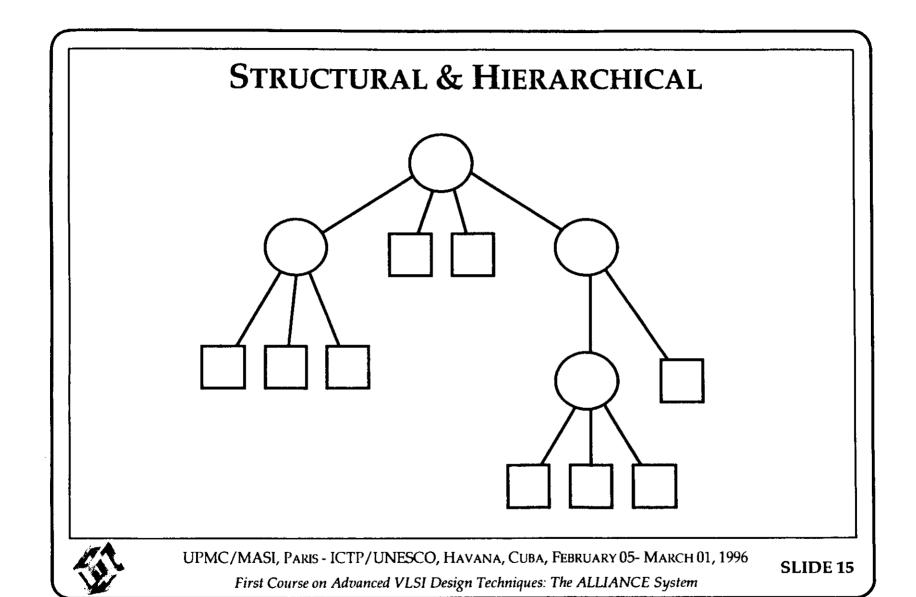


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

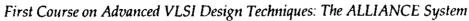

INTERNAL STRUCTURAL EXAMPLE (3)

```
INSTANCE_ABCD: XOR_Y
PORT MAP (
I0 \Rightarrow PARITY\_AB,
I1 \Rightarrow PARITY\_CD,
T \Rightarrow P
);
END;
```



UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

INTERNAL BEHAVIORAL ASPECT (1)


DESCRIBING EQUATIONS BETWEEN INPUTS AND OUTPUTS.

- BOOLEAN FUNCTIONS:
 - **♦** AND
 - ♦OR
 - **♦**XOR
 - **♦NAND**
 - **♦**NOR
 - **♦**NOT

ALWAYS USE BRACKETS.

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

INTERNAL BEHAVIORAL ASPECT (2)

DESCRIBING EQUATIONS BETWEEN INPUTS AND OUTPUTS.

• ASSERT (CONDITION)
REPORT "MESSAGE"
SEVERITY LEVEL;

VERY USEFUL IN LARGE-SCALE DESIGN.

- ◆ ALLOWS ENCODING SPECIFIC CONSTRAINTS AND ERROR CONDITIONS
- ◆ PROVIDE USEFUL MESSAGES.
- ◆ STOP THE SIMULATION WHEN CONSTRAINTS ARE NOT MET.

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INTERNAL BEHAVIORAL ASPECT (3)

• THREE KINDS OF ASSIGNMENTS:

SIMPLE ASSIGNMENT:

$$S \leq A AND B$$
;

CONDITIONAL ASSIGNMENT:

Always

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996 First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INTERNAL BEHAVIORAL ASPECT (4)

SELECTIVE ASSIGNMENT:

WITH ADDRESS(3 DOWNTO 0) SELECT
OUT <= "000100" WHEN "0000",
"000101" WHEN "0001",

"000000" WHEN OTHERS;

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INTERNAL BEHAVIORAL ASPECT (5)

• REGISTERS:

SIGNAL MYREGISTER: REG_BIT REGISTER;

STORE: BLOCK (CK = '0' AND NOT CK'STABLE)

BEGIN

MYREGISTER <= GUARDED I0;

END BLOCK STORE;

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INTERNAL BEHAVIORAL ASPECT (6)

• <u>Bus</u>:

SIGNAL MY_BUS1 : MUX_BIT BUS;
ONLY ONE DRIVER ACTIVE AT THE SAME TIME.

SIGNAL MY_BUS2: WOR_BIT BUS; MANY DRIVERS DRIVE THE SAME VALUE.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

INTERNAL BEHAVIORAL EXAMPLE

```
ARCHITECTURE DATA_FLOW OF PARITY IS

SIGNAL PARITY_AB: BIT;

SIGNAL PARITY_CD: BIT;

BEGIN

PARITY_AB <= A XOR B;

PARITY_CD <= C XOR D;

P <= PARITY_AB XOR PARITY_CD;

End;
```


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 22

OUTLINE

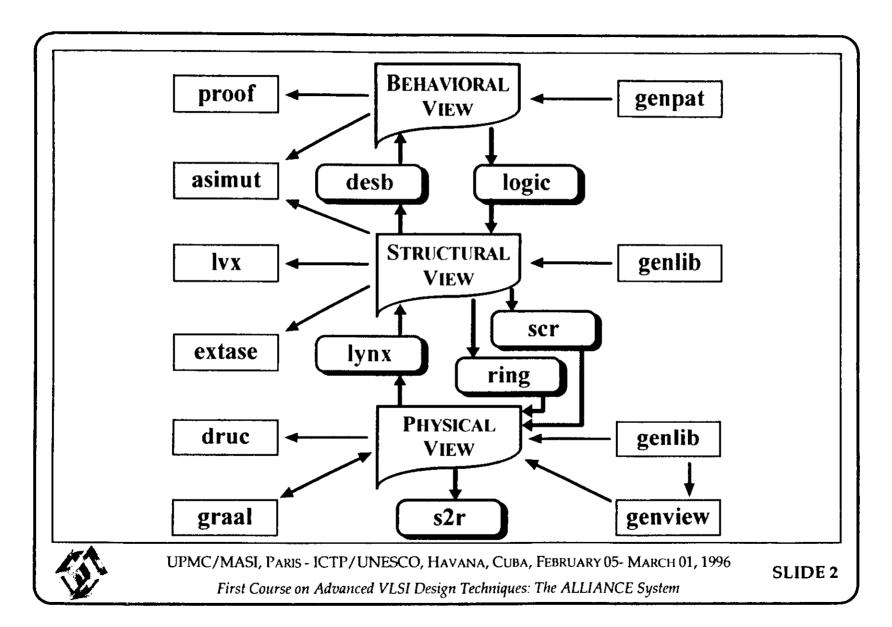
I - INTRODUCTION.

II - DESIGN METHODOLOGY: AN OVERVIEW.

III - ABSTRACTION LEVELS IN ALLIANCE.

IV - VHDL: AN OVERVIEW.

V - VHDL: THE ALLIANCE SUBSET.


VI - ALLIANCE: A COMPLETE DESIGN SYSTEM.

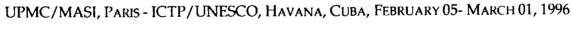
UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

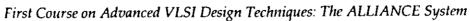
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

SYNTHESIS LEVELS

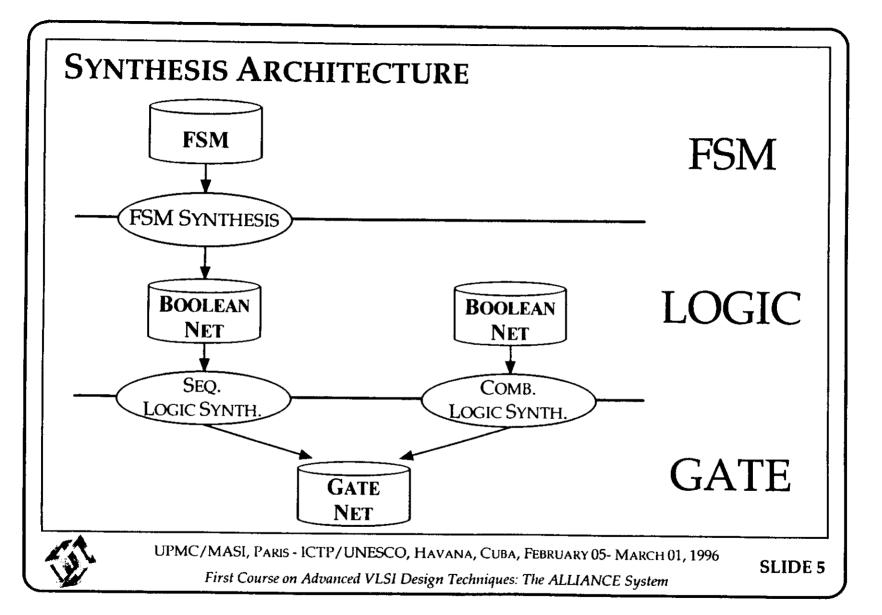
- ARCHITECTURAL
- FINITE STATE MACHINE
- LOGIC
- LAYOUT

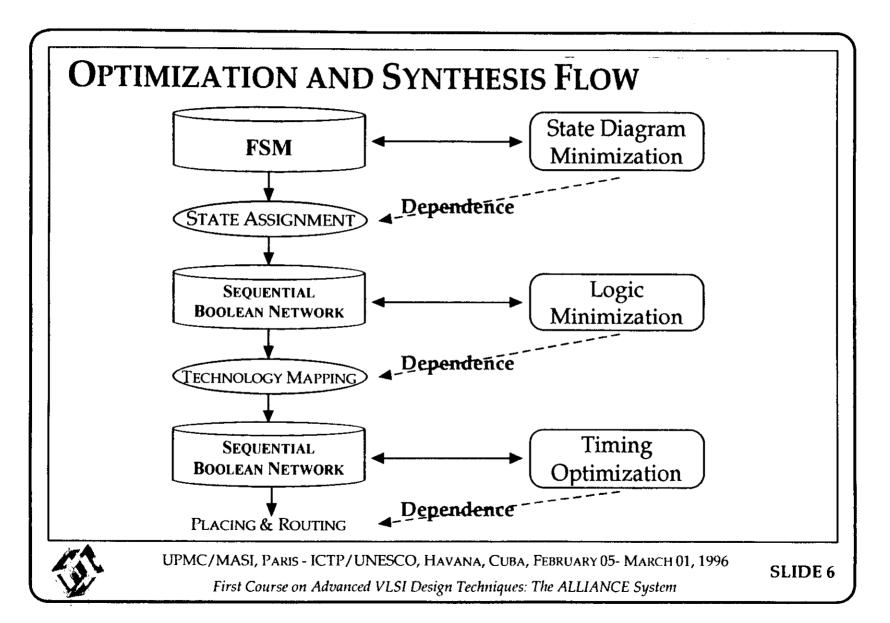
UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

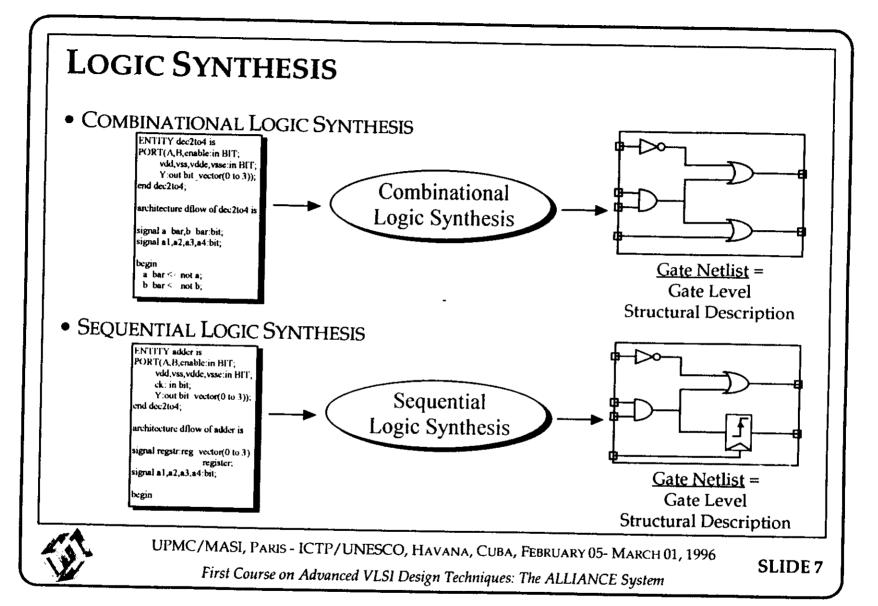

SYNTHESIS AREA


- CONTROL LOGIC

 EVERY CIRCUIT THAT MAY BE DESCRIBED AS FSM
 (NB STATES < 1000).
- RANDOM LOGIC


 EVERY CIRCUIT THAT MAY NOT BE DESCRIBED WITH REGULAR LOGIC.





OPTIMIZATION

✓ IMPROVE DESCRIPTION AT EQUIVALENT LEVEL.

$$\begin{cases} X = A + \overline{A}.C.D \\ Y = C.D \end{cases} \Rightarrow \begin{cases} X = A + Y \\ Y = C.D \end{cases}$$

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

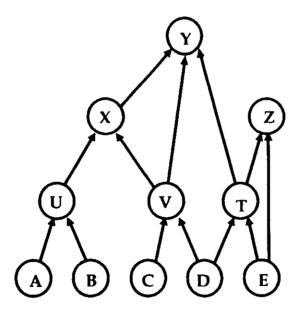
REPRESENTATION (1)

LOGICAL EQUATIONS

A DIRECTED ACYCLIC GRAPH INCLUDING THREE KINDS OF NODES: INPUT, INTERMEDIARY, OUTPUT.

EACH INTERMEDIARY OR OUTPUT NODE IS ASSOCIATED TO A LOGICAL EXPRESSION.

EACH NODE IS ASSOCIATED TO A VARIABLE NAME.


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

REPRESENTATION (2)

BOOLEAN NETWORK

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BDD (BINARY DECISION DIAGRAM) (1)

BASED ON THE **SHANNON** THEOREM:

$$F(X_1, X_2,..., X_n) = \overline{X_1}.F(0, X_2,..., X_n) + X_1.F(1, X_2,..., X_n)$$

✓ CANONICAL REPRESENTATION OF A BOOLEAN EQUATION.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BDD (BINARY DECISION DIAGRAM) (2)

$$\underline{Ex}: F(a,b) = a + b$$

$$F = \overline{a}.F(0,b) + a.F(1,b)$$

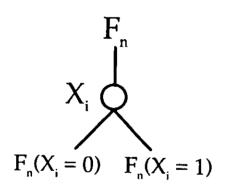
$$= \overline{a}.(0+b) + a.(1+b)$$

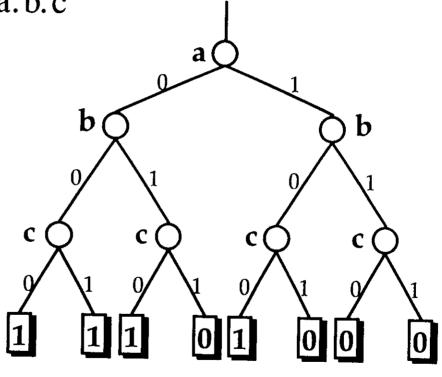
$$= \overline{a}.(b) + a.(1)$$

$$= \overline{a}.(\overline{b}.(0) + b.(1)) + a.(\overline{b}.(1) + b.(1))$$

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BDD (BINARY DECISION DIAGRAM) (3)

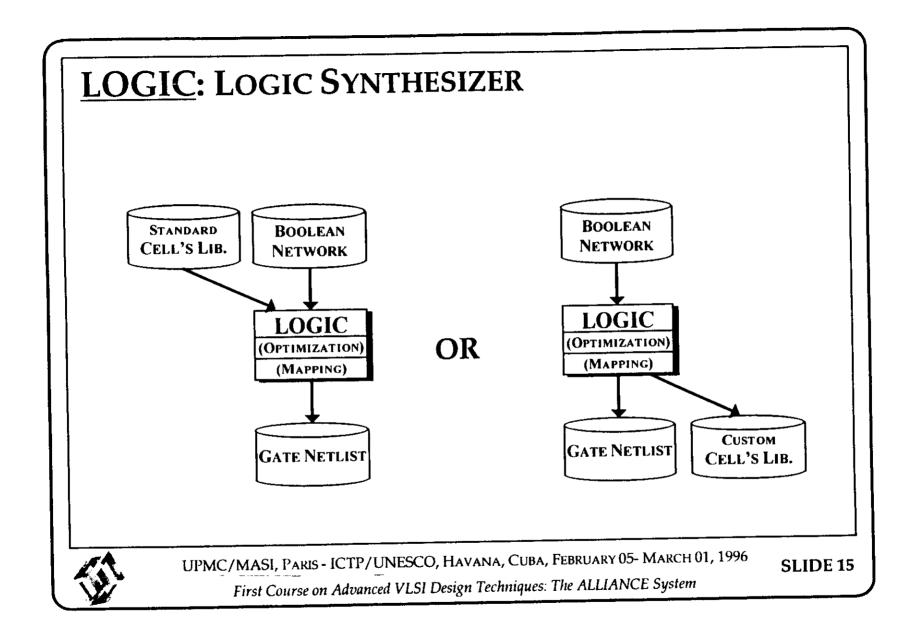

So... $F = \overline{a}.(\overline{b}.(0) + b.(1)) + a.(\overline{b}.(1) + b.(1))$



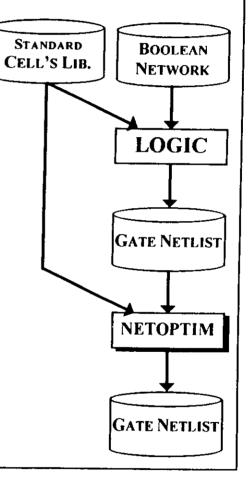
UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

BDD (BINARY DECISION DIAGRAM) (4)

 \underline{Ex} : $F = \overline{a}.\overline{b} + \overline{a}.b.\overline{c} + a.\overline{b}.\overline{c}$

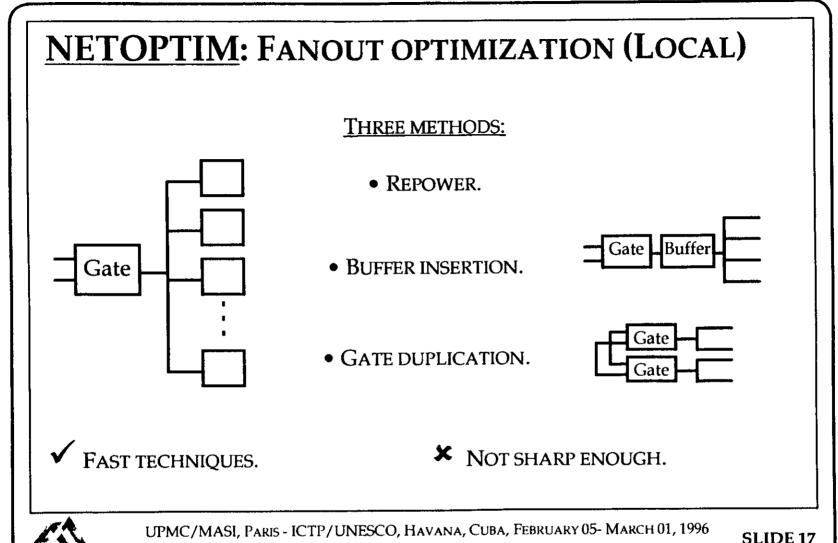


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System



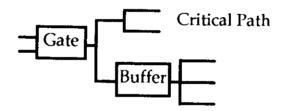
NETOPTIM: TIMING OPTIMIZER

TIMING OPTIMIZATION WITH LIMITED SURFACE LOSS.


TWO OPTIMIZATION OPTIONS:

- FANOUT OPTIMIZATION (LOCAL VIEW).
- DELAY OPTIMIZATION WITH TIMING ANALYSIS (GLOBAL VIEW).

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

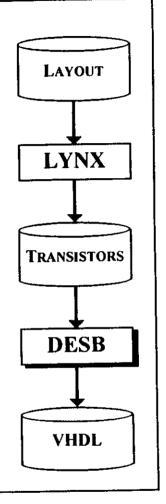

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

NETOPTIM: DELAY OPTIMIZATION (GLOBAL)

THE TIMING ANALYSIS COMPUTES THE CRITICAL PATH OF THE CIRCUIT.

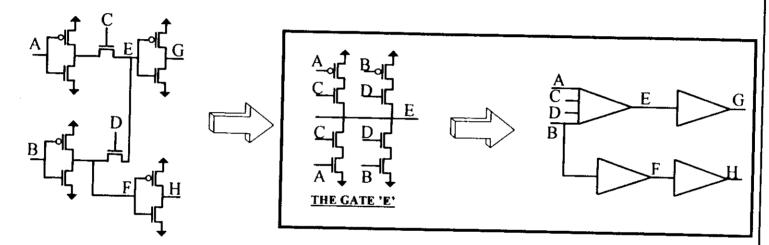
TWO METHODS TO OPTIMIZE THE CRITICAL PATH:

- REPOWER.
- BUFFER INSERTION.



UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

DESB: FUNCTIONAL ABSTRACTOR (1)


- ✓ GENERATES BEHAVIORAL DATA FLOW VHDL.
- ✓ PROVIDES FUNCTIONAL VERIFICATIONS.
- ✓ DOES NOT USE ANY CELL LIBRARY.
- ACCEPTS STANDARD TRANSISTOR NETLIST FORMAT (VTI, SPICE).

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

DESB: FUNCTIONAL ABSTRACTOR (2)

 $E \leftarrow (NOT A AND C) OR (NOT B AND D);$

 $H \le NOTF$;

G <= NOT E;

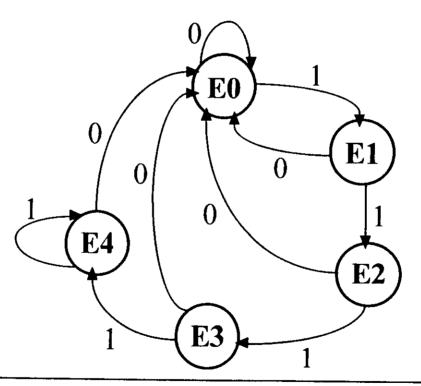
 $F \le NOT B$;

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

FSM (FINITE STATE MACHINE) (1)

- MODELS SEQUENTIAL CIRCUITS.
- Two Kinds of FSM.
- GRAPH REPRESENTATION.
- DEFINITION:

STATE(T+1)
$$\langle F(I_1,...,I_n,STATE(T))\rangle$$


OUTPUT_i
$$\langle = F(I_1,...,I_n,STATE(T))$$

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

FSM (FINITE STATE MACHINE) (2)

EXAMPLE: FOUR CONSECUTIVE ONE'S COUNTER

UPMC/MASI, Paris - ICTP/UNESCO, Havana, Cuba, February 05- March 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

FSM: THE DESCRIPTION LANGUAGE

- •STANDARD.
- VHDL SUBSET.
- THE STATES ARE ENUMERATED TYPE.
- Two Special Signals.
- Two Processes.

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

```
Entity counter is port (ck, I, reset: in bit; O: out bit);
End counter;
Architecture automate of counter is
type STATE_TYPE is (E0, E1, E2, E3, E4);
signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
-- pragma CUR_STATE CURRENT_STATE;
-- pragma NEX_STATE NEXT_STATE;
-- pragma CLOCK ck;
begin
    Process(CURRENT_STATE, I, reset)
    begin
        if (reset = '1') then
            NEXT_STATE <= E0;
            O \le '0';
       else
```


UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

First Course on Advanced VLSI Design Techniques: The ALLIANCE System

```
case CURRENT_STATE is
    WHEN E0 =>
        if (I='1') then
            NEXT_STATE <= E1;</pre>
        else
            NEXT_STATE <= E0;
        end if;
        O<= '0';
    WHEN E1 =>
        if (I='1') then
            NEXT_STATE <= E2;
        else
            NEXT_STATE <= E0;
        end if;
        O<= '0';
```


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

```
WHEN E2 =>
    if (I='1') then
        NEXT_STATE <= E3;
    else
        NEXT_STATE <= E0;
    end if;
   O <= '0';
WHEN E3 =>
   if (I='1') then
       NEXT_STATE <= E4;
   else
       NEXT_STATE <= E0;
   end if;
   O<= '0';
```


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

```
WHEN E4 =>
                if (I='1') then
                     NEXT_STATE <= E4;
                else
                     NEXT_STATE <= E0;
                end if;
                O<= '1';
            WHEN others =>
                assert('1')
                report "Illegal State";
        end case;
    end if;
end process;
```

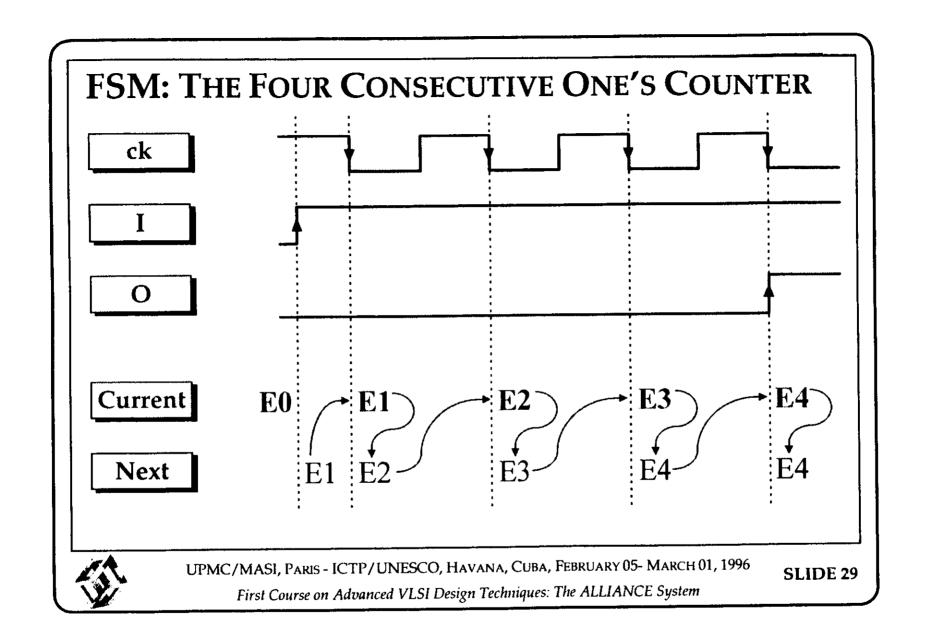

UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

SLIDE 27

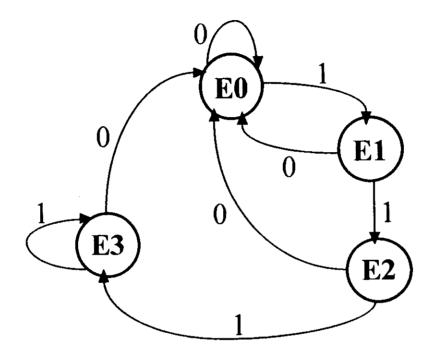
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

```
Process(ck)
begin

if (ck = '0' and not ck'stable) then

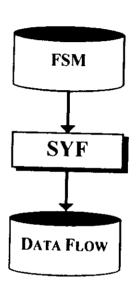

CURRENT_STATE <= NEXT_STATE;
end if;
end process;
end counter;
```


UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

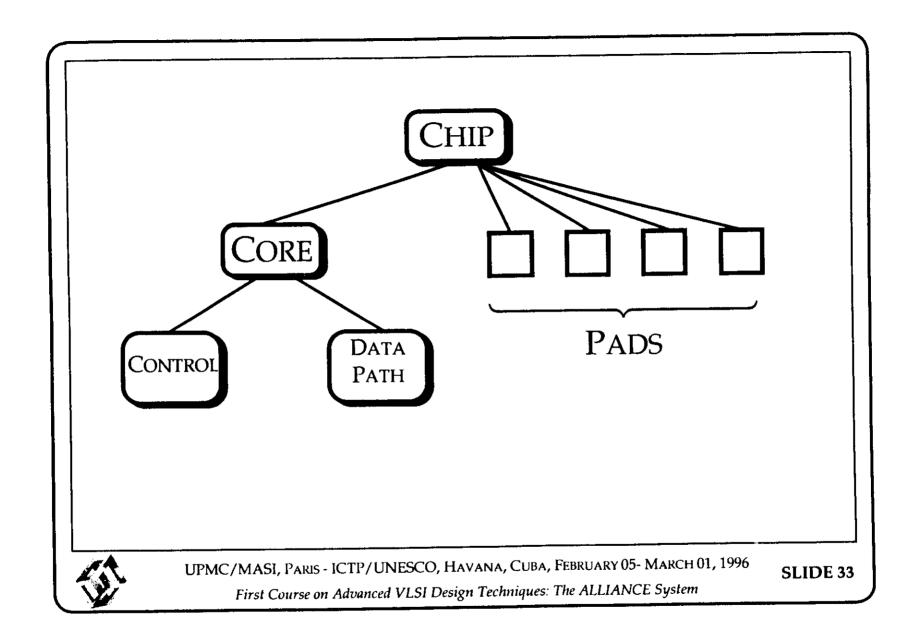

SLIDE 28

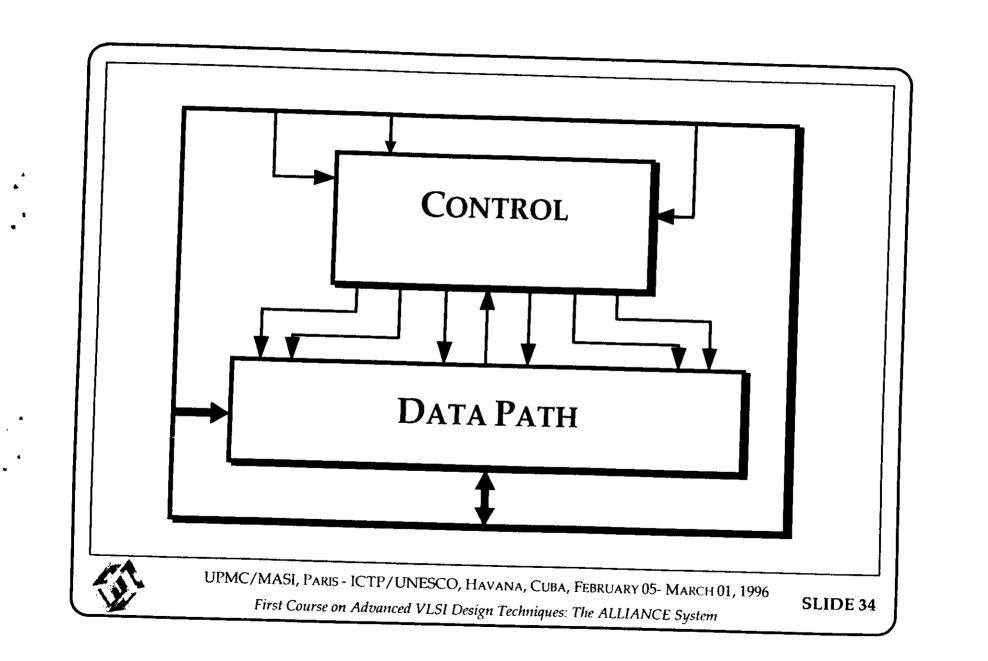
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

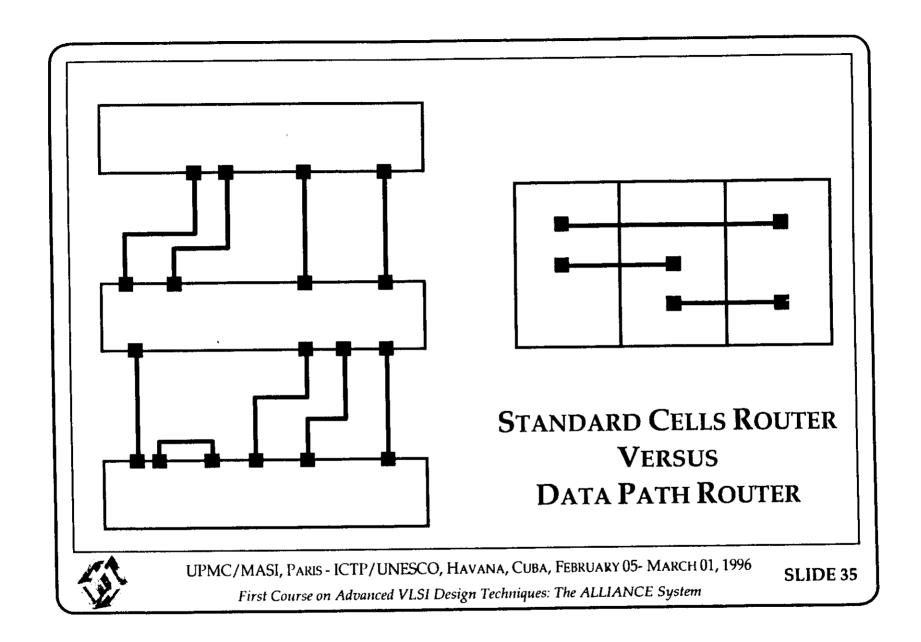
FSM: THE COUNTER WITH THE MEALEY MACHINE

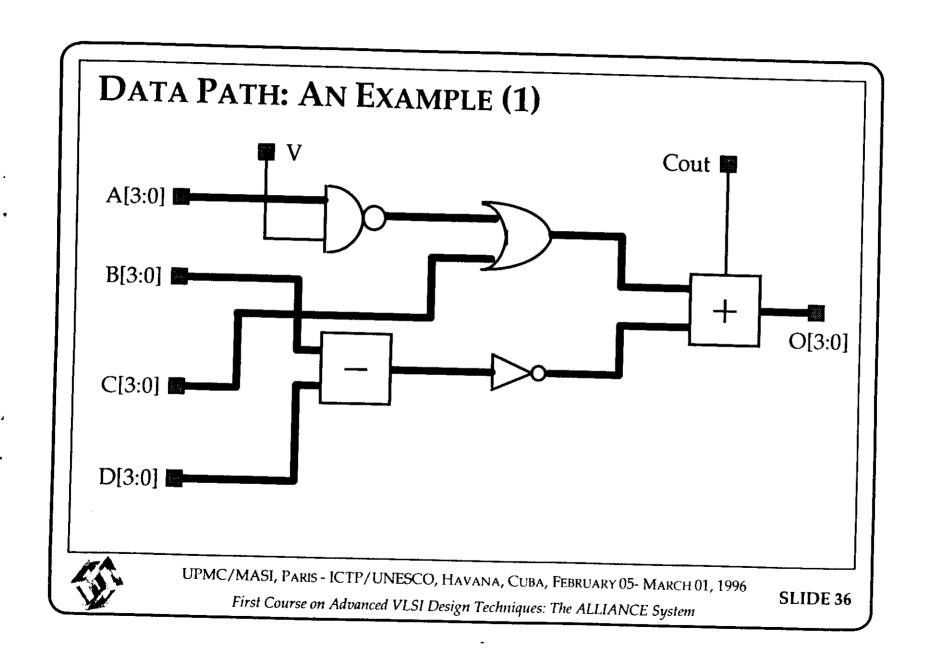


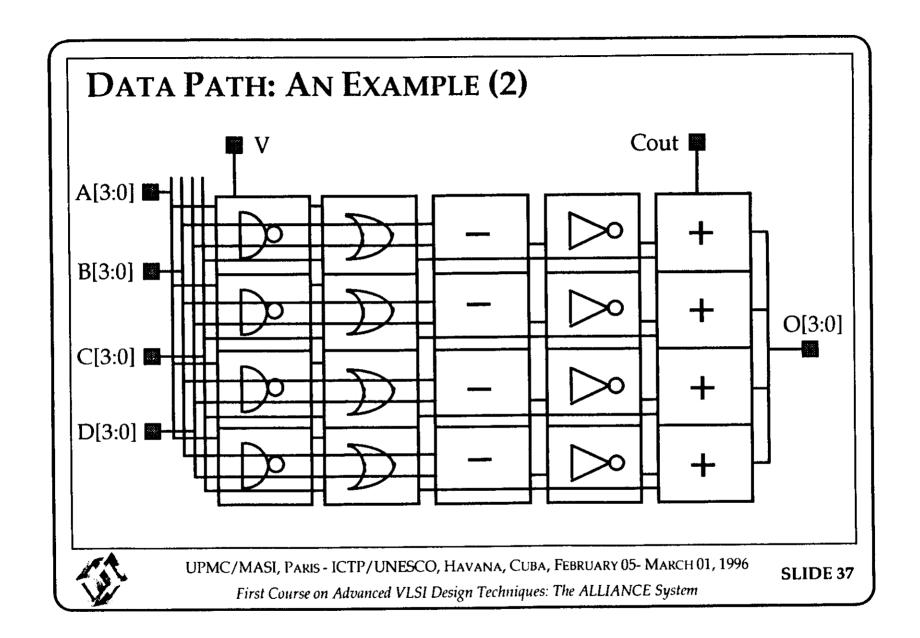
UPMC/MASI, PARIS - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System




SYF: AN FSM SYNTHESIZER


- VERIFICATION.
- ENCODING.
- OPTIMIZATION.
- DRIVING DATA FLOW DESCRIPTION.





TIMING VERIFICATION

- **♦** SIMULATORS
 - CIRCUIT-LEVEL.
 - TIMING.
 - SWITCH-LEVEL.
 - LOGIC-LEVEL.
- ◆ VERIFIERS (PATTERN INDEPENDENT)
 - TIMING.

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996
First Course on Advanced VLSI Design Techniques: The ALLIANCE System

It was a real pleasure working with you. T hope that our ALLIANCE tools will help you in teaching VLSI once back home and 7 look forward to your feedback.

Very truly yours...

UPMC/MASI, Paris - ICTP/UNESCO, HAVANA, CUBA, FEBRUARY 05- MARCH 01, 1996

