

the **abdus salam** international centre for theoretical physics

The United Nations

SMR.1073-10

ICTP-UNU-Microprocessor Laboratory Fifth Course on Basic VLSI Design Techniques

9 November - 4 December 1998

LOW POWER DESIGN & POWER ESTIMATION

Nizar ABDALLAH ACTEL Corporation 955 East Arques Avenue Sunnyvale, CA 94086-4533 U.S.A.

These are preliminary lecture notes Intended only for distribution to participants

1 i ŗ ÷ Ļ Ł į. Į. ŀ

ł.,

k

Low Power Design & Power Estimation

Nizar Abdallah

November 1998 - ICTP

1

- □ Motivation for Power Tools
- Low-Power Design Methodology
- □ Principles for Power Reduction
- □ Principles for Power Estimation
- □ Conclusion

Deep-Submicron Technologies

Higher Density and Performance Capabilities (FPGAs: 100 000 Gates; 100 MHz Clock rates)

Power Dissipation Problem

4 times / 3 Years Increase for the last 20 Years

PowerPC / Motorola	8.5 Watts	
Pentium / Intel	16	Watts
🗆 Alpha / Dec	30	Watts
🗆 Alpha 300 Mhz / Dec	50	Watts

Power = Cost For Major Applications Today

- □ Battery Lifetime (Cellular, Medical, ...)
- Packaging Cost
- □ Reliability (Time to Failure)
- □ Green PC program (< 30 Watts)

Power = Less Performance

- □ Clock Frequency
- □ Temperature Increase
- □ Electromigration

Packaging Cost is an Issue

Nizar Abdallah

November 1998 - ICTP

Today...

Design Win = f(performance, cost)

Tomorrow...

Performance = f(Power, ...)

cost = f(Power, ...)

Design Win will also be low-power dependent

Nizar Abdallah

November 1998 - ICTP

We Need...

✓ Low Power Design Methodology

✓ Power Estimation Tools

✓ Power Optimization Tools

Methodology

Analogous to Timing Methodologies

✓ All Levels of Abstraction

✓ Back-Annotation from physical Design

Nizar Abdallah

November 1998 - ICTP

Sources of Power Consumption

- Dynamic Power (70-90%)
 (Switching activity)
- □ Short-Circuit Power (10-30%)
- Leakage Power (<5%)
 (Important for battery lifetime)

Power Reduction

Expression for CMOS Power

□ Gate Generating a Simple Clock Signal with Frequency f

$$P_{average} = C V_{dd}^2 f$$

□ In general, a signal with a transition density D

$$P_{average} = 1/2 C V_{dd}^2 D$$

- $P_{average} = 1/2 C V_{dd}^2 D$
- Reducing Switching Activity
 Prevent glitches (Architecture, Synthesis, ...)
 20% of power increase due to glitches
- Reducing Load Capacitance
 Gate sizing, Low-Power cell library
 Circuit techniques (Pass-Transistor, ...)
- Reducing Supply Voltage
 Drawback: Circuit delay increases

Power Estimation

Two Problems

- Design Dependent
 Tools Should be Available to the Customer
- Input Pattern Dependent (more Central Problem)
 Difficult when the application is not known
 A good vector set may be very long

Power Estimation

High-Level Power Estimation

- FPGA: Block Macromodels Available Problem to estimate net consumption
- Models for Logical Level, RTL Level, Behavioral Level Need for a power cost function

Power Estimation

What About Accuracy and Improvements?

Assuming we Have a representative Vector Set,

- Low-Level Timing Simulation
- □ Low-Level Static Technique
- □ Low-Level Dynamic Technique

Improvement

- At the Logical Level is About
- At the RTL Level May Reach

10% from Spice20-60% from Spice10-20% from Spice

5% 90%

- Power Consumption Issues Can no Longer be Ignored for High Density FPGA Design
- □ Timing / Power : The same challenge
 - Input pattern dependency
 - All abstraction levels
 - Power and timing constraints
 - Net consumption is becoming very significant
- DPCS IEEE 1481 is also for Power
- □ A Balance between Power, Area, and Delay
- □ Absolute Accuracy is not a Critical Issue

1

Nizar Abdallah

November 1998, ICTP - VLSI Course

Motivation

- □ Cost (Small Series, New Designs, ...)
- □ Rapid Prototyping
- Emulators
- Development Time
- □ Test Time

□ Relatively High Density (100 000 Gates)

Relatively High Performance Capabilities (100MHz)

Nizar Abdallah

November 1998, ICTP - VLSI Course

Motivation

□ Market in 1993 : \$539M

□ Market in 1998 : \$2124M

□ Annual Growth Rate of 32%

Nizar Abdallah

ŗ

November 1998, ICTP - VLSI Course

November 1998, ICTP - VLSI Course

November 1998, ICTP - VLSI Course

□ Relatively High Density (100 000 Gates)

Relatively High Performance Capabilities (100MHz)

Can be ...

- Changed During the Development
- Updated after Delivery to the Customer
- Purchased in Larger Quantities
- □ Reused (No Inventory if not Sold)
- □ Fully Tested Prior to Delivery

Have ...

- Higher Speed (Less RC Delays on the Interconnections)
- □ High Reliability
- No Time-Delay to Reload the Interconnection
 Information (Available Immediately on Power-Up)

Nizar Abdallah

£

November 1998, ICTP - VLSI Course

Actel PLICE Antifuse

Programmable Low Impedance Circuit Element

November 1998, ICTP - VLSI Course

Features

2 Global Clocks
PCI Compliant I/O
Mixed Voltage Operation
Built-In JTAG

More Routing Resources
 New Antifuse
 New Architecture

SX Routing Resources

Direct Connects

- Connects Combinatorial Cell (C-Cell) to its Adjacent Sequential Cell (R-Cell)
- No Antifuses
- □ 0.1 ns Routing Delay

Fast Connects

- □ Every Cell Output Connects to One
- Accessible by Cells in the Same Cluster or the One Below by One Antifuse
- □ 0.4 ns Routing Delay

Sec. 16. 1. 162.

Part#	<u>SX08</u>	<u>SX16</u>	<u>SX16P</u>	<u>SX32</u>	<u>SX64</u>
Gates	8,000	16,000	16000	32,000	64,000
MaxIO	129	177	177	246	340
Rcells	256	528	528	1080	2160
CCells	512	924	924	1800	3600
Availb.	98	98	98	98	99

Nizar Abdallah

November 1998, ICTP - VLSI Course

http://www-asim.lip6.fr

Nizar Abdallah

November 1998, ICTP - VLSI Course

Good Luck...

Nizar Abdallah

November 1998, ICTP - VLSI Course

ι