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ABSTRACT

Legovid, T, 1989, Predation in food webs, Feol. Madelling, 48: 267 276,

For the case when the specific predation is a hyperbolic function of prey concentration in
one-predator-one-prey systems, expressions are derived for predation rate in food webs for
both nonselective and selective predation. These expressions can readily be applied 10
ecosystem models of food webs.

INTRODUCTION

One of the long-standing problems in nonlinear models of food webs is
how to calculate the balance of energy or biomass. Since transfers of energy
and Tood are often nomlinear, predators nsually consume more than one prey
and also share prey populations, the problem cannot be solved by simply
adding nonlinear expressions derived from feeding experiments involving
one-prey- one-predator populations. Furthermore, the problem cannot be
solved satisfactortly by lomping many poputations together amd assuming
that they have the same population-specific parameters. This approach has
never been justified theorctically, and experimental evidence (for example
Vidal, 1980, and references therein) does not, in general, support it

In this paper, expressions for calculating transport of eneegy or matter in
a food web are given based on hyperbolic dependence of the specific
predation rate on prey concentration. In the case where predators do not
actively select prey, experimental evidence on a complete series of one-pre-
dator one-prey systems is sulficient for quantifying the food web.

IT selective feeding is taking place, results of a complete series of pairwise
experiments will not suffice to calculate balance of neither energy nor matter
correctly. In this case, either additional experiments or field monitoring
must be performed 1o measore selectivity functions.



Determination of parameters from ficld observations is treated elsewhere
(Legovic, 1987).

PREDATION IN THE ONE-PREDATOR ONE-PREY SYSTEM

Experimental studies on feeding of onc predator population on one prey
population often show that specific predation can be described by a simple
hyperbolic function, called the Michaelis-Menten or Monod function:

n_ _uN (1)

k+N

where s denotes the specific predation in a system where one predator and
one prey population are present, o is maximum predation rate of prey per
predator, & is the half-saturation constant, and N is density of the prey
population. It is sometimes convenient Lo express s'! as the number of prey
caught per unit of time and per number of predators, so the dimensions of v
and & are:

[numbcr of prey T (number of predators) l]
and
[number of prey L™°]

respectively, where T is time and L3 volume. When working with biomass
density, prey and predator density should be replaced by respective biomass
densities. Predation rate, p'!, by the predator population is:

pil=s"P

where P is predator density. [ the predator population is measured as
biomass density [predator biomass L), then the dimension of p is:

[ p"] = [prey biomass/T~'L™’]
PREDATION IN THE ONE-PREDATOR- n-PREY SYSTEM

Assume that one has performed n experiments. In each experiment, the
same predator and a different prey population was present so that each
experiment was a one-predator—one-prey experiment. Let results of each of
n hypothetical experiments support the expression (1), where each experi-
ment gives a different »; constant (v, # v, for i#j), but the same k
constant.

The quantity offered to the predator population when all prey popula-
tions are present is:

N=%N

i=1

Hence l‘he specific predation rate on the ith prey in the one-predator-n-prey
system is:

" o, N,
' k+N, (2)

¥

Tht.. total specific predation rate by the predator is simply the sum of
specific predation over ali prey: B

H
Al ,
5= E“i

i—1
ic.

]

Lo,

nl_ i—l

Ky (3)

Expressions (2) and (3) are most often used in nonlinear models of food
webs. In some models:

st = ¥ (0N + )]

i=1

is used as supposedly the true total predation. However, the true predation is
smaller and is actually given by expression (3). If one lets n=2 and
N, = N, = N > k, then expression (3) gives:

(0, + 0y} N

(k+2N) L'y{. Q).-.‘(U'i:fzt

which is smaller than s, (s, = (v, + v,)N/(k + N)). Stace N>>‘kwil follows
that s’ > v, and this contradicts experimental evidence that v is the maxi-
mum specific predation rate. Using expression (3), as N — oo, sM o (o F
v, ), ds expected. "4 )

With one modification: 5, T+ )z

carel  wlean a5, =5

N.= N~ N, na
. St - ’
where N is the actual concentration of prey and N, is the threshold
concentration of prey, the expression (3) has been used in many ecosystem
models (Park et al.,, 1974; Canale et al., 1976; for other literature, see Scavia
(1976; Baretta and Ruardij, 1988). !

One step further toward reality is to assume that both maximum specific
predation and half-saturation constant are not just a characteristic of the

predator but also of the prey population, and this is apparent from many
experimental studies.
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lcflf two prey populations having the same concentrations Ny =N, are
] Zred_ to the prcdato_r while v, =v, and k, <k,, we expect that the
predatlon rate on the f:rst. prey will be greater. Expression (3) cannot be
used to calculate the predation rate in the presence of both prey populatio
because k, # k,. PP -
In order to calculate ll}e correct predation rate in one-predator-n-prey
sysdte]r{n, the model underlying expression (1) must be known. Holling (1959)
ftrrll] ashevsky (1959) developed such a model based on predator behavior
czy posllulatcd that the number of prey eaten, S, in time interval T per oné
predator is 'the product of prey density, N, rate of capturing one unit of
p}:‘cy, G,-W.hllc the predator is searching, and search time. Time interval 7 is
:j ;:;1 s_pht into tws)'par.ts: consuming and searching. An extension for prey of
iffering palatability is given in Harris (1974). Time spent consuming is
proportional to prey caught in 7. Hence: :
S=(T-hS)aN
or
S/T=aN/(1+ abN) (4)

wher_e bS is tir.ne_ spent copsuming prey captured in time-interval T. By
!Jafl:;lzg_lo the limit, expression (4) becomes identical to (1), where v=1/b
an = 1/(ab). Murdoch (1973) used model (4) to calculate predation in
on'e—prfzdator—lwo-_prey systems. Assuming predation rates @,, «, and han-
dling times per unit of prey by, by, Murdoch stated: ) ‘

.?] = (T*‘ hl'gl + bzsz)(-’,Nl

S;=(T= b8, + 5,8,)a, N, (5)

Solving for §) and S, and passing (o the limit, one obtains:
20 a,N,
! 1+ a,by Ny + a,b, N,

i=1,2 (6)
lan the case of a one-predator-- n-prey system,
tion of (6) in terms of o, and &, is:
g = N/k,

T

a straightforward generaliza-

R - 7
1+ ) N/k, ?
i
Total specific predation rate of the predator is;
Z UEM/k.'
.\'"l = i=1
(8)

1+ ):N,/k,

=1

PREDATION IN FOOD WEHS

In expressions (7) and (8) constants v, and k; are obtained from the ith of
n one-predator—one-prey experiments, which gave:

n__ v, 9
= (©)

Nonselective predation

Expressions (7) and (8) will be valid for all the predators that conform to
the hyperbolic relationship in one-predator-one-prey experiments but do
not actively select their prey when a mixture of prey populations is offered.
A typical example of a nonselective feeder is that zooplankton species which
is unable to change the inclination of its sieve during predation.

It has been a practice to assign selectivity coefficients defined by O'Neill
(1969) as soon as one discovers that the predator feeds unequally on any two
prey populations having the same concentrations. Expression (7) shows that
unequal predation will result almost always when k;# k;or v, #uv; or both,
for i # j, even without any selection from the predator’s side.

If k, # k, and v, = v,, then for the same concentrations of prey, N, = N,
one expects that the two prey populations are caught according to propor-
tions:

st /53 = ky/ky (10)

[n the s-prey-onc-predator system, when & #k v, # 0, for i+ j, and if all
prey populations are present in equal concentrations, it follows from (7) that
prey populations will be caught in the following proporlions:

st sy =k /k, "

"

It is difficult to keep all the prey in equal concentrations during experi-
ments, and it is also an unnecessary restriction in order (o measure whether
nonselective predation takes place or not. Il concentrations of prey popula-
tions are unequal, then:

st st =0 Nk L Nk, (12)

Selective predation

In experiments or in the field, when a system with one predator and more
than one prey is investigated, if the prey populations are not taken by the
predator according to proportions (12), and yet experiments with one-preda-
tor—one-prey demonstrate that expression (9) holds, then this is an indica-



tion that cither the predator selects some prey or an interference is taking
place. ‘

In the case of selective feeding, the true predation rate on the ith
population will be smaller or larger than in nonsclective predation, but it
will be smaller or equal to predation in the one-predator-one (ith)-prey
population system.

To account for sclectivity it has been a custom (o assign a constant w; so
that instead of rate of capture «; onc would have w,a,. Constants w, have
been termed selectivity constants, Obviously, w, < 1,

Unfortunately, selectivity constants are not sufficient to take care of
selection processes even in the most simple case. To show this let us choose
two prey and one predator populations. Let us assign two constants: w, =1
and wy = L5, 11 for some other reason the prey population 1 disappears i.c.
N, = 0, onie would be left with:

2 0.50, N,
2k, + 05N,

which obviously contradicts expression (9). It follows that the sclection
process cannot be resolved with a set of constants. Instead, one should
consider selection by a predator as a function of prey density, hence w,
should be a function of prey density specific to each predator. Denote
selectivity functions with w,(-) =w, (M, ..., N} < 1.

When this substitution is made in expressions (7) and (8), expressions for
specific predation on the ith prey and a total specific predation of the
predator in case of sclective predation become:

ol = w,(-) o,N/k, ‘ (13)
! 142
and

n

X wil*) o N/k;

si = L= T (14)

where
=3 w,(:} N/k,

i=1
and w,(-), ..., w,{+} are selectivity functions. The functions have the
property that 0 <w,(-) <1 if the predator feeds on the ith prey and
w,(+) = 0 otherwise. We shall also adopt the convention that when w,(-) =0
then w,(-)/k,=0.
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It is clear that most often w,(-) < 1 and Liow,(*)<n. Incase w,=1 for
all i, the predation is nonsclective. Thus, nonselective predation is the
special case of selective predation. Interpretation of the condition w()<l
for i=1, ..., n is as follows. In the one-predator-one-prey system, the
predator population tries to get the maximum number of prey per unit of
time, hence w(-) = 1. In this case the predator has no choice. When there is
more than one prey population available the predator may select, and in
comparison to nonselective feeding it will get more of populations that it
favors and less of the one that it does not. However, without some ad-
ditional mode of behaviour, the specific feeding on the prey population that
predator favors can not be greater than in the corresponding  one-
predator-one-prey population experiment.

Assuming w () > 1 for some i would mean that some other population,
say the jth, serves as a pilot that allows the predator to get more of the ith
prey than in the one-predator-onc-prey system. In such a case w,(-) has the
added property that:
limw,(-)<1
N0
Although it is known that some predators use other populations as pilots,
this is relatively rare. Hence, w(-)>1 will also rarely occur in food web
models.

Using expression (13), relative rates in which different prey populations
will be predated can easily be calculated. The proportions are:

nl,

pi i pt =T s = w() oy Nk w{-)u,N,/k, (15)
Expression (15) may be called the law of selective predation,

FREDATION IN THE ONE-PREY- m-PREDATOR SYSTEM

Assume that m experiments are performed, each involving the same prey
and a different predator population. Let the result of each experiment be
given as a Michaelis—Menten-Monod function (1). In that case all the
predators have equal specific predation rates.

If each of the predators that feed on the same prey has a different pair of
v and & constants, the specific predation rate of each predator is:

Im UjN
VTN (16)
The predation rate by all predators, or total predation rate, is:
m v, p;
1m __ ity
P NEI C+N (17)



PREDATION IN FOOD WEBS

Expressions (13), (14) and (16), (17) can be applied to a general food web.
Consider a food web with r populations. Let some populations serve as prey
to others. There could be m trophic levels in the food web, where m <r (in
case m = r, one deals with a food chain).

Define the rXr matrix W whose matrix element w,(-) denotes a
preference of the jth predator for the ith prey as follows:

<1 when the jth predator feeds on more than ith prey population

w,(-}{ =1 when the jth predator feeds only on the ith prey
=0 otherwise

In addition, define r X r matrices ¥ and K whose elements v, and k;,
denote maximum specific predation rates and half-saturation constants of
the jth predator on the ith prey population, respectively.

Let each experiment, involving only the ith prey and jth predator
population, result in the following Michaelis—Menten function:

specific predation rate of jth o N
. it
5!} = | predator on ith prey when only | = m (18)
two populations are present
Specific predation rate of the jth predator on the i!h prey, when a‘ll
predator and prey populations are present and a selection takes place, is
given by:

\:’, s e e __'._,ﬁ: (l‘))
l'* X“?lf(l) Nl'/Al[
[
Total predation rate of the jth predator is
2: W”(‘) “J,lNr/I‘lf
Nt e (20)

1 + )i w,, (-IN/kK,,
IR |

IT the jth population does not Teed on the ith population, then s, (-) =0,
n,=0and k, =1, 50 that w, (-)o,;/k,, =0 and w, (Y/k,, =0 .
Predation rate on the ith prey, when all m predators are present, Is:

e,y g Lt (1)
le 1 + Z WU(')Ni/kr,f
i=1

The total predation rate (predation rate by all predators) is:

r Zwij(‘)vijf/kij
pi= L N~ (21)
= T+ Z“'U(')N:/ku

i=1

-

The above expressions allow one to calculate energy and mass balance in
animal food webs in cases of nonselective and selective predation. In case
the kth predator does not select prey, then w  (-) =1 for all i that the kth
predator consumes and w () = 0 for those populations that are not prey to
the kth predator.

In order to calculate energy (or biomass) transfer, the experimental
parameters v,; and k;; need to be converted into units expressing maximum
specific energy (biomass) flux per prey and per predator, and half saturation
density of energy (biomass), respectively. In case, each prey population
consists of a contintum of possible sizes in which prey could arise, to
correctly calculate energy (biomass) flux, an integration over the respective
size distributions must be performed in the above expressions {see Eggers,
1977).
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