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Abstract

A meode! of phytoplankton population growing on more than one potentially imiting nutrient is formulated and
investigated. The model is based on the Michaelis— Menten—Monod uptake funciion for each nutrient, the Droop’s
function for growth of phytoplankton and Liebig's law for growth on different nutrients. The mode! is analyzed in
a simple set up of phytoplankton culture reactor. Conditions are specified for which steady phytoplankton existence
state is stable. Since growth depends on internal nutrient content, the limiting nutrient may be recognized as the one
having the smallest content in phytoplankton relative 1o the subsistence quota. According to the model, in steady
state during equal limitation by several nutrients, the Redfield ratio is equal to the ratio of subsistence quotas and to
the ratio of uptake rates. Contrary to wide spread use. the ratio of nutrients in water is not the Redfield ratio but a
function of the growth rate. In oligotrophic waters, however, nutrients are in another ratio that may be used as an
analog to the Redfield ratio in phytopiankton. The model may be used as a submodel of larger ecosystem models.
© 1997 Elsevier Science B.V.

Keywords: Phyloplankton model; Michaelis—Menten—Monod uptake; Droop growth; Liebig law; Redfield ratio

1. Introduction

In this paper we propose and analyze a model of phytoplankton dynamics which includes Michaelis—
Menten—Monod uptake of nutrients, Droop’s growth and the Liebig’s law of the minimum.

* Corresponding author. E-mail: legovicigolmparb hr
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N¥=k (V. /DO*—1) {16)
Substitution of Eq. (16) into Eq. (14) gives:

PN¥=N,, —ki(V./DQ*— 1} {an
Substitution of Eq. (17) into Eq. (6) for i =r results in:

X* =N, /@ — Dk, {V,— DOQY) {18)

In order to determine ¥ where i # r, we substitute X™* from Eq. (18} into Eq. (9) and solve the resulting
quadratic equation:

NI = (No— k= V,X*IDINY — Nok,= 0 (19

Since the last term is negative, the equation has always only one peositive solution.

Using A} one computes PN ¥ from the expression Eq. (14). Now using PN* one computes @} from the
xpression Eq. (6).

Note that in the steady phytoplankton existence state, the sum of nutrient concentration in the reactor
and concentration in phytoplankton is equal te the incoming concentration (expression Eq. (14)). This
statement is a consequence of nutrient conservation Eqgs. (1) and (2) and it is invariant to dilution rate.

3.2, Dependence of the steady phytoplankton existence state on parameters

L2 1. Dependence of equilibrium values related to the limiting nutrient

From Eqgs. (13) and (16) -(18) it follows that only parameters related to the limiting nutrient N, V,,
‘.. ¢, in addition to the maximum growth rate ¢ and dilution rate, D, determine equilibrium values QF,
V* PN* and X*.

Invariance to parameters related to the nonlimiting nutrient is a consequence of Liebig's law.

Spectfically, @7 depends on ¢,, # and D enly; N* depends on V,, k,, D, u and g, but not on N,,; PNF
ind X* depend on all of the above and on N,,.

1.2.2. Dependence of equilibrium values related to the nonlimiting nutrients

Since X* depends on all six parameters and it is needed to compute N¥, PN¥ P¥ and QF, i #r, these
quitibrium values depend on all parameters related to the limiting nutrient and parameters N, V., k,
clated to the ith nonlimiting nutrient, It is interesting to note that none of ¥*, PN¥, P¥ and Q% depend
n ¢. As we shall see later, this will exclude the possibility to determine ¢, /#r in steady state
‘hytoplankton culture experiments where only one nutrient is limiting growth.

a

3 Which mutrient is limiting growth?

In order to compute the phytoplankton existence steady state, we had to assume that a certain, say rth
utrient is mtiting. Then, equilibrium vatues were computed based on parameters related to that nutrient.
inally, all other equilibrium values that are components of the steady state were computed. Since the
tpression Eq. (11) picks the limiting nutrient, we have no direct way ol computing which nutrient is
miting in the steady state, .

In simulation experiments this problem is solved easily, although inexactly, by setting up one indicator
ariable which points to the limiting nutrient, i.e. the variable for which ¢,/Q(r — Ar), is the maximum
Jnce at time ¢ the variable  is not known).

In steady state, one can use expressions from Eq. (13) to Eq. (19} and then expression Egs. (14) and (6).
irst ong assumes in turn that each nutrient is limiting. Hence, one computes n potential existence steady
ates of which only one is correct (assuming that only one nutrient is limiting).

T. Legovic, A. Crucado ; Ecological Modelling 99 (1997) 19 31 23

We claim that the steady phytoplankten existence state will be the one with the smallest value of” X*.
Since X* is computed from expression Eq. (18) the limiting nutrient ts known.

Proof:

Denote the # potential steady states by (*) and the true steady state by Eq. (8).

Let the smallest equilibrivum value of X be denoted by X* ie. X*=min %“.,. We claim that the rth
nutrient is limiting:

Xr=xr=x+

Suppose that we are given any pair ¢,/0% is#r, and the pair ¢,/QF where #th nutrient is limiting.
Qur goal is to show that X} < X} for all i s r.According to expression Eq. (11):

/0T <qiQF e QF>qQ%q,=quiu—D)=0F (20)
From Egs. (10) and (6):

N*=kDQH(V,— Gy < N* 21
From Eqs. (9) and (10%:
PN* = N, — N* > PN* (22)

Hence, {rom Eq. (6):
Xt =PNHQT> XT=X* (23)

Since the above reasoning holds for all 7 # r, the claim is proven. As a corollary, in case m nutrients are
limiting growth at the same time (where # 2 m 2 2), then using the above procedure all of these nutrients
will have the same X™* value. This value will be smaller than %w for all / nutrients which are not limiting.
Hence, the limiting nutrients can be identified.

In experiments using one phytoplankton culture it is of interest to compute in advance which nutrient
will be limiting given that the above parameters are known.

The expression Egs. (23) and {18) leads to the indicator variable:

fi=p Xt~ Dy=NO/g, — kVAID — liu) —gq] (24)

By computing the indicator variable for cach potentially limiting nutrient, one determines the nutrient for
which the indicator is the minimum. That nutrient is the limiting nutrient, i.e.

{,=min [, 25

When phytoplankton culture experiments are planned to determine parameters, one can still use the above
expression by employing approximate values of parameters from the literature to get an estimate of
whether one the limitation by an in advance specified nutrient will occur in steady state.

3.4. Stability of the steady phytoplankton existence state

In the steady phytoplankton existence state all equilibrium values must be positive: N* =0, PN* >0,
X*>0and QF > g,
From Eq. (12), to ensure that Q¥ >4, we must have:

0<D<p (26)

Then, according to Eq. (13) for all i #r, Q% > g, is satisfied automatically.
The condition Eq. (26) is obviously a necessary condition for the existence of the nonextinction steady
state, because it may happen that cells are washed out with the quota @* > g,
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m_m‘.m‘ (a) Concentration of nutrients and phyloplankion cells in steady state versus dilution rate. (b) Phytoplankton quota of
nutrient &, {{;) and nutrient N, () at the steady state vs. dilution rate.

Since through expression Eq. {(12)) the dependence of equilibrium values on g, is ruled out, g, (where
i % r) can not be determined as long as rth nutrient is limiting.

In order to determine V), and k; one uses the expression Eq. (33) but plots }/NF vs. 1/DQF and since
this plot is linear the parameters are easily extracted.

In conclusion, to determine V,, &, i=1I,..., n, g, and g it is necessary to monitor N¥ or PN*, i=1,..,
r and X* as a functionof £, However, ¢, where / # r can not be determined.

3.6. Special cases

3.6.1. Equal nutrient limitation and the Redfield ratio
Suppose that present nutrients are all equally limiting phytoplankton growth,

The Redfield ratio (Redfield, 1958) is defined as:
R=PN¥ PN?¥ (38}

From Egs. (13) and (13) it follows:

=

s Q9 1997) {Y 3 27

T. Legovid, A, Cruzade  Ecolu il Meded,
R=0TIQF =aiq, (39)

The Redficld ratio is equal to the ratio of steady state nutrient quotas in phytoplankton and to the ratio
of subsistence quotas.Furthermore, from Egs. {10) and {38}):

R=u¥ut {40)

The Redfield ratio is also equal to the ratio of uptake rates of limiting nutrients in the steady state.
Finally, using the expression Eq. (16) to compute N, i=1..... n the ratio of nutrients in water 1s:

N¥IN* = k,q(V, — DONkg (V, = DOF) = k,(V,z/q,— Witk (Vizig, — 1]

(41)

where z=1/D— 1/u.

Using the above results one can connect Redfield ratio to parameters measured in the phytoplankton
culture experiments and peint to an unfounded extension that is widely used.

Redfield postulated a ratio of nutrients in phytoplankton which will allow it to grow optimally, The
implication was that the ratio is independent of the growth rate. Indeed, in the steady phytoplankton
existence state this ratio is constant and given by Eqs. (38) and (39) or Eq. (40). The importance of
determining subsistence quotas is apparent.

Over the years, biological and chemical oceanographers have extended the use of Redfield ratio based
on the following conjecture:*Since the Redfield ratio holds for phytoplankton then in the steady state the
same ratio must hold between concentrations in water”.

According to this conjecture by computing the ratio of nutrients in water one would know which
nutrient is limiting. Use of this indicator to determine the limiting nutrient is wide spread.

From the standpoint of the present model the conjecture is false on two accounts.

First it is evident from the expression Eq. (41) that the ratio of nutrients in water during equal
limitation is a function of the growth rate, g, which in the phytoplankton reactor is equal to D.

Only in the region of very small uptake rates (v¥ = DO}) in comparison to the maximum uptake rates

(V). ie.
V,;»DQF and ¥.=DQT

the ratio N*/¥* may be approximated by a constant.
7 ¥ P

a0

50 J
40} “
n.mn. 30 40 W
2 -
= 20t .m
0 o
10 F J
ok o
0 5 10 15 20
Time (days)

Fig. 3. Dynamics of the model with two nutrients during &, himitation.
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By increasing £, (% increases while ; decreases, this means that one is moving from N, toward N,
limitation.

In this example, as D increases, N{/N¥ incrcases too. This happens to agree with the classical
expectation.

Obviously, if limitation by both nutrients happens to be equal, a change in D may select only one of
the two nutrients to be limiting growth.

3.8, Dynamic behavior

In order to analyze dynamic behavior quantitatively we must turn to specific examples.
Consider two potentially limiting nutrients.
Using parameters from the above exampie let us discuss results of three simulation experiments.

1.8.1. Limitation by N, while Ny, Nz and D are constant

Let us start with initial nutrients concentration N,{(f = 0y=0.2 pM, i=1, 2 and a small number of cells
X(r=0)y= 1000 cells/1.

Congentration of nutrients in the in flowing water is Ny, =5 ¢M, i=1, 2 and D = 0.5. The dynamic
behavior is shown in the Fig. 3. It is seen that there is an overshoot in both N, and ¥, ifollowed by an
asymptotic tendency to the steady state. Indeed, a computation of characteristic roots of the determinant
Eq. (31) with n=2 yields:

A= —05 i,=—1393 ;= —-05005 4= —023 A.=-503

which meuans that the phytoplankton existence steady state is a stable node.

3.8.2. From N, limitation, into equal N, and N, limitation

By setling N, =50 M and using the expression Eq. (24) one can compute N, such that equal
limitation by &, and &, will be insured in the steady state. In our case Ny, = 1.27. The evolutien from N,
limitation at =0, i.e. N,(f=0) =5, No{(t=0) = 5 toward equal limitation by both nutrients in the steady
state is shown in Fig. 4. Here as well as in the previous case, the steady phytoplankton existence state is
a stable node. Although the concentration of Ny, is about 40 times smaller than in the previous case, the
steady state concentration of phytoplankton cells is the same. As the expression Eq. (18) shows, this is
because the concentration of cells is independent of parameters related to the non limiting nutrient.

The steady state with approximately equal limitation when Ny, = 50xM and D=10.5 is:

N¥=0094, NT=020, PNt=49.06, PNY{=098, X¥z=70x10° (43)

1.8.3. From equal Imitation to N, limitation and back to equal limitation: Ny, is periodic, Ng, and D are
Constants

Let us start the simulation from the steady state of the previous case. We change N, into N, = 50+ 40
sin (2720} and follow the dynamics during the first cycle. At the start of the simulation both nutrients
are equally limiting. Then, according to the above expression, N, is increased. We see from Fig. 5 that
A, increases while both Ny, (which is now limiting) and X stay constant. After 1=12.5 days, N, has
decreased below equal limitation and hence becomes limiting. As a result X decreases as it would be
expected. Subsequently, N, increases due to increase of Ny,. However, the extent of increase of N, also
depends on X which has decreased. As N, increases toward equal limitation and if subsequently Ny, stays
constant, the system would tend to the initial steady state. Instead, if ¥, continues to cycle the mean
value of N,, N, and X over one cycte will not be the same as the steady state Eq. (43) since the system
is nonlinear.
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3.8.4. From N, to N, and back to N; limitation: No, and No, are periodic, D is constant

The difference from the previous case is that here N, = 1.27 +0.6 cos {2r20).

The simulation starts with initial conditions from the previous case. At the start of the simulation Ny,
is higher while Ny, increases as in the previous case. We see that during the interval r =0-35 both N, and
N, are higher than in the previous case and therefore X increases (Fig. 6). Limitation by N, extends ?oi
the start of the simulation until 2.5 days when limitation by N, begins. N, limitation continues until
approximately ¢ = 14 day when ¥, limitation resumes. Initially, although N, is :Bizm_ it is Ennommm.cm
together with X* duc 10 increase of N, Although it is quite clear what is happening here, such behavier
of N,, N, and X in nature can not be explained by constant stoichiometry where uptake is equal to growih.
Note that between ¢ = 10 and 7 = 14, while N, is limiting, its concentration is increasing. On the other side
both &, and X are decreasing. When this behavior occurs in nature, using a classical constant stoichiometry
model, a typical misjudgment would be made that N, is limiting phytoplankten growth.

4. Conclusion

A model has been presented based on three well established principles in phytoplankton growth on multiple
nutrients. Based on parameter values, the phytoplankton existence steady state has been calculated. It has
been shown that the steady state is stable to perturbations in initial conditions. Number of cells in steady
state does not depend on parameters related to nonlimiting nutrient.

The Redficld ratio in this model is equal to ratio of uptake rates and to the ratio of subsistence quotas.
However, the ratio of nutrients in water is not equal to the Redficld ratio and it is a function of the growth
rate.

In order to determine the limiting nutrient in a dynamic state there is no alternative but to compute ¢,/ @,
i=1,..,n

The limiting nutrient N, is the one with the property
4,10, = max(q,/ )

Based on parameters of the model, an indicator variable is proposed which allows one to determine in
advance which nutrient will be limiting in the steady state.

A further consequence is that in phytoplankten culture experiments in steady state, subsistence quotas
of nonlimiting nutrients can not be determined.
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