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INTRODUCTION

la). Plan of Lectures

In the last 10 years an increasing amount of research has been done
related to the measurement of the slow tumbling of macromatecules, and an
excellent review is given by J. S. Hyde and D. D. Thomas in Ann. Rev. Phys.
Chem. 31, 293 (1980). This slow tumbling may be characterized quantita-
tively by a recently developed electron spin resonance (ESR) technigue
called saturation transfer (ST). The method consists in attaching a ni-
troxide paramagnetic molecule called a spin label to a particular site on a
macro-molecule and using the instrumental technigue of ESR to determine the
extent of tumbling from an analysis of the spectra. Hyde and Thomas give a
comprehensive 1ist of applications and references

We believe that the subject is quite interesting with a great many
things to be done in the area of biological applications. We selected the
explanation of saturation transfer as the main purpose of thése lectures.

There are two aspects of ESR which must be discussed in detail before
we can explain the basic mechanisms invelved in saturation transfer, and
these are the static aspect which is anisotropy and the dynamic aspect
which is saturation.

To understand anisotropy we must first understand what we mean by an
anisotropic hamiltonian, how to treat it, and what we can expect its spec-
trum to look like. In turn to understand this we must have some knowledge
of transition probabilities, perturbation theory, and matrix representa-
tions. To understand the dynamic aspect, that is to say saturation, we

must have a knowledge of the Bloch equations.



1b). Basic Spectroscopy

EPR is a branch of spectroscopy, and like any other branch it requires
a source of electromagnetic radiation, a sample and a detector. The dif-
ferent spectroscopic methods deal with the different energy gaps: It could be
nuclear spectroscopy where the energies are high and the photons have a
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frequency in the range of 107° to 10~ Hz or it could be infrared spec-
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troscopy where the photons will have frequencies in the range 107" to 10

Hz.

1¢). Instrumentation

Typical EPR spectroscopy, called X band uses photons of about 1010 Hz.
The source of radiation, for this frequency is a device called a Klystron
The E-M radiation travels through the wave-guide to the cavity and other
devices. The reason for using waveguides is that at these frequencies a
simple wire will have a large impedance due to what is called its skin
deph.

The cavity and the so called Magic tee (slide 3) are equivalent
to an AC bridge. Basically if the bridge is balanced the detector
detects nothing, but when absorption is obtained in the sample the R part
of the impedance of the cavity arm in the bridge, increases, the bridge
becomes unbalanced and the detector detects a current.

People that use EPR know that actually you never adjust the bridge to
zero detection and the reason is that the microwave crystal detector has

more sensitivity when it is biased.

. Yery seldom is the absorption observed because if we want to cut noise
we must reduce the number of high frequency components of the signal, if we
do so the amplifiers and electronics in general will be the DC type which in

turn are prone to instabilites.

To solve this a medulation of the magnetic field is superimposed on
the external field. In this way the signal is modulated resulting in a
signal proportional to the derivative of the absorption curve. A phase
sensitive detector or lock-in-amplifier is used to detect and amplify the
signat.

The same type of electronic modulation at another frequency is used to
keep the klystron automatically locked to the frequency of the cavity of an
EPR.

1d) Experimental Details

In a typical experiment the first step is to decide whether the sample
will be 1iquid or solid. This difference is esential in the sense that
manhy organic materials in solution use water or other polar solvents,

a;d when placed inside the cavity they produce a strong absorption of the
microwave radiation, reducing the ¢ of the cavity and consquently the

signal to the peint where it may disappear. On the other hand if it is
solid then most of the time this problem does not arise. To solve the prob-
lem of 1iquids a special flat cell is used to reduce the losses.

For a solid a typical size is 2or 3 mmx 4 or 5 mm x 4 or 5 mm and
the volume of the Tiguid in a flat cell §s about 1/2 mm x 5 mm x 20 mm. 1In
either case there should be of the order of 1012 spins to be able to detect
a signa1.

EPR allows variable temperatures from below 1iquid helium, say 2 K
obtained be pumping ligquid helium to 473 K obtained with a small oven sur-

rounding the cavity.



le) Systems Studied

Typical chemical systems that have been studied by ESR are polymers,
catalysts, rubber, long-lived free radicals, free radical intermediates,
charred carbon, and chemical complexes, especially with transition metals.

A free radical is a compound which contains an unpaired spin, such as
the methy! radical -CH3 produced through the breakup of methane

CH4->-CH3 + -H
where both the hydrogen atom and the methyl radical are electrically neu-
tral. Free radicals have been observed in gaseous, liguid, and solid
systems. They are sometimes stable, but usually they are short lived
intermediates in chemica! reactions.

Free radicals and radical ions ordinarily have g-factors close to the
free electron value of 2.0023 (e.g., for DPPH g = 2.0036). In low vis-
cosity solutions, they exhibit hyperfine patterns with a typical overall
spread of about 25 gauss. The scrupulous removal of oxygen often reveals
hitherto unreselved structure. In high-concentration selids, a single
exchange narrowed resonance appears (Apr~2.7) gauss for DPPH prepared form
benzene solution. ;n irradiated single crystals the free radicals may have
strongly anisotropic hyperfine fnteractions and slightly anisotropic g-
factors,

Experimentally, the following have been detected by ESR: stable solid
free radicals (a single exchange-narrowed resonance}; stable free radicals
in sélution (hfs obtained); free radicals produced by irradiation {often at
low temperature; sometimes single crystals); condensed discharges (free

radicals produced in 4 gas condensed on a solid at low temperature}; bio-

logical systems; biradicals; electrochemical generation of radical ions
(polarography); triplet states; paramagnetic molecules (e.g., ND, NOZ’ and
ClOz); and intermediates in chemical ractions.

Radical fons of many organic compounds can be produced in an elec-
trolytic cell which is usually a flat quartz cell with a mercury pool
cathode and a platinum anode. This electrolytic cell may be formed by
placing the electrodes directly in a flat measuring cell lecated in the
resonant cavity. When the applied voltage in the electrolytic system is
increased, the current will first increase but soon it levels off to a
plateau. Radical fons are formed in this plateau region. Radical forma-
tion can sometimes be observed visually because of color changes in the
solution. To carry out the experiments the magnetic field s scanned for
resonance over a 50 gauss region near the free electron value of g = 2.0023.
Radical ions can also be formed in flow through cells.

5ince oxygen is also paramagnetic, dissclved air must be scrupulously
removed prior the the experiment. The best method is to use the freeze
pump thaw technique where the sample is first frozen and then connected to
a high vacuum source. After closing off the vacuum pump, the sample is
melted and refrozen. The cycle is repeated until no air is released during
the solid Tiquid transformation. The difference in spectra when dissolved
oxygen is present and absent is dramatically shown in Figures 4 and 11 for
a DPPH solution in benzene. For this type of experiment, very low power
levels and low modulation amplitudes are necessary since line widths are

typically in the 56-100 milligauss range.



A considerable amount of work has been done on free radicals and color
centers which are produced by irradiation. Most irradiations are carried
out with x-rays, y-rays, or electrons whose energies far exceed chemical
bond energies. Paramagnetic spins can also be produced photolytically by
less energetic ultraviolet 1ight, and alsc by meutrons.

Most ESR spectra are obtained after the sample is irradiated. Many
paramagnetic centers are sufficiently long lived to warrant such a pro-
cedure. Mare sophisitcated experimental techniques entail simultaneous
irrédiation and ESR detection. This is particularly popular when the
irradiation source is an ultraviolet lamp. Low temperature irradiation and
detection can reveal the presence of new centers which can be studied at
gradually increasing temperatures to elucidate the kinetics of their re-
comination. Routine spectrometers are satisfactory for most radiation-
damage investigations.

Some typical systems that have been studied are ionic crystals (e.g.,
alkali halides, F centers, and other centers); solid organic compounds;
liquid organic compounds; organic single crystals; polymers; semiconductors
(e.g., Ge and Si); aﬁd photoconductors {e.g., dyes).

Most of the systems studied by ESR are synthetic or man made. Never-
theless, from the beginning of the field, various naturally occurring
substances have been investigated, such as: minerals with transition
elements [e.g., ruby (Cr/A1203). dolomite Mn/(Ca, Mg (COa)], minerals
with defects (e.qg., quartz); hemaglobin (Fe); petroleum; coal; rubber,
and various biclogical systems.

ESR has been applied quite extensively to biological systems .

One can follow the variations that occur under changing environmental

conditions by monitoring the intensity of a free radical signal. For
example, the presence of free radicals has been studied in healthy and
diseased tissue. If a transition metal ion is present, as in hemeglobin
(Fe), then its valence state changes may be studied by ESR. Early concrete
evidence that free radical activity is 1inked to photosynthesis was demon-
strated by ESR. By irradiating cells containing chloroplasts with light in
the same wavelength that produces photosynthesis, a sharp ESR resonance
line was observed. When the incident 1ight was turned off, the resonance
soon weakened or disappeared completely.
1f) Parameters Measured

In general EPR is used to determine several parameters, typically:

g factor

A, hyperfine coup1ihg constant

D, Zero field splitting

Q, quadrupole coupling constant

Ty, Ty, Typ, relaxation times

S4pp, 1ine width

T tumb}ing or correlation time

In biolegical systems most of these factors give useful information as
will be explained during these lectures.

For example, the g factor gives information about local symmetry.
Hyperfine structure will give information about the type of coupling, ionic
or covalent with nearby hydrogens, zerc field splitting could provide in-
formation about the type of spin that Fe has.

Relaxation times could give information about the structure of pro-
teins. Tumbling times give information about the motion of macromelecules.

Line widths give information about interaction with the surroundings.



BASIC MATHEMATICS

2a) Matrix definitions

The general approach to be followed in those lectures is the setting up

of secular equations by means of the direct product (inner product) matrix
expansion technigque. This may be regarded as a direct product counterpart
to Condon and Shortley's formulation. The present chapter will outline

the mathematical and quantum-mechanical properties of matrices and angular

momentum operators, and thereby prepare the way for an understanding of the

material in subsequent chapters.

Quantum-mechanical operators will be in the form of hermitian ma-
trices, and the secular equations will constitute hermitian matrices.
Before discussing unitary and hermitian matrices in detail it will be well
to define several other types of sguare matrices. Some of these defini-

tions will be in the form of an example of a 2 x 2 or 3 x 3 matrix.

5
For example the unitary matrix [1

a
i d e f !

+

has the following adjoint matrix ﬁ+
- oa* d* g*
> 3 fl .
W=fx= p* e* hx !

1
\ cx 2 i* f

A symmetrical matrix is one which equals 1ts transpose:
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H

N4
1

————

o

n

-

An antisymmetrical matrix is the negative of its transpose:

- 0 b ¢

> >
E=-4= b 0 f
-c -f 0

An orthogonal matrix is one with real matrix elements whose reciprocal is

its transpose

~ a d g

2 >
A1t=%4= . b e n
c f 1

It has the property that its determinant is £ 1

Al = |A7Y] =21 '
A unimodular matrix has the determinant +1. A 3 x 3 proper rotation ma-
trix is unimedular, while an improper rotation (i.e., rotation-inversion)

matrix has a determinant of -1. An example of the former is

{ cosé -sind 0
s
A= isine cosd 0

.t_ 0 i} 1

4

For the following two by two unimodular matrix we have

ap
G &
ao* = +56%
BB* = +yy*

From the off-diagonal components one deduces

*

a -
B =

- | R
i
=™ =i



Let the determinant be +1:

a B )
( =ab-py=1
y 6

a* Y*
(a* e*)= e

From these expressions it follows that
= -y*, a = §*
to give, for the most general 2 x 2 unitary matrix with determinant +1,
a=(" ‘**)
Yy o*
The corresponding matrix with determinant -1 is

a y*
y -o*
We shall have occasion to use the +1 case only for matrices which dia-
gonalize a hermitian matrix. The Pauli spin matrices, on the other hand,
are unitary matrices with a determinant -1.

Une should note that a real unitary matrix is eguivalent to an or-
thogonal matrix. Also the matrix elements af a unitary matrix are related
in such a way that every row is orthogenal to the complex conjugate of
every other row, and each row is normalized to unity relative to the com-
plex conjugate of itself. The same applies to the columns. For example,
these rules applied to unitary matrix above give

ad* + be* + cf* =0
aa* + bb* + cc* = 1
The same orthonormality properties apply to orthegonal matrices in which

alt matrix elements are real.

In these lectures we shall be interested in finding the eigenvalues of
hermitian matrices. A hermitian matrix may be diagonalized by a unitary
transformation, and the tramsformation matrix provides the coefficients for
the engenfunctions of the system. This will become clear tater when
the I1 = 12 = 1/2 spin system is worked out in detail. At this time it
will be helpful to illustrate the principles by an example.

o
The Pauli spin matrix, Ey:

3 0 -i
a =
¥ (i 0

is hermitian, and has the eigenvaiues A

0-A =i
=0
i 0-A

to give
A-1=0
A =11
> > + o+ > 2
The eigenvectors of the unitary matrix U which diagonalizes 3y by rdo=%

o* y*) 0 -i [
-y o i 0 ¥

*x
y.) . Al 0
o* 0 A,

0= 0

0 -i o o )
= A
i 0 ¥ 1(‘1.

Inserting the eigenvalue Al = +] and carrying out the mulitiplication gives

=22

are found from the relations {

-iy=a
subject to the normalization condition

a® + yy* = 1



with a possible result

since oo™ = yy* in this instance. The resuiting unitary matrix has the ex-
plicit form
1 iy
b= 2
: k-i 1
Z 2

The unitary transformation for a third-order hermitian matrix may be found
by a similar procedure, but the manipulations become quite tedious. It is
wise, therefore, to make use of a computer.

In these lectures we shall be concerned with the addition:

(A BY a by ‘A+a B+b’

\C 0 ¥ i‘,\c d'f’! ) Lte D+d
multiplication:

‘A B 4 Aa+Bc  Ab+Bd

é‘. c n) ikc d_,f " ca+oe Cb+de

and direct product expansion.
2b) Direct Product
The direct product is defined as
Aa Ab Ba Bb

A B a b . Ac A Bc Bd
( X ( Ca Cb Da Db
.€c Cd Dc Dd .
The first two operations are defined for matrices of the same order, n x n,

and produce a matrix of that same order. The direct product expansion, on

the other hand, forms an (mn) x (mn) matrix from an m x m and an n x n matrix.

Column vectors may be added:

A Ca PA YAy
+! : =E
B Lo/ B +b
! . \
and expanded as direct products
Aa
i A -3“; : Ab
{ x )=
18 i i
\Bb

v
A square matrix times a column vector gives another column vector, and similar-

Aa + Bb )
Ca+0b

ly for the reciprocal operator:

o))

(A B
(a*b*) ! = (Aa* + Ch*  Ba* + Db*)
1y
and the simple scalar preduct is
,'.nfli :
{a* b*) P ={Ae* + Bb*
1 B v

Lo
These operations are easTly generalized to higher dimensions.
BASIC QUANTUM MECHANICS

3a} Angular Momentum Operators

Before proceeding to the matrix formulation of angular momentum opera-
tors, it wiil be appropriate to summarize their principal operator properties.

An angular momentum J has a degeneracy of 2J + 1, with its magnetic
quantum number m assuming the integral or half-integral values within
the range -J < m < J. The 2 component of the angular momentum operates
on the ket vector [m> in accordance with the relation

lem >=mim >



raising and lowering operators are defined as

0 <3 0 0
RS \ 0 -iZ 0 !
. y 2 0 i Sio0 -2 0
J =3, -1 J~ o M2 0 -iy2 »1{
L y ¢ ) 0 2 0 -3
with 0 i{Z 0 l
+ -0 0 JIi 0
Jim=y@-m(J+mn+I)| m+ 1> : F,
Jm=yT+rm@-mn+NIn- 1 . 3 0 0 0
1 0 04 '
and 1 0 { 0 1 0 0
2|m = JJ + Dim> 3 ¥ ] > k0 0 0>
10 -1. 0 0 -1 o'
3b). Matrix Representation \P 0 -1 i
6 6 0 -3/
In order to employ the direct product method for spins with magnitudes !
greater than 2, it is necessary to know the corresponding spin matrices.
: i 0 0 0
These are easily generated from the Pauli matrices, the former giving the N 1 0 0
> 3 /1.0 Y 15 {0 1 0 0
diagonal matrix elements for Jz and the latter the matrix elements adjacent J2s F i j * 20 1 0 a1 H
o 1, . 0 0 1 0
to the diagonal for Jx and Jy' Al1 other matrix elements vanish. We shall ! ‘ 0 o lj &
@ 0 ¢ 1
be content to write down the matrices for Tow magnitudes of J, and then to v
point out a convenient mnemonic method faor constructing them. ) 7
.0 0 07
The various matrices for J =%, 1, and 3/2 have the following explicit . 0 JZ o : !
2 0 1 ! lo o 2 o0
forms, where J may be any orbital, spin, or total angular momentum: 3+ k4 + 0 0 2 E k4 ; /
) 0 o : : 0 0 0 43§
1000 . © 0 0 0. i
, 100 i ko 03 0
unit 10 0100
> -+ 010 >
matrix 01 0010
001 0 0o o0 0°
0001 B . 0 0 ¢ a
2 {0 0 3 0 0 0
i > 2 0 0+ :
a .1 0 ' 2 | 0 2 0 0
0 J3 00 ) ‘ L0 J2 o0
0 2 0 ! / 0 0 3 0/
+ 01 3 0 20
ANE +h |2 042 | %
10 7 02 043 Each matrix has 2J + 1 rows and an equal number of columns. The unit
a0 J2 0
0 043 0 matrix has ones along the diagonal and zeros elsewhere. The matrix for Jz is

diagonal with elements J, J-1, J=2, . . . , -J from upper left to lower right.



The matrix for J2 equals the unit matrix times J{J + 1) and is easily calculated

from-the expression
> - -+ -
2 = Jj2 2 2
J 3x+;'iy+jz‘

Y
by matrix multiplication (3x3x, etc.) followed by matrix addition. These ma-
trices are rather straightforward to form and should present no difficulty for
even higher spins J > 3/2).

The x, y and z component matrices obey the usual commutation law:
> > - > > -»l 3>
jijJ - jjji = [ji’ jj] = jk 41 (i, i, k cyclic)
as is easily proved by carrying out the matrix multiplicatien. For example,

when J = 1 the commutation taw takes the form

B, 3,1 i:iz
0 Z o 0 -iyZ 0
¥ I o 2 (14? 0 -ifZ
0 2 o 0 iWZ 0
0 -iyZ o\i 21 0 ®
- bz o =i 0 0 o0
0 0 } v 0 0 -1

->
One should note that the matrix for Jz automatically has the efgenvalue J{(J+1):

Ed
J2 Unit
= J(J+1)
Matrix Matrix

N :
The Pauli spin matrices, Ei,'are double the spin -% matrices:

01 0 - i 0

> d
= , O, = g =

X 10" Y 4 0 T 5o

>
5
ag

and they have some special properties not shared by the higher-order matrices.

for example, they anticommute in pa{rs:

> > = >
- > + 3."’ = 0
U405 T 0g05 )
for any pair i, j = x, y, z. In addition
> - 3 1 0
s2=02=052 =
X Y Z 0 1

which means that % Zic% also satisfies the eigenvalue equation for J2
with J(J + 1) = 3/4 as expected.

The matrices for Jx and Jy and their raising and towering operator counter-
parts are less familiar for high spins, and the fellowing mnemonic pethod is
useful for their formation. The enly nonzero elements occur adjacént to

the diagonal and have values obtained from the following triangle:

J=1/2 J

)=1 Z 2

J=3/2 J3 72 3

1=2 A 3T ZF3

J=5/2 VAN O, 73 a5
J=3 € f£Z2 @ FE F5
J=12 {1 Bz 53 &3 {35 s 7

The row for a general spin J is



One should note that this triangle {s symmetrical about its vertical axis. A > > 2 - - > 2 2 0
= (31x X 32 + 51 X 32x)? + (jly X 32 + 31 X ij)j
closer inspection will reveal several obvious methods for generating successive N
> > + *
rows for higher spins. + (311 X 52 + 31 X 321)K

The matrix for J_ is real and symmetric, and contains, adjacent to its N 5
x where oy and GZ are unit matrices in the Jl and J2 spaces. The components
diagonal, one half of the numbers ip the corresponding row of the triangle.

J) have the following explicit forms for J; = J, = ¥
For example, the J = 5/2 matrix has the sequence J5/2, yZ, 3/2, JZ, {5/2 on

> 0 1 1 0 0 1 0 1

either side of its diagonal. The matrix for J_ is purely imaginary and is ob- 3; =% X + X

Y 10 0 1 0 1 10
tained from Jx by multiplying each element to the left below the diagonal by
i = {71, and each element to the right above the diagenal by -i. The raising (001 1 0
operator, J°, contains this sequence only immediately to the right above the " i1 0 0 1 7
diagonal, while the Towering operator, J-, contains the same numerical sequence K 1 0 0 1 f
only immediately below and to the left of the diagonal. g 1 1 0 /

The total angular momentum in a system is the vector sum of all other

angular momenta: :

> i 0 0 -i
J =3, C=y ;
Y \ i 0o o0 -
In this section we shall treat the case of two angular momenta:
321 43 Vo i i o0
=t
for which the following values of J are allowed: /1 0 0 o0,
(34 - bl 339, +4, o= ] 0 ] ]
Since this situation is discussed in standard books on guantum mechanics, only z 0 0 ] 0
the application of the direct product method to this problem will be presented 0 0 0 -1

here,

. The ket vectors, |m1m2>'. corresponding to this primed representation are ex-
One begins by taking the direct product sum:

pressed in terms of the Imi> kets:

N 1 0
;K |w/2> = . -2 = )
) 1)



by the direct product expansion:

1

1 1 0
11/2 /&' = X = '
.0 0 0

/2 - /2> = oy x> =

1-1/2 1/2>!

]
x
n

1-1/2 - /&'

I
(=]

x
i

1

——

Thus we have all of the eigenfunctions and angular momentum operators in the

|m1m2>' or primed representation.

3c). Perturbation Theory

When an interaction Hp ts weak relative to the main energy term H0 then

its effect can be calculated by a perturbation approach.
of the form

H= H0 + Hp

Given a Hamiltonian

21

we assume that the eigenvalues of the dominant term Ho are known
<1|H° = E°i<1l

The energy to second order is

<TtH_|§><jIH_[| 1>

B2 =k o+ cith 9> + 30 Ny
p j oi ~0j

and the wave function to the first order is:
(1) _ « LiJH' g
I =y + 7 — P
i of j o1 Eoj 0
3d). Transition Probabilities
The Tine intensity from an initia) state <i| to a final state <f| is
calculated using the time varying potential V(t) and either the exact or the

perturbation wavefunctions in the following expression for the transition

probabiTity.

- 2n 32 -
Pif * ¥z [<fIV(t)|i> 5(Wif w )

[}

where the potential

V(t)

gBh(t)3
= gbh,(1)s,

contains the time dependent radiofrequency field h(t) = hx(t) which is linearly
polarized in the x direction. Since only the cperator Sx operates on the wave~

functions the transition probability Pif is proportional to the expression
- 3 2
Pij = K|<fl5xr1>l

and the relative intensities of various transitions are proportional to the

square of the matrix element <f|$x|i>.
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s . APPLICATION T0 1 and 2 SPINS
The operator Sx acts only on the electron spin states so the matrix .

4a) One Spin in a Magnetic Field
elements only exist when the nuclear spin quantum number is the same for the ) P g

The simplest of all cases it is a single spin S = % in the presence of a
¥ and y; states. In addition to operator S‘ has the following nonzere matrix P d P ¥ P

external magnetic field H .
elements when MI does not change ¢ g * o

The Hamiltonian is given by
1/2 H=p3- -5 A
1/2 or '

“nplS,l-mp>

<*mI|Sx}+mI>
. ) . . . H=gg S -H
The matrix element <f|SxI1> vanishes when the me quantum number remains the z
where the first is for the case of a anisotropic g factor and the second

same, and it also vanishes when mg changes corresponding to the selection rules is for the case of isotropic g factor. The eigenvalues are

am, =+ 1 ‘ £y = gBH/2
E2 = ~gBH/2

The difference between the first and second case is in the g factor. For

As a result there are only two nonvanishing matrix elements. These re- the anistropic case is given by

sults may be summarized as folTows: g2 = gxi + g;y + Q:Z

which it reduces to the first case when 9yy g

= Sy T 9z,

1/2 am

I
it

1 Am

<++15x|-+> 0

) I

1/2 Ame =1 amp = 0

A more complex case is considered next

<=8 )-->
4b Two Interacting Spins in a Magnetic Field

The perturbation wavefunctions together with these matrix elements are We illustrate the direct product expansion technique by determining the

used to construct the following transition probability matrix: energy for the S = 1/2, I = 1/2 tow spin case with isotropic g-factor and

hyperfine terms. We use the following hamiltonian

[#4> ¢2 ¢3 |=->
| 0 1/2¢ 12 0 H = gBHS, - gyByHT, + T5-1
¢2 1/2¢ 0 0 12 and neglect the nuclear Zeeman term, which gives
¥y 1/2 0 0 -1/2¢ H= gﬁHsz + T(lex + Sny + SzIz)‘
- 0 1/2 ~1/2¢ 0 A unit matrix I in the nuclear spin space is added to the electronic Zeeman

term to write it in direct product notation
The two allowed ESR transitions have the same intensity (1/2) wherease the H= gBHZ Sz x 1+ T(Sx x I+ Sy X Iy + Sz X Iz)
NMR transition ¢¢3 and 1+2 with the selection rules Ams =0, amp = & 1 have

a much lower intensity.



A

ta

First the Zeeman term matrices are expanded to give : Finally all of these matrices are combined by addition to give:
- | ++< | +=> [-+> TR
f++> |#-> |=+> 1--> !
| gﬁg+£ 0 0 0
< f1/2 0 0 0 _ W .
| | / 0 o 5, x 1 o R 2 °
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- which correspond to two 1 x 1 matrices and one 2 x 2 matrix
where we use the notation <"'smI| and lmsml> for the bra and ket wavefunctions (I x1) (i} v} \
!
respectively. _ 0 (2 x2) 0 f]
Next the Hamiltonian matrices of the hyperfine terms are presented: \ 0 0 (1x1) /
| +4> | +-> |-+> |==> The 2 x 2 matrix constitutes a guadratic equation which is easily solved in
| 0 0 0 4 determinant form '
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Sz X Iz = o] 0 o -1/ o The coefficients o and y of the wavefunction are obtained from the expression
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which can be evaluated to give

a= (1 (Y- (Bt
v= 1+ 1 - (@B

and the four eigenfunctions have the form

¢1 = |++>
¢2 = g +-o+y| -+
¥y = ~yl+=>ta]-o>
$g =t
This same case can be handled by perturbation theory, and the zero

order result gives two degenerate energies with the following values:
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The second order of perturbation Teaves the upper and lower levels
unaffected but shifts the two middle energy levels and also the spectral lines

in accordance with the expressions
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__BH T _ (1/2
By = gﬁf q apH

_ _BH ., T
By = v g
The perturbation approach provides the approximate values « = 1 and y =

T/2gBH for the coefficients of the wavefunctions.

ANISOTROPIES

5a). Anisotropic g-factor

Until now we have dealt with a hamiltonian which is isotrepic which
means that the energies are independent of the magnetic field direction.
Now we will extend the treatment to the anisotropic case where the energy
depends upon the orientation of the magnetic field. We begin by treating
the axially symmetric case wherein there is one preferred direction. The
Hamiltonian matrix for an electronic spin S = 1/2 in the absence of a nuclear

spin is given by:

H=pHR-g-3
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Using the g factor tensor

g! 0 0
g 0 9) 0
0 0 9
and the § = 1/2 spin matrices defined above we obtain a 2 x 2 hamiltonian
matrix. .

The determinant of this Hamiltonian matrix
1/2 gll BHZ - A 1/2 gl ﬁ(Hx-iHy)
1/2 9 5(Hx + iHy) -1/2 gll BH, - A

is solved to provide the energies

n
o

A=+t 1/2 Bf{8)
which depend upon the angle & which the magretic field makes with the axis
of symmetry through the expression

- s 2 211/2
f(6) = {[g;(H,-TH )12 + (g H )%}
If the magnetic field components are expressed in spherical coordinates
Hx = H sind cos
H. = H sing sin
y ng sin ¢

HZ = H cose

then the angular dependence of the energy is made explicit.
f(r) = H{gl2 sin {o + gH2 o::osZB}ll2
and the energies are given by
A=t 1/2gpH
with the angular dependence in the g factor

g= (gl2 sinZe + g”2 cos2e)1/2

5b). Anisotropic Hyperfine Coupling

We have treated the case of an anisotropic g-factor. The hyperfine
coupling constant can also be anisotropic, and this can be treated in a
similar manner using direct products.

When only the g-factor is anisotropic, the magnetic field positions
Hres of the doublet iines vary with the orientation but the separation between
the lines remains the same,

When only the hyperfine coupling constant T is anisotropic, then the
separation of the 1ines will vary with the orientation in such a manner that
the midpoint between them remains at the same magnetic field value.

When the g-factor and the hyperfine interactions are anisotropic, then
both the spacing between the lines and their center point will vary with the

orientation of the crystal in the magnetic field.

5¢  Zero Field Tensor
When the unpaired spin has the magnitude 5 = 1 as occurs in triplet
states of hydrocarbon molecules there is an additional hamiltonian term
3.5-2 called the zero field spTitting and we can write
H = gph-3 + §.5.2
The zero field tensor arises from the dipole-dipole interaction.
In the principal axis system the off-diagonal terms vanish and the

diagonal terms contain an axial part D and a lower symmetry part E as follows

g2p? o I
p 5 > =

T b+ E
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For axial symmetry (E = 0) the zero field tensor in the principal axis system

is

=3
1l
o o WO
[=]

D

wifa <

and the hamiltonian has the form

H = gpH-S + D[S,? - § S(5 + 1]
After rotation through an angle 8 around the x axis to a new coordinate

system by means of the expression

3oy = ﬁe"-% ﬁe’"l

where ﬁex is the notation matrix

1 0 0
ﬁax = 0 cost -sing
0 sing cosé
the zero field tensor becomes
b 0 0
3 1
B = i} 3 D{2 sin?6-cos26) ~-Dsinfcoso
0 -DsinBcosd %D(Zcoszﬁ-sinze)

In this new coordinate system the zerc field hamiltonian may be put in the

form
HD = -sz (%) + Syz (-% cosle + % 5in6)
2 1 .
275 28 -2 2
+Sz (30 cos28 3B sin2@)

-(SySz + SzSy)D (singé cos@)

o)

=L

This expression provides the angular dependence of the spectral lines. To
first order, i.e., wheﬁ D << gpH, this simplifies to the following approximate
equation
Hy = D[S,2 - 35(5+1)] (cos?0 -1 sinze)
LINESHAPES

6a) Gaussian and Lorentzian Shapes

We have discussed the positions of ESR spectral lines in terms of the
hamiTtonian and their relative intensities in terms of the transition
probability. Additional information about spin systems is provided by the
shapes of the spectral Tines.

The two main types of lineshapes are the Gaussian whith occurs in di-
polar broadened solids and the Lorentzian which occurs in liquids and in
exchange narrowed solids. The analytic forms of the absorption Tineshapes

are as follows:

H-H
-0. 593(%E2)2

Y(ﬁ) = Yme (Gaussian)
Y(h) W (ﬁ—H Y/%AH, 12 (Lorentzian)
o %

where Ym is the amplitude at the center of the line where H = HD and AH;i
in the 1inewidth between half amplitude points, as shown on fig. 10.

Ordinarily in ESR experiments we detect first derivatives of the absorp-
tion Tineshapes given in the following eguations for the Gaussian and
Lorentzian cases.

H-Ho
G . H-Hy 4 H b

Y(H) = 1.649 Ym (;ﬁA—pr)e pPp

L 16 Y'[H=H }/%aH ]
yeb o m 0
(H) ~ T3F{CHT_ 37588 J#o2
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where the peak to peak amplitude Y& ts defined on the figure. The peak to peak " where n =+ 1, and there are three resonances with the following magnetic
1inewidth Apr defined on this same figure is narrower than its half amplitude .- field values and ket vectors
counterpart by the following amount. - o H:es + |+1>

AH,i = (£n2)%App (Gaussian) : ngs + 10>

.AH;5 = 3;i A pr (Lorentzian) Hl-"es + |-1>

If we define
6b). Powder Pattern Line Shapes Hub = gBH0
We have been discussing cases in which the position of the spectral then we can write the energy condition in the form

line depends upon the orientation of the sample in themagnetit field. When 3
- - 2/
H=H, -~ nD(5 cos’o-%
the sample is a powder the crysallites are oriented randomly and the result-
The magnetic field H will be on resonance with some spins between the
ing spectrum is a superpesition of spectra from individual crystallites.

folowing 1imits
To calculate the zero field powder pattern lineshape to first order

Ho-nD =20
"(D<<gpH) we average the hamiltonian term, Hy. =
lim p +40 g="
0 2 P2
Hy = O[S,2 - % 5(5+1)] (cos26-%sin2B) over which the lineshape must be integrated. It is more convenient to
over angles. integrate the field H than angle 8, so we will change the variable.
The differential dN for the number of crystallites with their axes . The derivative dH/d
between 6 and 9+dd ralative to the magnetic field direction is proportional H - H
o _ 2 o 1% .
@ = 3nD [3 { i )+§] sing
to the differential area dA = 2ar sing do n .
dN a dA can be. transformed to dN/dH to give the following expression
a 2nr sind do

dN = N (2 (Eﬂ_é_f) + 37 M
and in terms of the total number N, of crystallites this becomes 6D 3 = n 3
which provides the lineshapes.

N
dN = -g sing de

DYNAMICAL ASPECTS
where 8 is restricted to the range of values.

7a) Precessing Spins
0ses % Until now we have been discussing the static aspects of ESR. Teo
The energy condition for resonance is understand the phenomenon of saturation transfer it is also necessary to
Ko, = gBH . . + nD (cos28-% sin2g) have some knowledge of the dynamical aspects of this subject, and we will

proceed to review them. We begin with a discussion of the Bloch equations.




The magnetization precesses in a magnetic field at a rate determined by

the Larmor equation,

and if it is disturbed from equilibrium, it relaxes back to its equilibrium
value M0 in accordance with the expression
dM _ MO-MZ
1

3l
Fn

where T1 is the Longitudinat or Spin-Lattice Relaxation time. This equation
has the solution
= LT
M, = Mn(l e’ ')
so we see that the magnetization M relaxes exponentially to its equilibrium

value Mo‘

7b  Bloch Eguations
When both lengitudinal and transverse relaxation are taken into account
the eguation of motion of the maghetization has particular forms which

are referred to as the Bioch Equatiens.

M M
— = (R, - 7’;
™ M
—#= y(ﬁxﬁ)y - f‘é
™ M_-M
gt = YD), - -

where T2 is the Transverse or Spin-Spin Relaxation Time.

— -jwt
Hrf = 2H1e

%

Bl

In the x direction for a sinusoidal rf field, the solutions of the
Bloch equations give the magnetization components, and the x component Mx is
proportional to the compiex magnetic susceptibility x(w)
M = x(w)Hl

which has the real and imaginary parts y'(w) and ¥"(w) respectively
x{w) = x' {w)=1x"(w)

The solution to the 8loch equations has the real part x'(w)

() = doxgugT Nl A7
X lwy = U —(—Tz—rr‘rT‘r
00 2 1+ W, 2 +y H1 T1 2

corresponding to the dispersion mode, and the imaginary part ¥""(w}
X'W) =t 00Ty T YT, BT,
ad LR I N

corresponding to the absorption mode. In the absence of saturation
y2H12T1T2<<1

we obtain

— 1
x'(w) =% xoonZ T+iurw°5!| 2’

" — 1
XM) =% x0Ty T )T 2

In practice, the magnetic field is scanned rather than the frequency and

using the expressions

w = yH Wy = yHo

we can write the susceptibilities as a function of the magnetic field
H-H,
XoH, (%)
x'(H) = (=) "___"H:Hk‘_““
L 1+ oli
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XoHo 1
X"(H) = (A—H!! T
1+ (EEE_;TZ

where

T =_2_
2~ Yo,
The derivative of the magnetic suseptibility is measured in ESR experi-

ments, and it s obtained from these expressions through differentiation, to

give

H“Ho

d_*(H) 2% H, (EEH;)

Y@ w) W,
[l+(_§3F_——)]2

E]

H'HD

) 2xH, (%aH,,)

2o - T, ) W,
[1+(*¥3n““)]2

L

Experimentally, we ordinarlily measure the quantity dx'(H)/dH when we record
an ESR spectrum. The abhove equation gives the shape of the rescnance absarption
when the lineshape is lorentzian and the power is low so that saturation can

be neglected.

7c  Saturation
At higher powers where the saturation can be appreciable we write the
observed lineshape in the more convenient form
Q,
sH1 Ym

Yi. =
(W) = JAT+s(A-A_Y2Y2T,

where s is the saturation factor defined by

_ 1
T TR,

and the rf field H1 is proportional to the square root of the power.
The spin lattice relaxation time may be found by plotting the signal
amplitude Ym' against the square root of the power and determining the maximum

point of the curve.

At the maximum point, which satisfies the condition
dYé

— =

dH1

we have the following value for the saturation factor
s =2/3
as may be found carrying out the differentiation.
This maximum point provides the spin lattice relaxation time T1 from
an expression which depends upan a knowledge of the rf magnetic field value
H1 at this point.

.7 aH
Ty = 1.97 x 10 Emlsf
The corresponding expression for T2 is

2
3K
J—AHPD

T

2 =
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BIOLOGICAL APPLICATIONS
8a) Radiation Damage
When DNA is irradiated with x-rays, gamma rays or other high energy

particles electrons are removed from various atoms or atomic groups to produce
primeary free radical cations °p+

ho + P> -p*
The electrons that are released can engage other molecules to produce secondary
radical axions -§

e+S5+5T+2e
as they can be captured to produce secondary radical cations

e+§ 5
Those paramagnetic species are observed at low temperatures. At room temp-
erature they are that Toud and tend to form final more stable radicals by
the processes of proton extraction

st K > -sH
or hydrox extractien

-5+ 0H > -SOM
from the surroundings.

Some research workers have reported that there is an electron affinity

scale for the DNA laser

G<A<T<C
with uracil (U) similar to thymine (T). This means that in a sample with a
mixture.of losses radical ions formed from a base at the left side of the
seven will interact with bases on the right and transfer their electrons to
them. For example, the following reaction is 1ikely to occur

AT A+ T
Various combinatiens of samples with mixed base have been studied to show

this.

40

8b  Saturation Transfer

We have now completed the survey of background material and are in a
position to explain saturation transfer (ST). This phenomenon is based upon the
effect of anisotropies in the hamiltonian on the relaxation behaviour of

partially saturated free radicals with tumbling times in the range from 10-3

to 1077 s.

We should recall that the resonance field of & sample with anisotropic
parameters will depend on the angle between a particiular melecular axis
of symmetry and the external field. On the other hand, if the sample
is made up of molecules undergoeing rotational Brownian diffusion in a
viscous solvent the ESR spectrum will depend not only on the magnitude
of the anisotropy but also in the corretation time 1, which fs the average
time that it takes the molecule to reorient and change the angle © by an
amount equal to ome radian {~ 57°).

As the motion slows down, the spectrum will appreach mere and more
the powder shape, and as the rate increases the anisotropies average out
more and more and the spectrum looks like that of a liguid. Intermediate
degrees of motion produce spectra with shapes between the extremes. When

3

19 is Tonger than 10°° s the spectrum looks like a powder and there will

not be any difference between the spectrum of a molecule tumbling with a
corretation time of 103 and another tumbling with 1, equal, say, to 10-25.

7I5.

A liquid 1ike spectrum is obtained when T, is Tess than 107 How we can

75 to 10-35?

get information about correlation times in the region of 10
To analyze this problem in greater detail we will consider the ESR

spectra produced by paramagnetic nitroxides. These free radicals called

spin lables attach themselves to macromolecules and produce an equal intensity

triplet due to the hyperfine interaction of the unpaired electron with the



nuclear spin I = 1 of the nitrogen. The g-factor is close to isotropic, and
the hyperfine interaction is axially symmetric. As a result each molecule
oriented at a particular angle & will produce resonance absorption at a
particular magnetic field, and the intensity of the absorption at that mag-
netic field strength will be proportional to the probability that a molecule
will be so oriented. We can see that various lines are at different resonant
fields, that is to say two lines belong to two molecules that make different
angles with the external field. The importance of this is the following:
for certain angles 8 a small change in angle will produce a Targe change

in the resonant field and for certain other angles the same change in angle
will produce 1ittle or no change in the resonant field.

Suppose that we have a sample with paramagnetic molecules (i.e. molecules
with nitroxide radicals attached). If we scan through the spectfum at very
Tow pﬁwer its shape will not be affected by the power level. A priori it
will look 1ike all the molecules will also be equally affected by saturating
powder levels, and that a spectrum with a tumbling time of 10_75 will not be

distinguished from one of ID-4

s by fts behaviour under saturation, A more
careful examination will tell us that this s not so.

During the measurement of time all of the molecules will tumble at the
same average rate but not all will be making the same angle with the field.
The key to understand saturation transfer is based in the fact that the two
1ines mentioned before are not at the same rescnance field and we require
analytical expressions for the dependence of the resonance field on the
hyperfine fnteractfon angle of orientation

In the case of nitroxides the anisotropy in the hyperfine coupling is

constant but 1s is convenient to use the zero field term expressions that we
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already have derived since the idea is the same. Thus we have:

Mres = NDE2
3

de
The two extreme values of Hres for 8 = 0 and 6 = n/2 are

H -H
2oy + 1% sine

Hl‘eS (0 = HO - D

Hres (n/2)

]
x
+
nNIo

and at these extreme points we have

g -0
¥ 5=
Mo -0
® -1

?

If we consider a molecule which makes an angle close to 0 or n/2, a
smal} change of angle will not alter its resonant field since dHres/de = @
for 8 = 0, n/2 and so the molecule will remain saturated and the signal will
be high. When a second molecule is oriented at an angle different from 0
or n/2 where dHreslde is targe and it moves to another resonant field it
"transfers" its saturation. The saturation behavior at its new angle will
not be the same as that at its original angle of orientation. This change
in saturation s reflected in the spectral line shape, and it provides us
with information about the rate of tumbiing.

How is this information obtained? Researchers have used the Blach
equations which were discussed above and also the Density Matrix method
both of which are rather equivalent to each other. The basic idea is
to stimulate spectra under the condition of partial saturation taking into
account tumbling in the presence of anisotropic interactions. The resulting

lineshapes compare fairly well with experiments.
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We have been discussing saturation transfer in terms of the conventional
- absorption spectrum and its derivative. We examined the changes that occured
in the regular absorption signal that is in phase with the modulation
reference signal, and we showed how the observed spectrum varies with the

rate of tumbling. The spectrometer settings used for recording spectra of
this type are not the best ones for detecting small changes in tumbling

rates. Therefore we will pause briefly te describe the modes of detection
that are most suitable for studying ST and then we will show how to character-
jze and analyze the resulting spectra.

To specify different types of spectra, a caonventional notation has
been accepted and before we centinue with the description of ST we will describe
this notation:

The letter U indicates dispersion

The letter V indicates absorption

The index 1 or 2 indicates first harmonic {first derivative) and

second harmonic (second derivative) detection

Primed or Unprimed indicate out of phase or in phase respectively.

The normal spectrum recorded with a conventional spectrometer is a V1
type, that is to say absorption, first harmonic, in phase. Nevertheless,
with twoe choices of a harmonic and phase there are a total of 8 possibilities.
A1l of these were tried and the two which give the highest sensitivity
for ST, are Ul' which is the best, and Vz' which is the second best.

The mode that is used regularly is Vzl because it is much simpler from
the point of view of instrumentation. Modern E.P.R. instruments with
conventional 100 kHz modulation have a switch that converts to second
harmonic detection. Under this condition the modulation is at 50 kHz and

detection is at 100 kHz.

The prime in VZ' indicates out of phase and we all know that one of
the rules for obtaining good spectra, expecially if there is a sensitivity
problem, is to be sure that the phase is set correctly. In fact a perfect
out of phase setting should give zero signal, but in practice the out of
phase signal is 1¥ of the in phase one.

The best way to be sure that we are out of phase is to operate at Jow
power and look for the signal in phase, maximize it, change the phase by
90°, increase the gain as much as possible and adjust the phase to minimize
the signal.

It seems paradoxical that we take so much trouble in being out of
phase where the signal is, zero, or almost zero, but it happens that if now
an intermediate saturation power is applied a stronger signal appears! And
this signal is very sensitive to the rate of tumbling as we explained
before.

How much modulation? time constant? power? must we apiﬂy? For
better or for worst no definite rule can be established and so the actual
value of 1, can not always be determined with atso precision as is the case in
the measurement of the absolute number of spins, but rather a good accuracy
¢an be obtained if relative measurements are made. For example we vary
the tumbling rate by changing the solvent, viscosity or temperature.

About the best way to set the power, modulation, etc., is to follow
the review of Hyde and Thomas (1980). For the people that have a Varian E
Line instrument the manual is reasonably good and explicit. From my
experience it is very important to be careful with the phase setting and
the method that I described earlier is a small modification of what s
called the self null method. It must be emphasized that during the search

for a null signal or out of phase spectrum the power whould be very low, of
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the order of 1 mW. That peses a problem because very seldom is the signal
to noise very high and so the reduced power practicaily kills the signal,
but 1ife is full of problems.

The experiment is performed in more or less the following sequence.
Find the null phase according to the technique explained earlier, applying
an intermediate saturation power. There is no rule for this, and trial and
error and experience can tell you what is best. Record the spectra and
measure the parameters that have been already adopted by convention, namely
the ratios H'/H, L"/L and C"/C. The graphs of Hyde and Thomas give the

correlation time t, in terms of the values of these ratios.

FRACTALS
9a) Definitions

There is a rather big field of research pal]ed Automata Theory that
covers a wide range of subjects from biological problems to computer models.
It has been applied to neural model celiular automata, L systems etc.

(L system is called the language theory).

Here we do not intend to go in any deep way in any of these directions,
rather we plan to give a pedestrian view of cellular automata: simple
definitions, its relation with fractals, and specifically an application to
the determination of the radius of gyration of proteins by means of Electron
Spin Resonance.

It appears that the basic laws of physics relevant to everyday phenomena
are now known. Yet there are many everyday natural systems whose complex
structure and behavior have so far defied even qualitative analysis. For
example, the laws that govern the freezing of water and the conduction of heat
have long been known, but analyzing their consequences for the intricate pat-
tern of snowflake growth has not yet been possible. Many components that
make up the whole system act together to yield very complex behavior,

In some cases this complex behavior may be simulated pumerically with
just a few components, but in most cases the simulation requires too many
components, and this direct approach fails. One must instead attempt to
distill the mathematical essence of the process by which complex behavior is
generated. The hope in such an approach is to identify fundamental mathe-
matical mechanisms that are common to may different natural systems. Such
commonality would correspond to universal features in the behavior of very
different complex natural systems.

To discover and analyze the mathematical basis for the generation of

complexity, one must identify simple mathematical systems that capture the



essence of the process. Cellular automata are a candidate class of such
systems. Cellular automata promise to provide mathematical models for a
wide variety of complex phenomena, especially bisltogical growth.

Cellular Automata are simple mathematical models of natural systems.
They are made up of a simple lattice of discrete identical sites. At each
site there will be a set of integer numbers and these numbers evolve in time
according with some rather simple rule. One of the simplest examples of this
cellular automata is the following: Our lattice will be a
Tine of equally spaced sites and the set of integer numbers is 0 and 1. The
evolution in time is obtained when a new line is derived from the previous one
by the simple rule

AL = a8 4 () pog 2

We have then the simplest lattice of equally spaced points in one dimension: the
simplest set of integers: 0 and 1 and probably the simplest rule of evolution.
In the equation for the evolution, mod 2 indicated that the value could be
either 0 or 1, whichever is the remainder after division by two (this is
equivalent to the Boolean algebra, '‘exclusive or').

To start we fix a seed, for example, along a line one site is selected
as 1 and alt the others are 0. To evolve in time we go to a line below and
the number at each site is the sum, mod 2 of two sites from the previous line,

one before and one after, as shown below.

Hoococoooo
oCOoOHHOCOoOO0OO0OC O
oroOHQDDOQ
cCoOooHooODD
oHOHOHODOO
OCCOHOOOHOO
OHOOORO RO
SovocooooR
OHOOOROKHS
QoOMNOODOMOCO
oHOHRORCOO
COoOooOMROOOO
QrRORCOO OO
CSOHROSSHOOD
SOHOOSCOoOooO
HoOooOoOooOaOoo
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After a long time the system starts to show striking regularities and
one of them is ‘'self-similarity,' that is to say, if we magnify part of
the pattern it can not be distinguished from the whole. Another way of
putting is is to say that the pattern is invariant under length scaling.

This type of self similarity pattern is called fractal. The reason for
the name fractal is because if we think of a square and charge the Tength to,
say twice the previous one, the area will be 22 times bigger and we say that
the square is a two dimension system. On the other hand if we look at
figure 1 the area of the number ones is 29 in a rectangle of dimensions
17 x 9. If we double the length and width to 2 x 17 and 2 x 9 the area of

number ones will not be 2 x 29 but rather 21‘585

x 29 and we say that it

is a fractal with dimension 1.585. We see that this simple model generates
self similarity; in addition it has another property which is even more
striking, the property of self-organization. This can be put in evidence
if we start with a random Tine of zeros and ones as shown in the figure.

After some time the cellular automata starts to organize itself. There
are some mollusks with shells that actually show a similar pattern indicating
that the growth of this shell could follow cellular automaton rules. In sys=
tems that follow conventional thermodynamics, the second law implies a pro-
gressive degradation of any inital structure with the well known property that
systems which evelve in time increase their entropy, that is to say, the system
evolves toward disorder. On the other hand biolegical systems evalve in the
opposite direction: they generate structures even when they start from dis-
order.

The celiular automata is one, very simple, example that belongs to the
second class. That is to say, even starting from disorder it generates struc-

ture. Another interesting feature is the following: given a particular state
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the next state is completely defined, for example

state i c-1 0 t 1 0 1 0

state i + 1 0 0 1 1 o0 0
But given state i + 1 we do not know for sure which is the predecessor, we
could reach the same ¥ + 1 from other previous states, for gxamp]e

state j 1 0 1 0 0 1 0 1 ”

state i + 1 ¢ 0 1 0 0 O
This tells us that the evolution is irreversible. In fact we can start with
any state, proceed by evolution, and never reach a similar state. To check
this it is more convenient to use finite systems with periodic boundaries,
like in a circle.

The few states toward which the system converges are chlled attractors.
The possibiiity of such structures is a result of irreversibility.

Conventional thermodynamics treats systems which are intrinsically re-
versible. The irreversibility comes from the statics, where ecach state is
practically defined by a chain of predecessors. In the cellular automata the
irreversibility is intrinsic and the difference makes one case increase its
energy and the other decrease it.

This brief description of the cellular automata gives us an idea of
the possibility of the existance of objects of fractional dimension called
fractals. Examples in every day 1ife are snowflakes, broccoli etc. that
are shown in the color slides. The main feature is the self similarity.
9b) Protein Dimensions

Now we will take a look at some proteins which are polymers made up of
dimers. Some are more linear than others depending on how twisted they are.
Several definitions are given in relation with its dimensions:

Average end to end dimension is

- %
hay = ()

where h is the distance between the ends of @ given configuration and the
average is over all configurations
Average radius of gyration R

- k
R = (R%)

] » a - !i
(% m1r12721m1)
and if the masses are the same, then

Re=§ GTD?
If each dimer of length £ were located one after the other in a line the
end to end length h would be given by

h = N2
for N dimers.

On the other hand if these dimers were allowed to move in any difection,

each step wilil be equivalent to a random walk and in this case

h = N%E
Further we must realize that the molecule can not occupy two sites simul-
tanecusly. When this is taken into account we obtain what is called a
self avoiding random walk that gives the following end to end distance
for a two and three dimensional space.

4/3

h=N""2

and
h=N

From the above expressions N can be obtained as follows

N = (h/g)d
where d is the fractal dimension. For the case of a polymer in a line h is
proportional to N for a given £ making d = 1, for a random walk N is proper-

tional to h? making d = 2, etec. From crystallographic x-ray information we

can determine d.

S0



For each structure a sphere is drawn and all carbons along the backbone
of the protein are counted. In this way for every configuration we will have
a sphere of radius hi’ and Ni carbons. An average is taken and fit to the
equation N = (%)E from which d is obtained. The values obtained range
between 1.2 < d < 1.8 indicating the possibility of determining structural
information

As we have seen, in each case we need to take an average since we do not
have the regularity required for the definition of a fractal: self similar-
ity (two objects close but not equal do net actually have similarity).

The definition can, however, be extended to irregular figures through
the concept of statistical self similarity, when some statistical distribution
function describing the properties of the object exhibits self similarity
rather than the object itself. In our case the components of the vectors
connecting points on a random walk of N steps are Gaussian random variables of

%

mean zero and standard deviation o(N) = 2N~ where £ is the step size.
It can be shown that the standard deviation of % steps of length 2 is
the same as the standard deviation of N steps of length £/s with s = n*, ar

Ul(N) = UO(N/")

= 0% g (N)
To probe the first we notice that
o (M) = £ 42
= oy
= o4(})

52

The second results again from the definition

Ny _ N.%
o=
XOEELE
a0 (N) = o, {(N/n)

_ 1
T

N, _ 2 N.%
H=57@

A rather simitar way of defining a fractal is the following: the fractal

[+

dimension, d and the number of copies n of a scaled object needed to cover
the original to the scale factor s are related by

n= s
and from this expression we have

d= £n n/gn s
Y

1t

Zn n/2n n

_2nn

I T
=2

9c) Relaxation Times
Now we will describe an interesting use of fractals in relation to the end to
end length of proteins.

First we need to revise the concept of relaxation time.

As it was mentioned before when a system of spins is perturbed, {t re-
turns to equilibrium with a characteristic time T1 called the spin-lattice relax-
ation time. Many complications appear when one wants to calculate T1 which
among other things has a strong temperature dependence,

Basically when a spin flips at low temperature where there is a

sufficient number of phonons of the proper energy it either gives or receives



a kick from the lattice creating or annihilating a phonon, and the process is
called direct. At higher temperatures where there is a wide band of phonons
it is more probahle that ene phonon collides with the spin, making it flip,
and a new phonen is produced. So two phonons of frequencies vy and v, are
involved in such a way that the energy is conserved.

gpH = h(v1 - 02)

The general expression for T1 is

A

7= A coth (%) + ¢T
1

_hv
28T
= AT + CT9
where the first term corresponds to the direct précess and the second to the
Raman or two phonon process. In fact things are more complicated than this
because in addition there could be bottleneck which, in turn, could be normal,
intermediate, or full., There also could be cross relaxation, an Orbach pro-
cess, a tunneling process, etc.

If we cohsider just Raman terms we can use the following theoretical

expression for the value of Tl'
s hv/pT
% = IzD 2~E%é;%%————— dv  (Raman}
1 (e -1)2

where p{v) is the density of vibrational states and vy is the Debye or cutoff
frequency. The definition of p(v) tells us that the number of vibrational
states between the frequencies v and v + dv is p(v)dv. The vp is chosen so

that the total number of vibrational modes equals the number of degrees of

freedom of the system.

For a regular lattice of dimension d (Euclidean) with constant sound

velocity Vg it is known that

d-1

p(v) a v tsfvs vy

p(v) =0 v >

For a fracta) structure it is tempting to use scaling agruments, that is to

say,

d-1

p(v) a v DsSvs

p
p(v) =8 v >y

The reason why we write d instead of d will be explained later. Now the

following expression for T1

v 2424 _hv/gT
% B Iou ’ hv/ Te dv
1 (e™/Pl1y2

with the change in variable Z = hu/pT gives

1_ BT 3+2d ZD Z2+2deZdZ
L D P AP
1 (e"-1)2

If UD/T 2 333 GHz/K or for example vy = 4000 GHz and T = 12 K, then we can

replace ZD by « where

2
jo f{Z) dz # (1)
and so
Tl o T3+za {Raman)
1

if d = 3 (Euclidean space) then

1 .9
= T
Tl

but if d < 3 as in proteins then the exponent could be less than 9 as the ex-

periment actually shows.
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To measure this requires some care, especially since other contributions
can produce the T" Raman behavior. Two techniques can be used, one, con-
tinuous saturation and the other pulse and recovery. The first technigue
is simpler and basically every instrument has the capability to do the work.

A pulse and recovery spectrometer is a more sophisticated instrument which
requires some intrumentation experience to design it and to later operate it.

Relaxation times are usually very short and low temperatures are required
to increase the time to a long enough value so it can be measured; typical
temperatures range from 1.5 K to 25 K. Between 1.5 K and 4.2 K the temper-
ature is obtained by pumping on liguid helium, the Tower the pressure the
lower the temperature. Between 4.2 K and 25 K the temperature is obtained
either by means of a cold finger or by circulating helium vapor.

The value ; is called the spectral dimension and the value d is the fractal
dimension, and they are related. To see this relation we can use the fact that

NR) = 59 N(R/S)

which it is ebtained from the previous dafinition

d
MR) = ()
and ~

ey =

1@
-— (R
- sd (E)

' :.N(R)/Sa

The density of vibrational states in the larger object (R) is the sum of the

constituents' densities:

prlv) = 5 Prss V)

then

dv
_ _R/s
pR(“R) - dvR Prss (“R/s)

where vy and Vp/s Ar€ the fundamental (normal) modes.

5
If the Tow frequency scaling obeys the following expression

then
Sa Prss (“R) = s° Pr/s (SE“R)
and
d=1d/a
a range between 1 and d. The experimental results agree very nicely with
the theoretical predictions.

I will describe a completely different approach used to calculate
some properties of a polymer like the average end te end length and the ratio
between an average monomer and its "radius." The end to end and monomer tength
were already defined. The radius mentioned here is the radius of & hypothe-
tical sphere attached to the monomer. This sphere represents, depending on
the point of view, a repulsive potential or the size of the molecule or a
simple device to restrict the bending of the molecule.

This model is called "pearl-necklace." There are N0 + 1 hard spheres of
diameter h, indexed from 1 to No + 1 which are connected by N0 bonds of
length 2, The end to end correlation length R which is a function of No’
ho and 2, is given by

%

R(N,, hy, £.) = <ry - TN+ 1)

where the r; are the coordinates of the center of the sphere.
We already have written the scaling law for the length. A slightly

more sophisticated expression is given by

h_ d/¢
_ v o f
R(I‘.O, ho, No) = .QONO t f(NO(E—O) )



where d is the dimensioen, v is the tricrital exponent and 0y is the
crossover exponent. In the mean field approximation
A
and with this value we have R(ﬂn, ho' No) = A£°6§N“.
The basic idea is how, knowing No’ Eo, and ho we can calculate the
fractal dimension. One of the techniques is Renormalization Group, another
one is Monte Carlo Renormalization Group, etc. 1 will describe briefly the

Tatter approach. Given No’ £, and h0 and using the Monte Carlo method, a

[«]
chain is generated, then we use what is called a block transformatien and redefine
the bonds replacing by two consecutives by one, in this way the number of bonds
N N

ND is reduced to —%, in general to —% if s is the number of bonds replaced by
ane. It is required that after the renormalization

R(Eo’ ho' No) = R(ﬂl’ h1’ No/s)
The new et is obtained by

- - 2!E

N <(rj rj+s) >

With 2, and N1 = No/s we pick some h1 and run a Monte Carlo chain, h1 is

N
repeatedly adjusted until R (20, h "o) = R(El, hl’ —%). The process is

o,
repeated and the block bonds have the following behavior

and

with 8 > 6k+1 + &* where &% is the fixed point.
After some math it results
RCL, h, M) = 2 GO° WO
DetaiTs on Monte Carlo calculations, computer programs and actual calculation
steps will be given in a session in the afternoon for people that are inter-

ested.
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