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The X-ray fiber diffraction studies of DNA and RNA

Three lectures by Prof. Ken-ichi Tomita (Osaka, Japan)

Lecture 1.
1) INTRODUCTION

I will introduce briefly the historical backgrounds before
and on the era of discovery of double-stranded DNA helix by
Watson & Crick. Accumulations of biochemical and physico-

1-4) on DNA structure led to the Watson-Crick

chemical studies
helical models) which was confirmed by new X-ray diffraction
data obtained in Wilkin's laboratory. "The Double Helix"

written by J.D.Watsonﬁ) is a very fresh and impressive story

on the discovery of the DNA structure.

1) W.T.Astbury(1947) .8ymp.Soc.Exp.Biol.I.Nucleic Acid, p.66.

2) &.Furberg(1350) .Acta Cryst.,3,325.

3} J.M.Gulland(1947).Cold Spr.Harb.Symp.Quant.Biol.,XIX,p-95.
4) S.Zamenhof, G.Brawenmann & E.Chargaff(1%52).Biochim.Biophys.

Acta.,9,402,
5} J.D.Watson & F.H.C.Crick({1953) .Nature,171,964.

6) J.D.Watson{1968). "The Double Helix", Atheneum, New York.

2) FUNDAMENTALS OF X-RAY FIBER DIFFRACTION THEORY

{a) X-RAY SCATTERING FROM FIBERS.

Fibrous materials such as polypeptides and polynucleotides
cannot be obtained as single crystals. When such molecules
occur in ordered states a high degree of orientation normally
ocecurs only in the direction of the fiber axis. The lateral
orientation of the c¢rystallites is usually imperfect.

As an example of the simplest fibrous molecule a one-dimen-
sional lattice consisting of identical atoms egually spaced
at intervals of c¢ along the z-axis(fiber axis) is considered.

(2}
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The numbering of the atoms is giveh in Fig.l. The coordinate
of the nth atom is xn=yn=0, Z =nc. Therefore, the molecular
scattering factor, FM’ is given by

F

L]

%; fnexp[2¥1(Xxn+ Yyt ZZn)]

N
f ZNexp(zvich) . (1)
t=-

Since this equation is a series of geometrical progressions
and exp(id) - exp(-ixX)= 2isind/, Eq.(l) becomes
sin w2 (2N+1) c] (2)
F,=f —
sin(mac) .
Now for simplicity, 2N+l is replaced by N. The square of the
sine part of Eg.(2) is
éinz(ﬂNZc)
g8in” (TZ¢)

G-G* = ( Laue function ) (3}
If N is large, G-G* has maximum value, Nz, on the planes of
2=P/c (L is an integer) and nearly zeroc elsewhere.
Accordingly, Eq.{1), shown in reciprocal space(X-ray film)
in Fig.2, has a value Nf only on the planes normal to the
2-axis with equal separations l/c and whose intersections with
the sphere of reflection are coaxial cireles. This result
shows that when there is a periodicity only along the z
direction{fiber axis) in peal space, a periodicity exists



(3} (4)

only along the % direction in reciprocal space, that is, We assume that the density alony the helix is unity. The

Fourier transform of one-dimensional lattice is the parallel Fourier transform at a point (X,Y,Z] in reciprocal space is

layer lines with the spacing of 1/¢ in reciprocal space{X-ray

given by
film).

The fiber repeat distance is readily obtainable directly, if T(X,Y,2) = jexpl2fi(xX + y¥ + zZ}]1dV (6)
strong layer line spacings are present, from the relationship, when dv = dxdvdz is a volume element of the helix and is
csin® = n\ , where ¢ is the fiber repeat distance, Lis X-ray directly proportional to dz. Thus,
wave length and n is an integer. From the spacing of equatorial T(R,Y,2) =J?exp[2Fi(rXCOSZWZ/P + r¥sin2fz/P + z2)laz (7}

o

reflections the distance of reflecting planes parallel toc the apart from unimportant constant of proportionality (2171-0) .

fiber axis may often obtained. Using Eg.(4), this result can be written as

P
= i{ Rrcos (2mz/P - + z2tldz (8)
(b) X-RAY SCATTERING FROM A HELIX. T‘R";'.'Z) .f,,e"lz’lz“l{ (2mz/? -¢) §
i i Fig.3 where R = X° + ¥°, and tan¥ = ¥/X.
It is often convenient g- . o
to 4 ibe th t t The right-hand side of Eg.(8) is equal to zero except wnen
esc ucturea .
° : ° smEem Cylindrical coordinates Z = n/P where n is an integer. This is in accord with the
of a helical molecule in - . . . , .
. : [ : fact that the diffraction pattern of a helix with an exact
cylindrical coordinates |~ ] , .
; - vertical repeat distance P is confined to layer lines at
instead of Cartesian ones ' 1 u
heights Z = P in reciprocal space. ence
as shown in Fig.3 and (\ eignts n/ lT ecip P !
Eq. {4). The Fourier trans- S~ T(R,Y, n/P) =_Lexp[21ri{chos(21rz/P -y) + nz/P}]dz (9).
form F {or the intensity) (M¢)P 7 The above integral may be evaluated by means of the identity:
will also be described by exp{iXcosy) exp(iny) dy = 2mil Jn(X)
lindrical coordi . T T
<y . rdinates z r 13 \ 12 = 2T _(X)expinT/2 (10)
Such coordinates are most n
suitable if the object has = ¥ where X = 2WRr and = 2nz/P —-\{' , and Jn is an n-th order
w 16t . .
some circular gymmetry, i.e., ) Bessel function (Fig.4).
- (a) real space {b) reciprocal space
if the principal axis is From Egs. (9} and (10) we have
a rotation or screw axis. TTreBE(X=Rory T(R, Y ,n/P) = J_(2FRx)explin(¢+7/2)) (11).
Cochran et al.!) have g =rainznl Y= Rain o (4) The functi -
. . . - e function as : )
discussed diffraction by t=z 2=z Biesael funclions
3 several notable fea-
helical molecules. er
. . . tures; .
Consider first the Fourier transform for a continuous helix .

: . , . 1)the function T gives
of radius r and pitch(repeat distance) P {(Fig.3}). %= 2wz/P,

and the equation of the helix in cylindrical coordinates is

directly the amplitude

N e
N

and phase of the X-ray

= = WA
r=1x, and &= 2Mz/pP . (5) scattering on the n-th %’;4;:\\\4)’;{%%}?%‘]]”"
layer line, that is, "’,;’l{"l(l’,"’i\:{%%;%:’"l['
. . . T 77 v’y
he sunction 7 i semve- AN 20
ture factor F cof a con- I N R I A R N T

tinuous helix. Fig.4
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2) the modulus |T|= [J (2 Rr} is independent of ¥ and hence
possesses cylindrical symmetry: the distribution of 72 = fFI2
on the layer line with [ = n is defined by the square of J .

L] b

Fig +3 . a) Distribution of the Bessel functions with n = ! which determine 1he intensilies
along the layer lines; b) scheme ilBustrating the correlation between Ihe array of muin peaks
in ihe eblique fornof & cross und the normals to the densest rows ol ttoms in the helix

Since X(the radius of the Ffirst peak in J,) increases with n
{Fig.4), the intensity distribution has the characteristic
form of a cross({Fig.5 a}. This form is well explained by the
array of the most densely populated "rows" of atoms in the
helix(Fig.5 b}, normal to which the intensity is highest in
reciprocal space (the arrow ; S in Fig.5 b}.

The continuous wire model is, of course, somewhat unrealistic.
If the helix is broken up into a series of points , the central
part of the pattern is unchanges but further patterns are super-
imposed upon it and the resultant pattern has empty diamond-
shaped regions above and below the center.

We define a discontinuous helix as a set of points occurring
with a vertical spacing p on a continuous helix.
Considexr a function H which is zero everywhere except on a

continuous helix, where it assumes the value unity, that is,
Hi{x,y.2) = S(x - rcosZWz/P)é]y - rsin2vz/P) (12).

The Fourier transform of the function H is given by Eq,{11).
Now, we consider another function K which is zerc everywhere

(6)

except on a set of horizontal planes of spacing p, where it
assumes the value unity, that is,

ol
K(x,y,2) =2, 8(z - kp) k=0,41,42,- 3.
K-

The Fourier transform of the product H-K of these two functions

Zgives a structufg factor of a discontinuous helix, Fd{x,Y,Z).

Fq(X,Y,2) =ﬂ H{xX,y,z)K{x,y,2) exp 201 (xX + yY¥ + 22)]axdydz (14)
-

According to the convolution theory, the Fourier transform of
the product H-K is given by the convolution of T and S which
are the Fourier transform of H and K, respectively, that is,

o2
Fyl%,¥,2) = jgs(;,Q.*nT(x-;,v-q,z-tc)d;dqdz (15) .
Using Eq. (13}, Eg.(15) can be written as
o O
Fq(R,¥,2) = >, 2, 8(2-n/P-n/p) I (2uRr)explin(+7/2) ] {16) .
e He-iC

Therefore, Fd(R.+,Z) is to be finite only in the planes at height
Z = n/P + n/fp n,m= 0, +1, 42 - (17)

on which it assumes the value Jn(ZWRr)exp[in(q’+’V2)].

Eq.(17) is a selection rule, and if P/p can be expressed as

a ratio of whole numbers, the transform is confined to a set

of planes, that is, if P/p = M/NO, A =1/c and NOP = ¢, Egs.(16)

and (17) are

Fd(RlLPl l/c)

nN

2.9, (2MRD) explin($+7/2) ] (18)
n

— (19)

]

0

=]

rm:F.: Q, ilr +2 ecc

{¢c) THE STRUCTURE FACTCOR CALCULATION.

The calculated intensity of diffraction by a proposed fiber
structure can be obtained either by computation, using the
structure factor expression { Eq.(18}) or it can be obtained
optically with the optical diffraction spectrometera). The
latter method provides only approximate structure factors for
compariscn with the observed X-ray diffraction photograph,
because of the difficulty of dealing with overlapping atoms

and with the differences in scattering factors.
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We shall now consider how numerical calculation can be made
when exact coordinates are assumed for all the atoms in a
helical structure. A real helical molecule is a system of
atoms whose centers may have different r; such a melecule
can be described as a combination of several discontinuous
helices differing in their Ty The positions of the atoms in
a unit group may bg specified in terms of their initial
coordinates (rj.y.,zj); in addition, we have the atomic scatter-
ing amplitude f. for each.

Thus, in place of Eg. (18} we have the general relation

F(R, Y, Yo) =%’,§; fjJn(ZHRr)exp[i{n(\I'—ff‘j +77/2) + 2nlzy/c ]

=%,6_ , (Rlexplin( Y+ T/2)] (19)
n n.L
where
G, (R ='§ijJn(2ﬂRr)exp[i(—n33 + ZWEZj/C 1] (2o)

but with the selection rule

ﬂfc = n/P + m/p.
Eq.(19), being a function of ¢, is not cylindrically symmetri-
cal. In a fiber diagram, where the molecules are parallel,
but oriented at random about the fiber axis, the relevant

intensity is cylindrically averaged: that is, averaged over
all wvalues of 4’9).

vyl
1
<F2(R"'P- L/C)>w =<F.F*>‘P = -—-—-JF.F* dl.}/
2w )y .
= —1—3'_1Gn (R) G} 1(R) expli{n-n') (¢ +7T/2)1ddp
2TMnw 7 4 o

(21)
Since n and n' are integers and F is a periodic function of

the period 2% with respect to g,
o

j;xp[i(n—n')Q']d‘P ={ gﬁ : i 2: {22)
0
Therefore,
<R Yard, = 36, ((RIG) (R = % a2 +82) (23)
where
A = '}3:- fjJn(ZIrRr)cos(nEPj + 2wﬂzj/0)
B, = ¥ fjJn(Z‘JTRr)sin(nff’:.l + 2rrﬂzj/c) (24)

E]

(8}

References
7} W.Cochran, F,H.C.Crick & V.Vand(1952).Acta Cryst.,5,581.

8} C.A.Taylor & H.Lipson({1960). "Optical Transforms",Bell,
London.

9} D.R.Davies & A.Rich(1959).Acta Cryst.,12,97.

Lecture 2.

3) EXPERIMENTAL TECHNIQUES FOR X-RAY FIBER DIFFRACTION
I will explain in some detail by using slides, and only a
brief outline of the contents is given here.

{a) X-RAY SOURCES

For fiber diffraction studies, Cu Ko radiation{wavelength
1.542 %) is usually employed as X-ray source. The Kg line
(h=1.392 &) is removed (or more accurately the intensity is
reduced) by a nickel filter. Monochromatic beams are also
cbtained by diffraction through particular single crystal
{erystal monochromator). Large structures diffract relatively
weakly, and a fundamental practical problem is the generation
of a sufficiently intense X-ray bean.

Commercially available X-ray generators fall into three
clagses: (i) sealed off tubes (ii) microfocus tubes and

(iii) rotating ancde tubes.

{b} X-RAY CAMERAS

Flat cameras are used for taking the X-ray photographs of
the oriented samples. However, the flat camera is not suitable
for measuring the fiber period(helical pitch:P, axial raise
per residue:p etc.), since the layer lines appear as hyperboelas
ingtead of straight lines as in those photographs obtained
with cylindrical camera. Very clear photographs can be obtained
by using a vacuum camera with a large distance between film
and specimen. Helium is bubbled through appropriate saturated
salt solutions and then through the cameras to control the
relative humidity of the sample (calcium chloride,33% r.h.,
sodium nitrite,66% r.h.,, sodium chlorate, 75% r.h.,and sodium
tartrate, 92% r.h.).
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(c} DEVICES FOR MAKING THE ORIENTED FIBERS

In mounting a fiber, it is very often necessary to establish
or to improve the degree of order. The method used depends on
the physical properties of tne material being stiidied. In the
case of polynucleotide, the method of pulling out into thin

(10)

for example, of 20 mm or 50 mm corresponding to 1 A. The
molecular model is mounted with the helix axis perpendicular
to a drawing board and coordinates are measured directly with
ruler or using the shadow of the model in a beam of parallel
light. Fourier refinement technique has been applied to DNA,
FNA and synthetic polynucleotides with considerable success.

threads is commonly used. Langridge et al.lo) used fibers 50
to 1004 in diameter, made by wetting with a droplet of glass-

Reference

distilled water a few mg of DNA on a glass slide, dipping a i 10) R.Langridge, H.R.Wilson, C.W.Hooper, M.H.F.Wilkins &

pointed glass rod into the sticky and very stiff mass, and
slowly withdrawing it. Well oriented samples show good uni-
form extinction under the polarizing microscope.

Lecture 3.

L.D.Hamilton{1960). J.Mol.Biol.,2,19.

(d} INTENSITY MEASUREMENT AND HELICAL PARAMETERS 4) APPLICATION TO POLYNUCLEOTIDES

In order to measure the diffraction spots over a wide range
of optical densities, it is usual to use a multiple film
technique, where a stack of two or more films absorbing about
75% of incident energy and transmitting 25% to the next film. .
Measurements of the reflection intensity are made using a (i)
microphotometer and by visual comparison with a standard

{iii) poly(mzA)‘poly(U)l3

Using slides, I will explain the details of the following
polynucleofide structures;

a) SYNTHETIC POLYNUCLEOTIDES

{i) poly(1)-poly(c™)

11

poly(If)°poly(C)12)
]

intensity scale. From the distances between the equator and b) DNA

the layer lines of X-ray fiber diagram, the fiber period (c- (i) A_DNAlé) (ii) B-DNAlS_ls) (iii} C—DNA17)
value) is obtained using Polanyi's formula, csind = n7 (see (iv) p-oNa'®  (v) z-pDNal?)

Fig.l). 1Indexing of reflections and space group determinaticn 20}

are possible when very well oriented fiber diagram is obtained.

If the X-ray fiber diagram is as simple as those shown in Fig.5,

c) Double-stranded RNA
(i) reovirus RNA

21) 22)

(ii}) wound tumor virus RNA

s \ . 23)
o . . {iii) rice dwarf virus RNA
a measurement of the position of the first maximum of each
: : . . . . ,24)
Bessel function on each layer line would give the helix radius. d) DNA-RNA hybrid
For example, if we know that there is a J4 term on the 4th
layer line having a maximum value at Rpax: we can refer to the
tables to find that the first maximum of J4(x) is at x = 5.3 References. ]
and put ZﬁroRm = 5.3 ,thereby cbtaining ry- 11) K.Tomita & A.Rich(1964). unpublished result.
ax .
' 12) K.Tomita, T.Hakoshima, T.Fukui & M,Ikehara(1982). Nucleic
Acids Res., Symp.Series,11,177,
(e} MODEL BUILDINGS AND REFINEMENTS _ .
. 13) T.Hakoshima & K.Tomita(l980). in "Biomoclecular structure,
Model molecules made of metal or plastics are very useful for conformation, functien and evolution" Vol.I.p.313, Pergamon
setting up molecular models of polynucleotides. We can use the Press, Oxford & New York. .
' . T.Hakoshima, T.Fukui, M.Ikehara & K.Tomita{198l). Proc.Nat.
model melecules (usually Kendrew's wire model) made on a scale, Acad.Sci.USA.,78,7309.
14) 8.Arnott, D.W.L.Hukins(1972) .Biochem.Biophys.Res.Comn.,

47,1504.
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Biol.,2,38.

16} A.G.W.Leslie, S.Arnott, R.Chandrasekaran, R.L,Ratliff
(1980) . J.Mol.Biol.,143,49.
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18) S.Arnott, R.Chandrasekaran, D.W.L.Hukins, P.,J.C.Smith
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19) S.Arnott, R.Chandrasekaran, D.L.Birdsall, A.G.Leslie &
R.L.Ratliff(1980). Nature,283,743.

20) S.Arnott, F.Hutchinson, M.Spencer, M.H.F.Wilkins, W.
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