united nations educational, scientific and cultural organization

international atomic energy agency the abdus salam

international centre for theoretical physics

SMR.1148 - 16

COLLEGE ON MEDICAL PHYSICS AND WORKSHOP ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY: MEDICAL APPLICATIONS (20 SEPTEMBER - 15 OCTOBER 1999)

"Computerized System for QC Measurements in Diagnostic Radiology"

> Slavik TABAKOV Kings College School of Medicine Medical Physics Department Denmark Hill London SE5 9RS U.K.

These are preliminary lecture notes, intended only for distribution to participants

ן |+-ן |די וי ן שייי וי 1 1 1 | -+∎ -4 4) --(* * *

....

,

-

, , ,.....

| --+ |

. ----

i •

· • •

) +)-**----**

• ----• •

PRACTICAL QUALITY CONTROL IN DIAGNOSTIC RADIOLOGY Computerised system for QC measurements with EXCEL

ABSTRACT

The aim of Quality Control (QC) is to ensure continuing production of diagnostic images with optimium quality, using minimum necessary dose to the patient. QC should include checks and test measurements on all parts of the X-ray imaging system at intervals not exceeding one year. In the UK practice the X-ray Radiographic equipment (X-ray tube and generator) is tested at least once per year.

The main parameters to be monitored during the routine QC of Radiography include:

Dose consistency Dose variation with mA Dose variation with kV kV consistency kV accuracy kV variation with mA Timer consistency Timer accuracy Beam filtration (HVL) Focal Spot size Beam alignment Leakage radiation

Use of kVp and Dose waveforms for assessing the ripple and other parameters is also recommended.

It is useful to use of a spreadsheet program (eg. Microsoft EXCEL) for designing a simple QC spreadsheet. Such spreadsheet needs to have a sheet for the raw data and a "hidden" sheet where all necessary calculation and intermediate results are made. The calculated QC parameters are shown together with the reference data on a separate "result page".

Real examples of use of an EXCEL Diagnostic Radiology QC spreadsheet are shown on the next pages (appendix 1 and 2). These are divided to parts to show consecutively parts of the "raw data page" and the "result page" together with graphical representation of results. A list with "normal" values of some of the QC parameters, based on statistics of 100 radiographic sets is also shown in Appendix 3.

The exact procedures for performing Radiographic QC are given in the EMERALD Training Materials (EMERALD - Physics of X-ray Diagnostic Radiology; ISBN 1870722043, S.Tabakov, Emerald Consortium; King's College London, 1999)

APPENDIX 1

X-RAY GENERATOR AND TUBE MEASUREMENTS

These measurements were made with a keithley kVp divider s/n 27775, digital storage oscilloscope Gould 450 s/n 14400056, and an MDH electrometer s/n 3011 with 6 cc chamber .

uld 450 s	/n 1440005		DH electrom				FDD(cm) =	100
Focus	Set kV	Set mA (mA)	Set Time (ms)	Set mAs (mAs)	Meas kV (kV)	Meas T (ms)	Meas exp (mR)	Air kerma (mGy)
	(kV)		80	24	63	81	95	0.83
Broad	60	300		24	83	81	177	1.54
8	80	300	80		106	84	304	2.64
в	100	300	80	24		86	426	3.70
B	120	300	80	24	124			
		100	200	20	50	192	37	0.32
Fine	50		the second s	20	73	205	102	0.89
F	70	100	200	·		208	188	1.63
F F	90	100	200	20	92		291	2.53
_ <u>_</u>	110	100	200	20	114	208	291	2.55

Parameter	Unit	Expected	Measured	Assessment
kVp accuracy (BF) kVp accuracy (FF)	(%) inaccuracy (%) inaccuracy St.dev.	-10 <a<10 -10<a<10< td=""><td>4.5 2.5 1.82</td><td>Good</td></a<10<></a<10 	4.5 2.5 1.82	Good
Specific O'put-80kV(BF) Specific O'put-80kV(FF)	(uGy/mAs) @ 1m (uGy/mAs) @ 1m	30 <a<70 30<a<70< td=""><td>63.20 63.21</td><td>Normal (* Normal</td></a<70<></a<70 	63.20 63.21	Normal (* Normal
Ripple at 100kV (BF)	+/- kVp ampl	5	9	Accept

Radiation output variation with kV (BF)

Radiation output variation with kV (FF)

1 ---

APPENDIX 2

X-RAY GENERATOR AND TUBE MEASUREMENTS

These measurements were made with a keithley kVp divider s/n 27775, digital storage oscilloscope Gould 450 s/n 14400056, and an MDH electrometer s/n 3011 with 6 cc chamber.

							FDD(cm) =	100
Focus	Set kV (kV)	Set mA (mA)	Set Time (ms)	Set mAs (mAs)	Meas kV (kV)	Meas T (ms)	Meas exp (mR)	Air kerma (mGy)
В	80	300	80	24	83	81	177	1.54
B	80	300	80	24	81	81	176	1.53
В	80	300	80	24	80	82	177	1.54
8	80	300	80	24	80	81	176	1.53
В	80	300	80	24	81	80	175	1.52
B	80	500	80	40	79	81	268	2.33
В	80	700	80	56	80	80	422	3.67
	80	300	20	6	82	24	52.6	0.46
В	80	300	400	120	80	418	897	7.79
В	80	300	800	240	84	820	1730	15.03

Parameter	Unit	Expected	Measured	Assessment
kVp_consistency (BF)	(%) inconsist.	<5	1.7	Good
Timer consistency (BF)	(%) inconsist.	<5	0.71	Good
O'put consistency(BF)	(%) inconsist.	< 5	0.3	Good
kVp var'n with mA (BF)	(%) variation	<10	1.25	Good
O'put var'n with mA(BF		<10	5.99	Normal
Timer accuracy (BF)	(%) inaccuracy	-10 <a<10< td=""><td>9.00</td><td>Normal</td></a<10<>	9.00	Normal

	· · · ·	Half V	pelow			
B+0mm Al	80	300	80	24	176	1.53
B+0mm A!	80	300	80	24	175	1.52
B+1mm Al	80	300	80	24	135	1.17
B+2mm Al	80	300	80	24	109	0.95
B+3mm Al	80	300	80	24	84	0.73
B+4mm Al	80	300	80	24	73	0.63

Radiation output variation with mA (BF)

Half value layer measurement

WX0B04.073 5

APPENDIX 3IMPORTANT X-RAY TUBE/GEN. PARAMETERS - STATISTICAL DISTRIBUTION*

*The statistical distribution is based on data from more than 100 different sets. It can not be reproduced or transmitted without authors's permission

ŝ

ŝ

N

3

ŝ N Ω,

નં

0

2 ထု 4

9

8 2