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statistical theory of nuclear reactions

OVERVIEW OF NUCLEAR
REACTION MODELS USED
IN NUCLEAR DATA
EVALUATION

Mike Herman
IAEA-NDS

AGENDA

e Introduction

e Optical model

e Direct reaction models
e Preequilibrium models

— exciton model FA
— hybrid model T

— quantum models: Multistep Direct & Compoun e
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AGENDA cont.

@ Statistical model
e Connections among nuclear models -
@ Some codes

Why nuclear models?

e Provide data if experimental data are not
available
e Fill gaps in experimental data

e Discriminate between discrepant
measurements

e Reveal wrong data

e Ensure internal consistency of evaluation
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Two rules of evaluation

methodology
eNevertrusta elftwo
single experiments i
experiment! agree - they:
both might b
wrong!
INTRODUCTION

e What happens when a projectile strikes a
target?
— can be elastically scattered

— can be inelastically scattered

— can induce direct reaction

— can be absorbed (composite nucleus is formed)
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elastic scattering

~i

*Projectile and target do NOT change
*NO energy transfer

*Projectile changes its direction

lastic scattering

*Projectile and tyrget do NOT change

nergy is transterred to the target¢mm

*Projectile changes its direction
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statistical theory of nuclear reactions

direct reaction
(pick-up)

sProjectile and target do DO change

*Energy is transferred to the target

Projectile becomes ejectile and changes its
direction

direct reaction
(stripping)

*Projectile and target do DO change
*Energy is transferred to the target

*Projectile becomes ejectile and changes its
direction
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composite nucleus formation
(Compound Nucleus & Preequilibrium)

® Projectile disappears
® Energy is transferred to the target
® Ejectiles are emitted

representation of the nucleus

Configuration Phase space
(shell model)

—
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statistical theory of nuclear reactions

Cross section (log)

typical shapes of angular

distributions
N ocompound Symmetriq

preequilibrium

Cross section

typical spectrum

Energy




statistical theory of nuclear reactions

WAVE SCATTERING

Scattered ¢ ihr
wave '
{spherical) Iz

Incoming
wave
{plane)

ikz

€

@ V(r) - scattering poteri‘ti
o

scattering potential

Shape very close to the
distribution of nuclear matt
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Schroedinger equation
(spinless and neutral particle)

V¥ +i—T(E -V)¥ =0 Schroedinger equha_‘;

tkr
e

¥ =" +— (1) asymptotic wave functi
r
j—g = | f (19‘)|2 differential cross section | __

partial wave expansion

W(r) = ZU’—(”P;(cosﬁ)

r _
angular momentum ) .

Schroedinger equation can be reduced to

- e—

dr

L TEINE TN, A B
!

1=0case
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graphical representation
(radial wave function)

phase shift
contains all informa

elastic cross section

-
f@y =5 > 21+ 1)( 1) (cos )
=0

—

dCT[,_- s 2
o =17 ()

Integrating over @

S-function :

oo

4r
0y =73 D (20 +1)sin g,

(=0
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OPTICAL MODEL
(introducing absorption)

® Analog of light scattering and absorptlon by
a cloudy crystal ball

Light scattering: Nuclear sé’aﬂ
complex refractive complex scattefi
index potential’

® Imaginary potential removes flux from the
elastic channel (simulation of absorption)

Optical Model potential

U, (r)=
+V.(r) a Coulomb term
VI, (r) a real volume term
+V g, (r) areal surface term
+iW g (1) an imaginary surface te‘rfn
—iW, fiy (r) an imaginary volume tefﬁ

+d e EV_‘_”hvm (r)  areal spin orbit term

+id_\,”l~ o5W_h, (r) animaginary spin orbit term
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Coulomb potential
(uniformly charged sphere

Charge radius
(3 r’ ZPZTe2
Velr) = 2 2R R¢

for

d
Surface g, =-4a —;f,.(r)
[4

. . 1 d
Spin-orbit h =———f.(r)  i=V W, R
rodr
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: Optical potential parameters

® Depths: V, V, V_, W, W, W

50°?

; e Radii: R, =rA”

@ diffusivities: a;

@ these are fitted to reproduce experimental
results (elastic scattering)

@ global parameters => valid for a range of
energies and nuclei

=

Optical model
(how do we proceed?)

@ Fix optical model potential

® Solve Schroedinger equation (numerically!)
to obtain phase shifts (S-matrix elements) " -

=

=

® calculate physical observables from phase.
shifts (cross sections, angular distributions,
polarizations)

'Y ¥
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cross section formulae

2
total C,, = k—’f Z (210+ 1)(1:'_-'}.R¢ S,)

i |
elastic Ou = ?;(21+ Dls, -1

reaction o, = %Z(zz + I)(l -| S!'z )

OPTICAL MODEL
(inelastic scattering)

Y
N

M = <Wf Mw)“““‘

In most cases calculated
cross sections are
TOO SMALL !
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inelastic scattering to
collective states
(rotation)

O

I
S

inelastic scattering to
collective states
(vibration)

O

In both cases many nucleons
take part in the excitation -
COLLECTIVE EFFECT!
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generalized (deformed) optical
potential

For both rotationa! and vibrational nuclei the radius
can be expressed in terms of spherical harmonl

R(F)= RU(I-FE(IMYM(F)] vibrational

Aut
angular momentum vibrational parameters

R(f)\z (,(1+Z B.Y w(r)) rotational

internal coordinates deformation parameter

generalized (deformed) optical
potential (cont.)

*Potential depends on the distance form nuclear surface
*In first order Taylor expansion:

U, (r.))=U, (r—R(7)=

(}pf
spherical o.m.p.

for rotational nuclei and similar for the vibratid

deformation term

(r)+

Key mgredlent
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statistical theory of nuclear reactions

Distorted wave Born
approximation (DWBA)

Lippmann-Schwinger equation (integral representatlon
of the Schroedinger equation) :

Vo (r) = ‘ng(r)+Jdr'GJJ(r,r‘)U'J (r')‘PO;
0

incoming wave

reen function

N , 1 NSNS A1 AN
Goj(r,r):(zn)3jdk o (KLY 0s (1)

E-E'+ie

DWBA
(in practice)

We have to evaluate matrix element

()i fo (¢ (E)dE
\

final state wave function initial state wave

interaction potential

Cross section is proportional to M?

What if deformation 1s LARGE?
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COUPLED CHANNELS

T:_ivf H($)

= O

Schroedinger equation

{T-V(r&+HE M (&) =E¥(r,E

Internal nuclear states

H(S)x.(S) =€,x.(5)

Coupled Channels (cont.)

Total wave function can be expanded

(&)= 2w (X

Relative motion wave function™ = =

Rewrite Schroedinger equation

[TV HEOI X v r & =[x OEXY, (r)x(

orthonormality: {x, &x, &g =6,
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Coupled Channels (cont.)

using orthonormality of internal wave functions

(T-E+g)¥,()=

where

V(N = [ 1,V (r.O)x, ©)de

Coupled Channels
(interaction potential)

IMPORTANT NOTE:

@ if all channels were included in the CC
calculations => NO imaginary part of the .
potential would be needed o

@ practically it is impossible and imaginary o
optical potential is added to account for the:
excluded channels

® however, inclusion of some channels leads
to the decreased imaginary optical potentlal =5
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Coupled Channels
(input required)

e Input channel specification: A, Z, AT,ZT E(,m,

@ optical model potential parameters
— depths: V. W WV _ and W,

— geometry: reduced radii r; and diffusivities a;

e states of the target: energy, spin, parity

e oscillation amplitudes for vibrational or
deformation parameters for rotational excited
states

— nature of vibrational states (one phonon, two
phonon or mixture of the two)

What happens to the
absorbed flux?

®Preequilibrium

e Compound Nucleus
(Statistical Model)
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PREEQUILIBRIUM
how does absorption happen?

/projec[ile /

hydrodynamical analog
(water pumped into a chain of
connected tanks)
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P(n,t)

population

n=3
excito

W, (ng)

. ‘\/'_ -
emission rate Particle emission

Exciton Mode|

ns

do (¢) :
df,' :O-absz W;(}‘I,E) }3(}7,1‘) dt
n =0

do,(€) Zﬁ y Profabil i
—_ v bility of particle

de =0, 4 Wv (n, E)L}P(n, 1dt R cion
Emission rajs

W, (n,€)
Level densities

w(n, £) =

exciton model (cont.)

e

Bon-1.E %)

win, E)

Probabitity of havings
exciton with approphal
energy

a—1

8 : .
density of single-pa
plhl(n=D! levels
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exciton model
(level densities)

5 units -

6 excitons Ty
+ 1 state

Wn(E)

Py 5 gnits
excitons
3 states

exciton model (cont.)

dO",(E) :Gabxz H{'(H,S)

de

Master equation approach —> [ , —>

m Pn=-2.t)A_(n—2,F)
dt

+P(n+2,0)A_(n+2,E)
— P A _(n EY+A_(n E)=W ()]




statistical theory of nuclear reactions

exciton model (cont.)

Transition rates

Square of the averaged
matrix etement
{(PARAMETER)

exciton model (cont.)

® Sct of Master Equations solved numerically
@ Never-come-back approximation (A = 0)
=> closed form expression >
@ Parameters:
— g - density of single particle states
— IM2| - square of matrix element

- n, - initial number of excitons
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| Hybrid model (M. Blann)

Never come-back approximation

(E)+ A (E
\‘

Branchir;’ ¢
- Depletion factor forg';; 3

: Probability of having an particle emisg
exciton with appropriate
energy

e
}.J“n proportional to OM imaginary potential depth or to nuclear matter free p
' no IM2| parameter !

? Exciton <=> Hybrid
@ Similar mathematical form but different
physical background!

- — Exciton - strong mixing of internal states
— Hybrid - no mixing of internal states

. B

1 ® Exciton e Hybrid
' — exclusive cross — inclusive cross:
sections sections

- n,, =n+2 - n,, =3n

+1 =
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Other classical PE models

® Geometry Dependent Hybrid Model
® Random Walk Model

® Boltzmann Master Equation

® Monte Carlo Preequilibrium Model

Extensions of classical PE
models

® Treatment of angular momentum -

® Angular distributions

— leading particle model (Agasi, Weidenmueller
and Mantzouranis)

— linear momentum model (Chadwick and
Oblozinsky)

— Kalbach parameterization

® Two-gas model (neutron-proton distinction)
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Common features of classical
PE models

@ Based on semi-classical considerations

® Easy to use (fast!)
0

@ Flexible enough to provide good des 1p£
of experimental data

@ Fail to predict spectra at backward angles

® Ignore nuclear structure and collective
effects

Quantum preequilibrium
MSD & MSC

® Multistep Direct ® Multistep Compound
(MSD) (MSC) -
— FKK - Feshbach, — FKK - Feshbach,

Kerman, Koonin Kerman, Koonin -
— TUL - Tamura, — NVWY - Nishioka,
Udagawa, Lenske Verbaarschot,

_ NWY - Nishioka Weidenmueller, Yoshida

Weidenmueller,
Yoshida
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Quantum preequilibrium
(P & Q spaces)

at least one particle unbound

P = | P, P,

Q = | q Q,

all particles bound

Quantum preequilibrium
(FKK-MSD)

® One-step cross section

dL_O’ =¥ 2L+DaU, L) d’o
dUdQ : I dUdQ2 DWBA[

ction

® M-step cross

u/m.ﬂ (kf ’kn

dUdQ

dk, d*

d’c dk, ¢ dF:
[dUdQ ]M - 2; J(zn)A J (27[)_1

"

W k) W (k)

nne-

dU dQ,  dULdQ,
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‘ Quantum preequilibrium
(FKK-MSD cont.)

Transition probability

=

! den n—l(kn’k.vrl)
- dU dQ),

! Density of states Density of particle-hole DWBA matrix ela
' of the particle in states in the residual  the transition frg
the continuum nucleus at energy U state n-1 to a sta
with change of

momentum from

| kn—1 to kn

Quantum preequilibrium
(FKK-MSD - how to do it?)

o Calculate DWBA double differential cross

sections for the first step for all possible pairs of
j initial and final states and angular momentum
transfers L i

® make average of over these states foreach L

® usc these averages to define W (k. .k ;)

=t e perform integrals one by one treating the result of
the previous integration as a source term for the
subsequent one (convolution)
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Quantum preequilibrium
(FKK-MSD - practical
remarks)
® calculations are lengthy but feaéib_l

® standard DWBA codes can be used:

@ quantum treatment results in a proper
reproduction of backward scattering

® due to convolution structure arbitrary
number of steps can be considered

Quantum preequilibrium
(FKK-MSD - drawback)

® Independent-particle model (no |
configuration mixing in residual system) =>
no collective effects

@ ncver come-back approximation “
@ one free parameter - V,, interaction strength;

@ difficult treatment of cluster emission
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Quantum preequilibrium
(TUL-MSD - highlights)

@ configuration mixing in residual micleu; =>
collective effects (vibrations) taken into.account

e non-convolution form => limited to 2 or 3 ste
only
® never come-back approximation

e cluster emission and charge exchange reactions ¥
difficult to treat

@ due to averaged form factors calculations are fastel

than with FKK

Quantum preequilibrium
(FKK-MSC)

@ proceeds through Q-space

@ chaining hypothesis => transitions between
neighboring stages only S

® never come-back approximation

o memory of the projectile direction is lost
angular distributions symmetric around 90
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Quantum preequilibrium
(FKK-MSC cont.)

Schematic cross section formula

q k:n—ll“T '
k=1 k "

AN

Stage-1 formation Depletion factor
cross section

total width

Emission probability

Quantum preequilibrium
(FKK-MSC cont.)

@ All widths can be expressed through OM
transmission coetficients and level densities

® level densities are calculated in the frame of the -,
independent particle model (equidistant) with
binding energy limit

® spin coupling 1s performed strictly

e if OM i1s used to calculate absorption cross section
there is no free parameter in the model (except ‘g’
and OM parameters)
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COMPOUND NUCLEUS
(how is it formed?)

/projectile L /

Dl
<

time

Compound Nucleus features

® long life time (10°'* s compared to 1022 s
for direct reactions) |

e Factorisation of CN formation and déczé,f,.,.
(Borh’s hypothesis)

® Symmetric angular distributions

e Time independence
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formal development

Assumptions:

emany open channels

*huge number of resonances
edecay width vary widely
*low energy => reduced phase space => rapi
energy dependence => averaged cross sect
*high energy => larger phase space => smoot}
cross sections => selfaveraging

formal development
S-matrix

e
7l = < Sab ?— 0]
energy averaged cross section

—_ 2 A2 <
< O-ab >= laab_ < Sab >| + <|S(tb| >=

o +o/

ab

(kinematical factors neglected)
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<S,,> - given by optical model

THE AIM OF THE STATISTICAL THEORY
OF NUCLEAR REACTIONS IS TO EXPRESS:

<IS7 I*> in terms of

Hauser-Feshbach formula

e transmission coefficient (optical model)

T =1-<S, >F

aa M
® unitarity SS*=1 (flux conservation) implies -
A

Tfl = z O-af[;r

=1

@ Bohr hypothesis: O'f; =£.5, a#b
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Hauser-Feshbach formula

o cont.
using unitarity
i r,. T, 5
0., = —x —— Hauser-Feshbach formula !

S T,

¢

However, compound elastic cross sect
wrong !

Correlation of the identical entrance and

exit channel is not taken into account.

Should be enhanced by factor 2 - 3.

fix to Hauser-Feshbach

several formulae of the type
width fluctuation

/ .
% correction - -
1l a )
Gczb — A
2V,
=1

have been proposed (Moldauer, HRTW).
Relevant at low energies only!




|

statistical theory of nuclear reactions

Final solution
(Heidelberg triple integral)

< S HEDSLIE,) »=s< S, (E|)>< SL,{E,) >+

Lopm - = A)AlA, - A,
w—[an[an, [ar (-)rd, —Al
g Ja" My T+ A A+ AL A0+ A (A

A
xexpi-in(E; - E (A + A, +24)/d ] T )(1+;*’?
e=1 e :

A A2k
1+ T,A, 1+T,A, 1-T,A

5ah6cd < Sua >< Sr:c > Tu Ttl:

X 4% A + A + 24
L+ T.A, 1+T4, | -TA

x{ AL+ A A, (L+ A 22 (1+ 24

}"' (‘Sucsbd + 5ad5bc )Ta Tc

O+ T AN+ ToA) U+ TA) + Tha,) - (1 + A L+ T}

application of Hauser-
Feshbach formula

What is a channel?
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channel definition

x - particle type
€ - particle energy
[ - angular momentum

s, 1,4 .- spin
7 - parity
projectile/
ejectile v Compound {g
targe Nucleus
residue
coupling
[ +1. =17 angular momentum

S+H1+1,=Jq

e parity

energy conservation
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experimental channel

incoming channel

A= 22ZZ(x,s,l,s,]T,irT;JCN‘",_?-;I: )
- :

s Jen ey

outgoing channel
B= ZZZZz(xa&laSJm”R;chﬂc
e s Joy men

sum over the energy must be dropped if we:
look for the spectra

MmOoreover:
apart of the discrete region, the levels are so many
that we have to use level densities

p(E, .J.T)

and replace sum by the integral over energ
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Compound Nucleus
calculation scheme

T,p (E,)AE
Ecw m; ¢ ¢

continuum

Discrete
levels

Compound Nucleus
(comments to the figure)

® Spin and parity is not shown, thus the figure
refers to the Weisskopf-Ewing model rather
than to the Hauser-Feshbach one :

@ Spin and parity add additional two
dimensions to the plot

® Emission of other particles (in addition to
neutrons) should be included
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Compound Nucleus
model parameters

@ optical model poteni:'al => (ransmission

coefficients
@ level densities ~u— |
@ nuclear masses => binding energies .

@ Giant Multipole Resonance parameters =>
transmission coefficients for photons

e discrete levels and branching ratios
@ fission barriers

® shell corrections => level densities and fission
barriers

LEVEL DENSITIES

® describe continuum where nuclear levels
are so many that can not be treated
individually

@ in principle, total level density should be_,-a}m"'t

sum of partial level densities (over all
exciton numbers)

® collective effects make them usually much -

higher than that
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level densities (cont.)

® Most striking feature - strong increase with

excitation energy :
exp(2\/aE

14 544
a*EY

@ simplest formula:  p(E)=

T t T magic numbers

N

CONNECTIONS BETWEEN
NUCLEAR MODELS

e Optical/Direct Model - provide essential
ingredients for PE and CN o

e Precquilibrium Models - describe CN .
formation

e Shell Model - provides bases for the forrrial
CN development

e Fermi Gas and BCS Models - provide level -
densities
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connections between nuclear
models (cont.)

® Nuclear Structure Models - provide discrete
levels, gamma transition probabilities

® Liquid Drop + Shell Model - provide‘
binding energies, shell corrections, fissio
barriers, and nuclear shape

EVALUATION FLOW-CHART

\
Direct
[Spherical OM} [ defglic‘wed ] [ CC J reactions
= I = <
MSD R
Classical PE Tl Preeqq‘i,li:br'ium_
reacti 1
MSC
hAN
AV
[ WE J L HF ]
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SOME NUCLEAR REACTION
MODEL CODES

@ ECIS - CEN Saclay (J. Raynal)

OM, DWBA, and CC, parameter search to fi

experimental data, a range of models (e.g. ’fir”s’t;w§

5

second order harmonic or anharmonic vibration
model, symmetric or asymmetric rotational
model), statistical model including width
fluctuation corrections (Moldauer).

THE STATE OF ART CODE'!

® DWUCK - Boulder, Colorado, (P. D.Kunz)

DWBA, scattering differential Cross. ,
sections for spin 0, 1/2 or 1 particles.

Standard DWBA code
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® SCAT-2 - Bruyeres le Chatel (O. Bersillon )

OM - total cross sections, elastic scaffféi‘in
and angular distributions, and transmissi ]
coefficients for a spherical nucleus. Inciden
particles: neutron, proton, deuteron, *H, *Hi
CLl.

Often used for calculation of transmission
coefficients for Compound Nucleus

e ALICE - LLNL, Livermore (M. Blann)

Weisskopf-Ewing evaporation, Hybnd
model preequilibrium, Monte Carlo
preequilibrium (recent version), multiple
particle emission, fission, double
differential spectra.

Very useful at high energies, oversimplifi
at low ones.
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e CASTHY - JAERI, Tokaj-mura, Japan

OM+HF, Moldauer correction, binb;ryut_l_:geactions,
gamma cascade, postprocessing into ENDE/B
format.

Code extensively used for nuclear data
evaluations in Japan.

® HAUSER 5 - Westinghouse (F.M. Mann)

HF+PE+(n,a) pick up, binary and tertiary
reactions, fission, double differential cross
sections, discrete levels but no gamma
cascade.

Designed for calculations up to 50 MeV.,
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® TNG - Oak Ridge (C.Y. Fu)

OM+HF+PE, Moldauer correction, binary
and tertiary reactions, gamma casi:’éidg,ﬂ
angular distributions, output in ENDF/B
format. ”
Designed for calculations up to 20 MeV.

Code used for nuclear data evaluation.

o STAPRE - IRK, Vienna (M. Uhl)
HF+PE (random walk), Moldauer
correction, multiparticle emission (6),

gamma cascade, fission.

Code extensively used in many laboratorie
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® GNASH - LANL, Los Alamos,
(P.G. Young, M.B. Chadwick)

HF+PE+MSC(FKK}+MSD(FKK), Moldauer
correction, second chance preequilibrium,
muitiparticle emission, fission, gam’fnl_;
cascade, double-differential cross secfiqn_sf :
discrete levels, variable dimensions, inpu
library, output postprocessing into ENDF/]
format. Energy range up to ~200 MeV.
The most important code for nuclear data
evaluation !

o EMPIRE II - IAEA, Vienna (M. Herman)

OM+HF+MSC(NVWY)+MSD(TUL),
multiparticle emission, fission, gamma
cascade, double-differential cross sections,
discrete levels, neutron or any nucleus as a
projectile, dynamical effects, variable
dimensions, input library, output
postprocessing into ENDF/B format.

Extremely easy to use, applied in nuclear
data evaluations, to be released.
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CONCLUSIONS

e Optical model, direct reaction, preequilibrium
and statistical theories account for a major part
of nuclear reaction

e Theory is in a good shape
e Predictive capability:
- about 10% for strong reaction channels

- can be an order of magnitude for weak reaction
channels

CONCLUSIONS (cont.)

® Hauser-Feshbach model is a key ingredient
but alone it is never enough,

— at low energies it must be supplemented with .
width fluctuation correction ' R

— at inctdent energies above few MeV
preequilibrium emission must be taken into
account

— above ~50 MeV second chance preequilibrium
is needed '
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CONCLUSIONS (cont.)

— reaction channels to collective discrete levels
must be treated within DWBA or CC -
approaches -

® New generation of codes is being prepa
(EMPIRE -2, new GNASH)

® There is a tendency to use more advanced .
modeling (CC, MSD&MSC)
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