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WIGGLE PLANE FOCUSTNG IN LINGeR

LOWIGELERS

E. 5. Scharlemann

I. INTRODUCTICH

An electron beam in a long linear wiggler of conventiona) design requires
some guadrupoie focusing in the wiggle plane -- the plare perpendicular to the
wiggler magnetic field. For the high-emittance (relative to storage rings)
electron beam expected from ATA, quadrupole focusing will seriously degrade
the performance of the FEL to be built at ATA; according to FRED, the gain of
the FEL will be only a third to a half the gain that a helical wiggler would
give, for the same beam brightness and current, and the same wiggler length,
Furthermore, the trapping fraction will also be much less than for a helical
wiggler, so that merely lengthening the wiggler will not greatly increase the
gain. A helical wiggler seems the abvious soiqtion to the problem, but the
mechanical difficulties of butlding a helical wiggler with an adjustable taper
for ATA appear prohibitive.

The conventional linear wiggler performs so poorly because of the
effect of the guadrupole focusing on the longitudinal electron velocity {see
Section II}. A simple modification to the shape of the magnet pole faces --
approximate parabolic curvature -- eliminates the need for quadrupole focusing
{Section II1) and should bring the gain of a linear wiggler FEL up to very
close to the gain of a helical wiggler FEL. Numerical simulations by FRED

{Section IV) support this hope.

L-321

AL Sessier

i. [UADRUPCLE FOTLSING 1k A LINEAR WIGGLEY

The magretic fr2ld of an ideal Tinear wiggler is
o FﬂCS - < N e 2 ‘1
B = = by [y cosh k¥ cos k .z -~ z sinh k y sin szj , i1

where k 1is the wiggler wavenumber, and the electron beam propagates in the
W
z-direction. The wiggle motion is in the x-direction: the x - z plane is

therefore the wiggle plane.

This field can be derived from a scalar potential

>

b= E (2)
b = = - VX
e’
with
0 (3)
X = -1 sinh kwy cos sz .

w

Because the field and potential do not depend on x, there is no focusing
of the beam in the x-direction; in the y-direction, however, there is focusing

. . : 1
that can be approximately described by the harmonic-oscillator equat1on{ }:

yiz oo Gy (4)

with

o, (5)

k =
" V7,

The approximation here involves writing



kwdy2
Tosh kﬂ y =1+ —5

in the seme aper - mation, the wiggle motion 94

?
’ Z /} Woo
the wiggle amplitude increases with y, as dees By.
The wiggler focusing in y has the important property that the
Tengitudinal {dimensionless} velecity g, of an electron, averaged over a
wiggle period, remains constant in the electren's hetatron orbit, For

Yool B <<
! I

1.t 25
B = m — o ——
I 272 z
but
~ hU sz.\"z -
- — i b
By = X ka 1+ 5 sin sz ty ¥y

where y' is the transverse betatron velocity of the electron, (Betatron
motion in x ¥s ignored here: we are only illustrating the properties of

wiggler focusing.} We can write
= +
Y=y cos (kg 2+ 4)

whera éy is an arbitrary betatron phase, to obtain

2
b ) 1
Z 0 A IO ’
S ETEE STk F g a ko
B, e 1+ kw yg C ‘kﬁy 4 ¢By)j sin k..r
vk, ]
2+ 9 ol K (11)
+ ., ¢ o (__; - z + 4 .
Iy ksy zin” { . wﬁy)

Averaging over a wiygle period (sin/sz » 1/2) and using £g. (5) for ksy

yields

2y . (12)

2
(1+k, Yg

i are both constant in 7z along a betatron orbit.
!

It is important that BV be constant in z so that an electron can remain
I

This expression, and hence g

nearly resonant with the ponderomotive potential well preduced by the wigglier
field plus the laser electromagnetic field. The phase of an electron in the

ponderomotive potential well is often denoted by ¢, where{z}

b=kt k )z - wt {13)

and k and w are the wavenumber and angular frequency of the laser

electromagnetic field. Then

4o X
F il k + kw . (14}
K Ke
= ky - 22T
Y



averaged over a wiggle period. If 512 is not constant, electrons are

periodically pushed around in the ponderomotive well by their betatron motion.

This perfodic pushing does occur if electron drifts in the wiggle plane

are confined by quadrupclar fecusing, for which

Xy =~ ko x

2
q "0

witn k2o qfy= -2 0/ (15)

g T 0T T T Ny s
mc
00 ts the gquadrupole strength (the field gradient), and Xg is the slowly
varying position of the guiding center of the electron's wiggte motion, The
combination of guiding center harmonic motion with wiggle motion produces
2.2

b0 k “y

W
" 1+ 5 cos kz . (18)
W

} -

X = X_ C0S (qu + §

B q

Quadrupole focusing in x defocuses in y; instead of eq. (10}, we have

¥ =y, cos (kB z+ ﬁy} {17)
with
=2 2 2 -
kg = Kgy - kg ¢ {18)
For B, ° we now find .
AL K
0 2.2 2 .2
8, = 572 ? [l Tk Yt -+ (xg" - ¥, }]
w =
k[
.ﬂ_ i k + - 2 E
+ 5 {yﬂ sin 2 (sz 6y) g~ sin 2 {qu + 0q)1 . (19}

d

The phases ﬁy and ﬁq are arbitrary so that the z-dependent term in
the square brackets of £q. (19) cannot, in general, be made to vanish.
Therefore, 512 cannot be constant over a betatron orbit; the betatron motion
of an electron changes its phase in a ponderomotive potential well, and can
detrap the electron. A further discussion can be found in Ref. 3.

For ATA parameters, the phase change occurs on approximately the time
scale of a synchrotron oscillation (i.e., non-adiabatically), and with an
amplitude s of order unity, FRED says that eiectrons are rapidly detrapped
(Section IV) unless the quadrupole focusing is too weak to keep the electrons
within the laser field; if the quadrupole focusing is that weak, then
electrons are not trapped at all. According to FRED, for an electrom beam

5 A cm'z, a helicat

current of 2 kA with a brightness(4l47= 2 » 10
wiggler on ATA could be expected to have a gain of greater than 7. For

identical parameters, a linear wiggler will permit a gain of less than 4.
III. PARABOLIC POLE FACES

The detrapping described in Section II-occurs because the 8, of an
electron depends on its betatron motion in x; e.g., the larger betatron 8
near x = 0 requires a smaller g, . The variation in 8, does not occur for

betatron motion in y because the increase in betatron g, near y = 0 is

i
precisely compensated by the decrease in wiggle B«

We could circumvent the detrapping by betatrom motion in x if the wiggie
amplitude, herce By, increased with [x{ as well as with |y|. As A. Sessler

and J. Wurtele were quick to point out, the increase of By with [x] also

focuses the eloctron beam in the wiggle plane. The focusing both removes the



need for quadrupole focusing and keeps 31; censtant, as we demonstrate in
this section.

The focusing in x occurs for a different reason than the focusing in y
(Section 1I). The y focusing arises from the cross-product of the wiggle
motion x' [Eq. (17)] with B, [Eq. (1}] averaged over a wiggler period, Both
x' and Bz have a sin sz dependence; their cross-product is proportiona?
to 51n2 sz and has a non-zero average value. The focusing in x, if By
increases with ixl, is a consequence of the larger x-acceleration by By at
the outer extents of the wiggle trajectory. Since ¥ = By, and By
increases with I x|, an electron's acceleration 1is greatest at the maximum [x|
in 1ts wiggle motion ~ the effect s a net force on the electron toward the
¥ ~ 2 plane, where X = 0,

The focusing force in x follows immediately from a standard analysis of
rapidly oscillating motion in a slowly varying field - as found, for example,
in Ref. 5. Nevertheless, because of the presence of other components of E
required by variation of By with x, it is useful to analyze the focusing

carefully in both x and y. We do this with the magnetic field obtained from

b

X = - F% cosh k x sinh ky y cos k z - (20}
for which
Bad foi st h k.x sinh k
= F; {x x STnh k. x sin yy cos sz
+ty ky cosh kxx cosh kyy tos k 2 {21)

-2 kw cosh kxx sinh kyy sin sz}

ot

This field is a vacuum solution of Maxwell's equations if

2402 2 (22)
o kS =k

In going from the conventional wiggler field of eq. (1} to eq. (21), we

have effectively added a sextupole contribution: the difference of the

transverse fields, for small kxx and kyy, is

[\ 2 (23)

2.2 2.2 2.2
k “x k.Y k “y
Abyst(l +_x2_+_‘[2_,_)_b0(1+_w?_)

2

- by 5 (F -y (24)

The difference field is the standard expression for a sextupole.

Sextupole fields are well known to give second-order focusing, with the
transverse Lorentz force proportional to a second-order polynomial in x and
y. At first glance the focusing in x appears fundamentally different from the
focusing in y; however, as will be shown below, the cross term between wiggle
motion and guiding center motion of an electron 1n x gives a harmonic (first
order) focusing force on the electron's guiding center,

We are interested in ;IE and the focusing averaged over a wiggle

pericd, so we examine the focusing by using an averaging method, We assume

the position r of an electron can be written

rz%+21 (25)

A -
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where rl' = (Xll’ yl', 21') varies ropidly - on a wiggier wa.2lunghs,

and Fb' is ronstant over a wiggler wavelength, bui ~ues vary aver a boetatron
wavelar:oh, Fb is the guiding center position of tie olectron, and ?1 is
the wi e frajectory.

Tdrthermore, we will assume that the electron beam is small anough that
kxx and kyy are small, and relativistic enough that bolykw is even smaller, so
that an expansion in a small parameter is valid. If e is the small parameter
of the expansion, then k,x and kyy are #{¢) and bo/*kw is @ (") for m > 2.
The restriction on m merely ensures that i/y2 terms can be neglected with

2x2 or kyzyz terms. In practice, for ATA parameters, m = 2 and

respect to k,
e =0.1.

The equations of motion for an electron are

b b
Yoc[i-L_y. 2
X=clzz=-y71 ,
b b
rZz X
Jf=CI>&,r -zT] ,
b b
- VIRE S
Z—C[y,f x =], (26)

with b given by £q. {21). The dot denotes a time-derivative. The dominant

terms in the wiggle motion come from

. . b
X} = ¢z ?1 (27}

from which we obtain

2.2 2 .2
fae 0 1k X Ky Y sin k
1 & Z 7 w? (28)

through @ (54). Equation (28) describes ths wiggle motion, which can be
seen to increase with both q anid Yo

The other component of the wiggle motion, Ql’ does not vanish; bx is
not zero so an equation analogous to Eq. {27) could be written for }l.
However, ¥ contributes to focusing and to 312 at much higher order than

is retained in Eq. (28}, and so we neglect n altogether,

To evaiuvate the focusing, we write {including only the dominant terms}

. b
IG = ¢z, ;1 (29a)
b
z b
¥g=¢ [xl T _5] . {29b)

The averages with io do not vanish because of the variation of by and

bx with x:
? 2 2 b4
A c2£ bﬂ 1+ kx (XO * xl) + ky (yO * yl) cos sz
0~ 0y H ]
= %, EQ k2 x, ¥ cos k 2 (30}
0y "x 7071 W
or
2, 2
¢’b,
= Q 2 _ 2, 2
Xg = - =55 k, Xg=-¢ ksx X {31)
2y k
W
after an average over a wiggle period.
- 10 -



in the same fashion, £q. (29b) vielus

2

Vo= L2, __ .2 2 .
R Ky Yo =<y Ty s (32)
oy

the focusing in y has been decreased by the pote face design because of the
fobx/y term in Eq. {29b). .

In order to evaluate 512 we need to connect ;0’ yb to x5 and
yo". The only subtlety in making the connection can be seen from the
identity

X o= (2 k" + T x)

o= 0 0 3 (33)

the 7 Xg' term is not of higher order than the Xy" term (K. Halbach,
private commnication) although the (2)2 factor can be set to unity. The
7 Xo' term does not, however, contribute to the focusing averaged over a

wiggle period, so that we may write

Yo - {34)

From Equations (34), we find

X = X, €O (kax z+ ax) .

(35)

Yo = ¥, cos (ksy z+ ¢y}

- 11 -

and so

iozlcz -k 2 %% sin Z(kaxz vé)

c 2,2 _ 2,2 5.2
Yo fet = kBy ¥© sin (ksyz + éy) .
For the wiggle motion
_— boz
] —_— 2 2 2 .27 .
x,5lc = szsz [1+kS %"+ k," Yo 1 (37)

thus

5 2 = rleE il e gt

b2

S K . (38)

0 2.2 2 2]

B
2y kw

This is, as advertised, constant for an individual electron over a
betatron orbit.

We can get an approximate {dea of the shape of the magnet pole face
required to generate the field of eq. (21) by the following argument. Assume
the field is shaped by steel pole faces {as in a “hybrid” REC-steel wiggler
design} and that w » = in the steel. At cos sz = 1, the steel pole faces

should then follow a curve of constant x, so that

cosh kyx sinh kyy =L . (39}

-12 -



The pole face then is approximately parabolic:

kaXZ

C
y(x)wE 1-—m—1], (40)
¥
or, slightly more carefully

c
yix) = L sian? (a%m) . (41)
Y X

The curve y(x) for kx =k = kwl 2 is shown in Fig. 1; in this case,

Y
k X ksy 50 the x focusing is sufficient to maintain a circular electron

]
beam. It is interesting to note from Fig. 1 that only a small curvature to
the pole faces is required to achieve a circular beam,
The kx - ky case may not be the optimal way to design the wiggler — cf.
D. ProsnitzI scaling arguments (unpublished). He argues there that a ratio
of \fg-: 1 for the x : y ratio of an elliptical beam optimizes the trapping
fraction, hence potential gain. Fig. 2 shows the pole face shapes needed for

that 3 : 1 ratio; the curvature is marginally perceptible.
IV. NUMERICAL SIMULATIONS OF WIGGLE PLANE FOCUSING

The disastrous effect of quadrupolar focusing on the performance of the
ATA FEL was first realized when our 2D numerical simulation code FRED was
modified to include i) full betatron motion of the electrons, ii) the
treatment of linear wigglers, and iii} quadrupole focusing in the wiggler
plane. As mentioned in the introduction, the predicted performance of a
Tinear wiggler was found to be much poorer than a helical wiggler for the same

beam energy, current and emittance.

In its current verston, the code follows 2000-4000 electrons within one
ponderomotive potential well as they move in y and ¥ {longitudinal phase
space). The equations that govern the motion in y and ¢ are stightly extended

versions of those derived in Ref., 2:

dT- af
i wh .
@ 8Ty ST Y
{(42)

de.

i k 2, 2, 2 2
=k - 2y 2 (1+af +y B, sp ~ 2 8,fga  cos by + a2’}

i

where &, = bol\fﬁkw for a linear wiggler, e, is defined below, a, = eg/k, k

is the wavenumber of the laser field, and 512 is the contribution of the

'8
betatron motion to 512. The field quantities are all treated as functions
of the electron's position (xi, ¥i» 21), and 312,3 is evaluated in the
electron's. betatron orbit.
8, is the phase of the electron with respect to a plane electromagnetic
wave, propagating with phase velocity eqﬁa? to ¢, 1In terms of the phase in
the ponderomotive potential well, ¢1, and‘thg phase of the electric field ¢

(see below}
91'5¢.i—¢ . (43)
The quantity fy in Eq. (42) is a difference of Bessel functions(s) and

differs from unity for a linear wiggler as a consequence of averaging over a

wiggler period. For a helical wiggler, fg = 1; for a linear wiggler

.14 -



fg = Jg(8) - J(8)
where (44)

2
Ay

b —
2(1+aw }

The equations for the transverse motion are of the form

ll‘ 2
X' ka X;
(45)
2
" 2
Yj “gy ¥i

with kﬂx and kBy functions of z and y in ways dependent on the specific

kind of focusing assumed. For the scheme described in Section 111, kax and

ksy are given by Eqs. (31) and (32). For quadrupele focusing in the wiggle

plane {hence defocusing in y) Kox = kq from Eq. (15) and ksy = ks from
£q. (18). For a helical wiggler

b
K ek =0
BX BY 21kw

(46)

The electron motion is fully 3-dimensional, clearly. The laser field,
however, 1s assumed to be 2-dimensional; for ATA simulations, the laser field
is assumed to be cylindrically symmetric, and the two dimensions are r and z.

The field is solved in the paraxial approximation.(7) The electric

field - Tinearly polarized, for a linear wiggler ~ is written

i{kz—mt)l

Ex{x,y,z,t) = Re [é’(x,y,z) e ) (47)

- 15 -

where & is a slowly varying, complex electric field amplitude: the equation

&= l'diei¢ (48)
defines #, the phase of the electric field. The code can also simulate a
helical wiggler FEL; the modifications to the field equations are
straightforward.

With the slowly-varying amplitude and phase approximation, the wave

equation becomes

2E
2 1 "x Wk z-wt) b, 2 2
v Ex-'—z- —2—28 (21k?z—*vl )l:g
c” at
{49)
4r a J
= 2 3t
In cylindrical symmetry
2 1 3 3
VI "F W - (50}

For the source term - the right-hand side of £q. {49) - we assume that
only the Fourier component of Jx proportional to e1(k z - ut) contributes
to. the field evolution., Implicit is the approximation that the field changes
little over many optical wavelengths.

Defining,

TaZT e =e e (51)

- 16 -



(the factor of _[2 ensures thal ey and e, refer to rumas. values), and writing

3, (xy.7) = - EZ V"i sy - y;) 8z - z,)
1

with
\/EE -3k Z.
woi
W = C o e . (52)
we obtain{s)
dnpiwe a f _161
o 2 . . wbB I [
(2ik 57 +9,7) (g5 + iey) = B :i: o 8(x - xgdely - y;) (53)
e i

Here 1 is the beam turrent and N the number of simulation particles; I/N is

therefore the current per particle. The field quantities g and e, are

2
beth functions of x, y, and z.
To solve Eq. (54} numerically, we integrate both sides over radial zones

of width ar(in general ar varies with r}. Then, at a radial grid point.

2iue a f ~19;

s B 2 - B 11 e
{21k a7 TV (e ¥ ley) = [ N rar Z (54)
i

MEC 1

where now the sum is only over the particles lying within the radial zone ar
around the grid point.

Equation (54) is solved using a finite element method, which permits a
unfque wefghting of particles to radial grid points.

We present the results of three simulations for a 24 m wiggler on ATA.
The three simulations differ only by type of wiggler - helical, linear with

external quadrupole focusing, and linear with wiggle plane focusing due to

-17 -

parabolic pole faces. In all three cases, the wiggler is tapered in a,
according to the usual self-design procedure: & dasign electron, in a

circular orbit at r ot is maintained at a fixed ¢r = .35 as the

desig
electron is decelerated. The other parameters for all three runs are

v = 95.85
ey 0.14 rad cm {normalized edge emittance for a parabolic beam
profile).
Pip = 2.4 GW (1aser input power)
I =2 kA
F = 2.105 Aen™ {eiectron beam brightness, defined as
JEnZUTZVq,
where Vq is the volume of the 4-dimensional
transverse phase space occupied by the electron
beam}.
wy = 0.35 ¢m (laser beam waist)
A, =8 cm (wiggler wavelength)
Ag = 10.6 pm (signal wavelength) .

In al} three cases, the beam waist occurs 0.5 Rayleigh ranges before the
wiggler; the entering laser beam is diverging. Figures 3a - 3¢ show the
calculated Taser power as a function of z in the wiggler; the third case
(Fig, 3c) with guadrupole focusing sufficient to keep the electron beam
circular, performs approximately half as well as the helical wiggler (Fig. 3a)
or the linear wiggler with parabolic pole faces (Fig. 3b). The reason for the
poor performance can be seen in Figs. 4a - 4¢; these are histograms of final

electron distributions in y. The linear wiggler with quadrupole focusing has

- 18 -



permitted a very much smaller final trapping fraction; considerable electron
detrapping occurred as the bucket moved between y = 96 and y = 84,

The linear~ wiggler with parabolic pole faces did not perform quite as
well as the helical wiggler; the Bessel function factor fB readily explains

the difference.
V. QUALIFICATIONS

We stress that the anumerical simulations follow the betatron motion of
thé electrons separately from the wiggle motion; the betatron equations in
the simulations are Eq. (45), not the full equations of motion, Egs. (26}.
There are many potential resonances and couplings between (for example) wiggle
and betatron motion that cannot be examined in the current version of the
code. The full equations of motion will shortly be put into the code,

permitting a better numerical examination of electron transport in the wiggler.

- 19 -
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ABSTRACT

The coherent interaction between an optical wave and an electron beam
in a free electron laser (FEL} is shown to be capable of optically guiding
the light. The effect is analyzed using a two-dimensicnal approximation
for the FEL equations, and using the properties of optical fibers. Re-
sults of two-dimensional {cylindrically symmetric) numerical simulaticns
are presented, and found to agree reasonably well with the analytically
derived critericon for guiding, WUnder proper conditions, the effect can
be large and has important applications to short wavelength FEL's and to
directing intense Tight. '
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I. INTRODUCTION

It has long been known that the coherent interaction between the light
and the electron beam in an FEL produces a phase shift of the light [1],
and that the sign of the effect is such that the light is refracted toward
the electron beam [1,2]. In recent numerical simulations we have observed
quiding of the Tight by the electron beam, as if the electron beam were an
optical fider [3,4]. These observations stimulated the investigation

reported on here.

In this work we treat the bunched electron beam as if it were an
optical fiber with a constant index of refraction and a well-defined edge.
In Sec. Il we review the properties of such step-profile optical fibers
for a real or complex index of refraction. In Sec, I[I1, we use one-
dimensional FEL theory to evaluate the index of refracticn of the electron
bean, and present numerical simulations to illustratz optical guiding. We
then examine, in Sec. 1V, guiding in the exponential growth regime. Me

find that the intuitive criterion for guiding during exponential growth,

az > 1 (1.1}

. . z
can be strongly violated, Here the field amplitude grows as e, and z,

is the Rayleigh length obtatned from the electron beam size and light
wavelength.  The analytical derivations are compared with the results of
numerical simulations. Finally, in Sec. ¥, we mention several potential

applications of self-guiding.



I1. OPTICAL PROPAGATION IN FIBERS

In this section, we review the salient facts about circular step-
profile optical fibers, with emphasis on the LPOI mode, the lowest order,
linearly polarized mode, This is the mode that the numerical calculations
model, and which one would expect to be excited in an FEL with a linear
wiggler. We determine the value of the fiber parameter (defined below)
necessary for optical guiding.

The usual analysis of step profile fibers [3,4] assumes that the
fiber consists of a central core of radius a and index of refraction n,

and a cladding of index n In our treatment, the core is the electren

cl*
beam and the cladding is free space,

We can make the assumption that the fiber is weakly guiding:

[n =1l <1 . (2.1)

This inequality is quite good for all cases of interest, and is consistent

with the assumption of slowly varying phase of the optical field:

dé

& <k {2.2)

familiar from FEL theory.

Following Marcuse [4], we consider guided modes with only one
transverse electric field component Ex {but both magnetic and electric

1ongﬁtudina1 components), for which

cos {vd)
E, = A {xr) s T <a , (2.3)
v sin{vh)

3 (xa) cos(ve)
E, = A-tr—— - H L(ier) Lra . (2.4)
X Hv (iva) ¥ sin(v)

In Eq. {2.3} and {2.4), Jv and I-lv1 are Bessel functions and Hankel

functions of the first kind, respectively. The arguments of the functions

are
« wyndk? - g, (2.5)
Y = 52 - k2 ’ (2'6)
k=g , (2.7)

and the field is assumed to vary as
eT(BZ - Mt) . (Z-B)

Continuity of By and E; at the fiber edge yields the dispersion relation:

“JU+1(K3) . TKv+1(Ya) (2.9)
ANCH I W D)) '

with

0 + 42y a2a vl = (n? - 1) k%2 . (2.10)
The quantity V is called the "fiber parameter".

The condition for mode cutoff in a fiber is

ya»?0 , (2.11)
In this 1imit the dispersion relation, Eq. (2.%), simplifies to

JI(VC) =0 ife=0 , (2.12)
and

JO(VC) =0 ifv=1 . {2.13)



@

In Eq. {7.12) V. is the value, at cutorf, of the fiber parameter V.
Tlearly, since increasing ¥V means more zeros of the Bessel functions
which satisfy V. < ¥, the fiber parameter measures the number of guided
modes supported by the fiber. MNote that from Eq. (2.12) there is no cut-
off for the LP01 moce. {The first index labels the Bessel function,
the second labels the zero's.}

While formally there is no cutoff for the LP01 mode, it is incorrect
to think of the mode as bound by the fiber for 311 V > 0. To examine
this more closely, near cutoff {ya << 1) the v = 0 modes satisfy:

Jgtv)

ya = 1.12 exp —m . t2.14]

Since the mode amplitude falls off radially as exp(-yr) for large yr, 1/y
measures the radial extent of the mode. An examination of Eq. (2.14)
shows the mode extends far outside the beam for ¥ << 1,

For the LPj; mode to be considered guided, we will somewhat arbi-
trarily require that the l/e point of Ex be within 5 times the fiber
radius. This condition corresponds to demanding that

V2

>1 . (2.15)

The analysis can be extended to a fiber with gain (or loss} by
permitting V to be complex, The dispersion relation, Eq. (2.9), is
gnchanged, but « and y can now also be complex. From numerical solution
of the complex dispersien relation, we find the above criterion (2.15)

generalizes to

Re(VZ) + 172 () > 1 . (2.16)

~

—

v
‘\,{; :

The nature of the solution, however, 1% different —— a complex y Corre-
sponds to propagation of radiation away from the fiber, balanced Dy gain
in the fiber.

1f we examine light gropagation in an infinite parabolic medium with

gain [5] we cbtain an analcgous criterion for quiding.

111, THE INDEX OF REFRACTION OF AN ELECTRON BEAM

1.1 General Analysis

The electron beam in a high-gain FEL physically bunches on an optical
wavelength; because of the bunching, the baam has an effective index of
refraction greater than unity., This is in sharp contrast to the behavior
of an unmagnetized {and unbunched} plasma, and is the basi%ﬁior the
optical guiding effects described in this paper. In the previous section,
we have presented the criterion that the index of refraction must satisfy
in order for a fiber to quide the laser beam; in this section we derive
the index of refraction of an electron beam in an FEL.

As a further preliminary, we wish to draw a distinction between two
effects, which we will label "refractive guiding" and “gain focusing”.

The first refers to the familiar guiding of an optical beam by a fiber
with a real index of refraction. The power in the optical beam
propagates exactly parallel to the fiber. The second, gain focusing,
refers to seif-similar propagation of an optical beam profile around a
fiber with gain: power diffracts away from the fiber, but the gain in

the fiber more than balances diffraction. The result is an optical



profile that grc  in amplitude, but does not change shape (hence the
description as uelf-similar propagation). The distincticn between these
two cases is primarily in the nature of the index of refraction. Gain
focusing occurs around a fiber with a purely imaginary index of refrac—
tion; refractive guiding when the index of refraction is purely real. In
an FEL, the effective index of refraction is complex, producing a mixture
of refractive guiding and gain focusing; in the examples we present,
revractive guiding deminates.

Refractive guiding alone dominates in at least two circumstances:
a) after saturation in an untapered wiggler {when the light intensity is
roughly constant), and b} in a tapered wiggler. The real part of the -
index of refraction of an optically bunched beam comes from the FEL
equations as formulated in Ref. 6:

Zneld
Re(n)-1 = 198 _ 7™ ™ cosu

kdz 3

. (3.1
me ke, Y

Gain focusing may dominate in the exponential gain regime of an FEL with
an untapered wiggler. The general expression for the imaginary part of

the index of refraction comes from the amplitude equation:

1 de Z2ned .
n(n) 2 g = *w &ing, (3.2)
s

mc ke
¢ X

In Eg. (3.1) and (3.2), g 1s the normalized r.m.s amplitude of the

electric field:

e |k
S F T
5 /7T me

{for a linear wiggler); aw is the dimensionless r.m.s. vector potential

(3.3)

of the wiggler field:

e |8,

- {3.4)
2
V2K, m

a
w =

where k, fs the wiggler wavenumber. The current density is J, v is the
phase of an electron in the pondermotive potential well, and the brackets
denote an average over the electron distribution. We use Gaussian ¢.g.s.
units.

From Eq. (3.1) and (3.2) we see that refractive guiding and gain- ’
focusing are distinguished simply by whether < 5-35-—45 or é;%ﬂ—q-')domi‘
nates; i.e., by the relative phase between the electron bunches and the
lagser electric field.

The expressions for n in Eq. (3.1) and (3.2} are derived for a
uniform infinite medium and a plane electromagnetic wave. We use the
value of the index on the electron beam axis to determine the fiber

parameter V. The relationships among d¢/dz, desldz and n are changed by

two—dimens ional effects, as described in Sec. IV,

3.2 Examples of FEL Guiding

In this section, we present numerical simulations to illustrate
guiding in the exporential gain regime (which we discuss in detail in

Sec. IV}, and guiding in an untapered wiggler after saturation. The

—

)



simulations were performed at LLNL with the 2-dimensional FEL code FRED,

An earlier version of the code is described in Ref. [7] and [8]; the code
has since been modified to include full betatron motion of the electroms.
The code follows an axisymmetric laser beam around an electron beam that

bunches longftudinally {in ¢ [1]). Axisymmetric diffraction effects are

fully included, via the paraxial wave approximation; vefractive and gain

effects are included through the local source terms provided by the

electron beam,

The two categories of FEL guiding can be illustrated with a single
simulation, based on the design of anm FEL in a storage ring, The
parameters of the simulation are listed in Table I, Figure 1 is a
three~dimens icnal contour plot of laser intensity versus r and z, The
initial bump in the laser intensity onm axis is the input 30 MW laser beam
at a focus; quiding is evident in the later growth of the laser field,
and in the saturated regime (past 16 m). The guiding is visible more
quantitatively in Figs. 2 through 4, which are cross-sections of the
laser profile at several values of z. The laser profile is nearly
constant over 60 Rayleigh lengths of propagation, Figure 2 is a
cross-section in the exponential gain regime, Fig. 3 in the saturated
regime, and Fig. 4 at the end of the wiggler. An interesting effect of
the guidiné is illustrated in Fig. 5, which is a plot of the phase of the
electric field versus radius at the end of the wiggler: the decrease in
¢ with increasing r indicates that the cutput laser beam is actually

converging to a focus 8 cm beyond the end of the wiggtler.

3.3 Buiding After Saturation

After saturation, the guiding of the light is entirely refractive,
and Eq. (3.1) is applicable. We can generally take the bunching term,
<{cosd) fy>, tO bE::IIZYO, where Y, is the average electron Lorentz
factor. Cos¥must of course remain Vess tham or equal to unity, and
perfect bunching at ¢ =0 never occurs. Then, for the parameters of the
simulation, we find

Re{v) =1 , {3.5)
after saturation.

For guiding of the light after saturation, we obtain in general

ka
2 2el W
ve= = > 1 . (3.6)
me -

0% -~
where 1 is the total current. With a slight modification, this eguation
is applicable to tapered wiggley amplifiers; the expression for V2 must

is the fraction of the

be miltiplied by = 2f Yo where f

trappedCDS trapped
electrons trapped in the decelerating pondercmotive potential well [13,
and wr is the resonant ¢ of an electron that decelerates with the

bucket.

IV. GUIDING IN THE EXPONENTIAL GAIN REGIME

We can analyze the guiding in the exponential gain regime by extend-
ing the linear apalysis in Ref. [9] to include the effects of diffraction

fand incidenially, energy spread). To do so, we write the longitudinal



electron equations derived by Kroll, Morten, and Rosenbluth f1] in

complex form:

d'\r- a f -

azl = Re [} Y: 8 ese1°j] . {4.1)

de a fae, .

o = Re {kw - _kz (1+a2) - nBs e"’j] ; (4.2)
21y ifi

In Eq. (4.1) and (4.2), 9 is the phase of an electron with respect to a

plane wave; in terms of ¢j and 6,

Q-EIIJJ—ﬂ . (4'3)

The factor fp s the well-known difference of Bessel functions [10].
The complex field equation follows from Eq. {3.1) and (3.2), but
with addition of a transverse gradient term:

W'

8z mc3 i Tk

ae Zxie a z 19 1v e
S = (4.8)

where € s now a complex field amplitude. The total number of electrons
is N. The transverse gradient term follows directly from the paraxial
wave equation [11]. The recognition that a guided laser field propagates
with an unchanged profile permits us to approximate the transverse

gradient term very simply:

‘”‘?k_s” - Z_S (4.5)

where z. = kw212 for a Gaussian profile with an electric field 1/e radius
of w, The self-similar profile of a guided beam is not Gaussfan; hence
the approximate nature of Eq. (4.5).

Equations (4.1), (4.2}, and (4.4) can now all be linearized, taking
ia(zlzr)_

e, to vary as e To incorporate an electron energy spread, we

take a square distribution for the electron energy:
f(T)'?%?l Yo'ﬂ’fSTf_Y0+A'f
= 0 , otherwise. (4.6)
The result of linearization is a cubic in the complex, dimensionless

parameter i:

2
AT 1 28k 2]
2 2 m?
* A (2 akg 7, (skgz ) - 4k gz ) - (4.7)
o2

2 2 3 2
+ Ak z v (akpz )C - Ak 2.} =0 .
w'r 0“r wr R
0

Here

ks k, - X5 (1420 (4.8)
2y
0

is a parameter that measures the departure from resonance of the center,

Yor of the electron distribution function, and

2.2
4z 2 T , 2 (4.9)
3 3 r *

Yo

A =
me



is the =-2nsionless parameter that measures the coup'i:ing Letween the
electr.: beam and the Tight.

One's natural inclination is to attempt a simplification of this
cubic, identifying the dominant terms and discarding the rest. Unfortu-
nately, for many applications, all terms in the cubic are comparable, and
the standard general expression for the anatytic solution to a cubic must
be used,

The expression for the fiber parameter V of the electron beam in

terms of A is simple, and comes from Egs. (3.1), {3.2), (4.4) and (4.5):

2
Voo %Esm 1+ . (4.10)
r

We take the 1/e point of the Gaussian transverse density profile of the
electron beam to be an effective fiber radius. For the parameters of the
simulation described in Section 3.3, with w=0.02 cm ({as observed in the

simulation), the cubic yields

v oo 1.03 - 0.12i
(4.11)

It

A= 0,03 - 0.12i

Qur criterion for guiding [Eq. (2.16)] is satisfied, although the laser
beam is somewhat more tightly confined to the electron beam than |v] = 1
would predict. In terms of either the assumed w, or ¥, the discrepancy
is only about 20 percent.

The value for|Im{x)|is consistent with the exponeatial gain observed

in the simulation. The fact that Im{x) is much less than unity indi-

cates that the gain length is much Jonger than the Rayleigh range,

strongly viclating the naive criterion mentioned in the Introduction,
Eq. (1.1).

The genaral procedure for evaluating the importance of guiding laser
Yight by an electron Seam is jterative. The cubic, £q. (4.7}, is solved
with an assumed value for w; twice the electron beam radius (w=2a) is a
good initial guess. Fram the solution for a, Eq. (4.10) gives V. The
value of V determines, through Eg. (2.9) and (2.10), values for y and .
The quantity w is then given by

w=1/ |Rely)] . (4.12)
Iterating produces a consistent solution for the laser beam size and the
growth rate, 1f a guided solution exists.

We have assumed that the transverse derivative term in Eq. (4.5) can
be adequately approximated by using w, the 1ight beam size — this
assumption permitted us tc use the Rayleigh range of the laser profile in

the derivation. When w >> a, or ¥ ¢ 1, this assumption is violated; for

T 1, the transverse derivative term must be written as

z 24 {4.12)

with « obtained from the fiber dispersion relation. An interesting
example of this limit occurs when the alectron beam current becomes very

small (A » 0), with sy = Ay = 0. Then the cubic Eg. (4.7) reduces to

Yo ak oz, =0, (4.13)

perturbing around the roots » = 0, 0, - 1 obtained with A = 0, we

find



- e SRz, -aka . (¢.14)

A1l three routs correspond to V2 << 1 and w >> &, as one would expect.
The growing root in Eq. (4.13), » = - i V/EF;E;, is very different
from what one would expect from one-dimensional theory, with or without a
fi11 factor. The growth rate is less, and scales as Jl'f2 rather than
J1/3; the physical reason for the difference is the importance of
diffraction in this limit.
As one would expect, diffraction decreases the linear growth rate.
The effect of diffraction on guiding is unexpected, however, and ean be
seen from the form of Eq. (3.1) and (3.2). For a given bunching
<{cosW) fy>, diffraction reduces the electric field e+ The index m;
refraction of the electron beam is thereby increased, enhancing the
guiding. It is this enhancement that permits exponential gain even when

Eq. {1.1) is violated.
V. APPLICATIONS

We have been motivated in this study, and have emphasized in this
paper, the importance of optical guiding {under some circumstances) to
FEL performance. As we haye seen, the phenomena can be rather important
and thus one can contemplate FEL's of exceedingly long lengtih. In this
way, % appears possible to have a small electron beam radius and a very

long wiggler (hence a very high gain FEL) even in the ViV range.

Because of the effect of optical quiding it is possible tec direct
and focus the FEL-generated-optical beam. This is of interest for very
intense beams, suth as are contemplated for Taser inertial fusion, where
lenses and mirrors of conventional materials would be destroyed by the
light. Use of optical guiding appears to be relatively straightforward
since a simple magnetic deflection of the electron beam will result in a
deflection of the light.

It should be noted that optical guiding applies, also, to very short
wavelength Tight, which does not interact coherently with normal material.

Application of this to the YUV and to soft X-rays would appear to make

~possible some interesting devices.

Optical guiding will be effective in an Inverse Free Electron Laser
(IFEL} as well as in an FEL (A. Gaupp, private communication} and hence
can be fmportant in the operation of an IFEL, but this requires a large
accelerated current.

Finally, we note that optical guiding may make possible resomant
ring FEL's {J. D. Dawson, private communication). This requires FEL
operation when the FEL is no longer straight, which can be achieved with
an isochronous ring. 1t appears possible, in principte, to have an FEL
whose gain is mdest per unit length, but whose action extends over many
circuits of the ring,

After the completion of this work our attention was drawn to work by

G. T. Moore which nicely compliments that presented here [12].
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Table 1

Simulation Parameters

Current (I}
Electron beam radius in the wiggler (a)
Electron Lorentz factor { p)

Fractional electron energy spread
(r.m.s. 5%)

Laser wavelength {2v/k}

Input laser power

Dimensionless r.m.s. wiggler vector
potential (ay)

Wiggler iength

Wigaler period {2x/ky)

270 A
0.01 cm
2000

1.201073

2500 A
30 MW
4.352

30 m
10 cm

¢y
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FIGURE CAPTIONS
A three-dimensional plot of laser intensity vs. r and z inside
the wiggler,
A cross—section of the laser intensity, with a least-squares
Gaussian fit, at 2 = 10 m, in the exponential gain regime.
The 1/e point of the electric field for the Gaussian fit (the
Tight beam radius) is at 0.024 cm .
A cross-section of the laser intensity, with a least-squares
Gaussian fit, at z = 25 m, after saturation. The light beam
radius is 0.023 cm.
A cross-section of the laser intensity, with a least-squares
Gaussian fit, at 2 = 30 m, the end of the wiggler., The light
beam radius is 0.024 cm.
A cross-section of the phase ¢ of the complex electric field
amplitude at the end of the wiggler, z 30 m, with &
least-squares parabolic fit The decrease of ¢ with
increasing r indicates that the light is focusing at the end

of the wiggler.
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