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Optical Bistability

LUIGT A. LUGIATO
Istituto di Fisica dell'Universitd, Via Celoria 16, 20133 Milano, ltaly

AnrsTRACT.  Optical bistabifity is & phenomenon that arises in the transmission of
light by an optical cavity lilled with a medium which presents saturable absorption
or nonlinear dispersion. Frony the theorctical viewpoint. optical bistability is a
remarkablke example of cooperative behaviour in an open sysiem driven far from
thermal equilibrium. From the practical viewpoint, optical bistability offers the
possibitity of realizing memory clements that may perhaps be used to construct an
oplical computer. We illustrate the basic physical principles of optical bistability at
steady state, and the main features of the transient behaviour. The role and the
chects of fluctuations (noise) are described in general.

Particular attention is devoted to the situations in which the output of the
systern Is not stationary in time, bui oscillatory (seli-pulsing behaviour), so that the
system works as a converter of conlinuous wave light into pulsed. It is shown that,
according 1o the values of the external parameters, the oscillations can be cither
periodic it time or completely aperiodic {optical turbulence). The state of the art in
the problem of optical bistability is bricfly discussed.

1. Introduction
1.1, What is optical histahility?

The subject of optical bistability (OB) has raised remarkable and continuous
imerest in the communily of scientists working in Quantum Optics since Gibbs,
McCall and Venkatesan reported its first observation (Gibbs e al. 1976). In this
introduction, | shall try 10 explain in simple terms what OB is and why it focused such
an enthusiastic attention both from theoreticians and experimentalists, including those
mainly interested in technological aspects.

First, let us consider a resonan! oplical cavity, such as the Fabry -Pérot cavity
shown in fig. | (g). The two mirrors M, and M, have transmissivily cocflicient T'which
mcans that when a light beam of intensity 1 impinges onc of these mirrors a fraction T1
i5 transmitted while a fraction (F -~ TH is reflected. The function of an optical cavity is
essenlially that of sclecling precise frequencies of 1he eleciromagnetic field. In fact only
suilable modes of the field, with well defined spacial structures and well defined
frequencies. can sicadily oscillate in the cavity.

Now, let us inject into the cavily the light beam emitted by a laser operating in a
conlinuous wave {c.w.) regime, a beam whose intensity /, is constant in time. The
incident ficld frequency is assumed to be resonant or quasi-resonant with one of the
cavity frequencics. "

Let us consider first the case of the empty cavity (fig. 1{a)). The incident beam is
paetly transmitted (1;) and partly reflecied (1,). When we inject the incident beam there
will be a transient stage during which the light enters into the cavity, but after a suitable
time the system reaches a stationary or steady-state regime in which 7, and [, are
constant in time. In this regime, the transmitted intensity is proportional to the incident
intensily. so 7y = F I, where the proportionality constant F , which is never larger than
unily, depends on the transmissivity coefficient T and on the degree of resonance
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Fig. 1. {a) Fmply Fabry Porot cavity, 1 is the ncident intensity: 1, and 1y are the transmiticd
and reflected intensitics, respectively. (h) FFabry-Pérat cavity filled by an absorber.

between the incident ficld and the cavity (fig. 2(a)) In particular. for perfect tuning
(i.c. resonance) one has that .7 = 1.

The interesting casc is when the cavity is filled with absorbing material, resonant or
nearly resonant with the incident ficld. In this situation, part of the incident cnergy is
absorbed by the medium. In turn, part of this absorbed energy is dissipated into heat,
and part is reemitted as Auorescent light in all directions.

Aswe see in fig. 1 {b). a sample of length L is placed between the mirrors. We indicale
by a the absorption cocflicicnt pet unit length of the material. In this cuse, the steady-
stale transmitted intensily becomes a nonlinear function of the incident intensity. The
crucial parameter thal determines the stationary behaviour of the system is the ratio
between the total absorption L. that the light undergoes during cach pass through the
medium and the transmissivity cocflicient T+

. al.

= 2T (1
Increasing C, we find that the sicady-state curve of transmitted versus incident intensity
tirst develops a portion in which the so-called ‘diffcrential gain', the derivative di /1y, is
largee than unity (fig- 2{h)). In this condition, the system works as an optical transistor.
Let us modulate the incident ficld intensity sufficicntly slowly to allow the system 1o
follow the stcady-state curve (adiabatic variation of the incident intensity). Hence this
modulation is transferred to the transmiticd beam and, as we sce from fig. 2(b), the
modulation depth turns out to be larger in the transmitied than in the incident ficid.
This is precisely the transistor action, in which the incident intensity plays the role of
the battery.

t The quantities 2 and C differ from those indicated by the same symbols in (Lugiato 1983) by a
factor | +A? {sec (13
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Fig. 2. (a) Transmilted imcn_sily versus incident intensity for an cmpty cavity. (b Optical
iransisior operation. () Bistable operation.

[}

1] we further increase the ratio al./ T, the steady-state curve develops a portion with
negative stope and becomes s-shaped (fig. 2{c)). Hence in this case I is a multivalued
function of i,. in fact, in the range of values 1, <ly<I; the system has threc stationary
solutions. Howcver, the one which lics in the part with negative slope is unstable and
thercfore the system is histable. If we adiabatically increase the incident ficld intensity,
when we arrive at Jy the system is forced 1o jump discontinuously (o the higher
transmission branch. Il we now slowly decrease the incident intensity, the system
remains in the upper branch untit we reach the valuc £, at which the system returns
discontinuously to the lower transmission branch. Thus, we obtain a hysteresis ¢ycle.
As we shall see in the following sections, the bistable behaviour arises essentially from
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two ingredients: the nontincarity of the atom ficld intcraction, and the presence of
mirrors, In fact, il we remove the mirrors the transmitted intensity is always a single-
valued lunction of the incident intensity and therefore the bistability disappears. The
function of the mirrors is to produce a feedback action on the clectromagnetic ficld.
When the incident hbeam arrives af the exit mirror M,, part of it is reflccied back and
gives nise (o a counlerpropagating beam. When this second beam impinges on the other
mirror M, a part of it 35 in tora reflected and hence feeds back the primary beam. The
threshold valuc of the parameter C for which one gets bistability depends on several
quantitics ind features such as the degree of resonance between the incident ficld, the
material and the cavily, the atomic lincwidth, the type of cavily and so on.

As is well known, when a light-heam goes through 4 medium one has basically two
kinds of efleet, absorption and dispersion, the latter being induced by the refractive
inbex of the material. When the incident field is in perfect resonance with the atomic line
the dispersion of the light plays no role. so that one has purely ahsorptive bistability.,
Otherwise, onc has the mixed absorptive and dispersive case, When the difference
hetween the frequency of the incident ficld and absorption by the maicrial is so large
that absorption becomes nepligibie one has purely dispersive bistability.

The systems we have described are usually called all-opricaf (or intrinsic) bistable
systems. On the other hand, there are also the so-called hyvhrid electro-optical systems,
which have been devised in many variants. A typical device of this type is obtained by
replacing the absorber by an clectro-optic erystal, which is monitored by the output
ficld and produces changes in refractive index proportional (o ihe output power. Tn this
article, we shall consider only the all-optical sysiems.

From our briel description il is immediately evident thal our optically bistable
systems have a large technological interest. We have already seen that in the non-
bistable regime they can work as optical transistors. On the other hand, in the bistable
situation they can work as optical memories, in which information can be stored. In fact,
in the range I, < I, <{,(fig. 2(c)) the lower and the upper states are the 0 and the 1 of a
memory clement, and by suitably varying the incident ficld intensity one cin switch
from ane state to the other as illustrrted in fig. 3. OF coursc, in order (o build an optical
compuler one muslt assembile a very large number of elements of this type, so cach
element must be miniaturized. Therefore there is a hig cffort towards the construction
of practical, miniaturized and fast operating bistable optical devices of this kind. These
devices can also work as pulse shapers that tailor the incident light pulses in many
different ways, by amplifying part of them and climinating others, suppressing the noisy
parts (clippers, discriminators, limiters and so on), Finally, as we shall sce Tater. these
systems can work as converters of c.w. coherent light into pulsed light.

On the other hand, OB has also raised widc theoretical intcrest, renewing in part the
enthusiasm that in the sixties was devoled 10 the laser. In fact, OB is a remarkable
example of cooperative behaviour in an open system far from thesma) equilibrium, and
therefore it naturally reccives a chapter of Haken's Synergetics (Haken t977) and of
Prigogine’s theory of dissipative structures {Nicolis and Prigogine 1977). First of all. the
steady-state hysteresis cycle of OB suggests an immediate anatogy o Yirst-order phase
fransitions in equilibrium systems. Furthcrmore, by controfling the incident intensity
one can induce the emergence of spontaneous pulsations in the system, in which the
transmilted intensitly is no longer stationary in time, but is given by an undamped
sequence of pulses. According to the external controf parameters, this sequence ¢an be
cither perfeetly periodic in time ¢regular seif-pulsing hehaviour) or completely irrcgular
{chaotic behaviour or optical turbulence). -

@
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Fig. 3. (a) Optical memory. I, is the holding intensity: (b) Switch up operation. The system is
initially in the lower branch ai J, = I, By the pulse shown in the figure, the system switches
1o the upper hranch. Eventually the system is in Ihe upper branch at J,=1,. (¢} Swilch
down operation. The system is initialty in the upper branch ai I, = I, By the pulse shown in
the figure, the system switches to the lower branch. Eventually the system is in the lower
branch at I,=1,,.

1.2. A brief historical sketch

The complete history of OB is very lengthy, so | will restrict myself 1o a short
description of the first basic stages of this story.

Absorptive OB was first theorelically predicted by Szoke and collaborators (1969).
Some years later McCall (1974) Rroved that under suitable conditions (he same system
can show differential gain larger than unity with transistor action and on the other
hand treated absorptive OB in a Fabry- Pérot cavity by numerical analysis of the so-
called Maxwell -Bloch cquations. This work suggested the experiments of Gibbs et al.
(1976) in Na, in which hoth transistor operation and bistability were observed. The
analysis of the data showed that the observed bistability was of dispersive type, with
few exceptions. The mechanism which produces dispersive OB was explained with the
help of a simple cubic model.

Felber and Margurger (1976) gave an analytical treatment of dispersive OB in a
Kerr medium. Bonifacio and Lugiato (1976) initiated a theoretical treatment of OB
which is both from first principles and analytical, with particular emphasis on the
cooperalive behaviour and on the analogy with first-order phase transitions. Smith and
Turner (1977) proposed and demonstrated the operation of an electro-optic bistable
device. All these results stimulated some very active research, both theoretical and



138 L. A. Lugiato

experimental, that split into two distinct dircctions. The first channel is mainly
technological and devoted to the device aspects, using both all-optical and electro-
optical systems. The other channel is devoted to the fundamental aspects of OB and
rekuted phenomena.

1.3. Plan of the article

in this article | shall try to give an clementary description of OB and of the
phenomena that are dircctly related 10 i. For further details, } refer the reader to the
recent review articles by Abraham and Smith (1982 b) and by Lugiato (1983). Other
shorter reviews can be found in articles by Gibbs et Wl (1979 b, 1980) Lugovoi {1979),
Collins and Wasmundt (1980), Bonifacio (1982), Abraham and Smith (1982a)
Collcetions of papers on oplical bistability can be found in the Proccedings of the
Asheville Conference edited by Bowden et al. (1981) and in the special issue of IEEE
Journal of Quantum Elecironics edited by Smith (1981).

In Section 2, 1 describe in detail the various clements (incident ficld, cavily, atomic
system) that enter into optical bistability. Section 3 gives an extensive description of
optical bistability at stcady state, emphasizing the main physical principles and
encompassing both dispersive and absorptive OB. In particular, in Section 3.3 1 work
out the analogy with first-order phasc transitions in equilibrium systems. Section 4 is
devoted 1o the treatment of the transient approach to steady stale, with particular
emphasis on the so-called critical stowing down. In Section 5, § deal with noisc and
outline the quantum statistical treaiment of OB, thescby completing the analogy with
first-order phase transitions. Scclion 6 illusirates the main leatures of the pulsed
behaviour in OB, including both regular sclf-pulsing and chaotic behaviour {oplical
turbulence). Finally, in Section 7 | outline bricfly the state of the art in the problem of
construcling a practical optical bistable device which can be the basic clement for the
future rcalization of an optical computer.

2. The clements of the OB systems
The essential ingredients of OB are the incident field, the optical cavity and the
atomic (or molecular) system.

2.k, The incident field i

The incident field comes from an external laser which operatesin ac.w. regime. Asis
well known, laser light is coherent. Roughly speaking, this means that the light is
monochromatic and its intensity is perfectly constant in time. Actually, in real Jasers the
stituation is not so idcal. The intensity exhibils some small fluctuations around ils mean
value. The phase of the ficld is not fixed but undergocs random jitters which bears the
consequence that the light has a finite linewidth or is not perfectly monochromatic. n
the following treatment | shall neglect these features for, the sake of simplicity and
assume thai the incident light is perfectly coherent.

1f we consider a section of the laser beam, we can see thal its intensity decreases from
the ceatre of the beam, following a Gaussian law. Again for reasons of simplicity, 1 shall
neglect this radial variation of the clectric ficld and assume that this ficld is a plane wave
with respect to the transverse directions. In fact, this approsimation changes the results
quantitatively whercas most qualitative features remain basicalty unchanged. Hence, if
we call z the direction of propagation of the incident beam (see fig. 1), the electric fiekd
will in general depend on z as well as on the lime va riable ¢, but will be independent of
the transverse variables x and y.
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2.2. The cavity

By suitably arranging a number of mirrors, we build an optical cavity. In accord
with our plane wave assumption, we consider only plane mirrors. The most common
type of cavity is the Fabry- Pérot with plane paralicl mircors, as in fig, 1. Another typc is
the ring cavity shown in fig. 4, in which the incident beam , enlers from the lefl. The
injected beam is in parl reflected (£,) and in part propagates in the medium. At the cxit
mirror 2. the light is in part transmitted { ;) and in part returns 10 the entrance mirror |
afier reflection on mirrors 3 and 4. | shall assume that mirrors 3 and 4 have 1002
reflectivity, and call T the transmissivity coelficient of mirrors 1 and 2. Also, Findicate
by R the reflcctivity cocllicient R=1-T.

As is well known, an optical cavity supports only well-defined Irequencics. In the
case of i ring cavily, the cizcular frequencies are 2nen/ #, where n=0,1,2.....¢ is the
velocity of fight and 7 is the Lol length of the nng cavity (¥ = LA, (sec fig. 4). In
the case of Fabry Pérol cavily the circular frequencics are nenfL(sce fig. 1) In bolh
cases the cavity mades arc cqually spaced. From the viewpoint of theory, the ring cavity
is easier (o treat because the light propagates in only one direction, whereas ina Fabry-
Pérot cavity onc has counterpropagating beams. For this reason, we shall restrict
ourselves (o the case of ring cavity. f we indicate the amplitude of the electric field by
A(z. 1) and look at fig. 4, we realize that the field £(0,ryat 2 =0 arises [rom two different
contributions: the incident field £, transmitted by mirror | and the ficld #IL.Nat z= L
successively reflected by all the mirrars of the cavity

£10,0) = J(TW, + RE(L.1 — A1) (2a)

The square rool in front of £, comes from the fact that T is the transmissivily coefficient
of the intensity and the electric ficld is the square root of the intensity. The factor
R in front of the second lerm comes from the 1wo reflections on mirrors 2 and |
(R= /R /R). The reflections on mirrors 3 and 4 do not give factors because Lhese
mirrors have reflectivity coefficient equal 1o unity. Finally, the retardation At is the time
the light takes to travel from mirror 2 to mirror | and is equal to (L + 21)/c (see fig. 4).

RING CAVITY

n
1 2
2 — N &
l - J -
0 L
+ +¢
4 3

Fig. 4. &, and £, and &, are the incident, transmiticd and reficcted field amplitudes
respeclively.
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The second term in (2 a) gives a fecedback contribution that, as we shall sce, is essential
for the risc of bistability.

Let us call mg, the angular frequency of the monochromatic incident ficld and
kg =p/c the corresponding wave veclor. Now, ey, is also the central frequency of the
electric field inside the cavity and thereforc it is suitable to put it in evidence by writing

A0z, 0= Bz, Neap{ — ifost —ko2)] + E*z, Nexp{ + i{wof — ko2)]

. (K]
Sl |E . E, _—
{ﬁr}m = {E,}“’“"' — i)+ {E? }(l’]exp(lw,,h.

whete Elz, 1) varics in space and time much mose slowly than the exponential factor,
and is thereforc calied the slowly rarying emvelope of the electric field. Note that
contrary to &, which is real by definition, the envelope E is in general complex. The
incident fiekd £, has been assumed rcal and positive lor definiteness. If we now
substitute {J) into (2 a), after some calculalion we obtain

E(0.N= JITHE, + Rexpl—idgE(L.1 — AN 2h
where the cavity detuning parameter &, is given by

i, — By

=.r 4
¥ 4

dg
with w,_ being any of the cavity frequencies; for definileness, we consider the cavity
frequency that is nearest to the incident frequency wg. Hence in the casc of perfect
resonance belween cavity and incident field one has 8,==0. Another relation that is
cbvious from simple inspection of fig. 4 is the following

Edn=J(T)E(L.1). (5

The relation (2b) can immediately be reinterpreted in terms of transmission of the
empty cavity. In fact, in the steady statc E does not depend on lime and in the casc of an
cmpty cavity one has simply E(0)= E(L} Hence by combining (2 b) and (5) and defining
the incident and transmitted intensitics .

h=El ILi=IEP (6)

one finds after some cakculation the following wetl-known expression for the
transmission J of the cavily

Iy t

h I_-I_-4R sin2Tu . i ”
T? 2

1 we plot 7 as a function of the detuning parameter 5,c/. we obtain the graph of fig. 5

with peaks and valleys. The peaks correspond to the cavity frequencies; that is, the

empty cavity transmits only its own frequencies. The width of each peak is

_ T 8
~ZJR ®
For this reason, k is called the cavity linewidth.

k
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Fig. 5. The transmission of the empty cavily is graphed as a function of the cavity detuning
patameter So0/ % =0, — .

2.3. The atomic system

Although the absorbing sample can consist of molecules as well as atoms, | shall, for
the sake of definiteness, always speak of atoms. In the so-called dipote approximation,
the atom-ficld interaction energy is given by

H,=-94 {9

whese # is the 101al atomic dipole moment {the macroscopic atomic polarization). A
point ol paramount importance is that, even if (9} is linear in the field variable as well in
the atomic variable separately, it is nonlinear in the Lwo variables taken simultancously.
This leature implies the nonlinear character of the atom- field interaction, which in turn
gives rise L0 all the interesting phenomena in the ficld of Quantum Optics, including
OB. )

Exactly as1 did with the electejc field, let me introduce a slowly varying envelope for
the atomic polarization, by writing

Mz, )= Plz, (hexp [ - Hwot — ko2)] + P*(2, N exp[ + Wyt — ko2)]. (1o
In the steady state, one has in general
P=Ex|E), (an

where y is the dielectric susceptibility of the medium, which is proportional to the
absorption cocficient a. For weak fields x can be taken as constant so that P turns out
to be proportional to E. However, in Quantum Optics we consider also intense fields
and in this case P becomes in general a nonlinear function of E, which depends ol course
on the atomic medium. The susceptibility is a complex quantity

I=I¢+i1-- "2)

@
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where the real part g, aflccts the phase of the electric ficld and is responsible for
dispersion, while the imaginary part y, affects the modulus of the eleatric fickd and is
responsibic for absorplion.

A situation that is particularly simple from the theoretical viewpoint is when the
process involves the Iransilion between two encrgy jevels only. In this cise we speak of
swar-ferel atoms (Allca and Eberly 1975), see (ig. 6. We indicale by o, the Bohr transition
frequency o, =(W, — Wilth, where h is Planck’s constant and W, (i=0,1) are the
encrpics of the twa levels. As is well known, the interaction with the clectromagnetic
ficld induces three kinds of processcs: spontancous emission, stimulated emission and
absorption. '

TWO -LEVEL ATOM

1

O]

Fig. 6.

Spontaneous emission occurs when the ficld is in the vacuum state (no photons) and
the atom is in the excited state. With a time censtant which is called the matural lifetime,
the atom decays exponentially to the ground state. The main effect of sponlaneous
emission is that the excited level acquires a finite widih termed its natural linewidh. This
tinewidth s increased by any process, such as collisions between atoms, thai shortens
the lifetime of the excited level. In the following [ shall indicate by y the atomic
linewidth, which ariscs from spontaneous emission and collisions.

Stimutated cmission asiscs when an electromagnetic field with n photons interacts
with the atom in the excited level and as a resalt the atom decays lo the ground state
emitting one photon more. Finally, onc has absorption when the same ficld impinges
on the atom in the ground staie and as a consequence the atom pecforms a iransition to
the upper stale absorbing onc photon.

In the case of the laser, one ‘pumps’ the atomms in order to oblain a siluation of
population inversion in which the upper fevel is more populated than the lower level.
Hence in the laser stimulated emission overcomes absorption. On the contrary, in the
case of OB one does not pump the atoms, the lower level is always more populated, and
hence absorption overcomes stimulaled emission.

Note that in general the atoms need not ali have the same transition frequency. In
fact, there arc iwo main mechanisms that can render the atomic transition frequencies
uncqual. One is the motion of the atoms in gases. In fact, owing 1o the Doppler effect
groups of atoms with different velocity also have different frequencies. The other
mechanism is the presence of impuritics or defects in solids. Hence in general we have
nol a single atomic frequency but a frequency distribution. In this case, | shall indicate
by w, the central frequency of this distribution. The width of the distribution s calied
the inhomogeneous linewidth in contrasl to the homogeneous linewidth y already
discussed. When the inhomogencous linewidih is small with respect to the homo-

gencous onc, the alomic system is said to be homogeneously broadened; otherwise, one
speaks of inhomogeneous broadening. Finally, we observe that the dispersive part x, of
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the susceptibility (urns out 10 be proportional to the atomic detuning parameler A
which is defined by
tr, —rkg

A=
Y

and therefore vanishes when the atomic line is perfectly resonant with the driving ficld
frequency . ;

Uy

3. The physical principles of optical bistability at steady state

For the sake of simplicity 1 shall consider the case of the ring cavity.

Let me indicate by g and p the modulus and the phasc of the electric ficld inside the
sample

Elz,ty= gz, nexp[iplz.1)) (14}
In the sicady state, p and ¢ obey the differential equations
d -
JI: = —apmpde’) {15a)
dy -
P —adrqde®) {15b)

where ¥, and ¥, are propottional ta x, and x, respectively, and are defined insuch a way
that the factars ¢ und @A are put inevidence in the Iwe equations; in particular Lo)=1
The physical interpretation of (15a) is obvious. In fact, in the Limit of smakl fields z, = |
s0 that

Mzy= 0 exp({ —az) (16)

which is the usual Beer's exponential absorption law. Now using (2bl, (5) and (6) one
obtains the Tollowing gencral expression for the transmission of a filled ring cavity:

-;'='.T— e - Tz_ 7
) T T, (- RY 4Ry sin? (8, - Aol an
where
MO}
n= zl
L
plL) (18)

N AlpEQ)ﬂ.' --@‘0]

When the cavity is empty (¥, = 74=0). from (t5) we get n=1 and Ap =0, sa that (17)
reduces to (7). Note also that in the limit ¥, = I, n is equal to exp (L), see equation (16).
The crucial point is that i and A are in general functions of the transmitted intensity,
#t=mnI;) and Ag = Ag(I;). These functions can be explicitly calculated by solving the
differential equations (15a) and (15b) and 1aking (5) and (6) into account. If we
substitute the cxpressions n{f7) and Ap(ly) in (17) and solve equation (£7) with respect
to I, we obtain immediately the explicit expression of fyas a function of I:

‘l=f“|‘]

f= .:.'z{[n(hl-’ R} +4Rnil)sin® [}dq -Av'h';)l]}
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The Runction f is single-valued by definition; however if we plot f {fig. 7(e) and if we
exchange the axes in order to have a graph of I; versus J, (fig. 7(h) we sce that the

inverse function can be multivatued: the corve of 1, versus 1, can be S-shaped, and in
this case we obtain histability.

BISTANILITY

(1)

(hy

L

Fig. 7. Graphs of () incident field intensily as a function of transmitted field intensity and (h)
transmitted field intcnsity as a function of incident ficld intensity.

3.1. Dispersive bistability in a Kerr medium
in a Kerr medium, we have
L=0. Ya=c, 40,07, (19
Hence from equations (18), {15) and {5) we obtain immediately
n=1, Ap=a,—a,l, - 20
where @, = —alLc,, v, =aLAc,/T. Hence using (17) we have

Fi 4R o
F= ,:=(|+f, smzlmﬁu—a.Hﬂz’r]}) @h

if we plot .7 versus I'=a,/, we obtain (fig. 8} a curve that coincides with the emply
cavily graph {7) of F versus 8, (fig. 5), but for a translation by a quantity 5, —a,. The
stationary solutions can be found following a simple graphical procedure devised by
Felber and Marburger {1976). In [act, we must simply intersect our curve with the
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¥ig. B Graphical caleulation of the stationary solution for a Kerr medium. !’ is defined as a, 1
(sec text).

straight line .7 =1/} = I'la,],. whosc slopc is inversely proportional to the incident
intensity. For small 1, one has only onc intersection (line a)). By increasing /, the
intcrsections become three {line b)). which correspond Lo a bistable situation because
the solution in the middle is unstable. Hence if one plots I versus [, one finds a
hysteresis cycle. For larger valucs of 1, one obtains multiple solutions {line c)), which
lead to multistability and multiple hystercsis cycles. When T approaches unily, the
curve [ZI) flaticns and bistability disappears.

12, Absorptive bistahility for zero cavity detuming

Let us now assume that the incident ficld. the atoms and the cavily arc perfectly in
resonance so thal 3, = A =0 (scc equations (4) and (13)). This is a case of purcly
absorptive O8. Henee ot sicady state cquation (2b) reads

BQ) = J(T)E, + RE(L) (22)

and the ficld F is real, i.c. 9 =0, p = E. Now we shall calculate the stationary solution
lollowing a graphical method due to Bonifacio and Lugiato (1978 a). By solving (15 a)
one obtains an expression for E(0) as a function of E(L). Let us assume that this curve
has the shape shown in fig. 9, as in the case of a homogeneously broadened 1wo-level
atomic system. The typical features of this curve for large aL are:

(i) When E0) is small, E(L) is much smalles than E(0) because there is strong
absorption, which foltows Beer's law (16).

(ii) For E(0)large, E(L) is practically equal to E(0} (the medium is transparent). In
fact, for large helds Ex{E?)~0, hence dE/dz 0. This phenomenon is called
saturation of the atomic medium. It arises because the clectric field also
populates the upper level of the (1wo-level) atoms. For strong fickds, the two
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STATIONARY SOLUTIONS

Elo)

E, Eo Ec Ew

Fig. 9. Graphical calculation of the stationary solutions for absorptive OB wilh zero cavity
detuming. The curve represents the transker function of the medinm.

levels become cqually populated, hence the probabilities of stimulated
emission and absorption are also equal, which implies transparency.

(i} Between the sirong absorption and the saturation regions, the curve of F{0)
versus E(L) has an inflection point. The slope R_ of the tangent at the inflection
point is such that 0< R_ < | and depends only on al.

The stationary solulions are obtained by intersecting the curve of fig. 9 with the siraight
line (22) which has a slope R and intercept al E(L)=0¢qual to ./(T)E, Hence for R<R,
there is only one intersection point for all values of E,. For R > R_ there is a range of
values of E, for which onc finds threc intersection points E, < E, < E_. Points E, are
unstable; hence there is a bistable situation. If we plol the steady-state values of
Ey= J(T(¥{L)as a funclion of the incident field E,, we obtain an S-shaped curve which
leads to a hysteresis cycle.

From this analysis we see that bistability arises from the combined action of the
nonlinearity of the transfer lunction of the medium (fig. 9)and the feedback action of the
mirrors (equalion (22)). This action is essential because as one sees [rom fig. 9 there is no
bistability for R =0 (absence of mirrors).

3.3, Steady-stale equation in the mean-field limit
The relation which links the incident and the transmitted ficlds takes a particularly
simple analytical form in the limit of small absorption, small transmissivily and small
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cuvily detuning, when al.«l, T« d,«|. Mathematically, these conditions are
expressed by the limit

aL—0, T-0, 4,=0 4
with
Yt C= g;: constant, =‘s?‘n- constanl.

This is called the ‘mean-field limit” because for al—0 the clectric field becomes uniform
in space, so that its valuc al the outpui face of the atomic sample coincides with its mean
value in space. Note that here the phrase ‘mean-field’ has a different meaning from the
onc used in other ficlds of physics such as the Landau theory of equilibrium phasc
transitions, In the imit (23} onc obtains the following ‘equation of state’, that expresses
the incident intensity as a function of the transmitted inlensity:

L= I {1+ 2C (] +[0- 2CA 1)) (24a)

Let me now briefly comment on the physical meaning ol the limit {23). First, aL -0
means that the interaction between the electric ficld and the atoms becomes very weak.
If we let aL—+$ bui keep T finite, C vanishes and therefore we obtain the empty cavity
solution I = [/(1 +0%). By contrast, if we also lct T—0 the bistability parameter C is
arbitrary and we oblain the nonlinear terms in equation (24) which produce all the
intercsting phenomena. The physical meaning of the limit T—0 is that the mean
lifetime #/cT of the photons in the cavily becomes very long so that the photons
caperience the interaction with the atoms even when Lhis becomes very weak. Finally
the timit 8,0, whilc #=8,/T remains finite, means that the cavity detuning w, — g
must be much smaller than the distance 2xc/ % belween the resonant mode and the
adjacent modes of she cavity (see equation (4)), but on the other hand it must be of the
same order of magnitude as the cavity lincwidth (see equation (8)), otherwisc nothing
could be transmitted. Henee this limit implics that the system operates only with the
cavily mode ncarest 1o resonance with the incident licld (single mode operation).

In the particular case of a homogencousty broadened, (wo-level atomic sysicm
equation (24.a) rcads explicitlly

142 o P I &
L=l I-i-——'—— _ *-'17 . (25a)
{1+ A%, (1+ A1,

where I_is the so-called ‘saturalion intensity’ of the atomic medium, which depends on
ihe atomic linewidth and on the dipole moment of the transition between the two levels.

On the hasis of equalions (24a) and (25a) we can now discuss the physical
mechanisms which give risc to hysteresis in absorptive and dispersive OB. In
the absorptive case ({A=0), let us consider for simplicity the resonanl siluation
=0 {1, = m,). Hence equations (24a) and (25 a) become respectively

L=5L11+ 201 )P (24b)
2C )3
L=k H’*"‘, (25b)
1
I+’

.
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For small incident intensity, the transmission is small because of the presence of the
absorber. Most of the incident light is reflected by the cavity. Increasing the incident
field, the absorber begins lo saturate. By decreasing absorption, this in turn increases
the electric field which again increases the saturation and so on, until the absorber
becomes transparent so that I, ~ I, and the system switches to the upper branch of the
hysteresis cycle. On the other hand, when the system is in the higher transmission
branch and the incident intensity is decreased, the field internal to the cavity is already
strong enough to maintain the absorber saturated and therefore the transmitied light
switches down at an incident intensity lower than that necessary to switch up, thereby
producing hysteresis. '

In the case of purely dispersive bistability the mechanism is quite different (Gibbs
et al. 1976). In this situation, equation (24 a) reduces to

h=1{1+[0-2CAX (1%, (24¢)

In the case of the emply cavily {C=0), the transmission is low because the cavity
frequency w, is detuned from the incident frequency w,,. ITin the filled cavity the atomic
and cavity detunings have the same sign, increasing the incident field (and hence the
nonlinear refractive index refated to x,) changes the effective optical length of the cavity
towards resonance. This in turn increases the internal fiedd which further drives the
effective cavity frequency o, = o, — 2CkA¥, towards the incident frequency w, and so
on, until resonance is reached so that 15~ ;. On the other hand, when the system is in
the higher transmission branch and the incident intensity is decreased, the internal field
is already strong enough to maintain resonance, which again produces hysteresis.

1.4. Covperative effects and first-order phase transition onalogy
In this section, we locus our attention on the case A=0=0. In this situation, by

defining
x= J 'ﬁ y= J ;5 {26)

equation {25b) can be rewritten in terms of the normalized incident and transmitted

ficld amplitades as follows:
C

The ficld internal to the cavity is in general quite different from the incident field,
because there is a reaction field, cooperatively produced by the atoms, which
counteracts the incident one. The nontinear term 2Cx /(1 + x*) arises from the reaction
field and hence from atomic cooperation, which is measured by the parameter C.

For very Iarge x, equation (27) reduces to the empty cavity solution x = y(that is, I+
= I}). The atomic system is saturated, hence the medium is transparent. In this situation
cach atom interacts with the incident field as if the other atoms were not there; thisis the
noncooperative situation and in fact the quantum statistical treatment shows that
atom-atom correlations are negligible.

On the other hand for small x equation (27) reduces {o y=(2C + |)x which is again
linear. Here the lincarity arises simply from the fact that for small driving field the
response of the system is linear as usual. In this situation the atomic system is
unsaturated; for large C the atomic cooperation is dominant and one has relevant
atom-atom correlations.

Optical bistability L1

Optical Bistability, a phenomenon which occurs in a system driven far from thermal
equilibrium by the external ficld, bears an immediate analogy with first-order phase
transitions in equilibrium systems. In fact, the curves y(x) obtained by varying C are
a2nalogous to the Van der Waals curves for the liquid-vapour phase transition, with »nx
and C playing the role of pressure, volume and temperature respectively (fig. 10). For
C<4, y is a monotonic function of x, so that there is no bistability but only the
possibility of transistor action (compare fig. 2(b)). For C =4 (critical curve) the graph
has an inflection point with horizontal tangent. Finally for C > 4 the curve develops a
maximum and a minimum, which corresponds 10 bistability. In fact, for Yu<¥<Vu
(fig. 10) one finds three stationary solutions x, < x, < X, and solutions x, are unsiable,
Hence by exchanging the axes x and y we immediately obtain the hysteresis cycle of
transmitted versus incident light. Since atomic cooperation is relevant in the states X,
and negligible in the states x, we shall call x, ‘cooperative stationary state’ and x ‘one
atom stationary state’ (Bonifacio and Lugiate 1976).

When in a two-leve! atomic system the upper level has a nonvanishing population,
the system emits Muorescent light (spontancous emission) in all directions and the total
fluorescent intensity 1, is proportional to the population of the upper level. One can
show that when the system is in the one-atom branch I, is, as usual, propottional to the
number of atoms. On the contrary, when the system is in the cooperative branch, Iy
scales in an anomalous way, namely I, turns out to be inversely proportional to the
number of atoms. This is a clear manifestation of the cooperative behaviour of the
atoms.

The analogy of OB with first-order phase transitions will be further illustrated in
Section §, in connection with the quantum statistical treatment of OB.

MATABILITY PARAMETER C

Fig. 10.  Plot of the mean-feld state equation (27) for purely absorplive bistability with # =0, for
different values of the bistability psrameter C.
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4. Transient behaviowr

Up to this point, we have considered only the stationary behaviour of the system.
The steady-staic hysieresis cycle of OB can be experimentally observed by sweeping the
incident Biekd back and forth in an extremely slow (adiabatic) fashion, in such a way that
the system can continuously adapt itself 1o each new value of the incident field.

In this section, we consider the transient approach of the system to the sieady state.
This approach is ruled by its characteristic lime comstants. ln the case of a
homogeneously broadened two-level sysiem, the atomic time constants are the inverse
of the atomic linewidth y and the relaxation time of the population difference between
the lower and the upper level. In the absence of Soljisions or when the collisions are
inelastic the population refaxation time is onc half the inverse of the atomic linewidth.
Otherwise it is more than onc half by an amount which is proportional to the elastic
collision rate. The last characteristic time of the system is the cavity relaxation time. In
fact, when we inject a coherent field this builds up in the cavity in a time equai to the
inverse of the cavity lindewidth k (sec equation (8)).

_ Letusnow restrict ourselves to the purcly absorptive case A = 0=0in the mean ficld
limit conditions aL« I, T « 1. Furthermore, let us assume that the atomic relaxation
times are much shorier than the cavity relaxation time. In this situation, the dynamics
of the system is ruled by the following equation for Lhe transmitted ficld amplitude

(26)
dx 2Cx
a‘-"‘(”“"‘m') o

and hence is governed by the cavity relaxation time k™ '. Clearly, in the steady state
{dx/d1 =0} one recovers the state equation (27)

An intuitive picture of the behaviour of the system can be obtained by rewriting
cquation (28) in this compact form:

_dx dV{x}
k 'Ic ~dx (29a)
2C
—Kix}= J‘dx (y—x--i-_'_—:,)
(29b)

x
=yx --2--—C|n{l +x3).

In this way, (28) becomes identical to the equation that rules the overdamped one-
dimensional motion of a classical particle. In fact, let us consider a particic of mass m
that moves in a potential ¥ and is subjected lo friction with friction constant f. Tis
equation of motion is

md_:.x. + f dl = — ‘.!_V

d? T dt dx

When fis large enough, one can neglect the inertial term md*x/dt? and hence (30) takes
the form of (29a).

By definition, the extrema of the ‘potential’ Fy(x) defincd by (29 b) coincide with the
stationary solutions. The shape of ¥,(x) depends on the incident field y (fg. 11). For
those values of y for which we have only one stationary solution £, the potcntial has a

(30)
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Fig. 11. Theshape of the potential V(x) deponds on the value of the normalized incident fickd y.
(a)y,, changed to & value » yy; {b) ¥, changed to & value <y, and >y, (¢} y changed to
critical value just equal 10 ¥y
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single minimum at x = £ (fig. 1(a)). When, instead, we have three siationary solutions
x<x,<x, (ig 10) ¥, has two minima for x=x, x=x, and onc maximum
corresponding 1o the unstable stationary solution x=x, (fig. 11(b)). Let us now
consider the following experiment. Let us assume (hat initially the system is in & steady
stale with zero external field, so that x{0)=0. At this point, we abruptly switch the
incident light on to some opcrating value y,, Inrger than the upper bistability threshold
Pra(see fig. 10). Hence the transmitied field approaches the stationary value £ in the high
transmission branch corresponding to the value y,, of the incident ficld. Equation (28)
can be solved analytically, and gives the picture shown in fig. 12. Clearly, the approach
shows a kind of “lcthargy’, and the time the system takes to reach steady state becomes
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Fig 12.  Time evolution of the transmitted fleld showing lethargy’ and critical llowingdo_wn. C
has the value 20 and (a) y,,=22; (5) Fop =211, €) You=21-04; (d) y,, =214, Time is
expressed in units !, The value of y,, 15 210264,

longer and longer as y,, approaches y,, from above and diverges for Yoo~ ¥u. This
behaviour is called ‘critical slowing down' and has been experimentially obscrved
(Garmire &1 al. 1979, Barbarino #t al. 1982). This phenomenon can be intuitively
understood on the basis of equation (29 a). In fact, when y,, is only slightly larger than
Yw the potential V,__ presents a flat part (fig. 11 (c)) that the system takes a long time to
cover. As y,, approaches yy, this part becomes flatter and flatter (in fact, for Yop=Du the
curve ¥,_(x} has an inflection point with horizontal tangent) and hence the time of
approach to steady state becomes longer and fonger.

This analysis shows that owing to the critical stowing down, which arises from the
nonlinearity of the dynamics of the system, the time of approach to the stationary state
can be much longer than the relaxation times of the system. This implies that, in order
to observe the steady-state hysteresis cycle, the incident field must be swept back and
forth in a time that is 100 to 1000 times longer than the largest characteristic time in
play. I the incident field intensity is swept more rapidly, the cycle turns out to be
rounded and the transitions from the lower to the upper branch and vice versa are no
longer discontinuous (Weyer ef al. 1981),

5. Fluctuifions N

The theory 1 have described so far is completely deterministic. In fact, it is based on
differential equations, so that once given the initial conditions the following time
evolution is univocally determined. However, in such a treatment we neglect the
fiuctuations that are present in this as in all macroscopic systems. In fact, Ructuations
are a manifestation of the microscopic structure that underfies a macroscopic sysiem.
We can control the macroscopic variables of the system, but we cannot control the
microscopic variables which make themselves manifest just via the fluctuations, the
uncontroliable noise of the system.
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In the case of a bistable system, the analysis of luctuations is particularly important
because noise can induce the system to perform spontaneous and random jumps from
one to the other branch of the hysteresis cycle. Hence the two branches are not
absolutely stable but only metastable,

Of course, this phenomenon is an undesired effect because if we use our system as a
memory clement, clearly the memory is lost as soon as the system jumps. On the
contrary, the operating value of the incident intensity must be chosen in such a way that
the jumping probability is minimal. This corresponds 1o the so-called ‘holding
intensity” of the system (see fig, 3). In OB noise can have three different origins:

{i) it can be external noise, e.g. noise coming from the fuctuations of the incident
field;
(i) it can be thermal noise;

{iii) it can be ‘intrinsic’ or ‘quantum’ noise, originating from the intrinsic quantum
nature of the system. Roughly speaking, intrinsic noise comes from sponta-
neous emission,

In order to take fluctuations into account, one must give a statistical description, in
which the state of the sysiem is not assigned by simply giving a number (the value of the
clectric field at-time 1), but by giving a whole probability distribution (the probability
distribution of the electric field at time {). The time evolution of this distribution is
governed by a suitable equation, called the Fokker—Planck equation. It is beyond the
scope of this paper to discuss this equation here; we only mention that the Fokker-
Planck equation contains onc parameter in addition to those which already sppear in
the fluctuationless theory. This parameter, ¢, which is inversely proportionsd to the
volume of the system, measures the ‘strength’ of the fluctuations and therefore we shall
call it the ‘Auctuation parameter’. Let us now describe qualitatively the results of the
statistical treatment, obtained for A=0=0, in the mean fielM fimit oL « 1, T«1 and
assuming (as in Section 4} that the atomic relaxation times are much shorter than the
field relaxation time. We indicate by P(x, 1) the probability distribution of the electric
field at time ¢ so that Pyx,1)dx is the probability that at time ¢ the normalized
transmitted field amplitude (26) has a value between x and x +dx. Hence one has the
normaliation condition

rdxr(x)=l.
]

For t-sco, Px, 1) approaches a stationary probability distribution P {x) which, since P
is positive, can always be written in the following exponential form:
™ -

P.tx)-up(—%‘i’) 6

The function U (x), defined in this way, plays the role of a generalized free energyin this
system, which lies far from thermal equilibrium, and aflows us to establish a connection
with the Landau theory of equilibrium phase transitions, exactly as was done for the
laser by Degiorgio and Scully (1970)and Graham and Haken (1970). When the thermal
and external noise dominates the quantum noise, the free energy U, turns out to
coincide with the potential ¥, discussed in previous section. Otherwise U, is different
from ¥, However, the extfema (minima and maxima) of both functions always
correspond to the stationary solwtions x, <Xy <x, of the fluctuationless theory {sce
fig. 10). What makes U, in general different from ¥, is the depth of the two minima {sce
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fig. 11(b)), which is an important feature because it determines the relative degree of
stability of the two states of the bistable system. The decper the minimum of U, the
more stable is the stationary state which corresponds to that minimum. Using (31) we
can rephrase all of this in terms of probabilities instead of degree of stability. In fact, the
minima of the gencralized free energy U, comespond to peaks, of the stationary
probability distribution. The deeper a minimum, the higher is the corresponding peak.
Hence more stable is equivalent to more probable. For those values of y for which the
fluctuationless theory gives only one stationary solution %, the probability distribution
P.(x) has a single peak at x= % (fig. 13(a)). On the pther hand, when the fluctuationless
theory gives three stationary solutions x, < Xy, < X, P,{x) has iwo peaks for x=x, and
x=x, and onc local minimum corresponding 10 the unstable siate x=x, {hig. 13(b).

The fluctuation parameter g governs the width of the peaks; the smaller the value of
g the narrower are the peaks. When g is small, the two peaks have comparable size only
in a very small range of values of the normalized incident field y in the bistable region
Y < ¥ < Y (fig. 10), whereas in ail the remaining part of this region the peak at x=1x, is
dominant over the one at x =X, OT vice versa.

Using the probability distribution P,(x), onc can calculate the mean value {xyol
the transmitied ficld defined as follows:

-
{xy= I dx xP{x). (32)
']
It is interesting to plot {x) as a function of the incident field y, and compare this curve

with the S-shaped curve given by the fluctuationless theory. In fig. 14. we sec the two
curves for C= 20, ¢=10"? when the quantum noisc is ncgligible with respect to the

MONOSTAME CASE

Yy o
X
T . (@)
X
METABLE CASE
Uy L .
Xy Xy Mg
X ®
X, X K

Fig.13. Shape cfthe gencralized free energy U {x) and of the stationary probability distribution
‘ P.Ax) in (a) the monostablc case and (b) the bistable case.
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Fig. 14. Case of negligible quantum noise. The S-shaped curve of the fluctuationless theory is
compared 10 the curve of the mean valuc (x) of the transmitied field.

thermal and external noise, 3o that U (x) = ¥(x}. The mean value coincides with one of
the two branches of the S-shaped bistability curve everywhere, except in a small
“‘ransition region' in which (x) passes from the lower to the higher branch. On the scale
of this drawing, the passage is so rapid that it scems a discontinuous jump. Actually, by
using an expanded scale in y one realizes that the transilion is contimious, and becomes
discontinuous only in the infinite volume limit, in which g—0. The shape of the curve of
¢x) shown in fig. 14 can be understood by realizing that it is only in the transition
region that the two peaks of the distribution function have comparable size. For values
ol y below (above) the transition region the peak at x=x{x=x,) is absolutely
dominant over the other, and therefore the mean value practically coincides with
x=xfx=x.) Figure 14 immediately reminds us of the Maxwell ruie of the first-order
cquilibrium phase transitions. In fact, onc can prove that the transition region cuts the
S-shaped curve in such a way that onc obtains twa lobes of equal area. This is no longer
true when the intrinsic quastum fluctuations sre not negligible. In this case, one obtains
a picture quile similar to that of fig. 14, but with a ‘generalized Maxwell rule’ different
from the usual one (fig. 1 5). This feature arises from the fact that quantum fluctuations
depend on the valuc of the electric ficld, whereas thermal and external fluctuations do
not. Similar deviations from the usual Maxwell ruke have also been found in other
systems far from thermal equilibrium, for example in chemical reactions.

AL this point, it is important to stress that the whole quantum statistical treatment
we have described up to now is purely static: it holds in the asymplotic long-time limit.
Consider a value of the incident field y which lies in the bistable domain y,_ < y <y, but
on the right of the transition region. If our system is initially in the low transmission
stale, we know that if we wail long enough the system will perform a transition to the
more stable high transmission state that corresponds to the same value of the incident
field. The crucial question is how long the system takes on the average to make this
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Fig. 15. Same as fig. 14, but with quanium noise dominant over external and thermal noise.

transition. This question can be answered by following a method due to Kramers (1940)
and the result is illustrated in fig. 16.

Astume that initially the system is at the bottom of the lefi-hand well of the frec
enetgy, which corresponds to the low transmission state, In order to reach the bottom
of the other more stable well, the sysiem must overcome the barrier AU which in this
problem plays a role similar to that of the activation energy in chemical reactions. The
system can overcome this barrier thanks to some suitably large fluctuation. The

GENERALIZED FREE ENERGY
]

Fig. 16 In order to pass from the lower transmission state (lek wel) to the higher transmission
state, the system must overcome the barrier AU,
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Kramers procedure shows that the average transition time t,y is proportional to the

following expression
Ay cxp(éaq) 33

Now, when the size of the system is of the order of a centimetre or more, provided the
temperature is not too high and the external noise is not large the parameter ¢ turns out
to be small, say smaller than 001 or 0001. In this case the transition time is
astronomical and the stationary states can be considered as absolutely stable from a
practical viewpoint, even il strictly speaking they are metastable. On the other hand,
when the externa! noise increases or the size of the system decreases so that the total
number of atoms is on the order of 1000, the time t,, shortens and the influence of
fluctuations becomes much more crucial. Note that from a practical viewpoint the
problem of constructing miniaturized bistable devices is of outstanding importance in
order 1o reach the ultimate goal of an optical computer (see Section 7).

To end this section, let me mention that fluctuations determine the spectrum of
transmitted light, the spectrum of Ruorescent light emitted by the system in all
directions and the so-called photon statistics of these fields. For a description of these
points, 1 refer the reader to my more detailed article (Lugiato 1983),

6. Self-pulsing awd chaotic behaviour

Now let us come back to the fuctuationless theory, by assuming that the
fuctuation paramcter is 5o small that the effects of Auctuations are negligible. In this
section, we shall discuss the matter of instabilities in optical bistability. As usual, a
stationary state (or a stationary regime} is said to be unstable when, after displacing the
system a little from this state, the system instead of returning to it goes further from it.
An unstable state is not physically meaningful because even the slightest perturbation
removes the system from it.

Now, optical bistability itsclf originates from the rise of an instability. In fact,
uppro!lching the upper bistability threshold y=y,, from below (see fig. 10) the low
transmission state becomes unstable and just for this reason the system jumps to the
high transmission branch. The same happens to the high transmission branch when y
approaches the lower bistability threshold y=y,,.

On the other hand, it is well known (Haken 1977, Nicolis and Prigogine [977) that
in nonlinear systems one can find a whole sequence of instabilities. First the stationary
state becomes unstable and the sysiem approaches another steady state, then the new
stationary statc becomes itsell unstable, and so on. This sequence is found by varying
the external parameters of the system, that we can control; in OB, the control
parameiers are the incident ficld and the length of the cavity. Typically, after a few
instabilities the system no longer possesses any stationary state, and in this case it
exhibits an oscillatory behaviour: one has the emergence of spontaneous pulsations in
the system. This oscillatory behaviour can be regular, or perfectly periodic in time, as
well as completely irregular and aperiodic, in which case one speaks of chaotic or
turbulent behaviour (see fig. 17).

Two points are of basic importance;

(i) this oscillatory behaviour is not due to external manipulation of the system: it
arises when all the parameters of the systems are kept constant. tn OB one can

G
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PERIOOIC SELF-PULEING BEHAVIOUR

e

Fig. 17. (a) Regular osciliatory bebaviour. (b) Chaotic cscillatory behaviour.

casily obtain a pulsed bebaviour by varying periodically the kength of the cavity
(for cxample by using s piczo-electric crystal). This is of course a trivial fact. On
the other hand, as we shall show, we can obtain pulsed behaviour even keeping
all the external paramesers (cavity length, incident ficld intensity) constant. [n
this case, the pulsations are spontancously produced by the self-organization of
the system itself and for this reason this behaviour is called self-pulsing.

(i} In the chaotic case (fig. 17(b), if we Jook at the time plot this immediately
reminds us of the irregularitics that arise as a consequence of the noisc of the
system. However, we can find chaotic behaviour even when completely
neglecting noise, that is, in the framework of & deterministic (and hence
fluctuationless) theory. For this reason, this behaviour is called deterministic
chaos. '

Chaotic behaviour and the various routes that léad the system to chaos have been
the object of very active rescarch in recent years, even if we are still far from having a
complete classification. The most popular and decply investigated route tochaos is the
so-called ‘period doubling roule’ (Grossmann and Thomae 1977, Feigenbaum 1978,
1979), which is illustrated in fig. 18. We start with the system in a stable regular
oscillatory state with a fundamental frequency . By increasing the control paramelier
a, at some point this statc becomes unstable, and the system approaches a new
oscillatory state, which has a doubled period. Note that from the viewpoint of the
Fourier transform, that is, of the spectrum, period doubling corresponds to the
generation of the subharmonic @f2. By further increasing a, the new statc becomes
unstable in turn and one has again period doubling, a period of length 4 with respect to
the initial period. And 30 on: by a sequence of instabilities one finds period 8, 16, 32,....
The sequence of values of the control parameter for which one has period doubling get
closer and closer according to a geometric law. In fact, the ratio between the interval in
which onc has period 2 and the interval in which the period is 2** ! is 4-6692 ... This
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number is universal: it holds for all period doubling sequences. Hence quite rapidly the
sequence reaches a cumulation point, beyond which the sysiem exhibits chaotic
behaviour. In the chaotic domais, the spectrum is no longer given by single lines but
has a continuous background. In some systems, the period doubling sequence is found
by decreasing the control parameter instcad of increasing it.

PEMICD DOUBLING ROUTE TO CHAOS

PERIOD 1 renion 2 2?2

' ' LLL-..EH&: a

Fig. 18. As the control parameter a is increased, the system undergocs & cascade of period
doubling instabilitics, which leads finaily to chaocs.

As 1 shall show in this section, in OB we can find both periodic and chaotic sell-
pulsing. I shall distinguish two cases according to the mechanism that gives rise to the
instability of the stationary state. As | said in Section 2, the cavity has infinite
frequencics(modes). Accordingly, the behaviour of the sysiem can be desctibed in terms
of mode amplitudes. In the first case, it is the amplitude of the mode resonant with the
incident ficld that goes unstable. In the second case, the instability arises from the off-
resonance modes. ’

6.1. Resonant mode instability *

This type of instability can arise only in the dispersive casc (Ikeda and Akimoto
1982, Lugiato et al. 1982), in which a sizable portion of the high Lransmission branch
becomes unstabie (see fig. 19). Roughly speaking, the mechanism is the lollowing. In the
dispersive situation there is a mismaich between the atomic frequency and the incident
field frequency. When this mismatch is large enough, the system is no longer able to
adapt itsell 10 the incident frequency and therefore the stationary stale becomes
unstable and the sysiem begins to oscillate. In this situation, the transmitted light is no
longer stationary in lime bul is given by an undamped sequence of pulscs {sell-pulsing).
From a practical viewpoint, this behaviour is very interesting because it suggests a
device 1o convert coherent stationary light into cohcrent pulsed light (fig. 20). In this
connection, se¢ Bonifacio and Lugiato (1978 b) and McCall (1978).

Let us now look at what happens when the system jumps from the lower to the
higher iransmission branch. Since the steady state in the bigher branch is already
unstable, we find immediatkly & regular sequence of oscillations (fig. 21 (a)). Another
way of looking at the same behaviour is 1o consider the planc of the real and imaginary
part of the normalized transmitted field. In this case, the trajectory in this planc is &
simple limit cycle (fig. 21 (b)). If we now decrease the incident field y, which is our control
parameter, we find the appearance of a double period (fig. 21 (), which corresponds to
the trajectory shown in fig. 21 (d). This trajectory arises from a kind of fission of the
limit cycle into two distinct parts. From fig. 21 () we can also scc why one has period
doubling. In fact, we sec that afier one loop the system fails to come back to the initial
condition, whereas it succeeds in doing 30 after two loops; hence the period doubles. A
further decrease of y leads to the appearance of period four (figs. 21 (e) and (f)) and s0 on.
Finally, we enter inlo the chaotic domain (sce figs. 19 and 22(a) and (b)), in which the
time trace no longer shows any precisc periodicity. :
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STEADY-STATE TAANSMISSION

A
1500 y

1
500

Fig. 19. The horizontal and vertical sxes are tabelled by the amplitude y and x of the incident
and transmitted ficlds, respectively. The dashed segments denote the instability range that
feads to undamped oscillations. The arrows mark the region where chaotic behaviour is
found. {(C =05, A=174, 0=140)

B g,

Fig. 0. Converter of c.w. coherent light into pulsed coherent light.
'

6.2. Of-resonance mode instability

This phenomenon srises when the two cavity modes, adjacent to the resonant
mode, fall within the absorption line of the atomic medium (fig. 23). This condition can
be fulfilled by making the cavity long enough. In this situation, under suitable
conditions the adjacent mode amplitudes go unstable, whereas the resonant mode
remains stable.

Let us consider first the simplest absorptive case A=0=0, As we said before, the
externally controllable parameters of our system are the incident ficld y and the total
length of the ring cavity . Instead of y and % we can usc x (which is linked 1o yby
equation (27)) and d/y = 2xc/ <y, which is equal to the frequency difference between the
adjacent modes and the resonant mode (fig. 23)divided by the atomic linewidth y.Infig.
24 we see the plane of the control pasameters d&/y and x. The stationary state in the high
transmission branch becomes unstable when the operating point in this plane lies in the
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Regular sell-pulsing

Fig. 21.  Seif-puksing caciflations and the corresponding representation in the plane of the real
and imaginary parts of the normalized electric field (a, b) single period; (e, d) doubled
period; {e, /) quadrupled period. Parameters asin fig. 19. The values of the external fickt are
y=2000. 1350, 1225 for the (Nree sets of solutions.

shaded part, which we shall therefore call the instabitity region. The mechanism which
produces the instability in this case is different from the onc seen in the previous
subsection. It is the same mechanism that one finds in so-called saturation spectroscopy
{(Gronchi ez al. 1981). In fact, let us consider an atomic sample without any cavity (fig.
25), and let us illuminate it by a strong coherent stationary fickd, which saturates the
medium. Simultancously, let us irradiate the same sample by a weak probe beam. One
finds that for suitable ranges of values of the difference between the frequencies of the
probe and of the saturating ficld, the probe beam experiences not absorption but
amplification (gain). The same happens in our sysicm: the resonant cavity mode
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Chaolic seli-puising

Fig. 22. Typical chaolic sell-pulsing behaviour, represented as in fig. 21, for y=950 and the
remaining paramelers as in fig. 19.

ATOMIC ABSORPTION LINE

Fig.23. Toillustrate the case where the two cavily modes, adjacent,to that nearest to resonance
with the incident field, lie within the absorption line of the atomic medium. 4 is the
(requency difference between the adjacent modes and the resonant mode.

saturates the medium, whik: the adjacent modes work as probe ficlds. Under suitable
conditions, they experience gain and when this gain becomes larger than the losses the
adjacent modes go unstable. Henee in this case with respect (o the adjacent modes our
absorbing system behaves like a laser (amplifying system), but without any population
inversion.
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Fig. 24. Instability region in the plane of the control parameiers dfy = 2xc/ %y and x.

SATURATING
P M _
l .,

Fig. 25. Typical eaperiment in saturation spectroscapy.

PROBE
FIELD

When the steady state in the higher branch is unsiable, the system can exhibit two
different kinds of behaviours (Bonifacio and Lugiato 1978 b, Bonifacio et al. 1979). In the
first case, the system approaches a sell-pulsing behaviour, again behaving as a
converter of stationary light into pulsed. As we see from fig. 26(a), if the system is
initially slightly displaced from the steady state, it begins to show oscillations. The
oscillation amplitude increascs with time in an exponential way, until a stationary
regime is reached, in which the envelope of the oscillations is perfectly horizontal. Tn
shis case, the frequency of the oscillations in equal to &, which corresponds to a period
equal to the transit time #/c of the photons in the cavity. The second possibility is that
the system simply ‘precipitates’ to the low transmission state that corresponds 1o the same
value of the incident ficld. En fact, the lower state is always stable. This possibility is
illustrated in fig. 26(b), from which we scc that the oscillations are first amplified but
finally dic away, the system precipitating 1o the Jow transmission state.
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SELF-PULSING PRECIPITATION

RN oy

TIME

Low frenamission
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Fig. 26. x,, is Lhe value of the normatized transmitted fiel in the stcady state corresponding to
the unstable higher transmission stale.

In order Lo treat analytically this sell-pulsing behaviour, which is 2 many-mode
phenomenon because it involves both the resonant and the adjacent modes, we
developed a formalism called ‘dressed mode theory of optical bistability’ (see Benza and
Lugiato 1982, Lugiato ef al. 1983 and references quoted therein). This is a development
of Haken's theory of generalized Ginzburg- Landau equations for phase transition-like
phenomena in open systems far from thermal equilibrium (Haken 1975a, b). This
treatment allows us to describe the behaviour of the system in terms of a simple two-
dimensional phase space. The two variables are p, the half-amplitude of the oscillations,
and o, the difference between the mean vatue of the oscillations and the unstable steady-
state value x,, (sec fig. 27). The upper and lower envelopes of the oscillations x,,,..(f)
and x,,...(f) are simply obtained as follows:

x:,.,(l)=x.+o(t)tp(t) (34

hence the time evolution can be equivalently described in terms of the oscillation
envelope or of the trajectory in the phase plane (p, o).

]
SELF-PULSING VARIABLES

Fig. 27. Definition of the variables p and o,

Using the dressed mode theory, we calculated the self-pulsing state in all its domain
of existence, which is shown in fig. 28 and turns out to be very much larger than the

@
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DOMAI OF EXISTENCE OF THE SELF-PULSING STATE

Xem 0 L) ¢

Fig. 28. The whole figure shows the domain of existence of the itable self-pulsing solution
for C=20, A=8=0. Instability region, ABE; precipitation region, ADE; soft excitation
domain, ABD, and hard excitation domain, BCC'D.

instability regiont ABE. It can be subdivided into the ‘solt excitation’ domain ABD and
a *hard excilation’ domain BOC'D, while the region ADE is the precipitation domain.
In the first domain, the self-pulsing state is stable whereas the stationary state is
unstable. Hence a small initial deviation from stesdy state (soft excitation) is enough to
let the system approach the sclf-pulsing state. By contrast, in the sccond domain one
has the simultancous presence of a stationary and a self-pulsing state, both stable.
Which one of the iwo states is approached by the system is determined by the initial
conditidn. If the initial deviation from steady state is small, the system simply returns to
the stationary state itself. In order to reach the sell-pulsing state it is necessary to
produce a large enough initial deviation (rom the steady state (hard excitation).
This situation Jeads to the appearance of hysteresis cycles of a new type. Figure 29
shows the hall amplitude of the oecillations for long times p(t = c0) when we vary the
incident ficld along the horizontal line in fig. 28. Upon entering the instability region
from the left, a stable sclf-pulsing:siate arisen. As the incident field is increased, the
oscillation amplitude increases and in fact it continues to do so even outside the
instability region, until the system returns discontinuously to the stationary state in the
high transmission branch. If one now docresses the amplitude of the incident field, the
system conlinues to operate in the siationary high transmission branch until we reach
the right boundary of the instability region, where it jumps discontinuously to the self-
pulsing regime with a finite amplitude. .
Figure 29 can be viewed as representing a second-order phase transition together
with a first-order one, the former on the lefl boundary of the instability domain, the
Iatter tied to the hysteresis cycle that beging at the right boundary of this domain. It is
worth stressing that in this case, the bistability involves stationary and self-pulsing
states and not just stationary states as in the operation of usual bistablc systems. This
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CYCLE WATH C W. AND PULSING STATES

L R

INSTABILITY RANGE

Fig.29. The hall-umplitude of the oscillations in the self-pulsing state is plotted as a function of
the stationary value x of the transmitied field in the high transmission branch for C=20,
d/y =8 (line & of fig. 1). Full (broken) arrows indicate the behaviour of the system when the
incident ficld is decreased (increased).

hysteresis cycle enriches considerably the phenomenology of OB, especially because
the pew self-pulsing branch is accessible from the usual steady states by suitably
varying the external parameters.

An interesting situation occurs also in the neighbourhood of the line AD (fig. 28)
that separates the self-pulsing from the precipitation domains. In order to describe this
behaviour, let us consider s continuous variation of the cavity length along the line b of
fig. 28. As we enter the inslability region from above, a stable scif-pulsing state develops
with a continously growing amplitude. On approaching the linc AD (also from above)
the time-dependent envelope begins to develop considerable oscillations (fig. 30(a)).
This behaviour is called ‘breathing’. The breathing paticrn obscrved in our case,
howevet, lasts only a finite amount of time. Figure 30(b) shows the same phenomenon
but from the point of view of Lhe phase-space variables (p, o). The trajectogy in the phase
piane spirals lowards the point corresponding to the self-pulsing state, which behaves
as a stable focus. Crossing the line AD, the focus becomes unstable and thercfore we
have what is usually called a ‘Hopf bifurcation’ (Marsden and McCracken 1976). As is
well known, in & Hopf bifurcation onc has the appearance of a Jimit cycle in the phase
plane. In this case the limit cycle is unstable: it repels trajoctories instead of attracting
them. Hence we have been able to display it only by using a trick, that is, by integrating
the time evolution backwards in time, so that the repeller becomes an attractor. Figure
30(e) and (c) show the backward approach to the limit cycle in the p, o) phase plane,
when the starting point is chosen cither outside (fig. 30 (e)) or inside (fig. 30(c)) the
limiting trajectory. Similarly, figs. 30(d) and (J) show the backward time evolution of
the oscillation envelope of the transmitted field. Now, for long times we have a perfectly
periodic breathing regime in which the envelope marks time as a ‘regular’ clock (but
backwards in time). Of course, an unstable limit cycle cannot be obscrved directly.

Tes

Optical histabilisy 367

BAEATHING AND LINSTABLE LMWIT CYCLE

St il

Fig 30. Envelope breathing and limit cycles in the (p, o) planc for C'= 20 and x = 7. In () and (b),
dfy =449205; in (c), (d), () and (), &y = 492. The limit cycles and the corresponding time-
dependent envelopes have been obtained by integrating the time evolution backwards in
time. The initial conditions pf0), {0} were inside the Emit cycle for (c) and (d) and outside
the limit cycle for () and (/).

6.3. Observation of self-pulsing and chaotic behaviour in dispersive OB

The type of instability described in the previous subsection arises also in the
dispersive situation. In this case, as was shown by keda and co-workers (lkeda 1979,
JTkeda et al. 1980), the system exhibits a self-pulsing behaviour which can be either
periodic with period of the order of twice the cavity transit time &/c and pulses having
a square-wave type shape instead of sinusoidal (fig. 31 (a)), or completely chaotic (fig
31 (b)) Again, the chaotic regime is reached via & period-doubling sequence.

A very important fact is that these behaviours, including ‘optical turbulence (chaos)’
have been experimentally observed {Gibbs er al. 1981). More precisely, this experiment
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PERIODIC SELF-PULSING

Lm (a}
CHADTIC SELF-PULENG

WU WM o
Fig. 31.  Experimental observation of self-pulsing in a hybrid system by Gibbs e¢ al. ( 1981).

was not performed with an all-optical but with a hybrid electro-optm! system which
obeys the same type of time evolution equations (fig. 31).

7. Towsrds n practical sptical blstable device

Optical bistability in all-optical systems has been by now observed in quite s variety
of conditions, which range from radio-waves (Mecicr ez al. 1982) to the visible, from
cavities of more than (0cm to cavities of the order of 1m.

In most experiments the observed bistability is exclusively or mainly of the
dispersive type (Gibbs et al. 1976, Venkatesan and McCali 1977, Bishofberger and Shen
1978, Grischkowski 1978, Grynberg et al. 1980, Sandle and Gallagher 1981). However,
more recently a number of experimental investigations of sbsorptive OB have been
made (Weyer ef al. 1981, Grant and Kimble 1982, Arecchi et ol. 1982, Gozzini et al.
1982).

From a practical viewpoint, the most interesting situation is that of small cavities.
In fact, the description of the ideal optical bistable device which would be the basic
element for the construction of an optical compater, is the following:

(i) Miniaturization, Both the diameter and the length of the cavity should be
smaller than one micron. In this sitwation, the cavity round-trip time is of the
order of 10~* picoseconds.

(i) Fastresponse. Both the switch-up and the switch-down tUme (the time taken to
Jjump from the lower to the upper branch and vice versa) should be of the order
of one picosecond.

(iii) Low energy requirement. The holding intensity should be less than one
mW/pm?,
{iv} The device should operate at room temperature.

These conditions have not been resched up to now, so far as { know; however, they have

been at least approached by using as absorbing matetial semiconductors such as GaAs
(Gibbs et al. 1979 a) or InSh (Miller #¢ al. 1979).
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Fig. 32. Miniaturized all-optical bistable system realized using GaAs by Gibbs et al. (1979 b).

The device constructed at the Bell Telephone Labs {Murray Hill) by Gibbs, McCall
and collaborators consisted of a sample of GaAs, 4-1 pm thick, between two 0-21 ym
Al GaAs layers(fig. 32 (a)). Refective coatings with T =0-! were added. This sysiem was
supported by a 150 um GaAs substrate containing a 1-2 mm diameter etched hole to let
radiation pass through (fig. 32(b)). Optical bistability of the dispersive type was
observed from 5 to 120K lor wavekengths of the order of 08 sum. The holding power
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Fig. 33. Observation of optical bistability in InSb by Miller e of, (1979).
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was about | mW/um? and the switching times were smaller than 40 ns. Recently Gibbs,
McCall and collaborators {Gibbs ¢t of. 1982) obtained bistable operation in GaAs at
room temperature. The nonlinear Fabry- Pérot constructed by Miiler, S. D. Smith and
Johnston using InSb consisted of an uncosted plane-parallel InSb crystat 5 x 5 mm? by
560 um thick, Bistability was observed at SK with a stationary CO laser for
wavelengths of the order of 5 um (fig. 33). The holding intensity was only 15 4W/um?.
Many more details of these systems can be found in Gibbs et al. {1980) and Abraham
and Smith (1982a, b).

To end this paper, | wish 10 observe that histable behaviour has also been predicled
and observed in other all-optical systems that work on the basis of physical principles
different from those described in this article. As al, exampic, [ meation the optical
bistability in reflection at a nonlinear interface predicied by Kaplan (1976) and shown
experimentally by P. Smith, Hermann, Tomlinson and Maloney (1979). Details can be
found in the books edited by Bowden et al. (1981) and by Smith (1981).
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1. IWTRODUCTION

major role in the development of Bynergetics', Optical Bistability,
in particular, has besn a center of attraction bacause of its rich

Actually, the field of quantum optics has uncovered more than one
aystes capable of bistable behavior, such as, for sxampla, the
laser with a saturable absorber’-*, However, the term optical
bistability is now commonly used to identify a wory specific sys-
tam) as such, this will be the focus of our attentiom.

= T0 set the stags for our subsequent discussion, consider the
typical layout of an optically bistable device. A cohsrent, mono-

regime is injected in an optical cavity, such as the Tabry-Perot
shown in Fig. la., The ocavity is adjusted to be TeNBANE OF nearly-
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Fig. 1 (a) Ewpty Pabry-rerot cavity. Ip is the incident intensity;
Ir and Ip are the transmitted and reflected intensities, respectively.
) Transmitted intansity versus incident intensity for an eupty
cavity.

-

resonant with the incident field. Obwiously, when the cavity is
enpty, the intensity Iy = {E;|2 of the tyansmitted field is propor-
tional to the incident intensity Iy = £;? (rig. 1b), and the con-
stant of proportionality depends on the mirror's transmission co-
afficient, on the degres of resonance between the incident radia-
tion and one of the empty cavity modes, as well as, in practice,
on the quality of the optics that makes up the interfercmeter.

The physical effects of; interest for us arise when the cavity
is filled with an absorbing medium, which cam also be resonant or
nearly-resonant with the incident light (Fig. 2a). In this case,
the steady stats behavior of the systam is governed by the paramster

ce n

where 0 is the amplitude linear absorption coefficient por uait

-~ length, L is the longitudinal disension of the atomic sample, and
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rig. 2 (a) Fabry-Perot cavity filled by a nonlinear medium;

{b) Optical transistor opsration: a small sodulation of the input
intensity is amplified in the rangs where the differential gain is
larger than mity; (c) Ristable cperation: the dashed segment with
msgstive slops is unstable; the range I,¢ I < Iy ie bistable.

¥ is the intensity transaission coefficient of the mirror. FPor
small values of C, the steady state transaission curve that relates
the output with the input intensity is single-valued, and gensrally
such that its slope dlg/dIy is smallexr than unity. On increasing
the value of C, & region of the transmission curve develops “dif-
lu.eﬂ.u gain® in the sense that dI,/dIy becomes grester than one
(rig. 2b). Under thess conditions, tha systes works as an optical
transistor becauss a slow intensity modulation imposed on the in-
cidant field gets amplified at the output. If C is increassd even
further, tha steady state transmission curve becomss S5-shaped

{rig. 2c). The sagment with negative slops is unstable, while,
typically (but not always) the uppsr and lower branches are stable.
One can then find a rangs of valuss of the incident intenaity for
which the system displays a bistable character. With this setting,
if we slowly increase the incident intemsity from sero to & value
bsyond the bistable region, and then returs to the starting point,

@

the system traces a hysteresis cycls with low and high traasaissiom
branchas. The two levels of transsission to the logical
stataes "0" and *1", thus suggesting the possibility that bistabls
davices may svantually form ths heart of optical memories.

L]

The threshold valus of the parameter C for which bistable
action develops depends on saveral physical parasstars such as
the degree of rssonance betwesn the incident field, the nonlissar
medium and the cavity, the atomic linewidth, the typs of resonator
and 850 on. As we shall ses, ths smergeace of bistable bshavior
is essentially tied to two main imgredients: one is the nonlinsar
mature of the atom-field interactiom, and the othar is the feadback
action of the mirrors.

The existance of or.i.en bistability wvas predicted in 1969 by
Ssoka and collaborators’, but active investigations on this sublect
did not really begin until after the first sxperimental observation
by Gikbhs, ud:a}!. and Venkatesan in a sodium filled Pabry-Perct
intecfaromatar’’. Ehortly thereafter, Bonifacio and Lugiato for-
malatad a ﬂ.fut-prtauph, analytioal description of optical
histability'’ which prompted very active resesrch in two distinct
directicns, the first mainly comcermed with the techaological goal
of producing practical, mimiaturised, room temperature devices, and
the second directed to tha theorstical uaderstandiag of fundamentsal

. Assuss. In fact, the steady state hysteresis cycle of optical bi-

stahility sxhibits striking analogiss to first-order phase trassi-
tions im equilibrium systems. PFurthermore, by ocontrolling the para-
meters of the system, one can induce the smargence of spostansous
palsations in the tranmmitted intsnsity. Depending on the cholos
of tha parameters, ths cutput cacillaticns cas be highly pexiodic
(regular self-pulsing behaviar) or completely irrvegular (chactic
bebavior, or optical turbulamce).

Yor rsasons of space, wa have had to omit many interesting

. dstalls: the reader can retrieve such additional information in
" the reviev papers by Gibbe et al.!l, by Abvahss and smith'?, by

azeochi and Salieril®, by Lugiato'®''® and in the papsrs om optical
wnty containad in Ref. (17). ‘

2. A PRACTICAL ar‘rmr. BISTABLE DEVICE: RECENT ADVANCES

Optical bistability in ali-optical systess has been obsarved
under widely varying conditions and axperimental ssttings, from
aicrowave to visible frequencises, from cavities of macroscopla
size (ssveral tens of centimeters) to miniaturized, aleron-sizsed
wafers. Prom & practical point of view, the most interesting

. gituation concarns the smallest possible cavities. In fact, the

ideal bistsble davice to be used as the basic elemsnt ia a logical

— systam ought to display tha following attributes:



4. Ninlaturization. Both the diamster and the lenyth of
the cavity should be in the micron range. In this case, high packing
density can be achieved while keeping the cross-talk between neigh-
boring units dowm to a negligibls lavel, and at the same time, the
oavity round-trip time is of the order of 10-2 picossconds.

11. Fast response. Both tha switch-up and the switch-down
tims (i.s., the time required for the systes to jump from tha
Jower to the upper branch and viceversa) should be of the order
of one plcosecond, t

211." Low anergy reguirement. In order to minimize the
anergy consumption and the cooling :.qu%r-mtl. the holding
intensity should be less than one mW/um“.

iv. The device should operate at room temperature.

while these stringent conditions have not been entirely satisfied
by the existing prototypes, great progress has besn mads in recent
times using semiconductor materials such as Gans'® and Insb'?, The
situation is likely to improve rapidly evan as thess notes are being
prepared, Ona of the devices comnstructed by Gibbs, McCall and
oollsborators at the Ball Telephons lLaboratories (Murray Hill, NJ)
consisted of a manple of GaAs, with a thickness of 4.1 um, sandwiched
batween two AlGaAs layers {Fig. 3a) and reflecting coatings with a
transaittivity of 10%. This system was supported by a 150 um thick
substrate of GaAs with a hole of 1-2 sm atched on it, to let the
incident radiation through (Fig. 3b). Optical bistability, primarily
dus to tha dispersive component of the medium's index of refraction
was obssrved over a temparature rangs from 5 to 120°K for an inci-
dent wavelength of about 0.8 Um. The holding power of this device
vas about lsW/uw? and the switching times wers smaller than 40 nsec.
More recently, bistable operation at room temperature has been
reported with a GaAs-AlGaAs multiple quantus wel) structure®®.

collaborators'' using InSb consisted of an uncoatad plane-parallel
orystal of dimensions 5x5 sm? by 560 uw. Bistability was obser-
wed at 5°K using as the input source a CO laser with an output
wavelength of about S um (Fig. 4). The holding intensity for this
device vas only 15 pW/umi. Por InSb alse, room temperature bista-
billty has been raported recently®!.

|

The sonlinear Pabry-Perot constructed by Smith, Miller and ’
|

i

3. TEEORY OF OPTICAL BISTABILITY IN A RING CAVITY !

A convenient setting for tha analysis of a bistahle optical
system is a ring cavity becauss the incident light can be forced
to propagate in only one direction. As shown in rig. 5, a sample
of length L and volume V containing N>>1 two-level atoms is placed
in & ring cavity of total length .. The incident field amplitude

LASER
BEAM

(0)

rig. 3 (a) Niniaturized all-optical bistable system; a &fum wvafer
of GaAs is sandwiched between two layers of AlGaAs. (b) Gais sub-
strate with a hole etched in the canter to lst the laser beam through.

s labelled &;, vhile Ty and gy dancte the transmitted and reflec-
tad smplitudes raspectively. The uppar mirrors have a reflectivity
cosfficient R = 1~T while the lowar mirrors are assumed to have
100% reflectivity. We denote by E(z,t) and Piz,t} the electric
field amplitude and the macrovscoplc atomic polarization inside the
resooator. The field obeys the boundary conditions

‘_'.éto.t) = /TE, + & EL,t-At) (¢1]

vhere T is the transmittiyity cosfficient of mirrors 1 and 2 and
At 1s the light transit time from mirror 2 to mirror 1

At = ’% (1)
The second term in By. (2} is responsidle for the feedback mechanism
which, as we mentionsd, is sssential for tha esergence of bistability.
We now let &, and Kg= Giy/C denote the radian frequency and the wave
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rig. 4 Ristadle action in Insb.

wector of the Light field and set

Eis,t) = Bix,t) exp [-1im € - Kz)] ¢+ c.o. {4a)
L2 5

L'} (t) = LJ (t) axp(-i & t) + cl.’c. (4b)

© Ps,t) = Plx,t) _.:p[-:eor. - xoz)] + g.c. (4c)

whers E(z,t} and P{z,t) ars the slowly varying field and polariza-
tion envelopes, respectively. After substituting Eq. (4a} into
. (2), ve cbtain

R(0,8) = /FE ¢+ & o Hog ., t-at) 2"
whars ‘o is the cavity detuning paramster
& -8
§ - 20 - 5

e c/i

Pig. 5 Schematic layout of & ring cavity. tp 'E,. and Ey are the
incident, transmitted and reflected field amplitudes, respectively.

and #: is the smpty cavity resonance which lies nearest to &g (wa
recall that in a ring cavity the eigenfrequencies arxe giveam by
cw/éf, w=1,2,...). 1n addition to 2g., (2'), we have the obvious
relation -

Rplt) = T E(L,t) %)

As the incidant field propagatas through the sample, the medium
reacts back on it. The coupled atom-field dynamics is described
by the so-called Naxwell-Bloch oqmuom". In tha case of homo-
gensously broadened, ‘t-rhvcl. atoaic systams, these squations
taks the form

Akl LEER )
Febro-vaun s ()
=3 (gereare) - v, (0w {7a)

NE



where D is half the population difference of the lower and upper
lavel, U is the modulus of the atomic dipole moment of the atoms,
g is the coupling constant

mo .

s - v " )

Yy and Y, are the longitudinal and transverse atomic relaxation

‘rates, and in particular y, coincides with the atomic linewidth.
The parameter A measurss the atomic detuning '

...-% - ’

A e (9
and @, labels the atomic transition frequency. A controls the
dispersive effects: in particular, for A=0 no dispersios in present
and the bistability effect is called purely absorptive. In the pre-
Ssnce of dispersion, it is common practice to refar to the effect
&8 dispersive bistability, even though the absorptive part of the
atomie polarization may be entiraly nonnegligible.

3.1 STEADY-STATE BENAVIOR IN ABSORPTIVE OPTICAL BISTABILITY
NITE ZERO CAVITY DETUNING:?

This is the simplest situation that ons can ancounter from a

mathematical point of view. When 4=0, Eqs. (7b,c) in steady state
(@/3t = 0) yield :

kix) --:-J%' Fﬂﬁ?

{10)
Dig) = ! 1
2 Wr(m)
whare P{z) is the scaled field amplitude
r(z) « BE(2) (1)
v.I.I'l ~

If we now substitute Bq. (10} into BEq. (7a), the statiomary field
egquation takes the form

ar r ;
r il v an

where 0 is the linear absorption cosfficient par unit length (at
the atomic line center) .

g - MW
. anoy, - C

.

————

@

In terms of the normalized incident and transmitted field y and »
y= lleﬁln‘T‘T. T
x=rL) = an'\“. T

the boundary conditions {2') with 60 =0, can be rewritten in the

14)

- form

P(O) = Ty ¢ Rx 15)

13

and Eg. {12) can be integrated at once with the result ~
£a(P(0)/x) + 3 [#210)-2?] = ar, (e

Finally, on combining Egs. (15) and (16) we obtain the exact rsla-
tion betwean the transmitted field x amd the incident field y

tn [1er (f -1)1 - %i [1er {-} - 1}]2 - 1! - afL, an

Figuré 6 shows the transmission curve x=x{y) for C £ ay/2T=10 and
saveral values of al, and T. An important fsature is that, if T
becosas too large, the bistable behavior disappears. In particular
this is alvays so for Twl, regardless of the values of the othar
system parameters. This result shows that in order to achleva
bistability, one needs not only a nonlinear medium, but also feed-
back action (i.e., good mirrors).

3.2 TER EFPECT OF DISPERSION - KERR NEDIUN
Consider first the case of an smpty cavity in steady state,

Secause in this cass we have E{0)=E{L}=Ep/VT, Eq. (2') yields the
well known Alry transmission function

-1
L] .
jz_:—’--[lo-‘% sin? -2‘!] as
_ 1 4
The dependence of 7 on § C/i displays the usual resonances shown
in Figure 7. mmﬁtmm-mnmmmy
cavity eigenfrequencies. Each resonance has a width
K= cT/X (19}

vhich is cammonly denoted as cavity linewidth. whan the cavity is

£illed with a nonlinear medimm, it is useful to reprasent the inter-
nal field in terms of its modulus and phase:



. Mg. 6 Staady state transuitted field x as a function of the {mput
field g for Aml,w0. All the segments with negative slope are un-
. Stable, The paraseter C = QL/2T is held fixed and sgqual to 10.

{a}) al=20, Y=}, (b) al=]0, TwD.5, (c) al=2, Y=0.1, {3) mean field

. Mmit aL+0, T+0 with C=10.

E{s,t) = pix,t) axp(idis,t)) (20)
. In steady state, the space dependeacs of p and ¢§ can be easily
- daxrived from Bgs. { 7) <
"% =g px.(pzl . {21a)
&- !
-a x‘(p ) (21b)}

where and xﬂ‘upnmt tha absorptive and dispersive parts of
the loﬁl.uu' alectric susceptibility of the medium, i.s.,

1
h'—r—lﬂw,.xd &y, o (22

2#% 5.%

Fig. 7 Tha transmission function of the empty cavity is plotted as

a function of the cavity detuning paramster Goc/£ ...

_ Equation (21a} lmwnnllkmphmemhsm
© limit vhem the field amplitude is sufficiently small (p2c<iw®).
After approximating Xg with (1442)°1, BEq. (2la} can be integrated

at once to yisld

a
pis) = plo)exp(ax), & = —73 (23)
. 144

whare G is the out of ressonance linsar absorption coefficient.

-m-muuunpumnmmrmmmm.

More ganerally, the boundary conditions (2') and Bg. (6) lead
to the following gensral sxprassion for the transmissios of a ring
cavity in steady stats

j s, L ta0)

L (-m? ¢ amn atn®[F (6-40)




whare
0)
n T &L_ ) 1
piL) (25)
M) - ¢(0)

‘Im the limit of an empty cavity, i.s., when a=0, Bys. (21) lead to
n=1l and A$=0, so that the transaission Eunction (24) reduces to the
form givan by Eq. (18), as expected. HNote also that, in the small
field limit, n is given by exp(@ L). '

It is important to observe at this point that Egs. (21) are much
moYe general than one might surmise from the prasent discussion. If
the nonlinear medium is not made up of homogenscusly broadensd two-
level atoms, the nonlinear dielectric susceptibility functions are
w0 longer given by Eq. (22) and depend, of courss, on the specific
sadium. The crucial point, howaver, is that, in all instances, n
and A4 depend on the transmitted intensity, i.e., n = nily) and M=
8 (Ly). In our case, these functions can ba calculated sxplicitly
by solving the differential equations (21) while taking By, (6)
into account. Thus, the interferomatar transmission function (24)
provides an explicit expression for the incident intensity Iy as &
function of 1y

1, = fua) !
S- -}{tnu,rn-n]’ +am) win? [—:— 8 M1y |]} (26)

|
The function f is single-valued by definition; howsver, if we plet °
Iy as a function of Ly, and exchangs the horizontal with the verti-~
eal axis, we sea that Iy can be a multivalued function of Iy (Fig.s).
In this case, the s-shaped form of the tranmmitted intensity curve
gives the clue for the existence of bistability.

. When the atomic detuning is large (82>>14p2), the absorptive
ccmpongnt of the susceptibility becomes negligible with respect to
thé dispersive part, and bistability becomes, properly, of the dis-
persive typs. As & concrete example of the analysis daveloped in
this subsection, we focus on the case of dispersive bistability in
A Korr medius in which

X,=0 X4 = &y%c, 07 2n
From ogs. {25), (21} and {6) we sasily obtain

n=1, “- .1-.3 !f (28

1,

rig. 8 Incident intansity plotted as a function of the transmitted
intensity.

where a; = -odLoj, a; = atdcy/T (Notes the appsarance of the absorp-
tion coefficient wshould not be interpreted as a coatradiction of
the statement Xa=0: the Xerr limit can be obtained by detuning the
incident field from tha atomic resonance to the point that the ab-
sorption at the selected frequency is nagligible, uwhile, of courss,
the line center absorption cosfficient is different from zero).

In this cass, Bj. {24) leads to the following tranmission fumction

jsxﬁ-——-ﬁ 129)

1
R oin® {3 (18 0,1 + a, 11

If wa plot 7 as a function of 1* = &y Ly, we obtais Figure %, a
curve that coincides with the empty cavity curve (7 vs. 85, Mg.7)
apart from a translation of the horizontal axis by an amount -ajy.
Tha stationary solutions of the system can be found with the Inlr
of a simple graphical procedure devised by Pelber and lllthugu'
which consists of looking for the intersects of Eq. (19) with the

@o)



rig. 9 Graphical search of the stationary solutions for a Kerr
mediom. I' i defined as ayly (See text).

straight lines T = L/I; = I'/a;Ip vhoss slope is inversely propor-

tional to the incident intnsity. For small values of I, ona has
only one intersact {line a). Om increasing tha strength of the in-
oident intensity, three intersections develop (line 6) which corres-
pond to a bistable situation because the intermediate solution is
uastable. Hanos, if one plots Iy as a function of Iy, one finds a
hysteresis cycle. For larger valuss of I, one obtaluns sultiple
solutions (line o} which lead to multi-stability and sultiple limit
eyclass. When T approachas unity, the curva (29) flattens out and
bistability disappears.

4. THEX NEAN FIELD NODEL OF OPTICAL BISTARILITY

Tha description of cur systea takas a pnrti'cuhrly simple form
in the limit of amall absorption, small transmittivity cosfficient
and small cavity detuning

aL << 1, 1< 1, §; «1 ) (30s}

R

#s long as the following ratios remain finite, but otherwise
arbitrary

akL
cErx
! oonstant and arbitrary {30b)

This situation is called "mean field limit* because when
approaches sero, the internal field hecomes spacially mt:n. s0
that its valua at the output mirror coincides with its mean value
in space. MNote that here the words “mean fisld” have a different
msaning from that which is commonly undarstood in the context of
squilibrium phase transitions (e¢.g., in the Landau theory).

In the limit {30}, tha time evolution is governed the so-
called "mean field model”, fustmwuumzdmum“.

-] * ,
K" .x = -8z - (x-y)} - 2Cp . {3)a)
) b= - aeit)p (311)
1;1a-~%(lp‘+l'pl - aul (32c)

The dot denctes derivative with respect to time and

R g

The steady state solution of Bqs. (31) is sasily calculated and it -

lands to the stats equation
2
v = fal? Josaog (lx1*n? + @ - 2o, dxi?n 3] (32)

mnx.udx!mqlmbqu. (22). 1f, in particular, ons
:n 6= 4=0, it is easy to prove that the state equatioca reducas

2C
-y e L {31)
[ 1

which coincides with ths limit of By. (17) wvhen aL+0, T+0 and
C = al/27 « oonstant. This result is displayed graphically is
rigure 6.

The limit 85<<1 impliss that the opsratiom of the systsm ia
restricted to the rescnant cavity moda at fragquency do. Hance, the
wean fiald modsl is a single-mode model. It has played an important
rols in quits a sumber of investigations on the transisnt properties



of Optical Bistability,

5.1 SELF-PULSING AND CEAOTIC BEHAVIOR

In this section we discuss the matter of instabilities in
Optical Ristability. As usual, a statiomary state {or a stationary
rogime) is said to be unstable when, ss a result of a perturbation,
the systam departs exponentially from ite initial configuration. of
courss, an unstable state is never realized, in p’net.l.c.. bscause
even the slightest perturbation removes the systew from it.

The axistence of optical bistability is itself a manifestation
of the sxistence of an instability. 1In fact, on approaching the
upper bistability thrashold I4 from bslow (see Fig. 2c) the low
tranmmission state becomes unstable and precisely for this reasom
the system jumpe to the high transmission branch. The same process
in reverse is responsible for the downward transition at tha lower
bistability threshold 1 +°

It is well known, on tha other hand, that nonlinear toms
usually display sequences of successive instabilities vh-::.n steady
state becomes unstabls, thus driving the system to another stable
steady state, wvhich in turn becomes unstable, and wo on. This
seJuence can be identified by varying the control parameters of the
systam (for example, in optical bistability, the intensity of tha
incident field or the lenyth of the cavity). Typically, after a
few instabilities the system runs out of stationary states and
davalops an oscillatory behavior with the smergence of spontaneocus
pulsations. The oscillations can be regular, i.e., perfectly
periodic in time, as well as completely irrsqular and aperiodic.
In tha latter cass, one spsaks of chaotic or turbnlent bshavior,

Two points are of basic importance:

{r) The oscillations are not induced by external manipulstions.
They arise sven whan all the extsrnal paramsters are constant in time.
It 18 not unexpected, for sxample, that pulsed behavior should be
produced Iin a bistable system by modulating the cavity length; this
is a rather trivial fact. It is a different story, instead, when
time-independant external paramsters produce spontaneous pulsations
because this is indicative of the existance of self-organization
from within the system itself (for this reason, a behavior of this
type .l‘: called self-puleing).

} In the chaotic case, the tims-dependent output in

is often reminiscent of the type of behavior that -yp.:o cr::::::’
ofllylu-wh.lchmbnnaunmudbynm“m}éu. In the
sitoations of interest to us, chaotic behavior persists even without
any external noise perturbation; because its origin resides in the
differential equations theswelwves it is often called detsrministic

Chavutic self-pulsing and the various routes by which this of -
fect is produced have been the object of very active research ia
recent years, although our understanding of these phenomena is still

_ far from being satisfactory. The best understood and most frequently
occurring route to chaos in quantum optical systems is the so-called

"period-doubling route™ **. This begins with the system in a stable
oscillatory state characterized by a fundamental frequency & (in
point of fact, @ usually varies slowly as a function of tha sxternal
paramsters, but this is not important for this discussion). As.one
varies a selected control parameter, at some point tha oscillatory
state bscomes unstable, and the system approaches a new stable
stats of cacillation whose period is twice as long as the pravious
ome. In this case, the powsr spectrum of the observable variables
develops a component at the subharmonic frequency ®/2, By turther
changing the control paramster, a subsequant instability develops
which then lasds to a new pericdic oscillation whosa pariod is foar
times as large as the origipal one. This process goas on indefi-
nitely (again, we sust stress that because of tha slow dependente
of & on the control parameters, it is not exactly true that the
periocd of, say, the mth bifurcation is 2" times longer than tha ori-
ginal pariod. What is rigorously trus, however, is that the powar
spectrum of the nth bifurcation displays a string of subharmonic
frequencies components Up,/2" vhare &, is the fundamental oacillation
frequancy of the new stabls solution). The values of the comtrel
paramster at which pericd doubling is observed get closer and
oloser according to a geomstrical law, such that the ratio between
the intervals in which period 2° and period 27*l are observed ap-

. proaches the valus 4.6692..., as n approaches infinity. This value

4s aniversal in the senss that it characterizes all period doubling
segquences. HRence, very rapidly, the sequence reachas an socumula~-

As shown in this section, optical histability displays both
periodic and chactic self-pulsing. We shall distinguish two cases
according to the mechanism which is responsible for the emsrgence
of an instability in the stationary state. The optical cavity is
characterized by an infinite number of posmible sxcitation fragquen-
cles {modes); accordingly the behavior of the systaa can be described
in tarms of mode amplitudes. In the two casss to be discussed, the
amplitude of the resomant mode bacomes unstable {case 1)) in the
second cass, the instability arises from the off-resonance modes .



6.1 RESONANT-MODE INSTARILITY

. ."l type of instability can arise only in the dispersive
case ... The stability analysis of the sean field model (31)
shows™ that under appropriats conditions, a sizsable sagment of
the high transmission branch becomes usstabls (see Fig. 10).
houghly speaking, tha mechanism of the instability can bs described
as follows. In tha dispersive situation, the atomic and tha inci-
deat field fregquency ars missatched. Whed,the aismatch iz suffi-
clently large, the systam is no longer able’to adapt itself to the

. driving field; the stationary state becomas unstable and the output

. begins to devalop oscillations in the form of an undamped saquence
of pulses. Froa a practical point of view, this bshavior is very
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rig. 10 Steady state transmission curve for C=70,000, A=374 and
0=340. The dashed segment is unstable. The arrows mark the
region of the upper branch where chaotic behavior is found.
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interesting, as it suggests the poasibility that an optical davice
may convert a cobsrent constant imtensity bean into coherent pulsed
muo *

Consider now what happens when the system jumps from the lower
to the highar transmission branch. Eince, in the case illustrated
in Pigure 10, the higher branch is unatable at the switching polmt,

-one sxpects immediately tha appearence of a reqular sequance of

oscillations (Fig. 1la). Ancther way of looking at the same behavior
is to consider the plans of the real and imagimary parts of the nor-
malized transmitted field. In this case, the trajectory in this
plane is a simple limit cycls (Fig. 1lb). If one now decreasss the
incident field strength (the comtrol parameter), the system undar-
goes a period doubling bifurcation (rig. llc) which corresponds to
the trajectory showm in Fig. 11d. This trajectory arises from a
kind of fiasion proocess of the limit cyclis iato two distinct parts.
A further dacrsass of y laads to the appsarence of period four
{rigs. lle,f) and so on. Fimally, the system enters tha chaotic
domain (Figs. 10,11g,h) with the time trace displaying no remmant
of pariodicity.

6.2 OFF-RESONANCE NODE INSTABILITY

This phanomenon arises when two cavity modes, other than the
pasonant one, fall below the power broadensd absorptiom line of
the atomic medium. This condition cam be tulfilled, for sxsspls,
wmmmunuotmmxw.mmtnmm:-
mode specing. Im this situation, under suitahle conditions, the

Consider first the sisplest absorptive case A=8=0. The
uo:wmmumnmmmtuu

total langth 22of the ring cavity. Instead of y and i,
convenient to use x, which is linked to y by ¥q. {33),
arn, - 2nc/Ly, which is the spacing of two adjacent cavity

in units of atomic linewidth v, . In Pigure 12, we display
plans of the control parameters d/y, and x, The statiosary

of the high transmission branch becomes unstable whan the
tiwpointluluthhltclndwto!thplm. which will
ba called instability region.

Eo
T

4;

it
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The mechanism that produces the instability in this case is
different from the one discussed in the previous subssction. It
is, instead, similar to what one f£inda in the so-called saturatiom
-pocuolcopy” where an atomic sample is illuminated by a strong
ooberent stationary field which saturates the medium, and sampled
by a weak probs beam (see Fig. 13). In this casa, one finds that
for suitable ranges of values of the frequancy detuning betwesn



Fig. 11 BSelf-pulsing oscillations and corresponding phase-space
trajectories in the plane of the real and imaginary parts of the
norsalized electric fiald for molutions of the type: period 1 (a,b),
period 2 (c,d), period 4 (e,f), and chaotic (g,h}, Idapectively.
The waluee of the external fleld are yw2nnn, 1350, 1225 and 95n

for the four sets of solutions.
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Fig. 12 Instability region in the plane of the control parawsters
ﬁ/‘f_‘aml .

saturating and probs beam, the probe axpsriences gain instead of
loas (as one might expect, because the sample under study does
sot have a population inversion). The same happens in our system:
the resonant cavity mods saturates the medium, while the neighbor-
ing wodes play tha gols of the probe fields. Under appropriate
conditions, soms of the sidebands may sxperisnce gain, and whan the
gain hecomas larger than the loss the widebands becoms unstable.
In some sanse, the absorbing medium bahaves as a laser with respect
to the sidebands even without a built-in population inversion.

than the steady in the higher branch is unstabls, the
system can exhibit two different kinds of evolutions™ ! 1 the
first case, the system approaches a self-pulsing behavior; as we
So¢ from Fig. l4a, if the system is initially stightly displaced
from steady state, it will begin to develop an oscillatory behavior.
The amplituda of the oscillations incrsases with time, until a
stationary regime is reaches, as evidenced by the flat shape of the
self-pulaing envelops. The sslf-pulsing frequency im this case is
equal to & which corresponds to a period equal to the transit time,



rig. 13 Typical set-up of a saturation -mmpy experiment.
. af = saturating field; pf = probs field.

3 /0, of tha pbotons in the cavity. The sscond possibility is that
the system, after a transient sslf-pulsing action, simply precipli-
tates to the low transmission state corresponding to the same valus
of the incident fisld. This possibility is illustrated in Fig. 1l4b
from which we see that the oscillations are amplified, at first, but
,mtmmuymmu:ummmunu-umm
tranamisnion state.

The ssalytical treatment of this self-pulsing bahavior, which
is a sulti-mode phencmenon, as it iuvolves not only the resonant
but also some of the sidebands, has been carried out in terms of a

. procedure called the “dressed mode theory of Optical Bistability=?™0
iIn the case of only two uastable sidebands {1.s., only thres rescta-
tor modes altogether) this treatasnt is capable of handling the
bahavior of the system in tarms of a simple two-dimensional descrip~
tion. The only two relevant variablas ars (i} the half-anplitude
of the oscillations, p. and (ii) the displacement, d. of ths mean
value of the oscillations from the unstable steady state valus Xg,.
The upper and lowver envelopes of the oscillations z,,“,.r(t) and
Zowep(t) are cbtained as follows:

() = x . *cit) +plt) (34)
*upper st
lover

Hance, the time evolution can be described in squivalent vays by
the envelops of the oscillatiomns or by a trajectory in the phass-
space (p.0). .

D,

time

rig. 14 Self-pulsing {(a) and precipitation (b). xg4e is the valus
of the pormalised transmitted fleld at steady state correspon-
denos to the high transmission state.

Using the dressad mode theory, we can follow the bshavior of
the salf-pulsing state over its entire domain of existence. This
4domain is shown in Pigure 15 and is quite a bit wider than the in-
stability region ABRE. It can be subdivided into a "soft excitation®
domain ABD, and 3 "hard axcitation™ domain BCC'D. The regiom ADE,
instead, is the precipitation dosain. The ragion bounded by the
lines ABD corresponds to values of ths control parasatars (x.ﬁﬂ)
for which the self-pulsing state is stable, while the statiomary
state is unstable. Hence, a small initial deviation from steady
state {soft excitation) is snough to push the system into the self-
pulsing state. In the domain BCC'D, one encounters cosxisting
stationary and salf-pulsing states, both being stable. Exactly
which of the two stable states will be occupied by the systes
depends on the initial conditions; thus, if the initial fluctuation
away from steady state is ssall, the systes simply retumns to the
stationary state. The self-pulsing state is reached, instead, after
a sufficlently large initial fluctuation (hard excitation).
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rig. 15 Instability region, precipitation region and domain of

existencs of the stable self-puising solution for Ce20, Aebed in
the msan fisld limft.

This situation leads to the appsarence of a hysteresis cycle
of new type. Figure 16 shows the half smplitude of the oscillations
for long times, p(t==), upon varying the incident field along the
horizontal line a of Fig. 15. On entering the instability region
fram the left, a stable self-pulsing state develops. As the inci-
dant fisld is increased, the amplitude of oscillation alsoc incrsases,
and, in fact, it continues to do so even outside the instability
mign. until the system returns discontinucusly to the stationary
state in the high transalssion branch. If one now decreases the
amplitude of the incidant field, the system continues to cperate
in the stationary high transaission branch until we reach the right
boundary of the instability region, where it jumps discomtinuously
to ths salf-pulsing regime with a finite amplitude.

The diagram of Pigure 16 can be wiswed as npnun'tuquuem
and first order phase transition simultansously. The second order
transition occurs on the left boundary of the instability domain,
Tha first order transition is tied to the hysteresis cycle that

@™

_rig. 16 The ball-amplitude of the oscillations in the self-pulsing

state is plotted azs a function of the stationary valus x of the
transuitted field in the high transmission branch for C=20, &/{=7
{1ine & of rig. 15), the arrows indicete the behavior of the systes
whan the incident field is decreased or increased. ’

begins at the right boundary domain. It is worth stressing that in
this case the bistability involves stationary and self-pulsing states,
and pot just stationary states as in the operation of usual bistable
systems. This hysteresis cycls enrichss the phenomenclogy of opti-
cal bistability, especially becauss the nevw self-pulsing branch is
actesaible From the usual staady states by suitably varying the
external paramaters. by

An interssting situatiom occurs in the meighborhood of the
1line AD {Fig. 1%) that separates the self-pulsing from the preci-
pitation domains. In ordexr to describe this behavior, consider a
continuous variatien of the cavity length along the line b of Pig.
15. On approaching the line AD from the right, tha time-dspendent
suvelope begins to develop considerable oscillations (rig. 17a).
This behavior is usually called "hreathing®. The breathing pattern
observed in ocur case, however, lasts only a finite amount of time
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rig. 17{a,b} BEnvelope breathing and phase trajectory in the (p,c}

plane for O=20, G/Y, =5, and x = 6.967.

.
e el »

s P

rig. 17({c,d) Envelops breathing and limit cycle in the (p.q)

plane for C=20, &
corresponding time

S, and x = 6.8669., The limit cycle and the
pandent envelope have besn obtalned by

integrating the eguations of sotion backward in time.

5>
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before sventually the envelope settlas down to a steady asymwptotic
wvalue. Figure 17b shows the same phenomenon, but from the point of
view of the phase-space variables (p,0). Tha trajectory in phase
space spirals towards tha point corresponding to the self-pulsing
stats, which behaves as a stable focus. After crossing the line

AD, the focus becomes unstable through a Hopf bifurcation. In this
case, one expects the appearance of & limit cycle in the phase space,
‘which can be stable or unstable, depsnding on the naturs of the Hopf
bifurcation. The limit cycle that accospanies the crossing of the
boundary line AD is unstable, i.s., it repels nearby trajectories.

In order to display its presence, we have used a trick; by integrating
the time svolution backward in time, the repsller becomas an attractor.
rigure 17¢ shows ths backward approach to tha limit cycle in the (p,C}
phase-plans. Similarly, Tigurs 174 shows tha backward time svolution
of the envelope of oscillations of the transmitted field. Now for
long times we have a perfectly periodic breathing regime in which the
envelope marks time as a "regqular” clock (but backwards in time).

Of courss, unstabls limit cycles, just as unstable steady states,
oannot ba obasrved directly.

The research described in this review was partially supported
by the Italian National Ressarch Council (CWR), by a contract with
the U.S. Army Research Office and by a grant from the Martin-Narietta
Ressarch Laboratories. We are gratsful to Nrs, Debbis Dellse-Bughes
for har skillful! handling of this manuscript.
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1.  INTRODUCTION

Six years ago, two contributions on optical Bistability were
delivered at the Pourth Rochester Confersnce on Cobherence and Quan-
tus Optics', which, was appareatly the first international mesting
to include in its program am invited paper om this subject. Since
then, ths growth of imterest in bistability has been so rapid to
justify a_second topical conference, following the 1960 meeting in
Asheville®.

Actually, despite tha pioneering work by Ssike, Duneu, Goldhar,
and Furait?, Seidel® and others, widespread interest in Optical
Bistebility did wot bscome obwious until aftex the cxpcrl.mtlg
observation of this phenomenon by Gidbs, McCall and Venkatesan®,
almost exactly ons yean before CQU4. The early investigations were
mostly focused on the deséription of the steady stats, on the
switching properties of the -m-. and on the ldentification of
the optimal parameters for prabtical devices. Undoubtedly, we shall
learn about the many receat technical advances from several other
contributions in this Conference. Hers we shall focus on one aspect
of the theorstical development.

In 1978, two papers by Wocall® and by Bonifacio and tagisto”
opsned an entirely new lLine of investigation by showing that insta-
bilities and spontanecus pulsations could occur in bistable systems.
It is now well established that Optical Bistability can lead to &
wide variety of tims-depsndent bshaviors that need to be properly
charactarised, eithar because one Bay wish to avoid unwanted

s
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oscillations in practical devices, or, psrhaps, because thess fea-
tures are to be exploited for cossmnication and signal modulation

purposes,

This optical effect is directly connected to the general pro-
blem of the unstable and chaotic behavior displayed all kinds
of nonlinear systems in Physics and other disciplines’'’. In the
specific case of Optical Bistability, wide excitement was created
by Ikeda‘'s prediction"

In this paper, we focus our attentign on the general subject
of periodic and chaotic self-pulsing in optically bistable systems,
and in the laser with injected signal, which represents the active
counterpart of a bistable device (the absorbing medium is replaced
by one with population inversion). In Section 2, we review the
main results that have been cbtained from the analysis of the
Maxwell~Bloch equations for a unidirectional ring cavity. Section 3
cotitains a discussion of more recent findings concerning the insta-
bilities that arise in the mean field model of mixed absorptive and
dispersive bistability. Finally in Section 4, we provide examples
of the rich variety of behaviors which are typical of the laser
with injected signal.

2.  MULTI-MCDE SEFL-PULSING BEHAVIOR IN OPTICAL BISTABILITY

Interest in the unstable behavior of quantum optical aystems
vas stimulated, in the mid-sixties, by Haken and collaborators with
their analyses of the single-mode'’ and multi-mode'? homogeneously
broadened ring laser. 1The possibility of pulsed behavior in Oopti~
cal Bistabllity was mentioned in Ref. 3 for the first time. Later
mccall® showed that pulsing can be produced when the nonlinearity
of the mediun originates from contributicns having opposite signe
and very different time constants. He also reported the observa-
tion of regenerative pulsations in a hybrid electro-optic system
and proposed that the same phenocmenon could be observed in a in-
trinsic all-optical device in which switching is produced by fast
elactronic effects, but whare mlowér thermsal drifts prevent either
of the two states of transmission from being stable. In fact, a
behavior of this type has been observed recently® with a pulsation
period of the order of several microseconds.

Throwghout this paper, we shall restrict ourselves to the case
of a homogeneously broadensd two-level atomic sample of length L,
contained in a unidirectional ring cavity of length X, We review
the instabilities that have been predicted frow the analysia of
the Maxwell field equations, within the slowly varying envelope
and plane wave approximations, and of the optical Bloch equations,
This section, in particular, describes the nature and the origin of
instabilities that involve more cavity modes than just the resonant

of chaotic self-pulsing (optical turbulence).
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(or quasi-resonant) one. Por additional details, the reader should
consult the original papers or the recent review cited in Ref, 14.

(a) Bonifacio-Lugiato Self-Pulsing

The stability analysis of Ref. 7 proved for the first time
that under appropriate conditions a stationary state of the system
can become unstable because some of the off-resonance modes develop
an instability. These modes act in a similar way to the probs
field in saturation spectroscopy "’, in the sense that they may
experience gain instead of attenuation. When the gain exceeds the
cavity losses, these modes become unstable, and any initial fluec-
tuation will be able to trigger their growth., The unstable mode
amplitudes grow until the aystem reaches a new steady state regime,
which can be stationary (the self-pulsing is quenched by the pres-
ence of another stable stationary state), or pulsed. In the latter
case, the output displays undamped oscillations which, because of
their spontaneous emergence within the system, are properly refer-
red to as self-pulsing oscillations.

In order to achieve this off-resonance mode instability, it is
necessary that at least one cavity mode, cther than the resonant
one, fal) below therﬂhmma absorption line of the atomic
medium, c/df < vy, Y14I9/Ig, where ¥y is the homogenecus linewidth,
Ir the transmitted intensfty and Ig is the saturation intensity,
respectively. This condition implies that the total length 3 of
the ring cavity must be suitably large.

The Maxwell-Bloch e%nt:l.onl predict this kind of self-pulsing
both in the absorptive’’™™ and in the mixed absorptive-dispersive
cases'?’! In the absorptive situation, the off-rescnance mode
instability arises only in the presence of bistlhil.ity’, while, in
the general case, it can emerge even when the steady atate trans-
mission finction is single-valued'®. Purthermore, the Maxwell-
Bloch equations predict the occurrence of self-pulesing both in the
case of small or large values of the absorption coefficient, aL,
and of the mirror transmittivity, T. When, in particular, the
"mean field limit" conditions

aL << 1, T << 1, withC = 1",5 = constant, (88
[}
L]

are satisfied (C is the bistability parameter, which remains arbi-
trary in this limit) the period of self-pulsing becomes equal to
the cavity transit time tp = &/c. The shape and the duration of
each pulse depends on oL, and of course, on the number of unstable
modes .,

A particularly simple setting is provided by absorptive optical
bistability in the mean field limit (1), when only the nearest
neighbors of the resonant mode are unstable. In this case, the

&
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pulsations are very nearly sinuscidal, and can be calculated in an
essentially analytic vy using the so-called “dressed mode theory
of optical bistability* ’*'®, “which is a spin-off of Haken's theory
of the ganeralized Ginzburg-Landau equations for phase-transition-
lixe phenomenaiin systems far from thermal oqu.u.ihriuu". By this
procsdure, we have identified the entire domain of existence of the
self-pulsing state in the plane of the sxternal control parameters,
which are the incident field intensity and tha length of the cavity.

A surprising result was the observation that the domain of
existence of the self-pulsing state exténds well beyond the small
signal instability domain. In fact, we hiwve identified a region
in the plane of the control parameters whers two stable steady-
state solutions cosxist with a stable self-pulsing state. This
situation gives rise to hysteresis cycles of a different kind that
involve self-pulsing states along one of the branches.

(b) Ikeda Chaotic Behavior

Roughly one year after publication of Ref. 7, Ikeda'! recon-
sidersd the problem of instabilities in the Maxwell-Bloch equations,
with an emphasis on the dispersive limit, for large values of oLl
{i.s., quite far from the mean field conditions (1}). He also as-
sumed that the transit time inside the cavity was much longer than
the atomic characteristic decay times, or to be more precise, that
/i << Yy, Yu. vhere v, is the relaxation rate of the atomic
population inversion. In this situation, all atomic variables can
be eliminated adiabatically, and the dynamics, including the boun-
dary conditions, can be recast in terms of finite difference equa-
tions with the transit time ty playing the role of the elementary
tims step. The stability analysis of these equations, or of the
equivalent Maxwell-Bloch equations, after adiabatic elimination of
the atomic variables®®, shows that under appropriate conditions,
all the stationary solutions are unstable, and the system exhibits
self-pulsing. In this case, the pulses acquire & square wave shape
with a period equal to 2ty. By suitably varying the incident in-
tensity, the period becomes successively equal to 4ty, Btg, etc.,
i.e. the system undergoes a cascade of period:douhling bifurcations

as in the general theory of discrete maps®' ®".

Bayond the accumulation point of this bifurcation sequence,
the system exhibits chaotic behavior. This picture was shown to
cccur also in the case of optical bistability with a Kerr medium®’,
In addition, this paper proposed the possibility of constructing a
hybrid slectro-optic device that would allow the observation of
these effects without the nesd for very large interferometric struc-
tures. A device of this type was assembled by Gibbs, Hopf, Kaplan
and Shosmaker, who observed, indeed, periodic ulf-pulling, period-
doubling and chaos, in general agreement with the theory®".

(e
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The connection betwean the Bonifacio-Lugiato and the Ikeda
instability was discussed in Ref. 20, where, in particular, the
Ikxeda instability was shown to disappear in the wean field limit
(1}). Here we comment only on the rsason why the period of oscilla-
tion of the Bonifacio-lLugiato self-pulsing is half as large as the
one predicted for the Ikeda oacillations. (This point was not dis~
cussed in Ref. 20.) To'this purpose, consider the sigenvalues ) of
the linearized Maxwell-Bloch equations. In all cases when it is

possible to calculats them analytically, the eigenvaluss have the
structurs

c
An 2 [Zﬂ.n +4n (1 + An)} {2)

where the index n = 0,11,12,... labels the cavity modes. The index
n=0 corresponds to the mode that is resonant with the incident field
{or quasi-resonant, in the dispersive case). The quantity A,, when
expanded in a power series of aL and T, turns out to be of the order
of oL or T. In the case of ths Bonifacio-Lugiato instability, and
in the mean field limit, the term fn (1 + Ag) = Ay is of the order
of T << 1, and thersfore Im(A;)is approximately given by 2w¥n c/df .
‘This is the origin of the oscillations with period 3 /c = tg: Om
the other hand, in the case of the Ikeda instability, oL is large
and ths second term gives & meaningful corraction to the empty ca-
vity fyequency 2snc/g® . In this situation, one finds that 1 + Aq
is real and negative for the unstable modes, and Im{iy) = 2w(2n+l)
(c/282 )3 this is the origin of ths oscillations with pericd 2a8/c =
2tg. Clearly, no fundamental physical fact lies behind this dif-
ference, which, in our opinion, has bsen overemphasized, at times.

3. BINGLE-MODE BELF-PULSING IN OPTICAL BISTABILITY

Even if tha single-mods laser model of Optical Bistability was
proposed séveral years ago®’, only recently it has been shown to
display such dynamical fireworks as sslf-pulsing and chacs. Ikeda
and Akimoto!* €irst demonstrated these effects in the case of purely
dispersive optical bistability with a Kerr medium, while Luglato,
Narducci, Bandy and Pennise’® analyred the full optical Bloch equa-
tions, including absorption and saturation. The mean field modal
equations of optical bistability for a ring cavity are®’’?®

- - §

k1 x = -i0x - (xep) - 2cp (3.1)
WV ipexa-ausrp (3.2)
v, la --%lxp' + x%p) - del (3.3)

where x,y,p and d are the normalized output and input fields, the
atomic polarization and population difference, respsctively;
K = ¢t/3f is the empty cavity linewidch; 4 and 6, the atomic and
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cavity detuning parameters, are defined as follows:

A= (w, ~w /Y, .1
- - 4.2
) (mc uoilr ( )

vhere @, is the frequency of the incident field, o, the atomic
transition frequency and w, the frequency of the cavity mode nearest

{resonant mode). The lodel {(3) 1s walid in the mean field limit
{1), and describes the dynamics of the resonant wmode whose evolution
develops over a time scale wuch longer than the cavity transit time
tg. Evolutions over times of the order of tp become important only
when some off-resonance modes are unstable, u in the case discusped
in the previous section. While, in that situation, the delay in the
feedback loop of the ring cavity plays a crucial role, here it does
not.

As it is well known27’??, the steady-state sclution of (3) has
the fom

12 12
2w txl? {1t ¢ Bt e oo —3S— Y (5)
14474 x| 144%4] x}

We have analyzed eqs. (3) both in the limit of the adiabatic elim-
ination of the polarization (i.e., p=0) and with the full set of
dynamical variables. We have found that when the bistability para-
mater C is sufficiently large, and the detuning constants & and 0
are chosen appropriately, a large seguent of the high transmission
branch can become unatable (Fig. 1). The leftmost part of the in-
stability domain that lies around the upper turning point of the
state equation leads to precipitation into the low transmission
state; the rest of the unstable segment produces undamped oscilla-
tions, For C > 5000, the instability range include a segment of
chaotic oscillations. On approaching this segment from both sides,
one finds a sequenca of period doubling bifurcations, as illustrated
in Mg. 2. In the regime of aperiodic oscillations, we have examined
the chaotic nature of the solutions by means of suitable Poincare
maps and tests of exponential diverdence (sensitivity to initial
conditions). As usuwal, in situations of this type, we have found
“windows® in the chaotic domain where the output itensity again
acquires a periodic behavior. Pigure 3 shows a map of the insta-
bility domain in the plane of the parameters y and x/y, for the

case of the adisbatic elimination of the polarization.” If y; denotes

the value of the driving field in correspondence of which a bifur-
cation occurs from psriod 1 to period 2i, for a fixed value of ®/ Yy
the first four ratios §§ = (y1-¥141)/(¥i+1-Y142) 8re compatible with
the universal Feigenbaum number § = 4.6692...2%, As shown in Pig. 2
at each period doubling bifureation, each loop of the phase space
trajectory undergosa a kind of fission process in which it separates
into two distinct loops. We have svaluated the separation of each
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Id

100}

I 1

0 ﬁ 1555 Y
Fig. 1. Steady state transaission curve for an optically bistable
system for C = 70,000, A « 374, 6 = 340 (eq. 5). The horizontal and
vertical axes are labelled by the amplitudes y and |x| of the inci-
dent and transmitted fields, respectively. This figure shows the
stability range of the steady state for k/y; = 0.25. The dotted
part of the upper branch denotes the l.lllblhl.! region which leads to
long-ters precipitation; the dashed segment denotes the instability
range that leads to self-pulsing. The arrows mark the approximate
domain of chaotic oscillations. The results shown in Pigs. 1-) have
been obtained in the limit x/y, =+ 0, ¥, /Yy * 0 of adiabatic
elimination of the atomic polar:l.sat:l.on

[}

paire of loops beyond the bifurcation points as a function of the
control parameter y, and found that each distance D is well fitted
by the power law

D = const |y~yi|1/2. (6)

[]
This is reminiscent of the behavior of the order parameter in the
Landau theory of second order phase transitions. When y approaches
a critical value y;, the time evolution of the system exhibits eri-
tical slowing down. Our numerical analysis shows that the rate
of approach to the limit cycle is compatible with the power law

Y = const Iyl-yl (n

in agreement with the analytical result by fac’! in the case of one
dimensional discrete maps.

(&2)
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rig. 2 Self-pulsing oscillations and corresponding phase space
representations on the (fa x, Im x) plane for solutions of the type
1p(a,b), 2P(c,d), 4P(e,f) and chaotic (g,h), respactively. The para-
meters are the same as in Pig. 1. The values of the incldent field ’
ars y-ZDOO. 1350, 1225, and 950, for the four sets of sclutions.
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Fig. 3 Instability domain for an optically bistable system corres-
ponding to C = 5000, 4 = 6 = 70, The heavy 1ine on the left sepa-
rates the precipitation from the stable self-pulsing regions. The
dashed lines encircle tha chaotic domains.

As we said, chaotic behavior is found here only for very large values
of A and 6. On the other hand, periodic pulsations and even wodula-
tion of the train of pulses ars predicted for wuch more accessible
values of the parameters. By numerical integration of eqs. (3},
without adipbatic elimination of ths polarization, we have shown
that for C= 75, A =0, 8 = 10,7, /Y, = 2 and K/y, = 0.5, one obtains
reqular self-pulsing with & period of the order of k-1, 1t ie
interssting to mote that this sslection of parameters corresponds to
absorptive bistability becauss A = 0. As this exasple shows, it is
usyally enough that 8 be sufficiently different from gero in order
to obtain self-pulsing. On the other hand, as we well know, if both
A and 0 are equal to sevo, the positive slopes segments of the state
equation are always stable®’,

A final example of interest corresponds to the paramsters C =
200, Aw -3, 0 =5, v,/ "2 and /Y, = 10, wvhere a range of inci-
dent field values can be found for which the envelope of the oscil-
lations acquires long term modulation (breathing).
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4. CHAOS, BREATHING AND SPIKING IN THE LASER WITH INJECTED SIGNAL

If the atoms contained in the resonant cavity are pumped to a
state of population inversion, the optically bistable system
becomes a laser with injected signal. Single mode operation in
this system is governed by eqs. (3) with C negative (this implies
that the absorber has bean turned into an amplifier). In the reso-
nant CIIQ! & = 0 = 0, the laser with injected signal is not
bistable®?, while, if one allows for detuning, one can find narrow
ranges of h!.-ubiuty", under appropriats conditions, In this
papesr, however, we shall not conaider bilb'bl. situations. Spencer
and Lamb'’ were the first to show that the cutput of a laser with
injected signal can exhibit undamped oscillaticns. Yamada, Graham
and collaborators’® pointed out that this system can also display
chactic behavior, and analyeed this regime in detail. The resulta
discussed in Ref. 34 have been obtained in the limit of adiabatic
slimination of all the atomic variables (i.s., after setting P =
d = 0 in oqs. (3)) and assuming that the incidént field and the
pump parsmeter are sinusoidally modulated. Ilcn‘ instead, wa take
all the external parameters as constant in time'®.

%a assume that the atomic and cavity frequencies, u, and w,,
coincide (hence 4/ = /Y, }, and that the laser is pumped above
threshold (|c| > 1/2). The carrier frequency my of the incident
field, instead, is different from w_; hence, there is a mismatch
between the external and the laser Emuencln. This is the origin
of the competition that produces the instabilities and, as we shall
show, the chaotic behavior. Fig. 4 shows the steady-state curve as
obtained from eq. (5). The entire segment OAB is unstable for the
chosen paramaters. In the absence of the external field {y=0) the
systam oscillates with the laser frequency @y and produces the
stationary output |2|? = 2[c| - 1. on the other hand, for y > Yehro
the laser is slaved by the external field, and oscillates with the
frequency ®, (injection locking), again producing a stationary out-
put.

We have analyzad the behavior of the system over the entire
range of values of the incident fie}d from y=0 to the injection
locking threshold yuh,- As the external field is turned on, the
output intensity begins to oscillate with the beat-note frequency
|un - wol. The amplitude of the oscillations grows from zero in a
continuous way, as the incident intensity level is increassd, whils
the cscillation frequency remains essentially constant. ¥or suffi-
ciantly large values of the sxternal field atrength, the output
oscillations begin to display irreqularities (Fig. Sa). The systea
here enters a chaotic regime where nearby phase-space trajectories
separate from each other exponentially in time. The chaotic charac-
ter of the oscillations becomss more and more pronounced, until the
ocutput signal begine to display a bursting behavior (Fig. Sb} in
which sach burst is followed by a number of rapid and noisy

|
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l00r-

rig. 4. Laser with injected signal. Steady state equation (eq.(5)),
for C = -500, A = § =« 5, The segment OAB is unstable.

ons. A further incresase in y brings the systes out of the
:'h:i:::timin through & sequence of period doubling bifurcations in
reverse order (examples of period 4 and period 1 oscillations are
shown in Figs., 5c,d). At this point, by further increasing y, tha
system enters a nev regime, in which a much longer time scale -m:s.
rig. Se shows the tims evolution of the output on a time scale whic
is much more compressed than that of Figs. Sa-d, so that the sisple
oscillatibns can no longer be resolved. In this case, it is easy to
see that the envelope of sslf-pulsing acquires a periodic modulation.
This phenomsnon is usually referred to as breathing. ILarger ulust
of the injected fisld lead, eventually, to a spiking regime (Pig. 5 }
in which very sharp spikes of randomly varying height are followed by
long periods of lethargy.

intan-
This behavior is typical of a range of values of the incident

ll.t; tlntvi.-adhtnly precesds injection locking threshold yep,
in all cases when the upper branch of the stata squation is completely
stable. On approaching yeny, the tesporal separstion of the spikes
increases, and, apparently, diverges. This type of critical slowing
down is similar to the one found in the laser with saturable .
absorber®® and in Optical Bistability with three-level atoms ',
Finally, vhen y exceeds yphy, after a short transient, the system
approaches steady state.
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e
Fig. S Time evolution of the normalized uutput field |x| for the
same parameters as used in Fig. 4 and xlr ‘I”/Y = 1. The

horizontal time axis is measured in units of Y, {a) erratic
bshavior, y=117; (b) bursting, y=250; (c) GP-typ- solution, y=279;
{d) lp-type sclution, y=300; (a) envelope brenthing, y = 310.3;
{f) spiking action, y=311.
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For paramster values different from those used in Pigs. Sa-f,
the injection locking threshold may lie beyond the turning point B,
8o that also a segment of the upper branch becomss unstable. In
this case, breathing and spiking are replaced by a gradual reduction
of the self-pulsing amplitude which vanishes at the injection
threshold.

N

The sequence shown in Figs, S5a-f occurs in full only for very
large values of |C|. when |C| is of the order of 20, the picture
remains essentially the same, with the exception of bresathing,
which appears to be absent, at least in the rescnant cass (8, = &.).

Other results concerning self-pulsing in the laser with injec-
ted signal and an analysis of ths spectrum of the output intensity
with a characterization of the route to chaotic behavior can be
found in Refs. 35 and 38.

REFERENCES

1. L. Mandel and E. Wolf, Eds., Coherence and {uantum Optics 1V,
Procesdings of tha Fourth Confersnce on Cohsreant and Quantus
Optics, Rochester, NY, Juns 1977 (Plenum Press, 1978). See
the papers by R. Bonifacio and L.A. Lugiato, p. 249 and by
G.S. Mgarval, L.M. Narducci, D.H. Peng and R. Gilwore, p. 281.

2, C.N. Bowden, M, Ciftan and B.R. Robl, Eds., Optical Bistability,
Proceedings of the International Confersnce on Optical Bista-
bility, Asheville, NC, Juna 1980 {(Planum Press, 1981).

3. A. Szoke, V. Daneu, J. Goldhar, and N.A. Kurnit, Appl. Phys.
Lett. 15, 376 (1969},

4. H. Beidel, U.5. Patent #3,610,731 (1971).

S. H.M. Gibbs, 5.L. McCall, and T.N.C. Venkatesan, Phys. Rev
Lett. 36, 113 (1976).

6. S5.L. NcCall, Appl. Phys. Lett. 32, 284 (1978).

7. R. Bonifacio and L.A. Lugiato, Lett. al Muovo Cimento, 21,

10 (1978).

8. H. Haken, Synergetics - An Introduction, Springer-Varlag,
Berlin, 1977.

9. G. Wicolis and I. Prigogine, Self-Organization in Nonequilibrium
Systems. From Dissipative Structures to Order Through Fluctua-
tions, Wiley and Sons, WY, 1977.

10. K. Ikeda, Opt. Comm. 30, 257 (1979).

11. H. Haken, Z. Phys. 190, 327 (1966); H. Risken, C. Schmid, and
W. Welidlich, Z. Phys. 194, 337 (1966).

12. #. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1968);
R. Graham and H. Haken, L. Phys. 213, 420 (1968).

13. J.L. Jewsll, H.N. Gibbs, 8.8. Tarng, A.C. Gossard, and W.
Wiegman, Appl. Phys. Lett. 40, 291 (1982).

14. L.A. Luglato, Theory of Optical Bistability, to appear in
Prograss in Optics, Vol. XXI, ed. by E. Wolf (North Holland).



954
15.

16.
17.

18.

19.
20.

21.
22.
23.
4.
25,
26.
27,
28,
29,
3o,
.
32,
33.
34.
3s.
3.

37.
38,

6D

L. A.LUGIATO AND L. M. NARDUCCI

M. Gronchi, V. Benza, L.A. Luglato, P. Meystre and M. Sargent
III, Phys. Rav. A24, 1419 (1981).

L.A. Lugiato, Opt. Cosm. 13, 108 (1980).

V. Benza and L.A. Lugiato, Zeit. Physik B35, 381 (1979); ibid.
47, 79 {1982).

L.A. Lugiato, V. Benza, L.M. Nardueei and J.D. Farina, Zeit.
Physik B49, 351 (1963).

H. Haken, Zeit. rhysik, B2l, 105 (1975); ibid. 22, 69 (1975).
L.A. Lugiato, M.L. Asquini and L.M. Narducci, Opt. Comm. 41,
450 {1982).

H.J. Carmichasl, R.R. Snapp and W.C.'Schieve, Phys. Rev. A26, .
408 (1982).

R.M. May and G.E. Oster, Am. Mat. 110, 573 {1976).

8. Grossmann and 5. Thomae, Zeit. Maturforsch. 32a, 1353 {1973). .
M.J. Peigenbaum, J. Stat. Phys. 13, 25 (1978), ibia, 21, 669
{1979).

K. Ikeda, H. Daido, and 0. Akimoto, Phys. Rev, Lett. 45, 709,
(1980) .

A.M. Gibbe, ¥.A. Hopf, D.L. Kaplan and R.L. Shoemaker, Phys.
Rev. Lett. 46, 474 (1981).

R. Bonifacio and L.A. Lugiato, Opt. Comm. 19, 172 (1976),
FPhys. Rev, A18, 1129 (1978).

K. Ikeda and 0. Akimoto, Phys. Rev, Lett. 48, 617 (1982).
L.R. Lugiato, L.M. Marducci, D.K. Bandy and C.A. Pennise,
Opt. Comm, 43, 281 {1982); L.M. Marducei, D.K. Bandy, C.A.
Pannise and L.A. Lugiato, Opt. Cosm. 44, 207 (198)3).

R. Bonifacic and L.A. Lugiato, Lstt, al Muove Cimento, 21,
517 (1978), S8.8. Hassan, P.D. Drummond, and D.F. Walls,

Opt. Cowm. 27, 480 (1978).

B.L. Bao, Phys. Lett. B6A, 267 (1981),

L.A. Lugiato, Latt. al Wuowo Cimento 23, 609 (1978), amd
references quoted therein.

M.B. Spencer and W.E, Lamh, Jr., Phys. Rev. AS, 884 (1972),
T. Yamada and R. Graham, Phys. Lstt, 53M, 77 (1975}, M.J.
Scholx, T. Yamada, H. Brand, and R. Graham, Fhys. Lett. B2a,
321 (1981). -
L.A. Lugiato, L.M. Marducci, P,K. Bandy and C.A. Pennise,
Opt. Comm., to be published. '

J.C. Antoranz, J. Gea and M.G. Velarde, Phys. Rev. Lett. 47,
1895 (1981). -
P.T. Arecchi, J. Kurmann and A. Politi, Opt. Comm. 44, 421 (1983).

D.K. Bandy, L.M. Rarducci, C. A. Pennise and L. A, Luglato,
this volume, p. 585, A

SELF-PULSING, BREATHING AND CHAOQS 2586

ACKNOWLEDGEMENTS

We are grateful to Mrs. pebble DeLise-Hughes for her expert
advice with the prepration of this manuscript. Thia research was
partially supported by a grant from the Martin-Marietta Research
Laboratories and from the Army Ressarch Office under contract

#DAAG29-82-K~0021, and also by the Comitato Nazionale delle Ricerche

(CHR, Italy) under contract § CT82.00031.02.115.14905.

(IR}

@



Time-Dopersiont Behavior of a linidirectional Ring Laser with Inhomogenscus
Broadening J

Donna K. Bandy, L.M. Norducci

Poymics D-pr‘;‘-ant e '
wesl! thiversit .

Mitadeiphia, M 19108 U.5.A.

Luigi A, Lugiato
Dipartinento di Fisica
iiversita di Mileno
Milano, Italy

[

’hnl B. Abrahae®
Istituto Nasiomale di Ottica
Firenss, Italy

*Pormahent Adkirsss: Physi
i Physice Depariment, B,
Beo N, 2 15010 7 00T Cotlege,

ABRSTRACT
We solve suserically the time-depsndent equations of motion for an in-
homogenecusly b:oa'poud singla-mode ring laser. As sxpected from the linsar
stability analysis, pulsations develop in the output of the laser for appro-
priate values of tha gain parasater. Under rescnant conditions, the tandency
is for the systsm to slip from » periodic regime into irregular oscillacions)

out of resonance, instsad, periodlc oscillations and period doubling bifurca-

tions are more typical over a large range of gain values. We £ind that as

the ratio of the population to polarisation decay rates vacries from a valua
of two (radiative limit) to smallar values, the pariodic oscillations turn
imto a train of well-ssparatsd pulsss whose peak intensity scales approximately

as the squars of the atomic dansity.



INTRODUCTION

It is now wall established! that even a limited smount of inhomogensous
broadening in the gain profile of a homogensocusly hzoadomd laser can induce
large qualitative changes in the stability propartiss of its output intensity.
Thus, for example, the instability threshold for the appesarance of pulsations
is generally low enough that the operation of a lhser under axperimentally
controllable, unstable conditions is feasibls with a variety of gasecus media
and cavity designs. )

The lowering of the instability threshold is accompanied by the raplace-
mant of the well known cavity linswidth and laser gain requirements for a
homogensous system? with nev, lass stringent bounds which, on the one hand,
sllow the seslaction of a somewhat higher cavity quality factor without the
loss of output pulsations, and on ths other, permit practical gain levels to
be used in the chservation of the affect.

TThe results of dstailed studies of the steady state and stability pro-
perties of inhomogensously broadensd media have already besn reported in
numerous contributions, and several updates appear in this special issue’.
Detailed investigations of the temporal behavior of inhomogensously
broadsned lasers, on the other hand, have not kept pace with the recent
rapld experimental devalopment".

The purposs of this paper is to present tha results of our numerical
studies of tha temporal evolution of a unidirectional ring lassy systes

with a Gaussian inhomogen ly broadened line. Our intention is to survey

soms of the ganeral features of this problem; fine scans of control parameter

space are under investigation and will be discussed in future cosmunicstions.

B

— ————

In Section 2 wa survey the main aspects of our working model. 1In
Section ) wq review the results of our study and compars some of our
solutions with the ones derived from an interesting approximate method
suggested by Crahas and ChoS. e resarve Saction 4 for & few comments
on the numerical msthod adopted in our simulations and on. some relevant

accuracy tests,

4



2. PDISCUSSION OF THE MNODEL

We consider a collection of active two-level systems in & unidirectional
ring laser cavity operating in a single mode. The atoms uhou spactyal pro-
file is inhomogensously broadensd around a central frequency u according to

tha frequency distribution

L}
al 2 "
& /290

1
- 2.1
"" /ﬁ'un ¢ ‘ '
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are placed ina ring cavity, adjusted to resonate at the sigenfraquency ue
with & linewidth x, and arse maintained in a state of inversion by an exter~
nal pump machaniss.

With reference to the carriar frequancy uy, of the lasar lysuu‘. tha
interaction of the atoms and the cavity fisld is described within the con-

text of our modsl by the Maxweli-Bloch equations

. =
$ 20 .-z [u i xn v [ di gt ru.n} (2.2a)
£ @0 = 2wi,0 « 0+ 1EE) PED (2.20)
:—'n{i.n .- ‘i'{-;— (xo P(3,T) + XP*(3,1)) + DIS,1) + 1} (2.20)

whera ¢ is the frequency offsat of the laser carrier . from the cavity
eigenfrequancy in units of tha polarization relaxation rate, LA A is the
d.t.pl;c-nt of the center of the atomic line from o, , also in units of

1‘7. and § = v, /v, , with y, ths spontanecus relaxation rate of the atomic

population differsnce. Tha parameter 3’ - 6/1‘ desnotes the position of an
arbitrary atomic homogenscus packet away from 1ine center, while Pid,1) and

D (§,7) represent the atomic polarization and population difference,

- ——

@_E

respectively; finally, X{1) is the slowly varying output field amplictude
of tha laser lu.lod to the square root of th.‘nt.nnt.lnn intsnsity, and
T -yt . '

For sslected waluas of tha cavity and atomic rates, the detuning -6'“: =
la‘ —-cllr‘. s the axcitation paramster € and the inhomogensous linewidth
?in - an/y“ + the state equation of the laser defines one, two or thres sats
of steady state conditions characterized by the field and atomic parametsrs

ix . &, l'“(.i-). D.tl.d'l. whose stability can be assesssd with the halp of

lt'2
arguasnts such as developed in Ref. 3a. Initial conditions for the study

of the svolution of the sequations of wotion can be salscted in the neighbox-
hood of sach of thess operating points.

The assigoment of an unstable state as the initis)l condition for the
problem, of course, does not match what is actually dons in practical situa-
tions, whare selected control parametsrs are slowly scanned across ths domaing
of interest. This ia, however, a useful way to complemsnt the information
provided by the linsar stability analysis, so that the long-term behavior of
the systes can be analyssd in the presence of the nonlinsarities. Ultimataly.
ons axpects [(hopes) that, apart from tha initial transient, the comparison
betwesn the long-term solutions of the dynamicel aquations and the output
intensity of an unstabls laser, whosa control paramaters are hald fined or
varied slowly, should ba & fair one.

As background information for the discussion of the time-dependent solu-
tiona, it will be useful to reviaw the relevant steady state and linesr sta-
bility data for this work. The steady state output latensity and the laser

Erequency offset & as functions of the gain paramster C are shown ia Fig. 1



for the two values of the detuning parameter :‘c “0and 5 used in the tem-
poral solutions. The state equation i independant of the value of § = r./v_._
and is single-valued for the range of detuning used here.
The sigenvalueas of the Hnearized sguations of motion, howvever, do de-

Pend fn a rather sensitive way on and, for this reason, ars displayea
Ssparately in rigs. 2 and 3. For the case § = 2 {radiative 1imit), the on-
sst of the instability, aa marked by the vanishing of the real part of the
first eigenvalus occurs at a ratio c’cth:-m = 1.6 for 'l—w * 0 {nct showm)

and c/e,, (P 2 ) g gor dyc = 5. where Cpt® denctes the threshold gain for
laser action at the canter of the atomic 1ine Col” » 233 1n thie casel. .-
For § = 0.05, the ratio /€, % 12 about 1.2 in resonance and 4 atd _ as.
displayed in Pigs. 2 and 3, I the radiative linit, we obsarve the sXxistence
of a mmall range of the Q0in parameter just abova thrashold for lassr action
wvhare the largest sigenvalues of tha linearized problem ars real and negative.
Hers, the laser ia stable and, if lllghtlg perturbed, will relax to ateady
state monotonically, bayond this small rangs, the lsser displays an additional
stable domain where the approach to Staady stats inwolves relaxation o;eilla-
tions. For § = 0.05, a pair of complex sigenvalues with 4 smsll negative reat
Part, in addition to the real pair, tmerga right at ﬂl.r.lh)ld.fol‘ laser action.
These camplex sigenvalues, as shown in rig. 3, are Eesponsible for the self-
Pulsing instability whose dynamical evolution is discussed in the nest section,
This feature 1s cesmon, with ainor quantitative changes also to &
{not shown).

ac™3
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J. SOLUTION OF THE TINE-DEPENDENT EQUATIONS AND DISCUSSION OF YSE RESULTS

Oour m-orlcal‘ analysis has shown the existence of two very different
dynamical regimes which will be discussed upant.niy in this section. The
first is characterized by the ratlo § = Yy /Y = 2 (radiative limit), and
the second by § = 0.05. On the surface, the main dlf!o-nm betwaen tha
two is just the rate of incoherent dacay of the population diffarsnce rela-
tive to that of the atamic polarization, but the resulting changes in the
cbserved output patterns are suggastive of considerably mors complicated
dynanical effscts. In both cases discussed in this saction, we have chosen
an inhomogensous 1inewideh On = 5 and selected a bad cavity configuration
corresponding to @ = 5; the same qualitative behavior, however, has been
observed, also in the bad cavity limit, for ﬂn = 2 and °I) -1,

In the radiative limit, § = 2, the following general pattern has amerged:
sbove the instability threshold, and over a mtﬁln range of the gain parameter,
the output oscillations first develop a reqular pattecn with pulsation frequency
that follows rather closely the imaginary part of the unstabls sigenvalue.

For larger gain values, the resonant laser (i.c = 0) devalops progressively
larger irvegularitias, while, in the presence of detuning, period doubling
bifurcations and Periodicity appsar to be the rule. The sams fsatures ars
apparant also for different values of ‘b and fall in qualitative agresment
with the findings of Mandel -na‘ Zoglache® in the howogenscus broadening cass.

We consider now in more detail the results of two typical scans, baginning
with the resonant case 4o * 01 for {X,.| = 2, comewhat above threshold for
self-pulsing, the oscillstions are highly perlodic with a radian {requancy
of about 1.7 rad/sec {efr. Im sl * 3.2 rad/sec) as showm in rig. 4; for

""_l = 2.5, the output pattern is already strongly irregular (Pig. 5) with



missing "beats® or defacts that are suggestive of some kind of intermit-
tency. A finer scan of this reglon gives avidence for what appears to

be a period doubling bifurcation around Ix“__l = 2.12 {rig. 6). The pat-
tarn, however, persists only over a very narrow zange of gain values and

quickly davelops & noisy modulation as shown io Pig. 7.

The output of the off-resonance :l.tun:':lcn. as mentioned, is far mors ragular.

periodic oscillations of ths 1P-type triq. I'l are followed by a clear ezample
of & period doubling bifurcation (Fig. 9) which is than foliowed, for higher
gain values, by a retwrn to simply periodic oscillations with some small
amplitude modulation (breathing). Larger wvaluss of the cawity 1inewidth
i have a tendency to raduce the threshold for the onset of oscillations and,
in the resonant case, for the appsarance of chaos. in the good cavity lisit
(e.9., & = 0.5) inatead, the unatable behavior disappears sven for values of
C that are four or five times larger than the lasex threnhold.

ror small values of .1. tha cutput oscillations begin to take the form
of a train of well resclved single pulsas with a spacing that grows progres-
sively ugon lowering tha valua of §. hgain, as in the previous case, the
axistence of dot.unlng‘ favors the accurresce of pariod doubling bifurcations
and stable pariodic patterns although, irregqular oscillations develop for -
higher gain values and are considerably lass srratic is this case.

_ & characteristic train of pulses for |I"’| = 1.5 is shown in Figs. 10a.,b.

On the expanded scals, the presance of significant ringling is apparent. This
teature is in qualitative agresment with some of Casperson's sxperimental
rasults and mumerical simulations in spite of the sisplifiad naturs of our
-od-lh. For increasing gain, tha pulses becohe sharper, their spacing

smaller, and the ringing more pronounced (rig. 11), whils at the ssue time

——

G

irregularities also become more obvious. The out of resonance solutions
have much the same appearance as those shown in Tigs. 10 and 11, except
for larger ringing and thelr incressed regularity, and nesd ot be repro-
duced hars. s

Perhaps tha most rsmarkable fesature of these soluticns is the fact that
the smitted intensity is sssantially Sero betuwesn pulsu; a feature which is
pot connacted with the individual atomic polarization componente bacoming
zero, but rather with the dephasing sction dus to the fresa precession of the
dipoles in the absance of the field. This is strictly a fsature of the
inhosogensous broadening. unfortunataly, we have not hesn able yet to Lden-
tity the mschaniss by which the macroscopic polarization periodically retuxn
to a noazero valus, displaylng features that are reminiscent of tha digolar
rephasing effect in photon acho. The maximm valus of |x|? which ia propor:
tional to the psak intensity, somewhat suzprisingly, doss not scale linsarl
with the gain, or the mumber danaity of atoms. In fact, from the luu‘nhlo
evidance, it displays & power law depsadencs of the type [l“_|3 -« C-tl:ﬂ
which is suggestive of cooperative bghavior one finds in supsrradiance and
superfluorescence?.

In cloaing, ve wish to wake & brief comment on an approximate approach
for dealing with the solution of the dynamical equation {2.2) cthat was pro-
posed recently by Grahas and Cho’. The etructuse of the field equation

{2.2a) suggests that ome should consider the total polarization
‘
. - - - -
p i) = | b gid) #(8.1)
- .

as the basic dynamical variable instead at the individual polarization com-

ponents P(5,7). The difficulty with this viswpoint la that the equation ol



wotion for lolﬂ involves the new variable
-- - - =~

P ) - { ‘aa § oth r{8,1)
which is irreducible from Po. and which, in fact, couples to higher order
exprassions in an infinite hierarchy. Attempts to insist on a description
based on the integrated polarization and popullt.io'n differance variables
without introducing drastic approximations have basn mads without much
success; for exaspls, we have managed to tnnltot.- Bqs. (2.2) into a set of
exact partial differential equations involving only collective atomic vari-
ables without, however, much clear advantage.

Graham and Cho proposed a clever procedure for truncating the infinite
hisrarchy of coupled squations based on the introduction of adjustable para-
meters. As in most similar instances, an assessmant of the accuracy of the
results is very hard to obtain directly. For this swason, wa have dccided
to compare the results of the truncated Graham-Cho hisrarchy with thosa of
the sxsct Eqs. (2.2). The results, unfortunately., are not very promising,
although, roughly, the instability thresholds and self-pulsing frequencies
for periodic oscillations in the small gain regims display a reasonable
corrslation. RAway from tha instability threshold, on the other hand, the
truncated hisrarchy develops a sequance of bifurcations that bear little
or no resesblance with the sxact solutions; tha intermittent bshavior dis-

played in PFig. 12, for enample, was obtained using the same parameter values

and initial conditions used in our earlier Pig. 5.
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4. CONMENTS ON THE NUNERICAL NORK

The numerical analysis of Eqge. (2.2) presents the usual challenges of
any fairly large-scale simulation. Tha continuous atomic profile must be
suitably discretized into a number of components, or “"packets”, located
at frequencies 61 within the atomic line so that the nwsber of equations
o bs handled simultanscusly is usually rather larga. 1In this work, we
have adopted a standard fourth-order Runge-Kutta schems for the numarical
integration of the differsntial equations and, after saveral sxperimants
with alternative methods, wa have sealected the common extanded trapezoidal
ruls for the evaluation of the frequency integral, on the basis of its
performanca against various other integral routines. The range of inte-
gration has bsen sxtended to tha interval -lan ta uan in all our calcu-
lations. Tha selection of the number of packets ia & sensitive issue.
Wa have explored this matter at some length not only by comparing with
one another time-dependent solutions cbtained with different numbers of
atomic componants but also, and sspecially, by looking for an accurats match
betwean the results of long term mmerical integration undar stable conditions
with those predicted by the state equation. Since tha steady state intensity
of the laser is computad from the state squation with a routine based on
convenient seriss repressntations of tha scror function, while the direct
integration of the squations of motion adopts an entirely differant way of
calculating |x.t|’. the exceljent degres of consistency butwaea these results
i3 a good indication of the reliability of our procedure.

In salecting nn-s {as in most of this work) we found that 100 atomic
pasckats was an appropriats compromise betwean accuracy and speed of emecution.
This nusber was varied proprotionally whenever On was wvaried,
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TIGURE CAPTIONS

Steady state output jntensity X [? (solid lines} as a function of the
gain paramstar for 8, =5 2=5ama ) &0 () 0= 51 (3) the
frequency offset & (dashed 1ine} is aleo plotted for iac -5,

(s) Weal parts of the first two sigenvaluss as functions of tha steady
state output intemsity |x, |2 for 8,5, & = S, iu: =S5and §~ 2.

{b) Tha corrssponding imaginary parts of the first two eigenvalues for
the sams values of the parametars as in {a).

Real and imaginary parts of the first two eigenvalues as t_nncttonn of
the staady stats output inteasity |um|2 for 8,=5, =5, 3, -0 and §=0.05.
Tine dependence of {3{1)| for 8,5, &=5, iu-o and §=2. Yhe initial
unstable stats corresponds to [X_ | = 2.0.

Tine dependencs of |x(1)| for 3,=5, 2~5, -0 and §=2. The initiel
unstabls state correspouds to Ilnl - 2.5.

The devalopment of a pariod doubling pattera for |X(r)| corrssponding
to an initial unstable value |X_ | = 2.13.

An erratic modulation of the solution displayed in Pig. 6 develops even
by a slight change of the initial unstable value of the field modulus.
ters, [%,| = 2.12.

Pariod oscillations of {Xir)| for 8, =5, &=5, 8,05 and =2, The
#nitisl unstable state corresponds to |x_.| = 2.0.

Period doubling hlfurnt.ton for an cut of resonance configuration,

agef, #=5, =5, 12 sod 1, | = 3.0.



Pigure Captions (contd.) }4

10. (a) Begular train of pulses for ﬂD-S. =5, im-o and §=0.05,
The initial unstable stats corresponds to Ixﬂ_l = 1.5. . .
(b} Expanded view of the same solution displaying pulse details
and ringing.

11. {(a) An irregular train of pulsss for 60-5. =5, 3.:-0 and §u0.05.
The fnitial unstable stats corresponds to |l.t| = 8.0,
(b) Expanded view of the same solution.

12. Intermittent behavior of |a(v}| obtained by solving the squations of

Graham and Cho {maf. 5) using the paramaters and initial conditions I

of PFig. S, :
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