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the spins of the two ubsystems slong directions a and b gives precisely the q hapical result —co(e - b). The
model is “Jocal”, but the normalization procedure of comelation functions in terms of “hidden variables™ is different from
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Iy the dichotomous quantum mechauical results both for probabilities and for correlation fusctions. This procedure ilhus-

trates particularly clearly the difference b
the notion of the “reduction of the wave fi

1. Introduction. Despite considerable amounts of
literature in recent years, one of the difficulties with
the interpretation of Bell’s inequalities has been the
lack of explicit models of hidden varisbles with which
to compare classical and quantum correlations and
to test the assumptions undetlying their derivation. It
is now generally belleved that the so-called “local-
realistic” hidden-varlable (HV) theories are ruled out
by experiment [1,2]. In this paper, we present a sim-
ple claszical model of correlated events which can in
principle be realized experimentally, and which exhib-
its the same correlations as those obtained in spin-
12 correlation experiments. Our model is local in the
sense of Bell, but is not in conflict with Bells in-
equalitics, because 23 we shall see the normalization
of the correlation function is performed in different
ways in our model and in the derivation of these in-
equalities.

We then use a technique formally similar to quan-
tum projection operators to construct “joint probabil-
ities” from the corvelation function £(a, b). Again,
the observed probabilitics are the same a4 in the
quantum case, but the corresponding quantities at the

! Per ddress: Dep of Physics, University of
Colorado, Boulder, 0O 80309, USA.
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and classical spins and provides a possible intuitive picture for

“hidden variables” level are ot positive definite, in
contrast to Bell’s requirement, and cannot be inter-
preted as probabilities. This situation can however be
remedied by 2 discretization procedure leading to
quantities that can be interpreted at probabilities also
at the HV level, We then recover sl results of quan-
tum mechanics within a classical theory, but have to
use a form of integration measure over the space of
“hidden varisbles™ different from that proposed by
Bell. This simple example, and the three distinct ways
to approach it, lustrate particularly simply the limi-
tations of the hypotheses underlying the derivation of
Bell’s theorem.

2. Correlation functions. Consider a classical sys-
tem initially at rest and which splits into two parts
with opposite classical spins. The experiment consists
in measuring the projections of the momenta (or equiv-
alently of the angular momenta or spins) of the two
separaied subsystems along two directions @ and b,
respectively (fig. 1), The measured quantities are thus
paand —p-b. We indicate the relevant vectors ina
3-dimensional coordinate system shown in fig. 2.

We have

pra=pacosy, —p-b=-pbcosk, o)

0.375-9601/84/3 03,00 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division}
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Fig. 1. The break-up procem.

where p, 2, and b are the magnitudes of the vectors
p.a, and b, With respect to the axes as chosen in fig.
2,

A=p-a=pasinfcosy,
B=_—p-b=—pblcos 8, sin & sin g

+in 8 2in 0 sin ¢) @
where @ is the angle between a and b, cos 8 = #- 8/
ab. We repeat the experiment a large number of
times, and assume that the directions of the subsys-
tems after splitting are randomly distributed in all di-

rections, After averaging, we then obtain (A)={(8)
= 0-

Fig. 2. The measured angles A and u of the projectiles relative
to the detectors e and §,
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A =yp o)t
Ix

80 [ 4 [ aosnocortu=(paptts, @
0 0

and similarly
(B2 = (pb)2f3 . )
The correlation {AB) = {p+a)—p- Y is found to be

= -1 148 ap papb sin 0 cos A cos
4x

= —$p2abcos O . (63)

The averages (3) to (5) still depend on the magnitudes
of the various vectors. This is to be expected, since a
classical spin can have any magnitude and therefore
any value for & given component. If we are only in-
terested in information about the direction of p, the
relevant quantity is the normalized correlation func-
tion

(ABD A B
Eda.b) A g2 (mm w!)lﬂ)

=AB=—co18y. ®

This is identical with the correlation function ob-
tained in the measurement of the spin components of
2 quantum mechanics] spin-0 coherent state splitting
into two spin.1/2 states:

EQ(G, b)=(vl'fll. uzbldi), (7)
where ¢} = 2-12[1; 1]

In Bell’s proof of the inequality [2]
-2 < E(a,b) — Ela, ')+ E(d', b) + E(a', ') <2, (8)

a cruclal step is to write Eg, b) = f dA 4, {A)B,(A),
where A is a complete set of HV, and to assume that
the expectation values of the unobserved A,(A) and
By(A) are bounded by one. This is an sssumption,
dictated by reasons to which we will return jater on.
In our case, we normalize the correlation function
cofrectly by dividing it by the “magnitudes™:

Au) = pa con pfp- a2 = S con
B~ —pbcos N(p- 912 = fTouk.  (9)
It is eauily seen that in this case, Bell's proof does not
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follow. It is important to emphatize, however, that in
our classical example, it is the procedure of normaliza.
tion of the correlation function, rather than *‘nonlo-
cality”, that leads to a violstion of Bell’s inequalities.

We see, then, that the measured correlation func-
tions alone do not tefl toc much about the details of
the break-up process and can be reproduced by a sim-
ple classical picture. They merely describe the kine-
matics of the process, nothing more. In the next sec-
tion, we show that joint probabilities already give a
better indication of the difference between classical
and quantum mechanics.

3. Probabilities. in experiments of the type per-
formed e.g. by Aspect et al. (1], one does not mea-
sure directly the correlation function E{a, b}, but
rather, the joint probabilities P, ,(a, b), P, _(a, b),
etc. for the #- and bcomponent of the first and second
spin, respectively, to be +4/2 and 11/2,... . These are
obtained by decomposing the operator 0,6 @ 0,0 in
terms of projection operators as

4018 ® 0,5 = (1 + 01a)(1 + 038) + (1 — 048)(1 — 098)
—(1 — ogaX(1 +090) — (1 + oya)1 — 03b). (10)
This yields
Eq(a, b) = —cos 8y = sin(§ 6) + {sin?(38,)
— heos?($8y) — Joos’(}0,)
=P a,0)+P__(a,8)—P_{a,b)-P,_(a,b}.

(n
In order to find & counterpart to this decomposition
in our model, we use the identity
4cosAcosp

= (& + cos N)( + cos g) + (& — cos N§ — cos p)
—{o — coa N)}(# +con ) - (o + cos AN — conp),
az
valid for arbitrary constants c and 8.

By an appropriate choice of & and 8 we can find
the observables whose correlation functions give the
quantum meochanical ones Fy(a, b), (7, = £), namely
X N)=4124), Y, N=H15). 3)

In our case A= [X, ], and X, =4(1 £/3 cos ) and
Y, =4(1 ¥+/3 con ) are a mensure of the correls-

460
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tion of the original observables 4 and B relative to
their mean square deviations. Indeed, we find

Pyla, B) = (X;¥p =3(1 £ cos 8) (19)

(e 31 ~ cos 0p) for P, and P__, and (1 + cosB)
for Py _ and P_,). We can now sce why Bell’s in-
equalities are inoperative here. If we write

Pile, 8= 3% faAp a0, 1)
= i]; f dA Py(a, A)P(b, A}, as)

then, cur model is local in the sense of Bell, and all
the final observed quantities (integrated over HV) are
the same as quantum mechanically, but the densities
Pyla, AY=X(a, A)=1[1 £ A(g, })] are not positive
definite. (Note that they take the same form in 3 &i-
mensions as the “probabilities” obtained by Scully
when describing the quantum mechanical problem
with 2 Wigner distribution function [3].) Thus, they
cannot be interpreted as probabilities.

In experiments aimed at testing Bell’s theorem,
the system may conceptually be regarded as a black-
box connected to four lamps, two on esch side, which
always light up in pairs. One measures then the joint
probabllity that a given pair of lamps light up by ac-
cumulating the results of stngle experiments *! . Thus
the experiment i reduced to counting. This is why
one insists on having positive definite densities
Pyla, A)and P,(b, A) for each ringle event. (Itisa
simflar srgumentation which leads to the requirement
that 4,(A) and B5(A) be bounded by 1.) We now
show how this can be done in our model,

4. Discretization. Although all finsd correlations,
probabilities, and joint probabilities are the same for
both the classical and quantum mechanical cases, and
apart from the difficulty with negative densities, there
fa clearly a fundamental difference between a quan-
tized and a classical spin. In the quantum case, each
event contributes to exactly one count in one of the
FPifa, b), szy Py 4(a, b). In the classical case, each
event contributes, in general, a certain amount to all
of the Py(a, b). This is of course related to another
feature of the quantum theory of measurement, name-

*1 For a tutortal discussion of this point, see ref, [4).
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ly the collapse of the wave function. We do not wish
to erase this difference. However, we can operational-
ly discretize our continuous measurement so that the
final recording of events will be exactly liké the quan-
tum mechanicat “yes” or “no™ experiment, with the
same probabilities and correlation functions.

For this purpose, we construct a detector that
first measures both observables X, (a, A) and X_(a,
A}, and compares them. The system is then instructed
to associate the region where X, {a, A) > X _(a, A)
with spin “up”, or “+”, relative to . Assuming, with-
out loss of generality, g and b to be in the equatorial
plane, as shown in fig. 2, and generalizing slightly
from our preceding discussion to label @ by the angle
¥, (instead of zero), the region of angles for which
X, >X_lsgivenby

~nfl g —p, SN2, {16)

This is the upper hemisphere with the vector s as
north pole. The lower hemisphere will then be spin
“down”, Similarly the region forwhich ¥_> ¥, is
given by

—m2Rp—-ypSnf2, an
i.e. the upper hemisphere with vector  as north pole,
(Note that the spin S, of the second particle is oppo-
site to the spin S; of the first one, 55 = —§, 80 that
the component of S, in the upper half-planc is nega-
tive.)

The joint probability of, szy, X, and ¥ _ occurs
then in the Intersection of the two reglons (16} and
{17). Similar considerations hoid for X, ¥V, X_¥_
amd X_¥,.

Recording each event st an angle y with a weight
factor Nlcos(y — p,)l, respectively N |cosly — vp)l,
where NV = 1/4 is a normalization constant yields for
the single probabilities

2x
P@=g | dolcoso— o)
0

X [Hp - (¢g — 7/2)) — By —(p, +7/2))]
1 wetni2
3] ddeop-wdi=ir, (89

va—nil

where H{x) is the Heaviside function. This is just the
sum of all sping in the upper hemisphere with respect
to &, weighted by the factor
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Ti(e, v} = 1lcos(e — )l 19

i.c., the sum of the projections of ihe spin compo-
nenis along the detector axis &, Similardy, P_(a) = 1/2,
and

1 2x
Py [ dolooko—ap)

X [Hlp — (op — n/2)) — Hip — oy + 212

wptnf2
=L ddeoso—ogn=1n. asb)

wp—-mil

Note the difference between this and the averaging
procedure used in the derivation of Bell’s inequalities.
In this last case, one uses the same measure to inte-
grate Fi(a, A), PA(b, A), and Pifa, b, A) over the
hidden-varisbles space:

Pi(a) = [aA d NP2, A, (20)
PAB) = faA d(AIPLD, A, 200
Byfa, )= [ 4A p(AYP e, NYBAD, A) (20¢)

while in our case, the measure is replaced by a “pro-
jector™ on the detectors axes s or B,

In our detection scheme, the joint probabdlities are
given by the intersection of the two relevant hemi-
spheres, with a weight function that may be chosen
a8 either that of the first detector, or of the second
detector (or the sverage of both). For exsmple:

2w ’
P @)= [ doTiew)
0
X [Hlp — oy — 7/2)) — Hp — (o, + 2/2]

X [Hy — (v — 7/2)) — Hip — ey, + 7/2))]
= j de T, )
o

X (He — (¢, — 7/2)) — Hp — (o, + 7/

X [Hip — (¢, — 7/2)) — Hp — (93 + #/2)))
[T

=f do (e, ¢,)=4(1 +cosBg).  (18)

—uf2
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This definition of the joint probability P, _(a, £),
while quite different from the prescription of local-
realistic HV theories, presents interesting features.
Most notably, in the evaluation of joint probabilities
one applies only one of the “projecton™ I{p, W) Ot
(v, vp). This is reminiscent of the quantum mechan-
ical reduction of the wave packet: in that last case,
once one of the spins is measured, then, the value of
the other one is known with certainty. Our prescrip-
tion does essentially the same thing: once one of the
spins has been “projected” on its detection axis, no
further projection is necessary, Thus, we can simuiate
the results of quantum mechanics by a completely
classical descretization procedure.

Is this procedure local? The single probabilities
(182) and (18b) do not depend on the setting of the
other detector. But the way Pyla, b) is constructed,
atthough independent of the relative setting of the two
detectors, does depend on the fact that both detectors
are present. This, of course, is also true in local-realis-
tic HV theoties. But the difference is that in that Jast
case, one multiplies the single probablities [eq. (20¢))
while in our model Pyfa, b) is determined by the over.
lap region shown in fig. 3. In this region, the events at
& are weighted by the “projector” (19), and the events
a1 & with probability one (or vice versa) which intro-
duces explicitly the fact that these are absolutely
correlated events. (If the component of the first spin
along # is known, we know for sure the value of the
component of the second spin along 5.) Whether our
system can be called local, in some generalized sense,
is then probably a question of taste.

3. Conciusions. We have compared the quantum
mechanical spin correlation function (7) with the cor-
responding classical spin correlation (6) calculated
completely classically, and found the same result in
both cases. We also computed joint probabilities, and
again found the same final observable results. Bell’s
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= L
0 R-Ry % AT 0Ty e, B+ Ty

Fig. 3. Overlap segion of spin up for the first particle and
down for the second one.

inequalities are based on supplementary asswinptions
about the probability densities in the hidden variables
space. There are no additional assumptions in our
model.

Since quantum spins are discrete and the experi-
ments yield discrete “yes” or “no” counts, but classi-
cal spits are continuous, we have introduced » natural
discretization process counting all spins in the upper
hemisphere relative to the observer as “up™, and all
spins in the lower hemisphere as down, together with
a suitable measure, With this, our experiment also re-
produces the discrete quantum mechanical cotrela-
tions. We therefore conclude that a classical experi-
ment can reproduce exactly observed quantum me-
chanical correlstions, but that some of the assump-
tions underlying Bell's inequalities have to be removed.
Our model further sheds some light on the differences
and similarities between the classical and quantusm me-
chanical spins and the corresponding spin correlation
observables.
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IS REALITY REALLY REAL? - AN INTRODUCTION ToO BELL'S INEQUALITIES
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1. INTRODUCTION

Ever since its development in the 1920's, quantum mechanics
has been the object of numerous discussions, which are still going
on, and will probably keep going on for some time. At the onset,
one should agree on one point, namely, that quantum mechanics works
extremely well, and allows us to predict the most minute aspects
of, say, atomic spectrs, with incredible accuracy. The problem is
not there, but rather, lies in its interpretation. What iz the
meaning of the wave function, what ia performed in s measurement,
etc. ..., are questions which have fascinated, and still fascinste,
many physicists. Some people make a living out of discussing these
probiems, but for most of us, this iz a hobby, that we talk sbout
during coffee breaks or in the evening, around a pitcher of beer, 1
am certainly not an expert on the foundations of quantum mechanics.

- But over the last few years, I have read a substantial amount of

Papers on this topic, and bave realized that during my studies I
had been "brain-washed" into accepting things which I should not
have ... at least, not readily. I have come to understand that we
live in a very strange world indeed, where the most trivial, self-
evideat truths doa't apply. In this lecture, I would like to ex-
plain why it is go. What I will say is not mew, it is just my way
of understanding and summprizing the work of very clever people
such as Rinstein, Bohr, Bohm, Bell, Wigner, and many others. Of
course, I may well misunderstand and misquote them at some point or
the other, and apologize in advsnce for this. I hope nevertheless
that these notes may be useful to some other "operational™ physi-
cists, who spend their life doing very concrete calculations o
experiments, but ask themselver now snd then "what on earth it all

]
-means” ,
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In Section 2, I briefly review the Einstein-Podolski-Rosen
"paradox". This is the starting point of most discussions ?f the
foundations of quantum mechanics, puts the whole problem into a
proper frame, and allows to introduce the central concepts of
"locality" and "reality". In Section 3, 1 then open a parenthesis
to discuss a variation on Bertlmann's socks adapted to the present
summer school. This example, introduced by J.5. Bell to illustrate
the strangeness of quantum mechanics, sparked my understanding of
the problem, and maybe, it will help somebody else, too.

In Section 4, I then derive Bell's inequalities in a simple
form, trying to explicitly show at which point each assumption
enters ~-this is mnot necessarily obvious to see in the published
literature., In Section 5, I review the most recent experiments, by
Aspect and coworkers, using photon cascade in atomic transitions |‘:o
test this inequality. In Section 6, I mention a loophole in
Aspect's experiments, which leads to a brief discussion of delayeq
choice experiments. Finally, in Section 7, I ponder about the impli-
cations of these results. Is our world not local, or not real? ...
I must say at the onset that any reader expecting to find an answer
to these questions in this paper is going to be bitterly dis-
appointed.

2. THE EINSTEIN-PODOLSKI-ROSEN "PARADOX"

It is well-known that Einstein, although he did not deny its
operational success, never quite accepted quantum mechanics. In a
famous paper!, Einstein, Podolsky and Rosen (EPR) proposed a
Gedankenexperiment aimed at proving that quantum mechanics is not a
complete theory. We discuss here a variation of this experiment
proposed by Bohm?.

_:!:\:}\\ . sofre - /;":!1oﬁ::)
o= el T

Fig. 1: Experimental set-up 9f the EPR~Bohm Gedanken experiment.
The second analyzer b is not relevant here, but plays a
central role in Bell's theorem (see Section 4).

Consider a source in which pairs of identical spin 1/2 partic-
les are produced by, say, the decay of a diatomic molecule in the
singlet state. Upon emerging from the source, these two particles
fly towards two space-like separated snalyzers and detectors, suc
ag Stern-Gerlach magnets. (see Fig. 1). i

Long after the particles are emitted, an observer sets the anglyzgr
{magnet) 1, in order tc measure the spin component § = a -

of particle 1 along a. For a spin-1/2 particle, the result is 1'571.
Because the total spin of the system is zero, we know for sure,
without having to perform a messurement, that the spin component S
of the second particle along this same direction is then ;‘ﬁ/Z.

At this point, EPR introduce the concept of "reality"l: "If,
without in any way disturbing a system, we can predict with cer-
tainty (i.e. with probability equal to unity) the value of a physi-
cal quantity, then there is an element of physical raality corres-
ponding to this physical quantity." EPR further require that "every
element of the physical reality must have a counterpart in the
physical theory".

According to this criterion, we can then attribute an element
of physical reality to the spin componment S_. However, oux obser-
ver might have chosen to set the detector I" in direction a', thus
measuring the spin component S_,, and inferring, without in any way
disturbing particle 2, its spin component § ,. Thus, there is also
an element of physical reality attached to S:,

According to quantum mechanics, however, one cannot predict
precise values for non-commuting observables. If quantum mechanics
iz complete, the two ohgervqples S and 8_, cannot have simul-
taneous reality (unless a = a'), in contralliction with the pre-

ceeding argument. Thus, EPR conclude that quantum mechanics is not
completed,

0f course, many of the founders of quantum mechanics, and in
particular Bohr*, have refuted this argument, maintaining that the
specification of the experimental procedure plays a central role in
quantum mechanics, but for many years, no real progress was made.
In fact, a majority of physicists believed that this whole discus-
sion belonged more to the realm of philosophy that to physics,

since it looked like no experiment was able to determine which was
the correct attitude.

The situation was changed drastically since the early 1960's,
due in particular to the work of J.S. Bell, who studied an exten-
tion of the original EPR experiment, whgre the analyzers 1 and 2
(see Fig. 1) are set st different angles a and b. One then measures



the joint probability of obtaining a given value (say, + fi/2) for
the spin components Sa and Sb .

Let us call P++(a,b) the joint probability of measuring S =

1/2 and S, = %/2, P__ (a,b) the joint probability of measuting
8 = h/2, and Sb = -h/2, etc... According toc quantum mechanics,
weé have
P _(a,b) = P__(a,b) = % sin? 6/2,
m
1
P,_(a,b) = P_ (a,b) = 3 cos? 6/2,

where & is the a2ngle between 2 and b. This indicates that quantum
mechanics predicts strong correlations between the measurements at
detectors 1} and 2. For instance, for 6 = 0, we get P++(a,b) =
P__(a,b) = 0, and P+_(a,b) = 1/2.

0f course, strong correlations are well-known in every-day
life, too. Think for instance of two friends taking blindly one ball
each out of a bag containiug one white ball and one black ball,
putting them into their pocket and then travelling one to the moon,
and the other to Boulder. The two friends agree to look at the
color of the balls at a given, prearranged time. When the traveler
to the moon sees that he has, say, the black ball, he immediately
knows that his friend has the white one, without need to even
check. There is a strong correlation due to a common cause. (It is
also legitimate for the moon traveler to attribute an element of
physical reality to his friends's white ball - or is it? EPR would
say yes.)

Are the correlations observed on the EPR-type experiments also
due simply to common causes (the two spins are after all prepared
by the decay of a single, common, molecule)? In the original EPR
experiment, the answer could have been, yes! But the surprise is
that in Bell's more elaborate version, the answer is, to a large
degree of certainty, no (that is, provided that Aspect's resuits
still hold in a "delayed choice" version of his experiment). And to
understand better what this means, it is time to turn to Bertl-
mann's socks.

3. DR. BERTLMANN GOES TO BOULDER

In a recent paper %, J.S. Bell discussed the case of Dr. Bertl-
mann's sccks. I found this example, directly inspired by
d'Espagnat“, very illuminating, and tried to adapt it to the con-
text of this school, which takes place in the foothills of the
beautiful Rocky Mountains. In a series of experiments, I have asked
participants to this Institute to perform two of three tests, con-

sisting of hikes on trails on flat ground, on slopes of 45°, and on
vertical cliffs, respectively.

Now, for a fresh bunch of participants, one has that

{those who can hike at 0° but not at 45°)
+

{those who can hike at 45° but not at 90°) 2)
is not less than

(those who can hike at 0° but not at 90°)

which is trivially correct, and not very deep, since members of the
last group can either hike at 45°, and belong also to the second
group, or not, in which case they belong to the first group. (Note
that we do not assume that if somebody can hike at some angle, he
can hike at lower angles, too.). However, it is hard to perform
such an experiment, because if we bring somebody incompetent on a
steep cliff, he may not be available for the next test! Alse, after

one test, a hiker is not fresh snymore, and may not pass another
test!

But I have noticed that people always go in pairs of equiva-
lently trained hikers, so that if one member passes a test, the
other one would pass it, too.

Thus, I can rewrite relation {2) as

{the number of pairs where one member can hike
at 0° and the other not at 45°)

+
(the number of pairs where one member can hike
at 45° and the other not at 90°) 3)

is not less than

(the number of pairs where one member can hike
at 0° and the other not at 90°).

Assuming that the number of participants at the school is so large

that one can go from single events to probabilities, this may be
rewritten as

()



(the probability that one hiker can make it
at 0° and the other not at 45°)

+

(the probability that one hiker can make it {4)
at 45° and the other not at 90°)

is not less than

(the probability that one hiker can make it
at 0° and the other not at 90°).

Now, spins in the EPR experiment are very much like hikers -or
socks - except that they are anticorrelated: if one spin passes a
test, the other one will not - if the spin component Sa is equal
to +i/2, then Sb is -h/2. Thus, for spins, we must reexpress rela-
tion (4) as?4

at 0° and the other not (-.%) at 45°}

[OF 4

Prob (one spin having
+

Prob (one spin having at 45° and the other not (-.%) at 90°)

L))

is not less than (5)

Prob (one spin having g at 0% and the other not (- %) at 90°)

This is, in essence, Bell's inequality. From Eq. (1), we can alseo
compute the predictions of quantum mechanics for such an experi-
ment. Taking by convention that +h/2 corresponds to passing the
tesﬁ, we have

sin2(22.5) + % $in2(22.5) = 0.1464,

% 8in?(45) = 0.25.

N

and

Thus, quantum mechanics clearly violates Relation (5)! As we shall

see later on, experiments up to now agree with quantum mechanics,

and are in violation of Bell's inequalities. This indicates that at

the microscopic level, things don't behave like socks or hikers any-
more!

To understand better what is so peculiar about the microscopic
world, let us now derive somewhat more formally Bell's inequali-
ties, and try to isolate the hypotheses leading to them.

©

4, BELL'S INEQUALITIES

In 1964, Bell® showed that by performing correlation experi-
ments of the type just discussed, one can distinguish between the
predictions of quantum mechanics and those of so-called "local-
realistic hidden-variable theories". Later on, his work was ex-
tended in particular by Clauser, Holt, Horne and Shimony 9. Here,
1 limit my discussion to a simple case, using the derivation that
I personnally like best 10’11,

The first point is that one should not be afraid by the term
"local-realistic hidden-variable theories". What hides behind it is
the idea that, fellowing EPR, quantum mechanics is not complete. At
some level, not yet understood, in an ultimate theory, there must
be more, or different, varisbles providing a complete description
of the system under study. Since these are not yet known, or measu-
rable, they are hidden - thus hidden variables.

"Local-realistic" is a fancy word which, basically, means that
one would like to have a "reasonable” ultimate theory. By reason-
able, one means that three "self-evident truths' should hold, which
d'Espagnat calls ©

- realism,
- locality,
- free use of inductive inference.

I will try to explain these as we go along.

Consider an arrangement like that of Figure 1, with a source
emitting two correlated particles (1) and (2). A property ¢f these
articles is measured by detectors 1 and 2, with settings a, resp.
b, of the analyzers. (The analyzers could be Stern-Gerlach magnets
for spins, polarizers for photons, etc ...) Using the principle of
inductive inference - legitimate conclusions can be drawn from
regularities in the results of experiments - we are entitled to
speak about probabilities, rather than single events.

Let us denote p_{a) and p_(b) t e probabilit1es of detecting
particle (1}, resp. {k} for setgings 2 and b of the analyzers. (For
instance, in the EPR-Bolm experiment, we could meagure if a spin
component is up along direction a and down along b. If we had a
complete theory at hand, p.(a) would be a function of all para-
meters {A} describing completely the emission process in the
source. But at the present stage of physics (1983) we have no way
to know, or measure, or even guesg what these parameters might be.
They are hidden, out or our control. What we detect in a series of
measurements is some average over them:

p,(a} = [dAp(M)p,(a,A), (6}
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where dA is a - unknown - measure over the space of hidden vari-
ables, and p(A) some weight function. For simplicity, we write A
instead of [A}. Similarly,

P, (b) = JaAp(AIp,(b,A). 9!

We way, but don't have to require
Jarpa) = 1. (8}

Suppose for a moment that we actualy could control the hidden
parameters f{A}, and know precisely what their value is. We could
then ask the joint pyobability p (a,b,A) of detecting both par-
ticles for settings a and b of the analyzers. If the detectors are
space-like separated, and the settings chosen long after the emis-
sion process, the result at one detector should be unaffected by
the setting of the other. This i{s the principle of locality: no
influence of any kind can travel faster than the speed of light
~there can be no cross-talk between detectors 1 and 2. Thus, the
counting-rates at detectors 1 and 2 should be uncorrelated, so that

Py (2,5,0) = b, (a,A) * py(b,A). (9)

Note, however, that the actually measured joint probability needs
not be uncorrelated: Integrating over the hidden variables, we get
with (9)

Py, (a)b) = IdAp(A)pl(a,A)pz(b,A). am

The weight function p(A), which contains all informations about the

correlations between hidden variables in the source, leads in gener-
al to a nonfactorizable joined probability distribution P, (a,b)}

{correlation through common cause). We present some exa-&lea of

functions p(A) in Section 7.

A simple theorem 17 gtates that for any four numbers X,x',y,
and y' between 0 and 1, the following inequalities hold:

-l S xy-xy' +x'y+x'y' -x'-y35o0. (11)
Noting that probabilg;ies lie between 0 and 1, and chosing two
possible directions a and a', respectively b and b', for the
analyzers 1 and 2, we obtain
-1 3 pl('!A)Pz(b;A) = Pl('!A)Pz(b'lk)
+ p,(a",A)p,(b,A) + p (a’,M)p,(b*,A)

= pl(e.lA) = pz(blA’) = 0,

@

or, with Eq. (9)
-1 g plz(a,b,A) - plz(a,b',h) + plz{a',b,h) (12)
+ plz(a',b',h) - pl(a',A) - pz(b,A) g 0.
Integrating Eq. (12) over the hidden variables yields finally

- Jarap(A) = plz(a.b) - plz(a.b') + p,(a’,b) (13)
13
+py,@',b') - p,(a') - p,(b) 20

The left-hand side of this inequality is equal to -1 if condition
(8) holds, but we actually don't need it. Keeping the right-hand
side only yields:

Py(a,b) = p ,(a,b") + Ppa’,b) + plz(a'.b') < 1 (16)

pl(a‘) + pz(b)

which is one form of Bell's inequatities, as derived by Clauser and
Horne 10,

It is jmportapt to realjze thgt when introducing two pessible
directions a and a', resp. b and b' for the analyzers, we impli-
citly assume that we can speak about the outset of measurements
even if we don't actually perform them. (We cappot make simul-
tapneous measurements of particle (1) along both a and a' direc-
tions!) This is the hypothesis of reality imtroduced by EPR 1,
according to which there is an objective physical reality indepen-
dent of whether we make an observation or not. Thus, three assump~
tions were indeed needed to derive Bell's inequalities: inductive
inference, locality, and reality®.

In practice, it is not the form (14) of Bell's theorem which
is tested. Rather, one makes supplementary hypotheses, some of
which can at least in principle be tested experimentally. In parti-
cular, if_}he joint probability p (a,b) depends only on the angle
0 between a and b, and the probabil%ty pl(g) is independent of the
direction of the analyzer, we can chose a, a', b, and b' as in
Fig. 2.

Equation (14), becomes then

Pp® - ppG0 5

P, TP,

For the spin-1/2 case discussed in Section 1, quantum mechanics
predicts p, = p, = 1/2, and vith Eq. (1) and ©® = 45°, we obtain 12
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Fig. 2 Geometry used to derive the form (15) of Bell's theorem.

3p,,(8) - p,,(30)
12 12 = 1.20,

P, tp,

in viclation of Bell's theorem. Thus, quantum-mechanical correla-
tions canmnot be fully accounted for by any "local-realistic"
hidden-variables theory. The question, then, is to determine which
"self-evident truth" is violated by quantum mechanics.

0f course, the situation would be easiest if Bell's inequali-
ties were not violated in experiments, in which case, our world
would be "normal”, after all. However, the best evidence today,
although not definitive, clearly favors quantum mechanics.

5. EXPERIMENTS

The experimental efforts umtil 1978 to check Bell's theorem
are summarized in the review by Clauser and Shimony®. Here, we
briefly discuss the best experiments to-date, recently performed at
Orsay by Aspect and coworkers 3’14, Ingtead of spins, as in the
original EPR-Bohm Gedankenexperiment, the system used here consists

of pairs of optical photons emitted in an atomic radiative cascade
(see Fig. 3) 15,

The 4p2 1So level of calcium is populated by two-photom exci-
tation, and decays back to the 482 13 state over the 4s4plP, level,
emitting two photons of wavelengths %1 = 5513 & and Az = &227 R

Lp? s,
n sk
Ve
is 4p 'H
v,
* A, te2zr b
482 155 e
Fig. 3 Radiative cascade scheme used in the Aspect experimental

test of Bell's theorem.

Because the change of angular momentum in the transition is J = 0 =+
J=t + J=0, no net angular momentum is carried by the photons. For
emitted photons counterpropagating in the % z-directions, the state
of polarization of the total system must therefore be of the form
1 1,1 o, 0
$ = 7z {1 )+ (1)(1)1. (16)

where (l) represents the polarization along the #-axis and (:
along the $-axis. The first column-vector describes the A_-photon
and the second the A _-photon. Thus, in such a cascade, the polari-
zation states are completely correlated, as the spins are complete-
ly anticorrelated in the Bohm set-up. But the difference between
complete correlations and complete anticorrelation is irrelevant,
as already discussed within the example of Section 3. Thus, photon
cascades are appropriate systems to test Bell's inequalities.

The experimental difficulties are, however, considerable 218,
Most of the painstaking work consists in improving detectors, po-
larizers, sources, etc... The best experiment so far 1%, however,
has attained a high degree of perfection and is becoming agonizing-
ly c¢lose to the idealized EPR-Bohm-Bell scheme. (There are, how-
ever, a couple of loopholes 1left. The most severe is discussed
briefly in Section 6).

In photon-cascade experiments, one does not measure directly
the quantitiy Eq. (14), but rather, another combination of correla-
tion functions which satisfies the inequality '4:

-2 5 858 3 2.
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The detailed form of § in irrelevant here. It is sufficiant to note
that this combination is more direct - or basic - in the sense that
no single probabilities are used and both output channels of each
analyzer are monitored. The experimental results, for an angle of
22.5° or 67.5° between the polarizers a and b is, however, S =
2.697 + 0.015, while quantum mechanics predicts § M= 2.70 + §%8s.
{The theoretical uncertainty takes into account QJmerfections in
the detection system). Thus, the experiment shows a spectacular
violation of Bell's inequalities and is in excellent agreement
with the predictions of quantum mechanics. Assuming that these
results remain valid when the last two experimental loopholes
are eliminated, which is most likely, we must therefore conclude
that local-realistic hidden variable theories are wrong.

6. DELAYED-CHOICE EXPERIMENTS

As recognized already by Aspect et al., the experiments of
Ref. 14 still have a couple of loopholes left. The first one, re-
lated te the low efficiencies of the detectors, does not appear to
be very severe. The other is, however, of a conceptual nature and
must be eliminated in future experiments. Specifically, the diffi-
culty arises from the fact that the setting of the analyzers was
fixed before the emission process has taken place. Thus, in prinm-
ciple, the analyzers could "tell" the scurce how to emit before
hand, and the experiments do not actually test the locality or
unlocality of quantum mechanics.

To elimipnate this loophcle, “delayed choice" experiments must
be performed 18’17  Agpect et al. 18 have recently gone one step in
this direction by performing a series of experiments uging variable
polarizers which jump between two orientations in a time short com-
pared to the photon transit time. The results are still in viola-
tion of Bell's inequalities. However, the experimental arrangement
is not yet ideal: the change of analyzer direction is not random,
but rather quasiperiodic, although the aswitches of the polarizers
are driven by different generators at different frequencies. These
recent experiments make "local-realistic" hidden-variable theories
more and more improbable, but truly delsyed-choice experiments,
where the analyzers are set randomly long after the emission pro-
cess, are neverthelegs still absolutely required. Nobody really
doubts that in this case, Bell's inequalities will still be vio-
lated. And nobody really knows what this means. We now know that
the microscopic world is very strange, but what is strange in it is
not yet clear.

——

7. INTERPRETATION 7

In Section 4, we derived Bell's inequalities using only three
“self-evident truths": locality, reality, and the use of inductive
inference. Their violation in photon cascade and other experiments
indicates that at least one of these assumptions is wrong. Which
one? Nobody actually knows, but many people seem to believe that
locality is the bad guy. However, there is no proof of that.

I would like to suggest that, maybe, none of these "self-svi-
dent truths" is wrong. In the derivation of Bell's theorem, there
was a fourth hypothesis, which one mostly doesn't pay much atten-
tion to, namely the fact that probabilities are positive and bound-
ed by 1. However, if one abandons this requirement, one can easily
build a local-realistic hidden variables model violating Bell's in-
equalities and reproducing the quantum mechanical results. In the
following, I give a heuristic example of how to do this for the
case of photon cascades. Using classical-looking representations
such as the Wigner distributom, Scully has developed a systematic
way to build such "hidden-variable theories"19.

I start from Eqs. (6) and (10), and assume that the source is
co-plggely described by two sets of hidden variables o and f such
that

pl(n) = fodufodﬁp(a,ﬁ)cosz(a-u), {17)

where a is the angle of the A -photon polarizer with respect to the
origin, and ¢ varies between 6 and 2r, Similarly

P, (b}

S 9af dPp(a,B)cos? (b-B) (18)

and

H

p,,(a,b) S daf dBp(a,B)cos?(a-ar)cos?(b-B). (19)

Belifante?® has shown thast the condition of "maximum source corre-
lation",

p@,B) = L 8(a-p) (20)
yvields pl(a) = pz(b) = 1/2, as it should, but
p,,(a,b) = % [cos?(a-b) + %]. ' (21)

which is within the bounds allowed by Bell's inequalities., The
"problem" of quantum mechanics is that it produces more correla-
tions than allowed by the common causes involved in local-realistic
theories. How can one then produce more correlations in the source?
For instance, by using 2 distribution sharper than a delta-function.



Taking as an example

P (@,B) = L 8(a-p) - & 6"(a-P)

(20)
= p(u’B)classicaI * p(u’B)QH
one finde readily
p, (a) =p, (b) =1/2 (22)
and
Py, (a,b) = 3 cos? (ab), (23)

which is the correct (quantum mechanical) correlation function in
the case of photon cascades 2. (The half-angle appearing in Eq. (1)
is characteristic of spin-1/2 particles). In such a model, one
could interpret p(e,B)/2n as the "classical" source correlationm,
while p"(a-p)/8n appears as a singular, '"quantum" correction.

The model described here is not unique. We have built z number
of them 21, all doing the job. They are local, but involve negative
probabilities. A fascinating point is that when trying to make
quantum mechanics look classical, using e.g. Wigner distribution
functions, it is usually not locality, but positive probability,
which is sacrificed 22, Could it be that our concept of proba-
bilities is too naive, that they can, indeed, become negative, and
that the quantum-mechanical wave-function is a way to handle them,
very much like imaginary numbers are the way to handle the sguare-
root of negative numbers? To stop these speculations, what is
needed is somebody with a stroke of genius comparable to that of
J.8. Bell, who comes up with 2 way to test separately the various
"self-evident truths" used in local-realistic theories.
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