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Summary

This paper is a critical review of the most challenging area of nonequilibrium
statistical mechanics, namely the insurgence of ordered structures starting from a
chaotic (maximum entropy) condition, in a system strongly perturbed at its boundasy
as a quantum optical system. For still higher perturbations, the ordered structures
become more and more compiex, until they resemble a chaotic situztion (determin-
istic chaos, or turbulence). This turbulent regime is however rich in relevant inforrna-
tion. Criteria for sorting this information are given.

I. Order from Chaos—Role of Nonlinearities and Role of the Boundary—
The Laser

A detailed experimental analysis of the onset of order in a pumped
system was given in my 1965—-1967 investigations on the passage from
incoherent to coherent light in a laser [1]. Fig. | shows the photon statis-
tics (P.S.) for a radiation field below and above the threshold point (that
is, the point where the gain provided by the stimulated emission pro-
cesses of excited atoms compensates for the losses due to the escape of
radiation from laser volume). The & curve is fitted by a Bose-Einstein
distribution describing the fluctuations of the photon number in a
black-body around the average value (#) given by Planck’s formula, the
L curve is fitted by a Poisson distribution. The two distributions cor-
respond to fields with the same color, direction and intensity, so that
there is no classical optics measurement which could discriminate between

* Invited lecture presented at the seminar on *Fundamentals of Quantum Optics™
in Obergurgl, Austria, 1984,
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Fig. 1. Photocount distributions of three radiation fields. I laser field, G Gaussian
field, § linear superposition with [, and G onto the same space mode
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Fig. 2. .Field and photon statistical distributions for an ideal coherent field (no
fluctuations), for a thermal equilibrium field (Gaussian with zero average), and for
the superposition of the two shifted Gaussian
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them. Yet the P.S. measurement shows a dramatic difference. The why is
given in Fig. 2. For a uniform field, since photons are Bose particles with
zero mass, and hence delocalized, the associated photon detection pro-
cesses at different points in space-time have no correlations. Therefore,
in a volume filled with a coherent, or ordered, field (that is, a field with
a &-like statistics as in Fig. 2a), the associated probability p(n) of detect-
ing photons at a given point over a time T is a Poisson distribution.

If now the field has a zero-average Gaussian distribution, as for a
thermal equilibrium or maximum entropy situation, weighting each
probability element with the detection statistics one obtains the Bose-
Einstein distribution. Between these two limit cases of full order and
maximum chaos, one can trace a continuous manifold of intermediate
cases (Fig. 2¢). This smooth behavior is analogous to a second order phase
transition, as a thermodynamic system undergoes a continuous change of
state around a critical temperature. The explanation implies the essential
role of nonlinearities. The elementary description of a laser in terms of
Finstein stimulated emission processes compensating for losses is not
sufficient. Indeed, this would just provide a linear polarization P = xE,
and a quadratic free energy

F(Ey=—P E=—xE% (1)

In a thermodynamic system open with respect to the variable £ ,Ehasa
statistical distribution given by

W(E) = N exp[ F(E)/kT] )

(N = normalization constant). Similarly a nonequilibrium system with a
dynamical variable £, driven by a nonlinear force f{£) and by stochastic
noise with short correlation time and correlation amplitude D, has a
stationary distribution [2, 3]

W(E)=N exp[s AE) dE/D] . 3

In the absorbing case (force of the field proportional to the polariza-
tion P= - af; f AE) dE = — }aE?) by (3) the field has a Gaussian sta-
tionary distribution, as it should be expected from thermodynamics (2).
in the linear emitting case the distribution is undefined (P = ak’; exp{af:?)
is not normalizable). But an atom is still exposed to photons after
emission. The lowest correction is cubic in the field (Fig. 3) and it is
sufficient to describe the passage from Gaussian chaos to a narrow dis-
tribution around nonzero fields

s+ B, =+ /B, 4

The spontaneous symmetry breaking does not assign the phase of Eq.
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Fig. 3. a Absorbing atom, linear polarization; parabolic pseudo-potential; Gaussian

probability. & Emitting atom, linear polarization; parabolic pseudo-potential; un-

defined probability. ¢ Emitting atom, cubic pelarization; quadratic pseudo-potential;

probability peaks around coherent values t Eo. d As ¢ but with a symmetry-breaking
odd term in potential, arising from an external field

We have two equivalent states 180° apart. To lift the degeneracy we
must apply an external field v, which assigns a reference phase. The two
states are no longer equivalent (optical bistability).

Fig. 4 shows the analogy with a thermodynamic phase transition.
Here the order parameter is called g, and the control parameter is the
temperature. In the Landau model, the coefficient of the quadratic term
in the free energy

F(g) = ag® + pq* (5)

scales linearly with the temperature o = a(T - T.), going through zero for
the critical temperature T. In the laser case, g is the e.m. field E, and the
control parameter is the difference N between excited atoms and ground
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Fig. 4. Free energy and probability for 2nd and st order phase transition

state (population inversion). If x is the atomic susceptibility, the constant
o of Eq. (4) is



62 F. T. Arecchi

a=xN - (loss rate) (6)

and the threshold point corresponds to o = 0.

As shown by the locus of stable points, at threshold the thermody-
namic branch becomes unstable and the “coherent” branches appear.
In mathematical terms, this is a bifurcation.

Still higher order bifurcations could appear, making the ordered
branch unstable, and leading to new “‘orders™.

Before discussing this multiple sequence of bifurcations it is impor-
tant to decide how many degrees of freedom we have to deal with. In
physics we deal in general with nonlinear equations for a field q(x, r)

dorla2a). @

Such are the Navier-Stokes and Fourier equations for a velocity field
coupled to a temperature field in a convective fluid instability. For a
rectangular cell of small aspect ratio (ratio of two lateral sizes with
respect to the fluid height) and for a temperature difference AY between
lower and upper plate near the onset of the instability, Eq. (7) reduces
to three coupled equations for a velocity mode and two temperature
modes [4]. In suitable units, these three equations are [5]

x=— 10x + 10y,
y=—y+28x —xz,
7 =(8/3) +xy. (8)

Similarly, if we couple Maxwell equations with Schrodinger equations
for N atoms confined in a cavity, and we expand the field in cavity modes,
keeping only the first mode £ which goes unstable, this is coupled with
the collective variables P and describing the atomic polarization and
population inversion as follows {2, 3]

E= _KkE+gP,
P=_y P+ gkt A,
A= — (A — B) — 2g(P*E + PE™), 9)

where &, v,, ¥, are the loss rates for field, polarization and population
respectively, g is a coupling constant and A the population inversion
which would be established by the pump mechanism in the atomic
medium, in the absence of coupling. While the first of Eqs. (9) comes
from Maxwell equations, the two others imply the reduction of each
atom to the levels which are resonantly coupled with the field, that is,
a description of each atom in an isospin space of spin 4. The last two
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equations are Bloch equations which describe the spin precession. There-
fore, Eqs. (9) are called Maxwell-Bloch equations.

2. Dissipative Systems—Strange Attractors—Description of Chaos

Equations (8) and (9) are phenomenological. The presence of loss
rates means that three relevant degrees of freedom are in contact with a
“sea” of other degrees of freedom. In principle, they could be deduced
from microscopic equations by suitable statistical reduction techniques.
The fluctuation-dissipation theorem would impose the addition of
stochastic forces.

However, we show that for N > 3 degrees of freedom, deterministic
chaos may be reached in nonlinear equations as (8) or (9) without con-
sideration of stochastic forces. These latter ones would modify some
details of the phenomena, without relevant changes in the qualitative
picture.

In a dissipative system there is a contraction of the phase space
volume. If at time ¢ = 0 the ensemble of initial conditions is confined in
a hypersphere of radius E, at time / the volume will be (referring to the
principal axis)

N
V(ty=eV exp(z ?\;r) (10)

1

where the growth rates ); are the Lyapunov exponents. The contraction
requirement means

N
27«;<o. an
i

Now, if we start from a single point at £ = 0 (well determined initial
condition) a single trajectory emerges, and on it we have obviously A = 0.

For N=1, Eq. {11) imposes A; <0, hence there is no trajectory.
Indeed, the asymptotic volume can only be O-dimensional, that is, a
single point, hence we have only a stationary solution.

For N=12, if X, <0, it may be X; <0 (no trajectory) but also
A, =0, that is, the final volume is 1-dimensional (limit cycle) and we
have a periodic oscillation.

For N = 3, besides points (A;, X;, A5 all negative) and limit cycles
(7\;, X, negative, Ay =0) we may have A, <0, A, =0, A3 >0, with
A; > |A| to satisfy Eq. (11). This means that in direction 3 we have a
stretching from € to € exp(A3¢). Even if two initial conditions are very
near the representative points after a long time will be largely distant.
This sensitive dependence on the initial conditions (asymptotic instability)
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was aiready pointed out by Poincaré in 1890 [6] in his investigations on
the gravitational 3-body problem and it is a limit to the long term stabil-
ity of satellite trajectonies.

The asymptotic phase space locus (after a long transient) for Lorenz
equations (8) is well known. That locus attracts all neighboring initial
conditions because of the compression of the phase volume peculiar of
dissipative systems. it is then an atiractor, as the fixed point for N = | or

the limit cycle for N = 2. But nearby points at a given time must diverge .

after a long interval, because of A; > 0. Hence the attractor will never
close on itself and it is called strange.

The unpredictable behavior of paths started from initial conditions
specified with an arbitrary (but finite) precision is a fundamental obstacle
to long-term nonprobabilistic forecasting. E. Lorenz called this the
“butterfly effect™: if the atmosphere is described by a dynamic system
with a strange attractor, even a tiny change (as that produced by the
motion of butterfly wings) has catastrophic consequences for long-term
weather forecasting.

This is why computers can produce only a sufficiently short realiza-
tion of the path of a dynamic system with one (or more) A > 0 (of course,
the machine may go on computing, but, for large ¢, the path is no longer
related to the initial segment).

As for the physical realizability of strange attractors, or deterministic
chaos, Eqs. (9) indicate that lasers are candidated for large varieties of
situations. As one changes the atomic species (g, v, ¥,) the pump rate
(&) or the losses of the e.m. cavity (k). On the other hand it is well
known that commercial laser sources are good examples of stable dynam-
ical systems. The main reason is that of time scales. As shown by the
coefficients of Egs. (8), a strange attractor is obtained when the damping
rates of x, y, z are comparable.

On the contrary for noble gas lasers (Ne, A) the atomic damping rates
are much faster (y, ~ v, ~ 10%+10°s™') than the field loss rates (k ~ 10%+
10757"). Hence the secdnd and third of Egs. (9) can be solved at equilibri-
um (P =A= 0} with respect to the rather slow variations of £ and substitu-
tion into the first yields a single nonlinear dissipative equation £ = f{iE)
which allows only for a fixed point. The procedure is called adiabatic elimi-
nation [2] of the fast variables, which are slaved by the slow variable. This
latter one can be considered as the only relevant dynamical variable (order
parameter), as it was implicit in the heuristic considerations of Fig. 3.

As we scan most atomic or molecular species radiating in the visible
or in the infrared, it is practically impossible to locate one whose rates
satisfy Lorenz conditions.

We used a different approach. First we chose a molecular transition
(A = 10 ygm, CO,) where relaxation of the excited state is very long
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{7, ~ 10%s7!) so that we can adiabatically eliminate only £ and we have
to keep two equations. Further we add an external driving force, by
periodically modulating the losses
k(1) = kol + m cos §2¢). (12)
If we solve the linear stability problem for the two remaining equations
for £ and A, we do not have limit cycle but a point attractor, since the
associated frequencies are damped.
Applying a small perturbation, the response goes as ¢™* with (for A
twice the threshold value)
n=qr +ing = -y ik (13)
We now fix £2 of Eq. (12) around \/’Fy—" This way, we excite a non-
linear resonance of the dynamical system and obtain a chaotic behavior.
Details are given in Sect. 3.
If f(#) is the physical realization of a deterministic system we try to
fit the experimental points (f/(7;)) with the theoretical model. If f{£) is a
stochastic process the information is contained in the joint probability
density Wo(f,(1)),. .., fa(ta)) of finding the values f; at ¢, etc. or in

“the correlation functions (f,(£,),f2(13), ..., fu(fs)} (brackets are ensemble

averages) [8, 9]. In both cases there are well established experimental
techniques and algorithms for extracting useful information, but they are
both limit cases.

It appears nowadays that the overwhelming majority of relevant
situations in many-body physics (from plasmas and fluid dynamics to
lasers, biology and meteorology) corresponds to deterministic chaos.

Being a rather new area of investigations, the first approaches are
qualitative: either geomeiry of the dynamic flows in phase space, or
Poincaré sections of the flow. These are particularly relevant since for a
suitable choice of the hyperplane which cuts the flow with a specific
constraint, the Poincaré section is particularly simple for deterministic
flows and a complexity in it is an indicator of a strange attractor.

A more quantitative way of appreciating the passage from deter-
ministic to chaotic behavior is the observation of power spectra. For
deterministic systems, they are made of discrete lines, implying a finite
recurrence time. Appearance of chaos is marked by the anset of a con-
tinuous spectral component. This however is a necessary, but not suffi-
cient condition for chaos, since it is common also to purely random
systems. Indeed the spectrum is the Fourier transform of the two-point
correlation function (or first cumulant) which is a sufficient characteriza-
tion only for Gaussian processes. Since we are away from thermal
equilibrium, we expect in general strong deviations from Gaussianity
with relevant contributions in higher cumulants.

A more quantitative approach will be discussed later below.
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3. Some Experimental Cases: Coexistence of Many Attractors and Low
Frequency Spectra

' Here I discuss four experiments on the onset of chaos performed by
my group. The first refers to an electronic nonlinearity, the others to
CO, laser systems.

Besides showing the application of the above-mentioned experimental
techniques, we \give evidence of the simultaneous coexistence of many
attractors for the same values of the external (or control) parameters.
This phenomenon was called “generalized multistability” because it is a
generalization of the coexistence of more than one fixed point for the
same input.

a) Electronic Nonlinearity
Let us consider a dynamic system, ruled by the equation
=P ) (14
where ¥ is an n-dimensional vector, F a nonlinear functior'l‘ and § an

m-dimensional control parameter.
We study the equilibrium solutions

Fi =0 (15)

for different . For some critical §i, some stationary solutions may
switch from stable to unstable (bifurcations). An example is the laser
threshold. '

We are not interested in the general treatment of bifurcations, but
just in how they may lead in some systems to turbulence, or chaos. One
of the indicators of turbulence is the appearance of a continuous power
spectrum.

Before 1963, the Landau-Hopf model [10], based on mode-mode
coupling in a fluid due to the nonlinear hydrodynamic equations, hypoth-
esized the generation of a large amount of uncommensurate frequencies,
which eventually accumulated into a continuum.

In 1963 Lorenz [5] showed that three coupled nonlinear equations
were enough to reach chaos. The three ordinary equations were truncated
versions of field equations with drastic cut-offs due to the boundary
conditions, as said above.

Equivalent to three coupled equations is a system of two first order
equations (or second order equations) plus an external modulation. An
example is the driven Duffing oscillator

X+9x —wix +8x* =4 cos wt (16)

which can be experimentally realized with an electronic oscillator {11
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Eq. (16) is equivalent to 3 coupled equations

x=y,
y=—yytwix —fx>+4cosz,
7= w. (17)

For a suitable sequence of parameters ji (either modulation amplitude 4
or frequency w) it gives a sequence of subharmonic bifurcations leading
eventually to chaos as shown in Fig. 5.

The sequence of subharmonic bifurcations corresponds to the suc-
cessive appearance of periods T = 2w/w, 2T, 47T,...,2"T in the output.
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Fig. 5. Phase space plots (x, x) and power spectra S(w) for different control
' parameters
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If we call u, the value of the parameter at which the period 2" T appears,
then the following relation is verified

* — Hn+i — Hp

b= ———2 =5 4669,... 18

Basa — Mpey %) (18)
This number has been §hown by Feigenbaum [12] to be universal.

If, in the spice {(x, x, f) one considers the discrete transformation
from the point (X, x)} at time ¢ to the point (¥, x) at time r + T after
integration of Eq. (17) over that interval, one has the discrete mapping

in’r'-'f-l(fx)- (19)

Such a correspondence is illustrated in Fig. 6. Plotting all crossing points
with the constant-phase planes on a single plane, we have a stroboscopic,

Lignr
4

s
7 tiggd poins
v fiie Tiey =Ly,

Fig. 6. Trajectory in 3-D phase space (solid line} and direct mapping x, - x, 7.
Example of quadratic map

or Poincaré, map. Of course, having performed a time integral, one has
reduced the three-dimensional differential problem (17) to a two-dimen-
sional recurrence (19). In many relevant cases the points of the Poincaré
map accumulale over an almost one-dimensional manifold. Since the
interesting bifurcations Are associated with a change of slope, the 1-I
map can be studied around a maximum. Thus, one-dimensional quadratic
maps as

Xpvy = px,(l —x,) (20)
display many features of Eq. (15).

One can develop a straightforward set of transformations using dis-
crete maps [13, 14]. For instance, the second iterate is

Xevar = fixor) = AAx)) = B (xy)
and a fixed point is ruled by the equation

Xepp = X7 = flx).
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Of course, a fixed point in the map does not mean a single equilibrium
point like for the differential equation, but a limit c¢ycle of period T,
whereby the position in phase space goes onlto itself at each T. A period
27 would appear as a solution of the equation

Xevar =X, = B (xy)

and so on. Feigenbaum {12] has evaluated his 5 value by showing that, in
such cascades of period doublings, the local structure of the attractor is
reproduced at a rescaled size in successive bifurcations, with the rescaling
parameter being a universal constant.
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. : :
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&

Fig. 7. a Bistable potential ¥(x). Coexistence of two strange atiractors in (x, x) with
possible mutual jumps induced by external noise (line with arrows). b Birth of 1/w
branch in power spectrum associated with the above junps

Noise is not essential (deterministic chaos), but if we add it, the
number of subharmonic bifurcations before chaos becomes smaller and
smaller. This can be put in terms of a scaling law where the variance of
the external noise appears somewhat as a modification of the control
parameter {15, 16]. For low excitation values j, depending on the initial
conditions, we have two independent attractors, confined in the two
valleys of the Duffing potential as shown in Fig. 7. Increase u until they
both get strange. Now, addition of a small random noise may trigger
jumps from one to the other. These jumps give a low frequency diver-
gence in the power spectrum {11]. They couple two strange attractots,
otherwise independent.
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b) Chaos in Quantum Optics—1. Case

After the first evidence of the jumping phenomenon, a similar effect
wad observed in a modulated CO, laser [7]. It corresponds to a set of 3
coupled rate equations, with time dependent cavity losses k(¢), that is,
calling A the populations inversion and # the photon number, to

A=R - 2GnA — 1,4,
n=GnA - k(f)n, @D
where k(f) is given by Eq. (12).

vk 178 4

log s
(78)

25 0 00 (H)lg

Fig. 8. Bistability in a CO, laser with loss modulation with coexistence of two

attractors (period 3 and 4, respectively), a spectra of stable attractors, & phase space

plots, ¢ comparison between the low frequency cut-off, when the two attractors are
stable, and the low frequency divergence, when the two attractors are strange

Fig. 8 shows bistability, that is, simultaneous coexistence of two
attractors corresponding respectively to f/4 and f/3 subharmonic. Increas-
ing the modulation depth m, the attractors become strange and the
spectrum shows a low frequency spectral divergence (Fig. 8c) so that the
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extension of turbulence considerations to more than one attractor {multi-
stable situations) seems a successful conjecture,

These jump spectra have been analyzed for a suitable map allowing
for two independent attractors [17]. On the other hand, low frequency
spectra are sometimes observed for a single attractor, when it is made
of two sub-regions weakly coupled (deterministic diffusion) [18). In
both cases these frequencies have a power law behavior f~* over a broad
frequency range, with a around 1. This resembles the so-called 1/f noise,
encountered in many physical circumstances.

With reference to a region of the parameter space of the Duffing
equation where many (i.e. 5) aitractors coexist, we measure the mean
escape time T from one attractor, versus the amplitude o of an applied
noise.

/' /_____..A
- Y
oo

w log'T

210 ao' Yo
Fig. 9. Mean escape time T from an attractor versus the inverse amplitude 1/o of the
applied noise for different control parameters below and above the crisis value A,

Fig. 9 shows log T versus 1/o for different values (4, <A, <A, <A,)
of the driving amplitude A at fixed frequency [19]. A; = A, is the param-
eter at which the period 7 undergoes crisis [20], that is, the representative
point escapes from the attractor after an infinite time, in the absence of
noise.

For A, > A even a zero noise (1/0 — o) yields a finile escape time as
it is evident from the corresponding saturated plot. ForA <A, T +ooas
o = 0, the more the smaller is A, as shown by comparisen between 4, and
A,. The finite escape time across a bounded region for 4 > A, corre-
sponds to the deterministic (noise-free} diffusion discussed elsewhere. On

71@
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the contrary, for A <A, where the attractor is structurally stable, the
uniqueness theorem for solutions of a differential system forbids the
phas:e point from leaving the attractor, unless we apply external noise.
This is the phenomenon of noise induced jumps already reported experi-
mentally |11, 7] and simulated with a one-dimensional map [17]. Notice
that both for 4 > A, and A < A, around the crisis region the large escape
times give low frequency power spectra which are qualitatively similar.
The essential difference is that for A <A. no jumps occur in the absence
of noise.

It is apparent from Fig. 9 that one can have the same T for different
A’s, adjusting the noise amplitude. This may be expressed in terms of a
scaling relation [19] as given for other chaotic scenarios [185, 16].

¢) Chaos in Quantum Optics—Il Case

Rather than acting upon a CO, laser with an external modulation, we
can inject a field from another laser. If the injecting frequency is away
by Aw from the “natural™ frequency of the main laser, we must account
forRe £ =X and Im £ =y astwo independent dynamical variabks which,
coupled with the population, give N = 3. Furthermore, if Aw is around
the eigenvalues the nonlinear resonance will give rise to chaos, as dis-
cussed in ref. [21].

d) Chaos in Quantum Optics—IHf. Case

In order to decouple the injecting from the main laser, we have
realized a ring configuration (F ig. 10) where forward and backward waves

Bidirectiona! £, ring leser 706 4eimr

o
100% R 1080 oy 7005% Re2m
% e — A\

y AR A

oo |
80%|
B ) 7
Fyroelec. 0(5:{,/’ BOZR=5m 700% Resm

round trip cavily lenglli=42 m

Fig. 10. Bidirectional CQ, ring laser
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have different propagation outside the cavity. As we modify the laser
parameter we observe bistability {either mode quenching the other),
periodic pulsations and eventually chaos. At variance with a dye ring
laser {23), where adiabatic elimination of atomic variables yields a
dynamic system with N =2 (the two countergoing ficld amplitudes),
for the CO; laser we must add in a relevant way the population ampli-
tude. In this configuration, this implies at least three more degrees of
freedom, namely A, (the uniform component of inversion) and A,
(the second harmonic population grating induced by saturation which
couples the two countergoing fields). Hence we can have a deterministic
chaos, which would be forbidden in ref, [23]. We have reached a satis-
factory agreement between experiments and numerical solutions of the
equations,

4. Conclusions

By a description of a few experimental cases we have shown that
quantum optical devices, being made of a small, and in any case control-
lable, number of degrees of freedom are the best systems to test deter-
ministic chaos, without having to recur to questionable truncation
procedures as in hydrodynamics.

For brevity reasons, this presentation has limited the experimental
evidence to phase space plots or to power spectrd. More powerful infor-
mation retrieval techniques are provided by measurement of the fractal
dimensions of the chaotic attractors. This is equivalent to studying
higher order correlation functions [24], hence going beyond the limited
information of the power spectrum.

These techniques have been used in our experimental investigations
[22] and they seem at this moment the most sensible tool for distin-
guishing order, deterministic chaos, and purely stochastic randomness.
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3. Information content in a turbulent system -

In Sec. 2 and 3 we have shown how to characterize 2 nonlinear dyna-
mical system by Lyapunov exponents, phase space plots and their Poincaré
sections, and power spectra. It is difficult to extract precse values of Lya-
punov numbers from a set of experimental data, even in theretical models,
where it requires a very large amount of computer time ?*, The geometry
of phase space is only a qualitative approach. The power spectra are an
incomplete description of a hierarchy of correlation functions (the two
points comrelation, suffident only for Gaussian stochastic processes).

Furthermore, a low resolution picture of a strange attractor or a conti-
nuous power spectrum is unable to tell whether a given system is andom
{complete filling of an N-dimensional region of a N-dimensional phase
space) or just complex (deterministic chaos as the accumulation point of a
sequence of bifurcations, more «predictable» than pure randomness). In
this second case, the strange attractor is a manifold with dimensions lower
than N. *

It is clear from Shannon’s ™ interpretation of entropy that order is basi-
cally an information theoretic concept (unlike the superficially similar con-
cept of symmetry which is group theoretic). Accordingly, two of the most
basic properties of dissipative chaotic systems are related to information:
the Kolmogorov 4 (or «metric») entropy K and the Renyi-Balatoni @
information dimension o.

Both are related to the information I(e,T) gained by observing a trajec-
tory of the system with precision £ during a time T. Here, we assume that
the structure of the attractor is already known, so that the observation
gives new information only on the actual trajectory.

The Kolmogorov entropy is obtained by observing a vety long time,

k= lim hmET-E @)

€=l To=

The precision € is here the uncertainty in the measurement of any of the
coordinates of the state vector £. Notice that the infinite-time limit is taken

60



first. The information for a given precision e increases linearly in time, and
the rate of increase tends towards a finite constant for infinjte precision.
This should be compared to ordered deterministic motion, where

b L&D _
m T =

T

0 {orden) - (23)

and to systems subject to random noise where

lim M « In —l~ - o, {stochastic) (24)
Tow T € e-0

The information dimension o is defined by the information obtained
in an observation during a finite time T (consisting eventually of a single-
time measurement, T = ()

- l{e, T=0)
¢ s"Po Inl/e

(25)
The importance of K and o degves in particular from the fact that
they are invariants. They both are related to the Lyapunov exponents
4, (i=1,.N; N=number of directions of phase space).
One has the rigorous inequality (14

K<, (26)

where the sum runs over all positive Lyapunov exponents. But it is widely
accepted that this is indeed an equality for all typical attractors. In particu-
lar, there does not seem to exist any known example where eq. (26) is a
strict inequality. .

Eq. (26) allows very easy computation of K for models in which the
equations of motion are known analytically. In experimental situations,
however, neither the calculation of Lyapunov exponents nor the direct cal-
culation of K via its definitions seems feasible.

This is different for the genenalized dimensions and entropics which we
shall discuss now.

The information I(e)= He,T=0) in eq. (25) is defined technically
via a partitioning of the attractor into cubes of size €. Let us callp; the pro-
bability for an arbitrary point on the attractor to fall into cell /.
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Then, 1(e} is defined as

i(e)=_z,"|lnl’:- (27)
The order¢ Renyi informations are now defined as @
f(e)=——In¥ pt (28)
l'(E)— l_q n ;Pr

and related order-g dimensions of the attractor can be defined as@%

D, = lim -2} 29
f c.olnl/e

Obviously, 6 = lim D, while lim D, is just the Hausdorff dimension or
1—-1 1—00

capacity (see Appendix).

Consider 4= 2. The sum ¥ p? is just the probability that a pair of ran-
dom points on the attractor fall into the same cube of the pantitioning, Up
to an e-independent factor, this is also the chance that two arbitrary points
will have a distance e Calling this probability C(e), we expect thus

Cl) ~ e (30)

For the practical calculation of C(e) and D,, consider a time series
X, = x(t+ n1); 1 fixed, n=1,.. M}. Due to the exponential diver-
gence of nearby trajectories, some points will be essentially uncorrelated,
leading to

C()= lim -—17 x [numbcr of pairs such that] (31
Mam M ’x'._x‘.IS.

In a similar way D, (¢ > 3) can be obtained from the correlations bet-
ween gtuples of points.
From the definitions it follows that

Dy > D, > D;. (32)

The physical meaning can be summarized as follows (sec also the Appendix).
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D, is the Hausdorff dimension of the strange attractor. It is smalier
than the dimensonality N of the phase space (D, = N means that we are
filling the phase space, that is, we have a random system). D, (information
dimension) and D, (comrelation dimension) depend on the density of
points in different subregions of the attractor, that is, on the freqiiency of
visitation of different regions of phase space.

For a rather precise determination of D, following Def. (32) we need a
few thousand points. This should be compared with the 10¢ points needed
to obtain convergence of the box counting algorithm used to compute D,
along the definition (A.1).

In expeniments, one has the output from a given detector, which picks
one of the N components of the phase space point X = (x,,%,,..xy). For
sufficiently long time differences § (embedding theorem) ®* the sequence

(1), x(t+ 0), ,(t+28),.x,(t+m@)

has the same amount of information as the phase point provided
m > 2N + 1. This way, as ¢ goes on, we can build from experimental data
a l-dimensional subspace X,{t), 2 2-dimensional subspace X, (), X,{¢+ 0)
and so on. Measuring for each realization the corresponding exponents D,
we reach a saturation. That means that we have already reached the dimen-
sionality of the attractor and there is no reason to go further. This is illus-
trated in fig. 15 for the strange attractor of our Marangoni instability. It is
worthwhile to notice that, just near the onset of chaos the dimensional D,
is around 2.3, hence the topological dimension D, of the attractor is as D,
or slightly larger against a total number of degrees of freedom (for a cubic
centimenter of fluid) N ~ 10?*! Such low dimensional varieties show some
universal character which means that once a cooperative behavior has been
established, even if the system is not absolutely ordered (D = 0 or 1) still
there is a comfortable degree of predicability with respect to absolute ran-
domness (where Dy =N =102 for our fluid).

6. Episiemological implications

It is amusing that physical cumricula are based on cases where K= 0 (as
classical mechanics) or K= (as equilibrium thermodynamics) while
almost all practical situations correspond to a finite metric entropy
D<K < .
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The recent rapid growth of the physics of order from chaes and the
onset of deterministic chaos {complex trajectories extremely sensitive to
initial conditions, because of asymptotic instabilities) has established a
kind of interdisciplinary language based on system dynamics and indepen-
dent of physical details called «synergetics» @ or «self-organization » 1,
Indeed once a drastic decimation from 102 to less than 10 in the number
of relevant degrees of freedom has occurred, many microscopic details fose
their relevance

It 1s worth to reconsider the general attitude of physicists with respect
to nature.

Physics is mathematized in terms of a time evolution operator U
which, acting on a set of initial data ¢, transforms then into a set fat a lat-
er time, that is,

Up=/. (33)

Eq. (33} is used in many ways. First, if U is known from theory and ¢ is
assigned by a suitable method, then predictions on f can be made (direct
problem). This would generally be considered an easy task for a physicist,
because it is an application within the realm of an established theory: like
doing EM. propagation* with given boundary conditions after all the work
from Maxwell to the World War Il Radar investigations. Second, one can
measure @ and then f at a later time, in order to establish the structure of
U. This is the logical process of building a theory. The establishment of
Kepler's laws was done this way, by comparing astronomical data at differ-
ent times. This is the way Maxwell equations, Weinberg-Salam electro-
weak theory and nowadays the ambitious Grand Unification Theories have
been built. It is considered the central task of a physicist. It may eventually
arnve to an end when fundamental interactions have been understood ©2.

This however will not signal the end of physics. Going back to the
direct problem, we have seen how the mathematics of non-linearities, start-
ed by Poincaré and then overlooked for 70 years because of the excite-
ment of microphysics (from mdio-activity in the 1890s to quarks in the
1960’s) has provided new vistas, including universal behaviors brought up
by the global topology of phase space and not by detailed microscopic
interactions.

There are still other ways of reading eq. (33). If f is mcasured and U is
assigned from a theory, the aimn is the reconstruction of the initial state g
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(third way). This is the goal of all evolutionary theones (as cosmogony).
This inverse problem is affected by intrinsic instabiiiﬁu; 03, They can be
appredated already in an elementary case. If U is a linear convolution,
then (33) can be Fourier transformed and the inverse problem has the

solution

-—

ol =2 (34)

Ulw)

Now the measurement of f is performed with a finite precison and this
implies errors, which are usually broad-band

S =f(w)+e,

where f(w) is bandlimited, while ¢ has a white spectrum (that is, it is ﬁfnit.e
as w ~ o). As for U{w), since it comes from a «reasonable» theory, it is
in general well behaved, that is,

U((p)) - 0.

G — o

Hence the reconstruction yields unphysical divergences, since

Pw) - .
wow

There is eventually a fourth way of doing physics, which was the dream
of empiricists, that is, to trace a large set of data ¢ over a long time, in
order to be able to make predictions on f over a reasonably long future,
without having to recur to a «theory» U.

Information theory applied to physics as discussed in the previous Sec-
tion seems to provide the necessary tools for this task. It is however my
opinion that this latter attitude is an «asymptotic», one, which may bc
taken for the sake of discussion, but without a sericus purpose. The physi-
asts will continue to formulate models, as it has always been since Galileo,
whatever will be the sophistication of the retrieval techniques, because his
goal is not simply to provide sensible forecasts, but to understand Nature.
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APPENDIX @

For a dynamics system with an N-dimensional phiase space, let n(€) be
the number of N-dimensional balls of radius e required to cover an
attractor. The capacity, or fractal dimension®™ js

On fractal dimensions

_ . logn(e)
D= !lino log1/e A1
When a set is «simple», for example, a limit cycle or a torus, the fractal
dimension is an integer equal to the topological dimension.
To understand the meaning of the fractal dimension, suppose that the
N coordinates of a dynamical systern are measured by an instniment
incapable of resolving values scparated from each other by less than €.
The instrument thus induces a partition that divides the phase space into
elements of equal volume. To an observer whose only a priori knowledge
is a list of the »( € ) partition elements that cover the attractor, the amount
of new information gaifted upon leaming that the phase point describing
the state of the system is in a given partition clement is log n{€). If the
resolution of the measuring instrument is increased, the number of parti-
tion elements needed to cover the attractor goes up roughly as & ~Ov, Thus,
assuming that all partiion elements are equally likely, for small € the
amount of new information obtained in a measurement js roughly

I=logn(€) = Dylog I/ . (A2

For most chaotic attractors, however, the elements of a partition do not
have equal probability. Assume that each element of a partition has proba-
bility P,. On the average, the amount of information gained in a measure-
ment by an observer whose only a priori knowledge is the distribution of
probabilities (P} i

mlE)

I(e)== % pilogp, (A3)

=0



This leads to a genenlization of the fractal dimension:

. I(e)
= D, = lim ——— 4
o=D,=lim o e A9

This dimension was originally defined by Balatoni and Renyi?*_in 1956.
They refer to it simply as the «dimension of a probability distribution ». In
order to avoid confusion with other dimensions, however, we will refer to
this as the information dimension. Since log n(€) > I{€), the fractal
dimension D, is an upper bound for the information dimension D,.
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