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In this talk we shall try to answer the following guestions

concerning the Squeezed States of the radiation field.l 1]

(i) WHAT are they 7
(ii} WHY are they rmportant ?

(iii) HOW to generate them ?

WHAT ARE SOQUEEZED STATES ?

In order to answer the first question, consider two dimensionless

operators A and B which satisfy the following commutation relation:

[AB] = C . (1)
Then, according to the Heisenberg's uncertainty relation
i
5HADA )'/il(C>E. (2)

A state is called "squeezed" when uncertainty in one observable (say A)

is less than that for the minimum uncertainty state, i.e.,
2,1
(AR) <§!<C>I (3

Specifically let a* snd a be the creation and destruction

operators of a single - mode electromagnetic Field with

la, a'] = 1 (%)
Then the Hermitian amplitude operators ay and a, which are defined as
a = a +iay, (5a)
a =a -1ia, (5b)

satisfy the commutation relation

[al s 32] = % (8)

The corresponding uncertainty relation is
a, 7 L (7)
S W I

A state of the radiation field is squeezed if one of the amplitudes

a, (i= 1,2) satisfies
2, 1
(6a)°<C § (8)

We call a squeezed state an "ideal squeezed state” or 'squeezed coherent

state”, if in addition to (B), we obtain

(9)

£

Aalﬁaz =

Consider first a well-known state of the field-coherent state
This state, which is the state of an ideal laser, is an eigenstate of the

destruction operastor a, i.e.,

ata)s o Iy (10)

A representation of this state i1s given as follows:

ta = D () |n>, (11)

where

D ()= exp [xa” - < al (12}
is the displacement operstor. It follows simply, on wsing Eq.(10), that

in a coherent state

1\32

i <alia -<al>)21oc>

=<*laild7— ((ulallq>)2

[ 1(ara*)21x) - (¢xMa + a*)1x))?]

(13)



Similarly
1 (14)
fHa, = a -
so that

(15)

-

A alr\az =
Coherent state is therefore not a squeezed state.

Next we consider the so-called two-photon state

1,42 =D ) S (§)1o> (16)

where

.2

5 ({) = exp (% 3 a? - % P a ) an

is the "squeezing operator” and D (4), as before, is the displacement

operator. The parameter

§ =T Ej.G ('lB)
is a complex number. Lf we consider a particular choice of {, namelyl = o

then it can be shown that

Ha :I};v e—Zr (19}

2.1 (20)
ha, =g*®
in a two-photon state. It follows from Eqgs.(19) and (20} that

1
beoyfrey =3 tzh)

It is therefore evident that for r #altwo-phutun state is an ideal squeezed

state.

WHY ARE . SQUEEZED STATES IMPORTANT 72

The major interest in the squeezed states stems for two important

reasons:

Firstly, the manifestation of the squeezed states of the radiation
field is a purely quantum mechanical effect. In order to show this explicitly,
we look For the condition on the coherent state representation when

fsaf < 174 (iz1 or 2). The coherent state representation is defined by the

following relatiogn:

3 :f)p(-j)w Y xt g2 (z2)

The normally ordered correlation functions of a and a* can be obtained
from the coherent-state representation by using the methods of classical

statistical mechanics. For example

<a'ays jrx*u( (=) At (23)

It can therefare be shown that, in terms of P {«),

pad = 1 [le (e} (ae)- (ore ) 2 ol ] (24a)

o[-

oz
Aag - [1_'_5 P{x) (_“_'i_, )_(c;JT:'}lzd ] (24b)

It should be noted that the quantities inside the parenthesis

sre real whose squares are positive. Therefore the squeezing condition
2,1 o
sajt g U=lor2) (25)

is satisfied for those fields whose coherent state representation P(«)} is

NOT non-megative. Such fields have no classical analog.

The secaond motivation to study squeezed states comes from a different

area of research-gravitationsl wave detection. One scheme to detect gravitation

waves is based on Michelson interferometry. The sensitivity of this device



is limited by guantum fluctuations. It has been proposed recently that

a technique which uses the squeezed states of the radiation Field could
be employed to reduce the photon-counting Fluctuation in the interferometer,

thereby increasing the sensitivity of the device.

HOW TO GENERATE SQUEEZED STATES 7

A number of nonlinear optical systems have been considered that
generate squeezed states. These include the degenerate parametric amplifier,
four-wave mixing, resonance fluorescence, free-electron lasers, optical

bistability, Jaynes-Cummings model, and the multiphoton absorption process.

In this talk we will analyse a degenerate parametric amplifier
in some details. This device is a particularly important example of the
systems that are predicted to exhibit squeezed states. Unlike many other
systems, ideal squeezed stales are generated in this nonlinear optical device,
when the quantum fluctuations of the pump Field are neglected. We shall
look at the effect of these fluctuations on the squeezing using a Path-integral

method which was developed recently by Mark Hillery and myself.

DEGENERATE PARAMETRIC AMPLIFIER

In a degenerate perametric emplifier, a pumping field of
fequency 2w interacts with a nonlinear medium and gives rise to a field
of frequency «#. This process 1s described at exact resonance by the

Hamiltonian

Hz 2b'b +.wa’e + l% (sz+ - ba+2), (26)

where b (b") and a(a*) are the destruction (creation) operators for the

pump and signel modes respectively and < is an appropriaste coupling constant.

In the parametric approximation, pump field is treated classically
and the pump deplection is neglected. We cen then replace the operator b by

fPexp (-2iwt) in Fq.(26). For simplicity we assume *to be real, The

quantity ﬁz then represents the number of photons in the pump mode. The

resulting Hamiltonian is then given by

H:=waa + %; (af o2Vt | g0 g2ty (27)

In the intersction picture, it simplifies further and we obtain
ik 2

Hl = % (ﬂ - B+2)- (28)
The equations of motion for the signal mode operators

a =i [a,H] = - Kfa", (29a)

a* = ifa’, Hl = -, (29)
can be solved exactly

a{t) = a chixi't) - a’ she|'t), (30a)

+ +

a (t) = ach (cpt)- a sh («pt), (30b)

where

a, = a (o) and a; = a* o)

We sssume the initial state of the signal mode to be vacuum, o

The various correlation functions necessary for determining af and ag
can then be obtained in a straightforward manner. The result is
21 -2«
nal =3 e 2 (31a)
2 _ 1 2ept
pay =z et (31b)
Na A =L
1B oey =g (31lc)

i.e,, we obtain ideal squeezed states.

So for we have neglected the quantum fluctuations. It is of
considerable interest to investigate the effect of quantizing the pump
mode on the statistical properties of the signal field. This problem is

however very difficult due to the trilinear form of the Hamiltonian.



Only small time solutions can be obtained with relative ease. We present
here a path-integral approach to solve this problem and obtain quantum

corrections to the results obtained in the parametric approximation

PATH-INTEGRAL APPROACH:

We summarize here the basic elements of the path-integral approach
to solve the problem at hand, namely degenerate parametric amplification

process,

First we define a coherent state propagator. If we denote the
eigenstate of the destruction operators a(t) and b(t) with eigenvalues
and respectively by J«,p,t7 , then the coherent state propagator is defined

as the following inner product

K (ul’“l'tl; “‘O»IL- °)=(‘11;I.‘11 t.ln‘ln,f’;__), 0> (32)

For an initial coherent state 1« i,[\i, o7 , the propagater is related

to the (-representation of the field, namely

) o1
WX P O = Sl tll P ) (33
by a rather simple relation
{ ) Lo kex,p 2 '
q “f’f F’ t) = ;2 K{ f!' frt; "i’“i' 0), {34)

Any antinormal ordered correlation function of a, a+, b, b* can then obtained

from Q (and, therefore, K using the methad of statistical mechanics. Ffor

example

1 2 2 : z
cattiat®y =4, (o Jolp 1? jup, G ot O

A path-integral representation of the coherent-state propagator

can be chtained:

KCa, ), 4, B o)=So (%00 ] DI Je® (36)

where &D [A(3)] and SD [ {3(r) ] represent Lhe integration over all paths

L(7) and[*(7) such that

PRSI IR S £ (o) :»<0 (37a)
Pty = [‘1 \ '{a) = [\0 (37b)

and E

is = de Dt - SO Lt e Tmainal ) 68

In Fg.(38), H is the Hamiltonian (26) such that the operators are replaced
by their coherent state eigenvalues. The problem therefore is to solve
£q.(36) for the coherent state propagater and then obtain the necessary

correlation functions by using [q.(34}.

Due to the trilinear form of the Hamiltonian, it is not possible
to obtain an exact expression for the propagatar in the present case. We
therefore resort to a perturbaticn method such that the zeroeth order term
in the expansion gives the contribution to the propagator corresponding to
a classical description of the pump field, i.e., in the parametric approxl-
mation. The First order term in the perturbation expansion is the lowest

order quantum correction.

The details of the calculations are rather complicated and we do
not repeat them here. The interested reader is referred to Ref.2 and 3.

The final expreasions for Aai and Aa§ are

2 1 27t 1 z b
rat =1 &2l 7 [0 = (0

@2 Gshigr e snqte L

~ §ne 70t 1 (39)
kS et

x o2+ 1) - G shly b e 2) shq e el

_ Shzq} ] (40)



where
Y = 2Ky
8]

The first terms in Eq. (39) and (40) correspond to the parametric approximation
whereas the second terms qive ua the lowest order quantum corrections to the
parametric approximation. The behaviour of the second term in Eq. (39) 1s
such that /\ai first descresse and reaches a minimum and then increases. Ffor

large values of ?Dt, the sgueezing disappears.

10
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A formaiism for applying path integrals to certain problemns in nonlinear optics is con-
sidered. The properties of a coherent-sinte propagator are discussed and a path-integral

representation fav the propag is pr

d. This rep tion is then employed in

cvaluating the propagator for general single-mode and multimode Hamiltonians which are
8 most quadratic in the creation and destruction operaton of the field. Some examples

involving parametric processes are given.

1. INTRODUCTION

Fath integrals and the approximations to which
they have led have been used very much in quan-
tum field theory in recent years. The path-integral
represeniation of the propagator allows one to see
more clearly than the standard operator approach,
the connection between the classical and quantum
dynamics of a system. Semiclassical approxima-
tions can then be derived in a natural way.! So
far, however, these techniques have not found
much use in quantum optics.” In this paper we
will develop some of the formalism which will be
of use in applying path-integral techniques to cer-
tain problems in nonlinear optics.

The types of problems to which we would Jike to
epply these techniques are those in which the
medium with which the light interacts can be
described by a nonlinear susceptibility tensor.?
These include such processes as parametric ampli-
fication and harmonic genetation. The interaction
between the different modes is then described by
products of various powers (depending upon the
specific process) of the creation and destruction
operators of the modes involved.

The type of path integral which we will consider
is not the onc usually used in quantum field theory
in which one makes use of a coordinate representa-
tion of the field. We will be interested in problems
in which only a few of the modes of the field are
important and we will use a path integral which
makes use of & representation of these modes in
terms of coherent states. Because the Hamilton;-
ans which we will consider will be expressed in
terms of creation and destruction operators, and
not the corresponding position and momentum

operators, coherent states, which are eigenstates of
the destruction operator, are natural objects to use.
The coherent-state path integral can be used to cal-
culate the matrix elenent of the lime development
transformation between two coberent states. This
matrix element can be regarded as a type of propa-
gator. This form of the path integral was first dis-
cussed by Klauder* and was subsequently examined
by Schweber® in the context of Bargmann spaces.
Klauder® in Iater work showed that the coherent-
state path integral is but one example of a more
general class of objects known as continuous repre-
sentation path integrals,

In Sec. 11, we discuss some properties of the pro-
pagator and show how it can be used to calculate
various quantities of intcrest in quantum optics.

In Sec. Il1, we derive formulas which can be ysed
to calcuiate the propagator for single-mode systems
with Hamillonians at most quadratic in the
creation and destruction operators. These are then
used to calculate the propagator for the case of
second subbarmonic generation when the pump
field is classical. In Sec. IV, we generalize our re-
sults and calculate the propagator for an N-mode
systemn whose Hamiltonian is quadratic. This re-
sult is then used to calculate the propagator for a
parametric amplifier with a classicat pump field.

II. COHERENT-STATE PROPAGATOR

We consider a system which consists of one
mode of the radiation ficld. Let the corresponding
time-evolution operator be U (1,,t,), ie., if K.y
ia the state of the system at time ty then the state
at time ¢, is

451

[
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[y =Uteg, 00 )| i)} . (§)]

If the Hamiltonian governing the system is given
by # (1) thent the time-evolution operator is {where
we have chosen units such that #=1}

Ultyn)=Texp [ -i f':‘yu'w] , o

where T is the Dyson time-ordering operator.
We will consider the propagator

Kiagtpan)=ay | Uttt ey}, 3

where the coherent states ¢, ) are the cigenstates
of the destruction operator 2 with eigenvalue @, at
time f =0. Another expression for the propagator
K{ayty;ay,t)) can be detived by noting that the
coherent state, at time ? [i.c., the cigenatate of a(2)]
is given by

|t} =Ue0)""a) . (4}
We then obtain

Kilagtye,t)={ani;|and)

=y | Ul 00U 14,01 |y} . (5}
J

In quantum optics, one is usually interested in
evaluating certain correlation functions of the field.
For a one-mode fieid these are proportional to the
expectation values of products of the creation and
destruction operators. These correlation functions
can be expressed in terms of the propagator
Kiasiy;ay.t)). We sssume that, at ¢ =0, the den-
sity matrix has a P represeniation, i<.,

p=[ d’aPa)a)al, 6

80 that the expectation value of any operator, O14),
in the Heisenberg picture is given by

(010} =Tr{pO (1)}

= [ d%aPtaia |0 |a) . vj]

On using the completeness property of the
coherent states, namely,

%fd1a|u,l)(a.r|=l . 8

it can be easily shown that

1
(atny=— [ [ dlad’a,Pla))| Ktanty;a,0) e, )

(u'(:.)a(r;))$$ [ | | dadad’apla)Kiautiant) Kiaptia, 0K (ay0a,t dalay . (10)

(a'lO)a'(l)a(l)a(O))-a;lz-ffId’a.d’a,d‘a,?(a,m'(u;,r:a,,OlK!a..r;a,.O)|a;|2a§c!.. ay

‘The determination of the propagator thus enables us to calculate any correlation function of the field opera-

tors.

The propagator K {ay,ty;a;,t;) is related to the O representation of the radiation field, i.e.,

Q(a.ﬂ=%(a.t|p|a.t).

{2

in & natural way. On substituting for p from Eq. (6), we obtain

Qan="1 [ daPiay|Ktatia,0)’ .

(EK)]

In particular, for an initial coherent state, Pla,)=5%a, —ap), and it follows from Eq. (13) that

Q{u,t)=% 1K (et im0, | 2.

(14

The  representation has the Property that the expectation value, at time 1, of any antinormally ordered

function O,,(a,a') ofaand a

(O4ta,0") = [ da0,ia,a)Q ) .

may be determined via the relation

15}

The close relation of propagator to the @ representation makes it essier to evaluate the expectation values of
antinormally ordered products than the normally ordered products. For eumrle, the mean number of pho-

tons at time 1 is most easily evaluated by using the commutation relation [a,a

]=1, as follows:

26 PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM . .. 433

(n’(llam)=(n[:la'm)—l=%Id”a. J daPleniKansa,m| a2 . {16)

Finally, we note that the Q and P representations are related to each other via the following relationship’:
Qla.n= [ d’a,Pla,.n)K(a,0a,0 )7 . an

We now turn to the calculation of the propagator itself for a particular set of systems.

TI. REFRESENTATION OF THE PROPAGATOR

A. Path integral for the t

yiupeg

It is possible to express the coherent-state propagator in terms of a path integral. Here we outline the
derivation of the path-integral representation which was first obtained by Klauder.*

We consider a system which is described by a Hamiltonian, H(a',a:1}, which is expressed in terms of the
creation and destruction operators a'and o, We suppose further that Hiatais normally ordered. By
inserting n resolutions of the identity into Eq. (5) we find that

L]
1
K(af"f;af"':': I; I fdlal e fdzan(ﬂ!.ffla,,,l.)(a.,t' ban_ ity 1} gty e ) (18}

We also have that

(ﬂ},f’ [a_’_|.l’_1>=<d’ Texp

_.iL:’_ldrH(fJ”a,_1>
e(a,‘ [I-i fl:‘“ldfﬂta'.a:r) I |nf_1>
={a,|a;_ M1 —ieH (a],a;_yi4;_ )]

zexpl — 3oy 1+ Hay_ | D+afa,_—icHia)a, ], 19
where €=t —1,)/n + 1, ;=1 + j¢, and the function H{a"*,’,1) is defined as

Hia"* a0 = (a"lH(af,n;r) a')

() . )
Inserting Eq. (19} into Eq. (18) immediately yields

¥
K(a,.l,;a,.l,]=.lgn_ ;I fd’a. ce fd’a, exp

4l
1 -
‘§| {—3la |+ ta,_, |2)+a,a,_|

—ifH(ﬂ;.ﬂJ_l;‘}v”] . {21

We note that

4l '
’E {—3tlail+ oy, | B +afey_ —ieH ta},a; ;1))

r4l . a,—a LI
- Y el . ay -y .
2 a p e+,a,_.[—~——r— €—ieH (af,a; 1, )
r,
i . .
af.' drljlaa® —a%a)—il (a* a;r}], (22)

us £—0. It then follows that
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1
A’(ap;!;ah,rfjxf @[atr))exp ’flf"dv{}(ad'—a‘&)—i!ﬂa‘,a;rll . 23)

where f P[alr}] designates the integration over all patha air), such that al(y,)=a; and alt;)=ay.

B. Quadratic Hamiltonisn

if the Hamiltonian is at most quadratic in 2 and a', it is possible to evaluate the path integral er.p!ici}ly .
(Yuen® has calculated this propagator using a different method). The most general quadratic Hamiltonian is

given by

Hia'a;n=wttia®a + flte?+ f* (a4 githa +g*(tla’, 24

where f(r} and g(r} are arbitrary time-dependent functions. The evaluation of the path integral (21) corre-
sponding to this Hamiltonian is outlined in Appendix A. The resulting expression for the propagator is

1
Kiaygtna.t)=exp Ifi f,l!dffzf(flk(r)+f[ﬂZ’lr)+g(rlZlf)l

L}
— a1+ oy | D4 Yitgdafa + Xt Nap i —ia} [,/ drfint¥in + Z2iyia)

[
—ia, f"’d‘r[gtf)+2f(f]erl]Ylﬂ . (25)

where X (1) satisfies the differential equation
dx

T:-umruvuﬂnx'—ifﬂn. (26)
(4
with X{1,)=0 and

Yin=exp |7.- [ adwtr+4rtnx (o ] . an

Z=—i f"df[,-m +28(1)X (7} exp Iwr' f'df[wtf')+4ﬂr')xmi ) 28

) T
I
The nonlinear differential Eq. (26) for X (1} can be tical device is given by
solved if we can express (1) as
Hin=wa'a tx(e?™al o Uuigly (30}

Flo=Fiorexp !2:' L:dfm(r)] , (291

where F(1) is real or imaginary. We now consider
a simple example where this condition is satisfied.

C. Degenemate parametric amplifier

The quantum statistical properties of the degen-
crate parametric amplifier have received consider-
able attention in recent years.® This nonlinear de-
vice is predicted to exhibit photon antibunching'®
which is a strictly quantum-mechanical effect.
Squeezed states, which could prove to be useful in
the efforts to detect gravitational waves, arc also
predicted to be g ted in a degenerate
parametric amplifier.*"!

The Hamiltonian that governs this nonlinear op-

where x is a coupling constant and @ is the mode
frequency. The Hamiltonian (30} is the same as
that given by Eq. (24) if we make the following
identifications:

wlll=w, flN=xe¥™, gi)=0. (an

Under these conditions Eq. (26} can be sotved and
we obtain

X(l):ili-e*““unh[lx(l—.r,-ll. (32a)
Yindae ™ " sech[ 2t — 4] (32b)
Zin=0, 20

On substituting from Egs. {32a) (32} into Eq.
125} we obtain

1] PATH-INTEGRAL APPROACH TO PROBLEMS IN QUANTUM . . 453

Klaptpie )= [sech| i, — 1,11} 72

xenpf ~ 1(lag| '+ |a, | I)+cn}‘:x,‘e7"'"’”"s::ch[lu(l‘f—-l,l]
~ yita)Pe ™ anh[ 2, 1)) - iale™™ tanh{ 2xit, —1,)]] . 33
r
This expression for the propagator which we have Correlation functions can be computed from this
derived using a path-integral spproach can also be propagator in ways similar to those used in the
derived using a more conventional approach.' onc-mode case. One must simply cvaluate more
integrals.

There is also a path-integral representation for

I¥. MULTIMODE PROBLEMS the N-mode propagator. Ome has

A. Path integrai Ktd tpdnn= [ 2[atne”

CEEEEY 5
It is lso possible to apply these techniques to = [ #layn] - [ Slamnie”,
problems involving more than one mode. If one is (35)
dealing with N modes the propagator becomes a \

function of 2N¥ complex variables. In particular we where

have ‘ »
is=["dr| 3 jtala,—ata)-ilt@nan |,

Kty tpd ) ={d, | Ulte,1)| &), (34) =l
where &, and &, are N—c(r;nponent vectors with (36)
components denoted by a¥f', &'’ . .., ol ( similar- . .. .
ly for &), and by ai’, o3 ¥ T aly)=d,, ale,) =, and if Hia!, ... .a:.

\ @y, . . ., 8y;7}) is the normally ordered Hamiltonian
|a@)=a & |af)e - ®|ay). for the system
}
H@*,@ry={d"|Hla},... 008, ... .¢u0|d) /(@ |&). (an

B. Quadratic Hamiltonian

If the Hemiltonian is quadratic in @, .. . ,ay and a), . . .a,:, one can again explicitly evajuate the path
integral. We express the Hamiltonian as

N N
H= z z [mfl(,hi'al+f‘ft'hfa1 +f5(l‘)a,'a}] (38)

fmlf=l

nn_d we assume that f has been chosen so that Si{tt=[4(r). The detailed calculation of the propagator for
this Hamiltonian is performed in Appendix B. We find that

[}
Ktd,pupd, 1 =exp ’-2|' L‘fdfTr{X[r]f(ﬂ]— —;I(t:'t"'rlwi'f+((1‘:)-E,]1-(::‘:‘;)'r!’(l,«]¢'1’|=

[}
+ @ Xupdy—i [ dr @ v nfinymg, | . 39
[}

f

In the above equation X{1) and f(r) are N XN where w(t) is an N X N matrix whose elements are

symmetric matrices. The elements of £(1) are sim- wyle), and X(4,)=0. The ¥ x N matrix Y{t)is
ply the functions f;;(¢} which appear in the Hamil- given by
tonian. The matrix X (1) satisfies the equation 1y
ax Yiy=Texp l*‘ [ dratnraxinsmi |
It ES ORVARRS {7 (¥ (40 '

[CY))
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The superscript T appearing on some of the vec- Considering first the equation for X (1), Eq. (40},
tors and mestrices in Eq. (39) denotes transpose. we find that
Xin=— tie™ ™ anblxte —)} |} ¢ l (44)
C. Pacametric amplifier T o)
The parametric amplifier with a classical pump Rather than solve for Y(1), we instead solve for the
ficld is a system which has been much studied in vectar
quantum optics.'? Here we would like to usc the
formulas developed in the preceding section to find = Y(d, . (45
the propagator for this system.
The Hamiltonian we wish to consider is The vector i7 satisfies the equation
H=wala, +oaia, W (i + AXST) 46)
- dr '
+ute™ e ay4e ™alad), 42
where ay=a, +w;. The matrices w(r) and f(1) are where it} =d,. One finds that
w; =4}
wlt)= . N e “aj
0 Gin=sechlelt —1)]| _swgroy - @D
e (-3
o l0 1
fin=jee'™ 1 °|' 43 )
The final result for the propagator is then

|

KA t@,0) =[sechutty —t) exp | — S(@F)-d, +H@ &)~ Fie ™ wnhlxtt, ))& ) ad }

—l-.lr!—l|} 0

+sech[x(t,— )N F )T R

)V |

— Lie" " anhlxts; 1))@ | (48)
where o, =(] }).
V. CONCLUSION
We have shown how a formalism incorporating coherent-state propagators and path integrals can be of
use in the consideration of certain problems in nonlinear optics. Here we concentrated on the formalism it-
self and certain basic results for the path integrals. These are necessary steps toward the development of ap-

prorimation schemes for more complicated systems. 1t is in these approximations that the promise of these
techniques lies,
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APPENDIX A

According 1o Eq. (21) the propagator K (a,.ty;a,.t } corresponding to the Hamiltonian (54) is givén by
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5,

Klagtp0.0)= lim ‘:l'l I [ Ild%, je™, (Al
" P

where

LE
Sy = ¥ [— 7l |14 lay_ |+ —iewy)a}a,  —ief, sa]_( —iefja} —iegy_so;_,—iegfay] .

=1
(AD)
The o integrations in Eq. (A1) are lengthy but straightforward. The resulting equation is
Kiagapat)=lim ———
- L]
|“(l+“‘f[xj)|n]
imt
. z? ien? 2
xexp| ¥, lif 4 ’+x"?j i1, fJ-YJ ,ﬂf
i=0 1+ 4ief, X, 1+4ief)X;
2, ¥,Z+5, Y
ol ol b L § .
|+l4‘.1€f};}j Idi X o+ Y e+ Z, a) | tAd)
where X;, Y;, and Z, satisfy the following recursion relations:
(lul'éw,l“xl_l
Ly=—ieff + — (A4)
! /i 1 +dief; Xy,
_ (1 —iew))Y; , (AS)
4 |+4r'cf,A1X,_|
(I —ieaw,HZ, _,—2ieg, X, _,)
7o iea® iy Ay -
4 1e8; + l+“ff’-|XJ_| (A6)
with Xp=Zy=0 and Ys=1. On taking the limit 7 — o, we obtain
L f!
111 +4ief, X)) 2 —exp lz.' I, drf(f).l’(r}l . (AT
i=1 !
L) ml‘f(ij}+g,Z,»-r'fgf’X,l el
Eo LW X, ——i L. drZ(r[f(NZir+gir], (AB)
L] —r’eflff t
T = | Tdrfiri¥r),
fgu | +4ief X, - J"I fir 7 (A9)
ro| i, Y2, 48T Y
z;u el X, ——i L‘ dr[2f NV {rZir4+ginI¥in], (A0}
Koyt ¥a 1 Za g XU FULZ ), (AL

and, in view of the recursion trelations (A4) - (A6}, the functions X (1), Y1), and Z (1) satisfy the differential
equation
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dx ] R )

E:ubm(rw—ﬁﬂru”—:{‘m, {Al2)

dY ,

T‘=~r|mm+4ﬂ:mn|r, (A13)

dZ . ,

= —ilekn}+4f(0X (]2 —i[g* (N +2g (X (0}} (Al4)

where X(t,)=2(,)=0 and ¥(1,)=1.
On substituting from Eqs. (A7) —(A11) into Eq. {A3), we obtain

f
Kiay,tra,,t)=cxp ’—: frl’dr[zfmxm+ftrmz’(f)+gcr)zm]~%f lag |24 oy )
1,
+¥lpdafa, + X (1 Moy —ia} [ dr sy
i
. 'y
—ia, f,‘ drdg N+ (NZ(NV (N +Ziepal ] . (A13)
Equationa (A 13) and (A 14} can be integrated and the resulting solutions for ¥(1) and Z{e} are
T
Y =exp l_. f"dr[w(rH-‘f(fu'(‘r)ll , Al6)

. ' . '
Zin=—j L‘drg‘(f)[1+uir)]up’—t f'dr'[m{r'nitﬂr'mf’lll. (Al
whare X{r) is determined by solving Eq. (A 12} subject t0 X(r,)=0.

APPENDIX B

We would like to compute the propagator for the systsm governed by the Hamiltonian g
. by amiltonian given by Eq. (38},
As in the one-mode case we have that the propagator is given by v a8

L4
Jda, - da,™,

) im |-L
;mi-,.r,,.i’,,:,)"151:_I”Jv (BN

where dd; =d’a{"d’af' - - - g% and

i Lrca -3 = s s . .
iS, =¥ l—;!(a?)'a¢+l&';_|i'a,ﬁ|]+(a7J'u,_,—m[(uf)rw,ﬁ',_l+&'}'_lf‘ﬁ|&-'_I+(5;)rﬁ(a;)” )

(B2)

In the wbove equntion ﬁ'rduigmta the transpose of & nnd{,=f(t,) is an & X N matrix where L=t +1e.
To perform the integrations it is necensary to aplit each )" into real and imaginary parts. That is, for
ugh { we must go from a N-dimensional space, C¥ (of which @ is a member), to a 2N-dimensional space.
It is bea'l to view this space as a tensor praduct space C* @ €. If 3, &C ig the vector whose ith com- .
potient is | and whose other components are 0, and v, € C? is the vector whose Jth component ia | and

whoae other component is 0, then #€CY vzeC¥ C? where

»
z =12| ym @vi+ym, &vy)

(B3}
and the components of & are @ =Xy +iy;. 1t in then possible to expresy the action as
L] ¥ a4l
i8S, = —'212, M,z,+r21 Ly - %[(E}I‘&}d-(&',')'&',]»ie‘[&',rffﬁ', Hapinain, (B4
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where M =1 +iel/; @y, + 7 ®¥,), L,
=y —i€wy) @p, 1 is the identity on C¥@C?, I,
is the identity on C*, and

1
U B
1 -i
—-i -1

1 i
'Yl:f—l

l B3

1=

We now want to do the integrations starting
with / =1, then going to / =2 and s0 on. To do
this we make wse of the formula for the integral
{assuming that it enists)

[ [ T
- m::_-ne'”‘ﬂ'* 7, Be)

where A is & symmetric n X n matrix and ¥ is an
a-component vector. Using this formula to do the
! =1 integration we pick up a factor of

idetM ) Penpl 12 LIM L 29}

and terins in the exponent which are linear and
quadratic in 2;. We can express the part of the ac-
tion containing z, (after having done the / =1 in-
tegration) as

—21M3z; +2{Lyny 40y (B7
where

My=M,— LML (B8)
and

0= Il ML 20 + LM VL yzg) . (B9)

. -l 1
Kidptdi=lim [1 oo

xElp

In general, if one has done [ — | of the integrations
the part of the action containing z; can be ex-
pressed as

~5'Mi g +2], Lz oy (B10)
where M; and v; obey the recurrence relstions

M =My~ 3L MUY |ty

= Lo (M "V L (M Ny . (BID)
Note also that each integration contributes a factor
of

widetM; )~ expl o M; ~'y) .

One can show from the above recursion relations
that it is poesible to express M; and u; in the form

Mi=M-X; @7, n=u ®F ,

where &, =(L/V3)(v,—ivy) and, to first order in &,

X, and u; obey the recursion relations
X=Xy —iel oy 2% + Xyay a4 fT4
+AX X0, @1y
Uy =ty —i€lay o oy + 4K Sy (B14)
Upon taking the ¢—0 limit these equations be-

come

%:——Hml+]’m+f‘+ﬂﬂ). (BI%)

%"1 = —itwu +4Xfu) (B16)

where X{t;}=0 and u(y)=V1&,. ]
Upon performing all » integrations we find that

— U@y @ +(@)rE,]-2] My, — D 40T,y

L]
+ 1 3ol (M " wy—id @l @ a | (B17)
Pl

We now take the limit # — = and find that

lal
—1f{(My Dz~ (@)X )T}

uf“z,—-:}.sti})'uufl ,

L 1 .
It prarrr |72r f., dfn-(xtrifm]l,

{B18)

(B19}

(B20}

M
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LIRS Yy

4’§|u,'lM; LU AT Y P (B21)
We can reexpress the terms involving u (1) by defining a matrix

]
Yi=Tex [ driwtr) + 4
pl - f“ datr) X (rifir)] 1B22)

and noting that

u(=VI¥a, , (823

so that K(d,1,;@,.1,) is given by the expression in Eq. (48).

Onme can check that this expression is correct by observing that K(d,1,:d,.1;) satisfies the equation
a
or

i K(d,0;6.0)
={&|HINU )| §)
N N

=2z

Fxlf=]

» [ ' a d e
Lt | age T I% ar tia | | 5k ey | fpale) K@) m2e
Oy da} dar}

+fi

and verifying that, indeed, the expression given by Eq. (48) does satisfy this equation.
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The quantum theory of the degenerate parametric amplifier is ususlly treated in the parsmetric
approximation where the pump field is treated classically. In this paper we present a fully quan-
tized theory of this nonlinear optical device using a path-integral approach. A perturtation series,
the first term of which corresponds 10 the paramettic approximation, is employed to evaluate enpli-
citly the coherent-siate propagator. The question of the validity of the parametric approsimation is
considered and the condilions under which this approximation is justified are efucidated. Finally,
certain correlation functions for the signal-mode operators are calculated that are needed Lo study
squeczed stales. It is shown that the quantum nature of the putp ficld tends 1o decrease the

squeezing.

1. INTRODUCTION

The quantum statistical properties of the radiation pro-
duced by a degenerate parametric amplifier have rocently
received renewed attention." ° Theoretical predictions in-
dicate that under the proper conditions one should be able
to produce light in both squeezed and antibunched states.
Both types of states are nonclassical in nature. It has also
been shown that squeezed states can be useful in the detec-
tion of very weak signals.* A device which can produce
such states is, therefore, of some interest.

The degenerate parametric amplifier is a device which
provides a nonlinear coupling between two modes of the
radiation field.” The first, the pump mode, has a frequen-
cy of 2w, while the second, the signal mode, has a fre-
quency w. The quantum theory of this device is usually
treated in the so-called parametric approximation. In this
spproximstion the pump mode is treated classically, ie.,
replaced by & c-number, so that a single-mode Hamiltom-
an is obtained which is quadratic in the ficld operators.
The problem can then be solved without further approxi-
mation. I should be noted that the parametric approxi-
mation neglects two cffects. First, it ignores quantum
fluctuations in the pump mode. Second, by treating the
pump mode as a fixed c-number it also ignores depletion
of this mode.

In this paper we will show that the parametric approxi-
mation can be derived from the first term of a perturba-
tion series for the propagator of this system. Examination
of the next term in the series aliows us both to calculate
corrections to the parametric approximation and to set

T }

gt a )= {ap | Uplte, i} a; )

bounds on its region of validity. We then use the lowest-
order correction to the propagator to calculate corrections
to both the intensily and squeezing of the signal mode.
The perturbation series uself is derived from a path-
integral representation for the propagator of this system.
In a previous paper we presented a formalism for applying
path integrals® 10 certain problems in nonlinear optics.
Here we emptoy that formalism. The path-integral ap-
proach is useful because it allows one to see more clearly
than the canonical approach the connection between the
classical and quantum dynamics of the system.

IL. PERTURBATION SERIES FOR PROPAGATOR

The Hamiltonian for a degenerate parametric amplifier
is given by (we use units in which £=1}

H=wa'a + 206 +xa' +alth, 2.1

where a (a') and b (b") are the annihilation (creation)
operators for the signal and pump modes, respectively,
and « is a coupling constant which depends upon the
second-order susceptibility tensor of the medium which
mediates the interaction. In the parametric approxima-
tion the pump mode is treated classically so that b is re-
placed by By ~2** where f, is the amplitude of the pump
mode. The resulting Hamiltonian is

H,=wa'a uife ~Hva't | ghetiva?) @n

The propagator for this Hamiltonian was calculated in
Ref. 8 and is given by (where 8 is assumed to be real)

@
= |sechl 2Bty —1,2)] '
xexpl — 3 Uar 7+ |ag | vafae ™ " sech| 2xBytty — 1))
— itay e ianhl 2xBylty —1,)] - tiade " tanbl 2cfity - 1)]] . 24)

)
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Here U, l1y,1,) is the time-development transformation
corresponding 1o H, and |a) is a coherent state with am-
plitude a, .

The propagator for the Hamiltonian given by Eq. (2.1)
is given by
iy -

KtayByap0.8.4)= a8 e “lanBi) .

[2.5)

where |a.8) = |a)® |B), ic., the tensor product of a
coherent state for the signal mode with amplitude a and a
coherent state for the pump mode with amplitude . Tt is
also possible to expreas this propagator in terms of a path
integral. We have that

KiayBptian8,00= [ @lain) [ PB0ES, 26
where
is= [dd Hdta—ata)+ HEB-FH
—iHla,a%B.8'], @27
Hiz,a" B8 )=w|a| + 2|8’ +xlla® P E+ad'f]
23

iSo= [ dr| He"a—ata)—im|a)? —in{(Bje~ M "al + e el V]

iSy=—nt fo'dr, [ dne I M @t tratr )

and the paths a(r) and Bir} are such that elfi=ay,
Bt =By, all)=a;, and Bid) =5,

It in not possible to evaluate the expression appearing in
Eq. {2.6) exactly and we, therefore, resori to & perturbation
expansion.” The first term of this expansion gives the
contribution to the propagator corresponding to a classical
description of the pump field; that is, if we refain ouly
this term and make a further approximation which corre-
sponds to letting the pump mode propagate in time as if
there were no interaction, then we obtain the resulis given
by the parametric approximation. We can calculate
corrections by catculating the next term in the perturba-
tion series and by refining the {reely-propagating-pump-
mode approximation.

Because the Hamiltonian given by Eq. {2.1) has only
linear terms in b and &' appearing in the interaction it is
possible to perform the integration over the paths s} by
using the results in Ref. 8 for an arbitrary quadratic Ham-
iltonian. We find that

Klag.Bptia0 8,00
= f Q[a(r]]explf‘;[ |Bf|2+ i8 |z’+ﬂ}3"7u‘”]
)(e's““s' , 2.9

where

(2.100

.11

We have aplit the action into two paris, Sy containing terms of zeroth and first order in «, and §, containing only terms
of second order in x. We assume that the interaction is weak 3o thet §; is small.
We now expand the propagator in Eq. (2.9) in a power series in Sy:

K(df.ﬂ;»ﬂal.ﬂlv(”:exp{ - %‘ |ﬂf ] 1y 1] |2]+Efﬁi‘ Sl i ;L! f g[a(f)]?wn(isl’"
nm=it

‘J“"(a,.ﬂ,.r 8,00+ x4 J‘d;.ﬂp’;ﬂhﬂnm +

"~ where

K™a,8,,1;a,8,00=expl — 1| B | + | B, | BiBe “¥™) [ Dlatr)e™,
K'Wap B tia08,00=cxpl — $1 | B |1+ 1 B: | 21+ Fphie —3*] _[ Plan)e™is,) .

Before evaluating K let us note the following. The ex-
ponential factor appearing in both X' and K''' has a
maggitude given by

lexpl — $(18, 12+ | B |1+ ByBre ]|
=[expl— | By ~Be = | )2, (215)

s0 that it is pesked shout the value By =e ~2"8,. This
simply corresponds to free propagation of the pump
maode, i.¢., if there were no interactions and st 1=0 the
pump mode were in a coherent state with amplitude §,;,
then at time ¢ it would be in & coherent state with ampli-
tude ¢ B, If we replace By in iSo by e ~2*I8; we find
that (again sesuming that £ is real)

2.12
.13
(2.14)
T
iSo— [ dri }é*a—a"a)-io|a|?
—ixfoia VeI La% ™| . 218

This is just the action for the signal mode in the
parametric approximation (corresponding to the Hamil-
tonisn H, ). If the path integral appearing in Eq. (2.13) is
a slowly varying function of B, then this replacement is
justified and we can approximate K'® by

x(m(ﬂf.ﬁf.f;ﬂhﬂr.m
sexpl — 018 |2+ | B |+ By Bie 2™}

XGlay,to,00, .17

22
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where Sy in the expression for G [Eq. (2.4)] is set equal to
B;. This expression for K'*' will reproduce all of the re-
sults of the parametric approximation. We can calculate
corrections to this approximation by doing two things.
First, we cvaluate K" where we set fy=¢ ~#*'B, in the
path integral appearing in Eq. (2.14). Second, we must
calculate corrections to the approximation implied by Eq.
1217 for K'". We will discuss the validity of the approx-
imations we have made in Sec. IV.

Let us now evaluate X'* and K'Y, We can find X'" in

1

the same way in which we found G in Ref. 8. We bave
that

K™ty By t;a,,8,0)
=expl — 118,12+ 18 121+ BB =]

X G'MNay, Byt 21,800, (2.18)

where

G ey Byty:ap, Bty )= [sech[ 20/ ksl 1y — )]} expl — 11 |ay | b lay 1M+ Ayaf + By lay P+ Cyapm]

[¥r]
A =_L,- ht c”"'tmh[zvnnzll -4,
» 2 |« !
Bo= 1|2 e ™ nanhi 2wty — 0]
# K 1
Cp=e """ scch[2v/xptty — 4]
and

xy=nfl;, xp=xfpe U

2.19)

(2.20m)

(2.200)

2.20c)

221

In the above we assume that ;> t) and we define tg=0,_We muat also specify which branch of the square-root function

is to be chosen. It should be chosen so that

Ky SRV KRy =)

The evaluation of X" is complicated and the details of the calculation are given in Appendix A. We will be interest-
ed in the case in which the signal mode is initially in the vacuum state. This means that we will be interested in the

propagator for @; =0. The resulting expression is

Koy, 8008, 00=cxpl — 10| B 1+ | B | )+ BrBie ~™16" ey, e ~4*B1,1,0,8,,0)

K[ galthe ~™af 1 +g,(Nle ~"*a} ) +2ol0)]

giin= —T':f %((not)’sech‘(qor)+Z(fpot)unh(qahech’(qot)—tmh'(nqt)—zunhz(nol)oech’lfpon] .
0

ga(0=—i 5; % [ — (1ot Pch (gt tanhi ngt) + (o] § sechingt) — § | — Ttanhingt) + 2 tanh’(5e)]
o

golt)=— —"i, %[tw)’[smh’(w)— 1]+ (et M 1anh(nge} — 6tanhiines)}
o

no=2x8; .

It follows from Eq. (2.12) that Eqs. (2.18) and (2.22) give
us  an explicit expression for the propagator
Klay,Bs,1,0,8,0) that contains the quantum corrections
to the parametric approximation. The corvelation func-
tions for the ficld operator can be evaluated from the
propagator. In Sec. 111 we calculate the correlation func.
tions that are needed o study the intensity and the squeez-
ing of the signal mode.

1l1. CORRECTIONS TO CORRELATION
FUNCTIONS AND “SQUEBZING™
OF THE SIGNAL MODE

The propagator X is closely related to the { representa-
tion of the radiation field and, hence, can be used directly

2.22)

(2.232)

(2.23b}

{2.2%)

2.23d

-
to evaluste expectation values of antinormn.‘ll{ ordered
products of creation and annihilation operators.” For the
case of interest in which the pump mode is initially in the
state | B;} and the signat mode is initinlly in the vacuum
states we have

QlayBy.01== | Kiap 60,80 B.0

The two correlation functions which we wish to calculate,
{a"(tha (1)) and {[a (1)]*}, can therefore be expressed aa

(a'[ﬂal!l)=% [ da, [ d8;1K1a;.B70:0.8,00|*

x|ep|*-t, [+ J )

23
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([m}]’):ﬁ,— [ da, [ a8y Kiay.8,.4:0.8,0|?
Xtaf? . 3.3

The correlation function {a'{0laie}} is just the intensity
of the signal mode and examination of it will allow us 1o
see how this mode grows with time. Calculation of the
correlation function {[a(n]’} allows us o examine the
squeezing of the signal mode.

In a squeezed state, the fluctuations in one quadrature
are smaller than the standard quantum limit. The fluc-
fuations are i d in the conjugate one so that the un-
certainty relation is not violated. Squeezing is a genuinely
quantum-mechanical feature of the radiation field. It has
been predicted that s number of nonlinear optical systems

will gencrate such states.!? "
We define Hermitian di ionkess amplitud
ay=tae"* " He (3.48)
a;=%c¢“" e (3.4b)

For initial vacumm state of the pump mode we obiain the
following formulas for the variances of the amplitudes a,
and a;:

Aal=1+ Ha'na(n) + Fimi{[a () re¥*), (350

Aal=14 taNtat))— tim| ([aln))?)e?™) . (35W

It is clear that we need to cvaluate the correlation func-
tions given in Eqs. (3.2) and (3.3) to study the squeezing in
the varisbles ay and ;.

In order to calculate the lowest-order approximation to
]

the correlation functions (a'(rla (1)) and {a%(2)} we first
substitute K'” for X in Eqs. (3.2) and (3.3} and make use
of the freely-propagating-pump approximation to cvaluate
the B, integral. This yiclds

(a'tnatny =1 [ da;16%ay,e 1B, 1:0.8.00|*

Xlallz—l

=sinh¥not) , (3.6

(Ia(l}]’)=i [ d'a;|6"as,e 2B, 10,600 | 'ai

— ie ~ Y=lyinh{ gt )coshingt) . i3n

These are the results which one obtains from the
p ic app tion

In order 10 calculate corrections to the above expres-
sions we need (i) to improve the frecly-propagating-pump
approximation and (i) to include the effects of K''!. 1t is
clear how to do the latier a5 K*!' has been calculated in
Sec. IL. The idea behind the former is as follows. In mak-
ing the freely;’?mpuguing-pump approximation we as-
sumed that G'*' was a constam as a function of B in a
neighborhood of fy=e~¥*8,. We can correct this by
taking into account some of the varistion of G as'a
function of A, in this region. This can be done by ex-
panding in a power series in 58, =8, —Bre ~¥*. It tuns
out that the convenicnt quantity to expand is [ d'a,G'”
multiplied by either a} or |as|? (where we choose a}
if we are evalusting (a?) and {ﬂ! | 2 if we arc cvaluating
{a'a }) because we can do the a; integration exactly. We
then expand these quantities up to second order in 58,
and then perform the B, integration. The linear and
quadratic terms in 58, give corrections to the freely-
propagating-pump approximation. The details of these
calculations are given in Appemdix B. We obtain

(atte)a 1)) =sinb¥(ne!) + {Tlmw’{lﬁnh’(mfn 114 nof[2 sinh{moticoshingt) | — 3 sinh* nor) — 3 sinh¥ne)] |
L

{[ate) = —r'e""'linh[qnneull(uon-ie‘”"%I(nurlz[Z sinh(7jof}cosh(ngt)] -+ ner[ 2 sinh?(nee} +2)

— 3sinh™{ 79 bcosh{ gt} — 2 sinh({zpfhooshi not)] .

3.8

(3.9)

The fluctuations in the conjugate variables a,(¢) and #,{t) sre obtained on substituting from Eqe. (3.8) and (3.9} in Eqs.

(3.5

Aat=de ™y zi",um,n'e TN tte T % 4 1) | 3 sinh¥ gt + Zfainbingtle ~ ¥ —sink¥(ngt)]
0

«
Adl=te™y I—”guw]%“ﬁ notte”™ + 11— [3 sinhl{ ot} + 2hsinh(otle ™ —sinbH et)] .

Equations (3.8), (3.10), and (3.11) give us the lowest-
order quantum correctiona to the parametric spprozima-
tion for the quantities {a%rlatn), Aal, and Ael In
Table 1, we have calculsted Aa? as a function of 5y for

3.10

3.1n

different values of B;. It is clear that the quantum fluc-
tuations in the pump mode tend 10 decrease the squeezing
in the sighal mode.

As we will see in Sec. IV our values for Aal will be
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TABLE {. Cakulsted values of a7 as & function of 1ef for different values of §;.

Aal 1109

Paramwtric
! Approx. 8, = 1000 Bi=100 £=10
o0 2500.00 1300.00 2500.00 2500.00
0.2 1675.80 1675.50 1675.80 1675.82
04 112332 112332 123,32 1123.49
0.6 752986 13298 752.991 753.561
08 504741 $04.741 504.736
10 335,338 338339 338373
1.2 2267193 126.796 126.865
1.4 152,025 152026 152.157
L6 104,906 101.908 102.140
1.8 68,3093 68.313) 68.7073
20 457891 4571936
2.2 30.6931 30.703 8
14 20.5744 20.590%
26 137914 t3.8170
2.8 9244 66 9.28390
30 6.19688 623665

good spproximations to the sctual values as long as ngf is
of onder one or less and expl2not) << ;. For values of nyt
which satisfy these conditions we find that the corrections
10 the parametric approximation arc of the order of 1%.
If one considers velues of iy beyond the range specified
by these conditions one finds that Aa? reaches & minimum
and then starts increasing. This type of behavior is not
uncxpected becausc as the pump becomes depieted and
loses its coherent-state characier its phasc becomes less
well defined. This results in a d in the squeezing of
the signal mode. An analysia with s classical pump with
phase noise shows this explicily.’ For the case of a
quantum-mechanical pump mode our results provide, at
best, an indication of this type of behavior as we are e3-
trapolating our results beyond their range of validity.
Finally, we note that the minimum uncertainty relation
Aa,Aay= 4 which holds for the mignal mode in the
petametric approximation is now no longer satisfied. The
quantization of the pump mode removes the minimum
uncertainty charactesistic of the signal mode.

IV. DISCUSSION OF APPROXIMATIONS

In this section we would like to consider x number of
the approximations which were made in Secs. I1 and II1
First we will examine some limitations on the validity of
the perturbetion expansion itself. We will then consider
the conditions under which the approximation implied by
Eq. (2.17) is ressonable. Finally, we will cxamine under
J

R[] —Boum <050 and L [o(0)—2—[6UO)—4]'7] 5 |my/n | — 1 € To1O1-2+[0%O) —4]' 2]}

and picture it in Fig. 1. The angle 0., is the angle foc
which 010,,,)=2, i.e., the angle for which the inoquality
in Bq. (4.2) gives 0 < | (ky/xy)| -1 <O. We find from Eq.
(4.1} that O, =046x. If 3 ER then the necessary in-
tegrals will converge. Unless this is true our periurbation

what conditions K'”' can be used to give an sccuraie
evaluation of correlation functiona.

An examination of the expressions we have obtained for
K™ and K''"" shows that they cannat be valid for all
values of B, and B,. Both of these variables occur in the
arguments of the functions sech and tanh. Both of these
functions have singularities on the imagi axis 80 that
for certain values of §; and 8y, K and K'"" have essen-
tial singulnrities. This implies that for these valucs the
perturbation expansion given in Eq. (2.12) does not make
sense. There is, however, a more stringent requirement on
B, snd f;: The integrals which must be performed to
compute the terms of the serics, e.g., those in Eq. (A#),
must converge. Thia restricts the range of values which 5,
and By can assume.

In the determination of these restrictions we will work
with the variables x, and x; {sec Bq. (2.21)] rather than
with 8, and f; directly. Let us assume that x, is real and
positive. We then find a range of values of x; for which
the sbove-mentioned intcgrala converge. In Appendix C
we show that the following region satisfice this require-
ment. Let k= | 3| e'® and define ot8) a8

[ coshfz/2st03] -1
aolf)=4 |enth[r/l1(ﬁ)]+1 ' “.n

where 5 (@) =tan(8/2). We define the region R as

4.3

—
series will not be fustified.

The next thing which we would like to consider is the
fresly-propagating-pump approximation. We noted before
that Eq. (2.17) would be & good approximation for X'?, st
Teast in the region of interest where the Gaussian factor is
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FIG. 1. Region R in complex x; planc.

not small, if G'™ is » slowly varying function of §;. We
now want to determine when this is the case. Let us first
define

and note that ihe exponential factor in Eq. (2.17) starts 1o
drop off rapidly for 58, ~ 1. Examining G'*' now, we sce
that if 587 ~1 then the deviations in tanh(2v/xx;t) and
sechi2y/i ;1) will be small if &1 << t, and the deviation in
Vx/ny and Vx17x, s of order | BB, /B; | and so will be
smeall if |8, ] >> 1. These factors are, however, multiplied
by {a} P and a}. Therefore, G*® will be a slowly varying
function of By if

la; |t <L, (4.4a)
o |27 1Bl <<, 4.4b)
|ay |t e, (4.4¢)
bap |2/18 | <<} . {4.4d}

We now wani to discuss the calculation of correlation
functions. Let us again assume that §; is real and take it
to be fixed. We define the function f(ay.8y.00m,,8,) by

K”'(af.ﬂp’;ﬂnﬂnm
=K'y, By 00,800 (eg, Byt B 4.5)

The region S{t} in which we would expect the approxi-
mate propagator K'% to be close to the actual propagator

88,=Br—e g, 4.3 Kis just
|
St0={ta,a;8| BrER and|flasBptiar B} <11, 4.6

i.e., a point (a,,a;,B;) is in S1¢} if By is in R and @, ay, and By are such that | f | is small. If a point {a;.a.,8¢) is
in 5(1) we are justified in neglecting X' in comparison to K'® but for the parametric approximation to hold we
also that the freely-propagating-pump approximation be valid. That is, we require that conditions (4.4) be satisfied.

Therefore, we are interested in a region 5'(¢) where

S0 =flapanB | la,ap8,/ES) and Eqs. {4.4) arc satisfied] . “w.n

When calculating the correlation functions for the sig-
nal mode one encounters an expression of the form*

1
— [ d%a [ d’a, f d'8/Pia)) | Kiap By tia 8,00
xta)apital™a;? 14.8)
where the initial state of the aystem is given by

p= [ d’aPtay)|anB a8 (4.9)

and Pic,) is the P representation for the signal mode at
{—0. If the “function” Pla,)}X |* is small owuside of
5t} and falls off rapidly enough then we can accurntely
approximate Eq. (4.8) by confining the integration to §°(2}
and replacing X by the expression on the right-hand side
of Bq. (2.17), st least for sufficiently smail values of n,
and m, where j=1.2. This replacement of K by the ap-
proximate expression given in Eq. (2.17) is nothing but the
parametric approximation. We need (o find, then, some
sort of messure of the extent 1o which P{a,}| K | is con-
centrated in S5°(7) and some information on the falloff
properties of | K |2

Let us now consider & messure of the extent to which
Pla;)| K |? i concentrated on S'(1). The propagator K

f
obeys the identity
1
V=5 [ d'a; [ &8, [ d'a, | Kiay.By.0;00.8.00]?

* Play) . 4.10)

If we wssume that Pia,) is positive semidefinite {or the
limit of positive semidefinite functions) then the quantity

mn:ﬂ—'J I f [ dad8,d%, | KiayBrtia Bo®|

s

X Play) 411

will provide a good indication of the extent to which the
region in which P(a,}| K | is concentrated is contained
in 540, I p(2) is close to 1 then Pla,) | K | can be con-
sidered to be well concentrated in §'(1).

It is possible to simplify the expression appearing on the
right-hand side of Eq. (4.11). First, because of the defini-
tion of $'(1} we have that

pin= f [ ] daa'tyd'a
,2 5n

* | K™y, By.58,,8.00 *Play) .
412
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We can go still further because the conditions for the
frecly-propagating-pump approximation hold. We can
perform the f; integration with the result that

u‘t):»l I fd"a,-d'a,l
T win

X G ay,e W0 0,800 Py,
4.13)
d

L
e

§in

where

Mit=[lana)| la,.ap.e 2greS W) .

If 1 —ul0) << 1, then it is possible to simplify the expres-
sion (4.8). We have that

[ d%a; [ d'a _rd’,B,P{a,)}K(a,.ﬂ,.:;a,.ﬂ,.m|z(a;]"a;‘(ufim'ar’

;Ilf f fdza,d’mdzﬂfl’(a.)|K"”(a;.ﬂ,.t;a,,ﬂ;,m|’ta}:"a;‘(u:)"'a:"

~L | [ dade,Pia) |6 %ag.e P Biia,6,00 o) ol ™M al (4.14)

L]

Because jtf) is close to 1 we have that Pla,)| G™{a;e ~*"'8,.0;a,,8,01| 2 js concentrated in M(t) and iz, therefore,
smalt outside this region. If it also falls off rapidly enough outside of M (1) then we can extend the a; and a, integra-
tions over the entire complex plane without much error. Our final approximation 16 expression (4.8) is then

_;1 [ diay f dabia)|6%ap.e g 1 B0 ol e ey 4.15)

If one substitutes expression (4.15) in the calculation of
correlation fonctions one will oblain the results given by
the parameliric approaimation. This is because
G"™Maye” 0,1 ia,8,0) is just the propagator for the
Hamiltonian given in Eq. (2.2}

In the greceding discussion we had to sssume that
Pla;}| K |? fell off rapidly outside of 5°tr) in order for
the parametric approximation to be valid. Proving this is
difficult, but it is possible to provide some much weaker
results which at least give some idea of the behavior of
Pla;)| K |?. For simplicity let us ider the case
Pla,)=5%a,). We are then interested in the properties of
K(ay,By,0,0.8,0). One can then show that for any in-
teger n > 1 there exist constants ¢,(f;) and d,(8,) such
that

B '
| Klay By,0:0.8,00| < 2L (4,168}
_ Jay |
d
| Kias.By.t:0.6,00) < .(8,1 14.16b)
|81

so that | K | falls off fasier than any power of |8, or
|ay|. This is demonstrated in Appendix D. Because

| KtayBp,t:0,6.01] <1, “.17
inequalities {4.16) only really start providing useful infor-
mation when (g | and || are sufficiently large to
make the right-hand sides leas than 1. In general this will
happen when @, and f; are far outside of 5°(¢). There-
fore, while inequalities (4.16} do tel} us that X | falls off
rapidly they do not really provide us with as much infor-
mation as we would like. Therefore, the assumption that
if Pla,}|K |? is well concentrated in S°(t) [t} close to
1], then the contribution to the integral in cxpreasion (4.9)
from outside 5'(¢) is smal, must remain an assumption.
The behavior of |K | indicsted by inequality (4.16) indi-
cates, however, that it is a plausible one.
Finally, let us give some general conditions under which

r

() is close to |, We will consider the case §; real and
positive and the signal mode initially in the vacuum state,
i€, Pla;)=58%"a,). An examination of the expression
for f(cyp.By.1:0,8,) for the case K ER (see Appendix E)
shows that | f(a,Br.0;0.8)| << if

178 <<\, lag)*/Br<l, “18

xt<cl, kt/Bay|*ect.
These conditions determine S(7). [f we now impose the
requitement that Eqa. (4.4) must also be satisfied we find
that & point (a;,a;,8f) is in S'(0) if B ER, 1/]8] <<,
and

xt<<l, jap|3/|8) <!, lag|’srect. @19
We now use these results in Eq. (4.13) to obtain

#(l’)-z% [ d%0; |G ™ag.e~ 810802, 1“0
L
where
L=ja,| lasi*ec|B] and |af 't <<1],

and we have assumed that xt << 1 and 1/ 8;| <<1.
It is possible to derive a more convenient condition than
Eq. (4.20) if we note that

|6 e~ 4B, 150,800
=expl — | x7+y tanhingt) - x;seching}|?
— {yyseching) + xtanhingt)—p, 2}, (.21}

where o;=x;+iy, and ay=e '"*ls; +iy;). From this
expression we see that | G'™ | is peaked a1

ap=e~'"[a,coshingt) —iafsinh{ny)) 4.22)

and that this peak has a widih given roughly by coshl{ny).
If @, =0 this peak will lic within the disc-shaped region in
the a, planc given by
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D=|l.‘lfl

If DCL then p(r) will be approximately |. This will be
the case when

Jay| <ooshing)~e™] . 4.23)

™ 181, ™Mt et (4.24)

Let us summarize our conclusions. [n order for the
parametric approximation (o give sccursic values for
correlation functions it must be the case that (¢} be close
to one. In the case in which the signal mode is initially in
the vacuum state this condition will be satisfied i

17|18 | =<1, {4.258)
xiccl, {4.25b)
xte T o, @.25)
PO N #.25d)

There is & certain amount of redundancy in these condi-
tions. For cxample, if Eqs. {4.25a) and (4.25d) are satis-
fied then Eq. (4.25b) follows as a consequence. We also
note that if Egs. (4.258) and {4.25d) are satisfied and the
condition that k18, be of order one or less is also satisfied
then Equ. (4.25b) and (4.23¢} follow as consequences. This
is in contrast 10 ordinary perturbation theory which is
valid only for times such that «if; <c1 30 that the
parumetric approximation represents a definite improve-
ment over the perturbetive result.

¥, CONCLUDING REMARKS

We have presented & fully quantum-mechanical theory
of the degenerate parametric amplifier using a path-
integral represeiation of the coherent-siate propagator.
We have developed & perturbation sexics for this propags-
tor, the first term of which, under certain conditions, cor-
responds to the parametric approximation. We studied
)

the effect of the quantum fluctuations of the pump mode
on the squeezing of the signal mode and showed that these
fluctuations not only reduce the squeezing but also that
the minimum uncertainty relation does not hold. Finally
we examined the conditions under which the parametric
approximation will be valid.
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APPENDIX A

In order 1o calculate X''' we must first evaluate the
path integral appearing in Eq. (2.14):

[ latmie®us,)
' k ~lewliy—1))

=« [ dt, [ dne TR, (AD
where

Fu )= [ @lato]e™a* (attpf . (A2
The path integral in the above equation can be evaluated
by making use of the following rule: If £;>¢t'>¢; and
fia(t')) is a function of the path a(r) at the time ', then®
[ #latnle™ftatrn

_—_i [ d%'Gay, B, 00 801}

X Sl }G o Byt Bty (A3

where G'" is the propsgstor corresponding to S, and is

given by Eq. (2.19). Application of this rule twice gives us
that

1‘7"1J13=l d'a; [ a6 MNay.Bpti00B801206 "z B ;20,8001 G o By 500, B 0K al (A4
o i f

Tt should be noted, though we have not explicitly indicated it, that F(¢,,1;) depends upon ay, By, a;, §;, and 1 a3 well an
¢, and £;. Bvaluation of the integrals in Eq. (A4} is lengthy but straightforward. Upon performing them we find that

Fir 0y =G"ay By, B,0)

x

pip}

+ 124y,

+ =4 B4 CraCa}+ Uy Cpay)
DD}

X

| ez 2, 2
I +D; ID1CM‘+D|B|°

(2B4Cyy ) ‘ I,L(B,g—ln Wa§ ) +4CpApafa; +44pid o—Axla}
20

S Bro—ByNaj P+ 4Cndnale +445t A~ Anla}
0

+1u§z’

‘B—I;wn—nn Karp R 4+-4C A oy + 44 1y( A — A hat + 643 ]

l .
x I;;(B,D—Bn)(a;)’+4cnduu}u,+M,;EA,,—A,,)¢?+2A,; ‘ I , (AS)
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where
Dy=1-44yBy. (AS)
Dy=1—44y;By ., (AT}

and £;=¢ and r,=0. We will be interested in the case in which the signal mode is initially in the vacuum state.
This means that we need onby consider the propagator of the system when a, =0 which results in 8 considerable simplifi-
cation of Eq. (AS. We also note that the same exponential factor which appears in K", e,
expl - S0 Br | *+ | B | 14-B}Bie =], also appears in K'''. Therefore, we can approximate Kby

KViagBrot;0,.8.00= ~oexpl — 1(|8; T AREY: 7 M |
¢ ! — Uity 1))
X fndr, J’oldne -1 “‘1"1”5,-; g+ (A8}

wher.e we hl"le assumed that F(r,:;}.}‘ is a slowly varying function of B;. If we now calculate Fis,,1,) under these two
restrictions, i.c., a; =0 and B, =e 'B,, we find that
Fltut)=Gay,e 8, 1;0,8,0 "'
x{ —sech(ngticosh®(net, Isinh*ngt Ye ~'ap 1
+1 sech{ g0 )coshi ng1; Jsinh(ngs | )
[ 6 sechinorsinh(ng, sinh[ ntt — 1)) —coshlmalt, — £, ) He ~'*af)?

+sechi g )sinhingt, Winh{ne{t —r1}]{3 sech{npf) +sinhings sinh[ 5l —13)]—coshlnole; — 1, HY ,

1A9)

where n,=2x8; {again B, is assumed real). Before proceeding we note the identities
Dy =sechngit; —y}]coshing, seching ), {A10w)
Dy =sech{nolt —t; lcoshi ngtisechingt; ) (A 106}

which were of use in deriving Eq. (A9} from Eq. (AS).
In order to complete our calculation of K''* we must perform the time integrations appearing in Eq. (A8). On doing
30 we obtain Eqs. (2.22) and (2.23} of the text.

APPENDIX B

Yle first consider the improvement of the frecly-propagating-pump approximation. The contribution of X'* to
(a'tbaln}is

(ala(0) = ;13 J a8, [ d'asexpl— | B, —e " ¥*B, |1 G"ar.By.1:0.8,0 P |ay |'~1 . B1)
We evaluaie the @ integral first; this can be done exactly. We then enpand the result in terms 86, =5, —e -Umg, ie.,
5 S d'ar 16 ay 8,108,001 a1 =c$ +c1"88) + 1 887 +-c "B} +ei | 86y )1+ (B P B
where ¢’ is a function of £, and t. We recall that if inequalities (4.4) arc satisfied, then | G| is & slowly varying func-
tion of ;. Therciore, we expect ¢!’ and ¢{!} 1o be small if these inequalities are satisficd. We can now evaluate the in-
tegral, The terms lincar in 58, give no contribation, and the terms proportional to ¢} integrate to zero as well. The ¢{”

term is just given by Eq. (3.6) while the term proportional to ¢4’ represents a correction to this. It is this term wiich is
the koweat-order correction to the freely-propagsting-pump approximation. We find that

% I d’p,c',”w,.m""f"tw,q’s—:—guw)‘l%m’twn%1—u,.,n[s-iuh’wmuwnmwmmwn

+ Lsinh go) + L sinh*(nor) + sinbingt)] . . ®y
In the case of {[a(r)]}) the calculation is carried out in the same way. Now one has

1 !
- J #ar16"Nay,By.1:0.8,0) o =d " +41"68, +d\'" 867 + 41780, P + 43" |86, | T+ (867 - e
B

-

M

n'r--‘gl“-'
™ L
CaeE

Lan
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Upon performing the B, integration we find that only the tecms proportional to 4 and 4" contribute. The d'” term

yields the result in Eq. 13.7) while the %' term yields

_ 2
,{- fd:B;d';hl'B,,lk tad, | |55,r | 2
1
= —ie 1 ot £ sinh gddtanhi ot} -+ + tanhtngt ]
L)
— ot [0 5inh* et + 4 sinh2pt) + 3 sinh? ot tank™(apgr) + 3 tanh{gg0)]

+ [ sinh® 1) + T sinh*(p1)+ I sinh(nf} 1anh( ng)] (B%

We now want 1o briefly discuss some of the assumptions underlying this approximation. We are assuming that
inequalities (4.24) are satisfied so that the range of integration in Eq. (4.6) should be restricted to 5°(r). Now, because
these inequalities are satisfied the freely-propagating-pump approximation is valid so that only the integration region in
which |88, } ~1 and a €L is important. If inequalitics (4.24) are satisfied, then for [8f,| -1, 1[G ay|? de-
creases rapidly outside of L and ils integral over the entire complex plane converges. Therefore, we can, with little exror,
:utend the ey integration to the entive cumx)lex plane. We expand the resulting expression about 88, =0 in order to take
it sccount the vanation of [ d’a, (G| |a,[* with 88, in the neighborhnod }68y | ~1  This expansion, whea
multiplied by expl - |58, |21, decreases rapidly away from the region in which |88, | 1. We can, therefore, again ex-
tend the integration to the entire cum?lcx ptane. The results of this procedure are exhibited in the preceding paragraph.

Next we consider the effects of X'V on (a'(r}a (1) and {[a(1)])). This is dane by evaluating the following intcgrals:

(a'thatny i = ;1 J dlay [ d*BK oy By .i0.8,00K May Byt 0,800 |ay| P ke,

= [ dla; (G"™ape BB,00,0,00 | Y[Rad0te Wat ) +giltie " ap) ol Jay | T Hee. .
{B6)
([“"}]2”‘"'=}l5 [ ata, [ d*B,K'"ay,By,1:0.8, 00K ay By, t:0.8,0/"af +e.c.

= jd’a, | G ety e~ HB,1:0,8,,00 | [galile -1 gy le Tl gt ]ad +c.c. 87

In writing Eqgs. (B and (B, we have substituted for X'® and X'"" from Eqs. (2.18) and (2.22), respectively. Further-
more we have made the substitution 8, =expl — 2iwt}f; in the integrands following our carlier discussion. The integrals
in Egs. (B6} and {B7) are rather Yengthy but straightforward. On carrying them out, we obtain

1
(a'trlain} | o= :Tznqun’[ — 2 coshngt}] + 1102 § sinti{ o coshit) +6 sinh (mflcoshingr}]
o ) - s

— Zginhbnet) — L sinh*(nye) - Tsinh(mon)] (BB)
2
{[at?} | gin=—ie *“";';E { (et 2 sinh(myticoshinot} — Fsinh® ot tanhigr) — 3 tanhi et}

+ ¢ [ 6 sinh*{ngt) + 63inh ) + 3 sinh i os Manh® mof) + Tranhlingt) + 2]

— (4 sinh®l gt + T sinh* ngt) + 8 sinhinpr) + 2]tanhing)] . (B9

We now add the contributions to (a'(nla(/} and {[a(n)]) die to the freely-propagating-pump approsimation,
it rrections to it (Bqe. (3.6), (B2, (B3), and (B8) for (a'{l)a (1)) and Equ. (3.7), (B4), (BS), and (B9) for
{la Ve then obtain Eqs. {3.8) and (3.9} of the text.
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APPFENDIX C ‘We have that
) n
In this appendix we would like 1o examine the conver- i | = cosh(2x) — cos(2y) l cn
gence of the integrals which occur in the perturbation tanhz | = coshi 2x) +cos( 2y) :

scries, ic., integrals of the type which occur in Eq. (A4).
Al of these integrals are of the form

Ty [ dx, 1 avsexplagxi+bopi+asx + by
+exan By (1
where
ay=—1+8y +4yn,
by=—1—By~Ay . Ter)
¢, =24y~ By),

and Ay, By, and C,, are defined by Eqs. (2.200. The coef-
ficients @, and b, can also be expressed in terms of Ay,
By, and C;; but are not relevant to convergence considera-
tions. The integral I, will converge if

Re |(x302) | <0 Ch
¢

¥1

for all values of x, and y;. This will be the case if both of
the eigenvalues of the rea, symmetric matrix 4 given by
a; 3¢
d=Re
6 b

are negative, This is equivalent to the two conditions

Trd <0, detd >0. c#
Substituting from Eq. (C2) we obtain
Trd=—2, detd=1—|By+d} |7, s

As can be seen the trace condition is sstisfied automatical-
Iy 80 that we are left with the condition

1> By +A% 1. (6
Let us define
£ —tanh(2y/mmir), &=tanh(2VEpan) . (CD

We then have that inequality (C6} will be satisfied for all
values of x, and x; such that the inequality

1 L) L 1244 [ko/my) [ Ba] P - FRetéiy)
[(oe )]

is satiafied for all values of r| and r; greater than zero.
That is, if inequality {CB) is satisfied for some specific
values of x; and x3, and all values of 7 >0 and 7,5 0, then
these vajues of «, and «; will be such that inequality (C6)
in aloo satisfied. Therefore we want to examine inoquality
(C8).

Before doing sc, however, we need 1o place a bound on
|tanhz | for z o the line

L=(z| z=re', 6 fixed and 8] <#/2, r20).

where 2 =x +iy. This expression achieves a maximum on
I when a/dcy <uw/2, ie, w/4u <x <w/2u, where
u =tanf. Therefore, on L we have

cosh(m/2u) 41

[tanhz | < | /2a)— 1

172
l =mid). C1y

Let us now sssumec that x, is real and positive,
gy = and thet |8| <w. Then we have that
argV/'myxy =8, This then implies that

0 €| smlifo) Re§i20 iy
O< |&] <miz6) Reby20.

If we et x = | #2/%, | we sec that

1 1 11
rd M‘%ﬂol’>%xlguﬁ’+; ‘; 'IE:I’
—+Re(8Es) 1
50 that inequality (CB) is satisfied if
st lo—t —=aigy. (13)
X miy8)

The function (1/x)+x has a minimum of 2 for x>0 %
that we must have o(8}>2. The angle for which
o{Bg)=2 is Bpe,=046w. For all angles |Gy] <Oy we
have olflp) > 2. Inequality (C13! is satisficd, then, if | 5]
< Oy and -

Lo-2—to'~ 41" gx — 1 j[o-2+(a*-4'"7?]
14
which is the condition given in the text. '

APPENDIX D

Here we would like to show that the propagator falls
off more rapidly than any power of ja,| or |8,]. In
order 1o do this we first note that the operator

M=2' +a'a D1

commutes with the Hamiltonian. Therefore, the Hilbert
apace for the problem splits into the direct sum of the Hit-
bert spaces &, on which M has the cigenvalue m.
PEXN,, then expl —HHIWEX,,. Let P, be the projec-
tion operator onto #,,. We then have that

Mg 8= 3 vain, o
m=0

where .

$ul0=Pre=a,8,) . . @9

Bocause {M, H]=0 the norm of ¥, (2) is independent of . "‘K
time. . o ;..‘ t,r
F3

L e

=)

B r_‘_-.ﬁ'

I3
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The power bounds are obtained from the inequality
|";'ﬂ.'f(“f'5f|‘_""|ﬂhﬂr”
=1 (a!-ﬁl | AT —mla‘ﬂ‘ "
< lat¥b'Fe—# a8} . (D4)

This is really all that is necessary to obtain bounds of the
form given in Eq. (4.16) as the right-hand side of inoquali-
ty (D4} is independent of a; and 8. It is useful, however,
to examine this expression a little more closely. We see
that

ety iner,,,, . (D5)
80 that
(Y P 0 | (a5 Pedn)) =0 (D6)

b}
by, -t -t | e 1B e
llta™ye 10,8 M1 <e 2
-igia| d T AL
e —L (g%
arg At

e |"]__r! P P .
< ,ZO ! (-;'_‘Tnlﬁrl (—iY~'H, _fi |81}

if m”2m’. Therefore
Itta' ot ve 3| o, 8|

171
=| 3 |e'ribtre

» =l

Let ua now consider the case o, =0 and s=0. We then
have that

(D7

cimita 1B "7

0)||= e (D8}
1¥at0)]| e T _
Because there can be at most m signal-mode photons in
&y we have

172
Hta Yt < ‘—’;},”L”] [H¥at0)] . (DY)

This then, provides the bound

172

i

172

where H,(x) is the ath Hermite polynomial. Combining inequalities (D4) and (DY) gives

1 - | | reli s .
| Klap,By t;0.8,00| < |ﬂ—l' 3 |, l(rr_l)! 1B =i¥ ], 1B 1)
e 17 =0 -

A similar derivation for the case a; =0 and r==0 gives

| Ktay.By.t10.6.0)| < ~|§‘-|;[sm.( —~ 18,
f

DI12)

where L, is the sth Laguerre polynomial. We note that
for large | B, |

v 71! Py __ar-1
%{’,(r—mip‘l (i}
[ F3
xH _i |/~ g Y, DIH

[, (— |8 151~ | B | (D14)

s0 that the bounda (D11) and (D12} start being useful i.e.,
the right-hand sides become less than 1) for lag) ~ |81
and | By |~ |Bi].

APPENDIX E

In this eppendix we want to find the conditions on ay,
B and 1 s0 that |flagB00.8)| <<l for

1/t

(D1

=xfye M“E€R. In Eqgs. (2.22) and (2.23) we have given
an expression for X'V from which Flag,e Mg, 10,8,
can be immediately derived, i.c.,

f(ﬂf.f 7”‘.5‘-‘ 0.8

=gule a7 P4 gy (rle 05 pgotey, (Bl
where g,(1), g.(1), and gofr) are given by Eq. (2.23). By
going back through the derivation of KU we can find an

expression for Sla,,B8..0;0,8,), i.c. for the case in which
By is not equal to expl — 2iwt)B;. The result is

SlapBpt;0,8)=

L$] _

- ‘i.mu ™ot
1
+

i1
0le ™al) v 5o(0)

(E2)

Iﬁhmi}(fliljnllgj(l)with%mplmedbyz KKy
We now note that for x,ER, X, /ny is of order 1 and

DLy

L
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| tanh{20 nwyt) | < V3,
fsechi2vx;) | <1,

(EN
|2Vt sech 2y orpath | <3,
| (2% kP sech (2, xp0) | <3 .
it can then be seen that
| flagBr ;0,8 |
Kl
< . VEso | |ag)*
102
Ll ~ 1, s
+ x—] 180 far 2+ 15tn| , (E4}
H

where

L. &
= [18d0 ]~ =g +0U1],
L "o

[=]”

2
18o(r | ~ X5 [ingt + nur +0(1] ,
70

2
[&itH] ~ et + 01, (ES)
Mo

where we have used Egs. (E3) and the fact that for c,E R,
(0/2V/ xx3)~ 1. Putting Eqa. (E4) and (ES) together we
find that | f | is small if

lfﬂ.l <<, Iﬂ[|1/.8(<(l, (E6)
xt<cl, /By lay|! <.
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A fully quantized theory of the free-electron luser in the small-signal regime is preseni-
ed which allows for a calculation of the photon statistics. For an initial vacusm, we find

photon antibunching if the el

it bedow We conjecture that,

in genernl, the free-electron laser preserves coherent states only in the absence of gain.

1. INTRODUCTION

Historically, the first explanation' of the gain
mechanism of a free-clectron laser (FEL) invoked
quantum mechanics. Although Planck’s constant
# dropped out of the final expression for the gain
indicating that it should be derivable from a classi-
cal approach, this was supposed to be very difficult
for a long time, since the first approach® relied
crucially on quantum recoil corrections to the fre-
q ies of emitted ph for which there is no
classical analog. There is now general agreement
that all essential lestures of the FEL can be under-
stood in terms of classicul concepts. This excludes,
of course, the problem of the photon statistics of
the FEL and, consequently, the very question of
whether or not the FEL is a laser in the sense that
it radiates a coherent state. This question albeit in-
teresting in itself is by no means purely academic.
The well-known example of multiphoton ionization
of atoms’ shows that the photon statistics of an in-
tense monochromatic light beam can be of vital
importance with respect to its interaction with
matier. A general sotution to this problem re-
quires a fuily quantized approach. In this paper
we are far from solving the problem of the photon
statistics of a free-electron laser, instead when
speaking about & FEL we actually mean a free-
electron amplifier in the small-signal cold-beam
noncollective regime. No attempt has been made
yet to investigate the photon statistics of & free-
electron laser above threshold.

Quentum descriptions of the FEL often stari
from the Bambini-Renieri Hamilionian,* which
specifies the FEL {in the context of the
Weizsiicker- Williams approximation) in a moving
frame in which the frequencies of the igser and the
wiggler coincide. In this frame resonance occurs
when the electron is at rest, hence the electron can

23

be treated nonrelativistically. This paper relics on
a reformulation of this approach in the interaction
picture in contrast to the Schrédinger or Heisen-
berg picture which are ususlly applied.”*

In the interaction picture, the time-evolution
operator of an electron-laser photon state is given
by the time-ordered exponential of the transformed
interaction Hamiltonian. I the tlectron momen-
tum operator is treated as a classical ¢ number, the
problem reduces to that of a classical current in-
teracting with a quantized radiation field. There
is. however, no gain in this approximation due to
the neglect of the electron quantum recoil. In an
earlier approach to the same probiem’™* this had
been remedied by introducing the recoil corrections
(as oblained from energy-momentam conservation)
by hand into the detuning parameter, which is the
oniy quantity to depend significantly on these very
small corrections. By means of this procedure, one
obtains in a very simple way all basic results of
FEL theory.® In spite of its success, this ad hoc
approach is not completely satisfactory. We re-
place it here by expanding the exact time-evolution
opetator up to first order in the recoil which is
sufficient 1o describe the small-signal regime. To
our knowledge, this is then the only fully quan-
tized treatment of the FEL, which does not resort
At some stage to the classical equations of motion
in order to infer gain.

In Sec. 11, we derive the time-evolution operator
in the above-mentioned linesr recoil approxima.
tion. In Sec. I11, we employ it to compute gain,
spread, and the photon statistics in terms of eigen-
states of the photon number. I the FEL starts
from the field vacuum, the resulting final state of
the radiation field is bunched, antibunched, or
coherent depending upon whether the electron
momenturt is p >0, p <0, or p =0, respectively.

We suggest that, in general, the FEL preserves

20 © 1981 The American Fhysical Socicty
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coherent stales only imasmuch as gain is 2ero or
can be neglected. This is equivalent to the star-
ting conclusion that the FEL is a laser in the
sense that it produces a coherent state only if it is
not a laser in the sense that it does not amplify. In
Sec, IV we compare our present tesults with the
tarlier mentioned semiphenomenological ap-
proach.™® The latter turns oul to be perfectly jus-
tified if the initial radiation field is either suffi-
ciently intense or in the vacuum state, We finally
relate our work to Refs. § and 6.

II. TIME-EVOLUTION OPERATOR

We start with the one-electron nonrelativistic
Hamiltonian which describes the FEL in the so-
calied Bambini-Renieri frame.* In this moving
frame, the laser and wiggler frequency coincide
with w=ck /2. The Hamiltonian is given by

H=H,+H,, (l1a)
:
]
Hy = fmr +Awlaya; +a.’yawl . {1b}
H, =ifgla] awe " _ ala;e™) . (e

Here ada,{) and aw(a.'yl are photon annihilation
{creation) operators which represent the laser field
and the wiggler field, respectively, in the
Weizsiicker-Williams approximation, p and z the
electron’s momentum and coordinate with
[z.p)=i#h, m is a renormalized electron mass, and
the coupling constant g is given by

where rg is the classical eleciron radius and Vis
the quantization volume.
In the interaction piciure, H| transforms to
e /R ~ AH g K
Hiin=e"""" g, "
—ifigle UMTI gty iy

where in analogy with Rel. 5, we introduced the
mﬂl(lr

A=age™ i

with the properties
(4,4'1=1, A'4=ala, . 5

In deriving Eq. (3), we used the following relations:
e""""ne"""":ne""' (a =ag,an) {6a)

i & - ip — i 2_
¥ r/lmle fhe '] U’lmﬁ=‘, |herrIM 2kp)/lm T

The time-evolution operator for the electron-
photon state is given by

T/t
drHn |,

ST -T/M=5ep|-% [

]
where .%" is the Dyson time-ordering operator and
the symmetric integration has been chosen by con-
venience. The interaction time T =L /c is speci-
fied by the wiggler lemgth L. Equation {7} as it
stands can only he evalugied in perturbation
theory. This is due to the time-ordering prescrip-
lion as well as the appearance of the operator p in
Eq. (3). We are now trying to get rid of both diffi-

. cultics by expanding S(T /2, — T /2) around some
g= e o 12) c-number average value p,y which will be specified
afterwards. Hence we write
ST/, —T/D=8T/2 -~-T/2+8(T/2-T/N+ -, (Ba)
i "
Soltaf))=F exp |- & f-. di Hyley s {8b)
1 pTn T2 2 .
SUTAA-TM=5 [ disuTrro e o) gL =iHi ) .y, ST/ (Bc)

Here Sy(T/2, —T /2 is the time-evolution opera-
tor in the classical recoilless approximation for the
clectron current. It has been shown earlier” that,
in this approximation, the photon distribution
function exhibits a Poisson distribution if initially

no laser field is present, and that Sy(T /2, -T/2)
preserves coherent states. There is, however, no
gain in this approximation since the quantuin
recoil of the emitted photons, which is responsible
for the gain mechanism in the free-clectron laser,'

2 W. BECKER AND M. §. ZUBAIRY 25

i5 not taken into account. The quantum receil is
accounted for up to first order by 5,(T/2, - T /2).
Owing to this lincar approximation we are hence-
forth restricted 10 the small-signal regime. Note
that in the expansion we were carefully respecting
Lhe time ordering. The square bracket in Eq. (8c)
is a symbolic notation: the correct order of the
operators musi be inferred from Eq. (3) [see Eq.
(17} beiow].

From now on, we will take the semiclassical im-
it of the wiggler ficld, i.e., we will set

ﬂ}zﬂw:\/”p . {9}

This limit is rensonsble because the quantum na-
tute of the wiggler field is a mathematical device
only and no quantum effects of it can have a phy-
sical meaning. With this, we obtain from Eq. (3)
for p =py),

(B0 Hy e = 2ig Ny sin[Bte’ — 1] , (e
where
k'R kpo
B= e m in

The commutator of the interaction Hamiltonian
for p =p, at different times is therefore a purely
imaginary ¢ number. Under this condition it can
be shown® that the time-ordering operator merely
introduces a phase:

- [}
Soltpt) =€ exp {ﬁ S, dv i

P =Py

{12a)
J

SUT /2, T/
— gV Nk J.r
[

-T

gV Nyk

m

S(T72,—-T72)

. 1 oLt . "
Bty = =~ Ll dt f'. dt"[HAr L H Y

(126}

It can casily be shown that $y(¢;,7,) is unitary
and satisfies the group property

Solry 0208008, 03)=8q(r,,64) . 1)

On substituting from Eq. (3) in Eq. (122) and ap-
plying the Baker-Hausdorff formula, we get
Soltpty) = emu,r,reru,‘n,m" — e

xel-l/!lljll,.l,llt. {14)

where

r V' N
ittt ) =gV Ny f,ll di = 5——’_-51(:"&,"'; .

(15)
1t is evident from Eq. (15) that
2V Ny

HT2,-T/A)=jiT= 7,,67, i BT /2 =j*({T .

(161

Equation (14) provides us with an explicit expres-
sion for the time-evolution operator
Spl T/2, - T /2 in the classical recoilless approxi-
mation.

Next we derive an expression for the lowest ord-
er cotrection $,{ 7 /2, — T/2). Omn substituting for
H {1} in Eq. (Bc), we obtain

2]
L9010 T/2,00(p —po)A'e "™ L A(p —pole P ISytt, — T/2)

x fj:ndru"’( P —po— MK | jln — T /2| P+ j% 0 — T/ 4+ jtt,— T/DA) A+ jle, - T /D))

—[A +AT/2,01( p —po— KL | ST /201 /T2 + 5T 2,04° 1) .

In detiving Eq. (17} we have used the following commutation relations:

[A.Sqlt, 8 )= j*(t,2, )50l tp.1, ) ,
[47Sotr0, 1)) ] = jltyt)S0ltnry) |
IpAl=HkA, [pA']=. A4,

{iBa)
(LB
(18c)

17, Salta 1) )] = —BkSolay,ty M* Uy 0 )4 4 oy, 004 + [ jtean)]?] (18d}
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as well as the group property [Eq. (14)}.

Since |j 1" << 1," Eq. (17) can be somewhat simplified. Applying the squace bracket in Eq. (17) to 8
state | 5,N), the resulting state is & superposition of states |FN), |FTALN +1) and | F72A0N +2).
With the choice of po spevified in Sec. 11, the eigenvalue 5 —p, never vanishes. We can then salely neglect
fitt,—T/2)]* and | f(T/2,00|? in Eq. {17). Morcover, it turns out that the underlined J's never contribute
significantly except when multiplied with p —py. The resulling expression for S(T /2, — T/2} is then

gV Nyk 11
L.AL d“t—Jﬂ
m -7 .
X(}p—po~MkLi* e~ T/04 4 jis, —T/204) {4}
—Alp —po— BT /2,04 + JIT/2.04"] |

ST/, -T/D=8y(T/2,--Tr2)[1-

+1p —poUte, =T/ = JUT 72,0 I ) ()

The last term proportionsl 1o p - py is negligible _ !
for ¥ »> 1. 1t can easily be shown that Ql[ﬁ_rﬂl=oli ] .
S(T/2, - T/2) a8 given by Eq. (19) is unitary up o

to the order of k /m.

S{T/2,—T/2) apparently depends on the choice
of py. We are now going (o show that up to the
order of k/m it is actually indcpendent of pg. Ac-
cording to Eqgs. (15) and (11) we have

YT/ ~T/2 _ &k 3T/2,-T/))

Qi

1. PHOTON STATISTICS

We shall first consider an initial number state
|F.N ) which satisfics

dpe m aB PIEN)=F|F.N), (22a}

and hence using Eq. (F8b) A|ENY=VN |[F+ RN 1), (22b)
5T/, —T/1 '
e APNY=VNLI|F- BN +1) . Q22

_ kYT /2,-T/D Exploiti ="‘"'*':,' rincss of the exp

= EY] parameter py, we fin it by

1
XSo(T /2, ~T/2%4' - ), (20} Po=p—3M. @

This will provide us with the most symmetric ex-
where we have neglected the derivative of the plicit results. Moreover, the parameter 8 then
phase i T'/2, — T /2) since it contributes only to reads
higher orders. Calculating then the derivative -~
3S(T /2, ~ T/2)/8p, from Eq. (19), B=kpim , 24
a8o(T /2, — T/2)/3py cancels against the deriva- s0 thet resonance at =0 becomes explicitly obvi-
tive of the integrand thus leaving us with ous. [t then follows that

{P.n |S(T/2-T/D|B.N}

gy Ny Wk ? 1

={n ISDIN)+'———m!ﬁ Ar;ndm“"'; }\/N+|(n |s.,|.lv+1)+%u/ﬁ(n {SeiN-1)
+N + PG =T/ D= (T /2,000 | S| N)

+j*U —T/DVIN L THN 3200 |5, N +2)

~J TV —(n |Sg [N ~2)] . %

53
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Here we used the abbreviations So=S5,(T/2, —T/2), f=F +(N —nWk, and |{) = {F—( -NWk,1).
The photon-distribution function for the radiation field is then given by

Pla)={{F.n |S(T/2, - T/D{p.N)|?

T 3
|(n|So1N)|‘7ﬁm-§‘§;![\/N+_l(n 1St N + 1)+ VR (n |So|N ~1)

SITWVRIN =T (So [N~ 2 4 ((TWIN T DIN +20n | So [N + DN [SH[a) . 26)

It can be shown™® rhat
1

(n[So|N}= | E’: T TA AT ML~ MU . an

where the L} ¥ are Laguerre polynomials. In view of Eq. (27), {a | S0 BY{¥|5L|58) is real, which has
been used in deriving Eq. (26). Owing to the unitarity of S(T /2, -T/2), P(n) n'hould be properly nocmal-
ized at least up to the order of k /m. Actually we find as a consequence of $,54 =1,

3 pim=1.
w0
The first term in Eq. (26) corresponds to the photon distribution in the sbeence of quantum recoil.™® Por
N =0," it yields the earlier mentioned Poisson statistics. The second and third term are responsible for
gain, as will be shown below. They destroy Poisson statistics even for N =0. One can also casily convince
oneself 1hat the P(n) for ¥ =0 are rot the first-order capansion of a Poisson distribution with & different

mean velue: for N =0, Eqs. (26) and (27) yield

LIDYLT 1 K am ST
Pini=—e Jh{r]"ﬁmﬂﬂ 9 [n?=(2a + 1PATI454TY ] (282}

whercas the shifted Poisson distribution is
Plnt= ;l!--e AT Ty | e

1 ne I

= e TMI f1—es 37E 4

jAan

(28b)

Here € might be specified by Eq, (29} below, ac-
cording to

LM it
€= mJ(Tl Fral

Obvicusly, the discrepancy between Eqs. (28) and
128b) is considerable. This leads us to conjecture
that the FEL radiates or preserves a coherent state
only inasmuch s gain can be neglected.

A further interesting observation can be made
when comparing Eqs. (25) and (26). The expres-
sion in curly braces in Eq, (25} is, for N >> 1, pro-
portional to ¥, whereas the term in square brackets
in Eq. (26) is only proportional to V'V since the
last two terms almost cancet for ¥ > 1. This in-

dicates that the phase of (F,n |S(T /2, - T/2)
}#.N) reacts much earlier to increasing Iaser-fiedd
strengths than its modulu, i.e., the applicability of
the first-order recoil approximation depends upon
the quantity to be calculated. Gain and spresd
{and all highes moments} can be calculated from
P(n); the expectation value of the ficld as well as
two-lime ficld-correiation functions, however,
would incorporate the phase.

The photon-distribution function P(n) allows for
the calculation of all the moments,

{n")= i n'Pin) .

e

When investigating the (anti-) bunching proper-
tiex of the emitted radiation, however, we will find
that extensive cancellstions erase all leading terms.
Hence Eq. {16), which is based on the siready ap-
proximated Eq. (19), is insufficient and we bave 1o
return to Eq. {(17). We then find wing the com-
mutstion relations (18a) - (18d}:
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() =A{BN ST/, - T/ DA AST /2. T 1) p.N)

-N +j1lTif—?“-Ilel§ng[2N+l)+5. 29
D) = (BN ST/ - T /DA AVSIT /2, - T/INPN)
=[N+ AP 4+ jUTHIN + 1) - %1;11") %T' [4N7 £ 2N + 14+ 455N + 1))
4N + 25U 415, (30a)
Anl=(tn —{n)F)=fUTUIN + n—%]}m%glll +HUTHIN + I+ (2N + 105, (30b)

where

. . r’z
S=igV' Ny k(T /m fimdue""lzlj(‘.'"/l.nl’+2|jfr.71‘/1![’—;”(1'/2.:%]’“.—T/Ill .

The second term in Eq. (29} represents sponiancous
emission. For N > 1 it is negligible with respect
ta the third term, which is the usual gain expres-
sion. Via Madey’s theorem'? this is related to the
first term in the spresd (30b). Inasmuch ss
N A", all terms in Eq. (29), except the one in
the factor 2N + 1, contribute as classical terms (o
the quantity #u{n } [notice that AT ~# "2 in
view of Eq. (15)]. This includes the last term
which we would not have obtained from the ap-
proximate Egs. (19} or (26). It gives corrections to
sponianeous emission and is negligible for ali V.
This quantity b is also negligible in Eq. (30a). In
the spread {30b), however, due to extensive cancel-
Iations the second and the third tenm, which in-
volves 5, are of comparsble magnitude. Notice
that the spread is inctessed for positive and de-
creased for negative gain.
From Egs. (29} and {30}, we have for N =0
Ant(ny e 2R BT
(n} o T B G3n
where 5 has cancelled. Hence the radistion field
which evolves by spontaneous emission is bunched
for B0, i.e., il the electron momentum is sbove
resonance (> O}, antibunched for <0 (5 <0},
and in a coherent state for §=0 (F=0) Thisinna

f
tion. The situation here is therefore similar to the
multiphoton absorption process in atoms,"! where
photon antibunching has also been predicted.

The present analysiy is based on an initial vacu-
um state. We conjecture that similar results con-
cerning photen antibunching would be obtained for
an arbitrary initial coherent state. A careful
analysis of this problemy within the framework of »
many-ciectron theory remaing 10 be carried out.

H we try to obtain corresponding results for a
coherent state we run into the same difficulties
which are already inherent in Ref. 5. Let us first
take an initial eleciron ficld coherent stae’ |[a )
with A[ja) =afla}. The lowesi-order contribution
10 the gain,

(aliSer 72, ~ T/ AS(T 22, - T /2 |a)
,__Ia+j|}+ EE.

is strongly phase dependent, and the same occurs
to all higher orders. This is nol surprising since in
contrast to a state |F.N )= |F) [N}, in which
both the field and the electron are uniformly distri-
buted in space, an electron field coherent siate con-
tains inbuilt correlations which reflect the classical
initin} conditions. Before reasonable results for an
ensemble of electrons can be obtained, the phase of

genuine quantum effect which cannot be obtained
by any classical analysis. Intuitively we can under-
stand the phenomenon of photon antibunching in a
FEL by noting first thet the classical curreni keads
to & coherent state of the field, i.c., o Poisson dis-
tribution function. The effect of recoil for B<Ois
to remove “bunches™ of photons from the coherent
state, thus leading to a narrower distribution func-

the coherent state must be averaged over, analo-
gously to the averaging over classical initial condi-
tions.” Generally, such an sveraging procedure
will not preserve a coherent state. The necesaity »f
averaging does not oocur in casc of » state | N ).

Alternatively we might consider the smplifica-
tion of a fieldcoherent state, i.e., jin)= lpYhe)
with o, |v)=v]v). Since

¥
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“AlpY|le)=vip+Bk)|e),

in view of the orthogonality of electron states with
different momenta, only terms with equal numbers
of A's and A s survive. Hemce we are essentially
back to the resulis for photon number states. This
conclusion, however, depends crucially on the
arthogonality relation (p {p +fik ) =0, which in-
volves the quantum recoil. To use it in the
zeroth-order term where recoil has been neglected
atherwise, does not seem to be consistent. Move-
over, making use of this orthogonality requires an
exiremely monochromatic electron beam.

We showed that starting from the field vacuum
N =0, due to the presence of gain, the FEL does
nol radiate & coherent stale. We believe this sug-
gests that the FEL also conserves coherent states
{be it ficld-coherent states or some averaged clec-
tron field coherent statest only inasmuch as gain is
neglecied.

1V. DISCUSSION

M the quantum recoil is neglected, we are left
wilh the simple model of a classical current in-
teracting with a quantized radiation field which is
exactly solvable. This leads 10 the photon statistics

—l

Pia)= | (n |SgIN) |2+ 8zl —N) i',;.'!

as established in Eq. (27). The most ¢ssential
features of the FEL, however, gain and electron
bunching, have dropped out of this approximation.
In an earlier spproach”™® this had been remedied by
reintroducing the recoil by hand into the detuning
parametcer. This procedure yiekded correct results
for gain, spread, and all other basic properties of
FEL’s. We are now*going (o compare our present
exact first-order calculation of the photon siatistics
with the former semiphenomenclogical approach.
With the just-mentioned procedure™® we have,
instead of Eq. {26),
[{n|SeIN2,

Pltml= 14+ bz
az

2

where we procecded as indicated in Eqs. (23 and
(24) of Ref. 7 or Eqgs. (2.16) and {2.18) of Ref. 8.
In our present notation
‘ M T

— 1 L -2l
z =T, Az= m;(T) a8
Using the zeroth-order matrix element {27, which
is common 10 both approaches, doing the deriva-
tive indicated in Eq. (32), and re-expressing Pin) in
tertws of matris elements of S, we obtain

33

(1S IN) —2n |So|N -1} |{N|Sh[a). 034

To compare with Eq. (26) we evaluate the matrix element {F.n |{p.5,]| 7.4} [Eq. (18d}} which yields the

relation

(N | SoiNY=F{TH{n |So|N —IIVN +{n IS, [N + DVN D 4jUTHn | S| N) . (35)

1t is consistent with our earlier approximations to drop the last term on the right-hand side of Eq. (3%,
which then can also be used to simplify Egs. (25) and {26). Introducing Eq. (35} in Fq. {34) we obtain

Bimy = (n |so|~)|]+%(nlsrﬂﬂ)[‘/ﬁ(" ISal ¥ — 1)+ ATWIN T DIN +4n | So | N +2)

—HTWNIN ZTi{n |So|N+2) +jiTHn |So | ¥)] . (36

This dilfers from Eq. 126) only by the presence of
the last term. [t is this term which destroys uni-

tarity so that ¥ _ Pin):£1. The last term can be
safely neglected for ¥ > 1. For small ¥ inspec-
tiont of the explicit form [Eq. 27)) of {n | S, |N)
shows 1hat it only contributes significantly for

n = N. Hence all moments calculated by means of
Ptn) instead of P{n} arc rcliable for ¥ >> | as well
as N =0. This justifies the semiphenomenological

T
approach™! for aH cases of interest. It also shows
that the latter cannot be trusted whenever recoil re-
tated modifications of (n |S(T/2, - T/2|N)
become imporiant, since the process of introducing
the recoil by hand fails to reproduce Eq. (23).

Our work differs from Ref. 5 mainly by using
the interaction instead of the Schrodinger picture.
In Ref. 5 quantum fuctustions of the momentum
operator are neglected by approximating

<l



Pl=l{p)tip - {pNP=2p(p) —(p}*. T

If {p} is assumed |0 be constant, the resulting
Hamiltonian no longer allows for gain. This is
casily demonsirated by calculating
(N [ explifnA’A expl —iHt) | N) with the Hamil-
tonian approximated according 10 Eq. (37). Hence
in Ref 5, {p}is d 10 be time dependent
and to be given by a classical trajectory. One is
then left with an enplicitly time-dependent Hamil-
tonian, which is, moreover, ambiguous since the
classical trajectories behave completely different
depending on the classical initial conditions.’
Since this procedure cannot be considered 1o be a
consisten! quantum-mechanical approach, conclu-
sions drawn from it regarding genuine quantum-
mechanical entities such as the evolving photon
statistics do not seem to be relisble.

Our linear recoil approximation is similar 1o Eq.
(37); we apply it, however, to the interaction
picture-time evolution operalor and not to the
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complete Hamillonian. Up to that final expansion,
the exact Hg has been used. Speaking in terms of
quanium-mechanical perturbation theory we have
approaimated the vertices, but not the propagators.
The importance of reraining “‘quantum fluctua-
tions” in the momentum is also evident lrom a
semiclassical treatment; see Eq. (10) of Ref. i5 or
Eq. (3.7 of Ref. 16. If within the mentioned equa-
tions the second-order terms are dropped, the gain
is lost.
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