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Straightforward di ization of the squati
field often lesds to physical and mumerical di

of enodiot of § quasi-continuum interscting with an electromagnetic
Micultion. Wa detive two distinct hode for reducing the b

Ot of these applist to bands of yessi-contin-

of energy Jevels that must be trested explicitl insuch

ua with slowly decressing shoulders; the other, to bends with rapidly decreasing shoulders.

INTRODUCTION
Beginning with Rice in 1929, many hots have

[

the population. This model is, in some ways, mors general
mmu,mmmunw-m.a_a

a model of the so-called “quasi-continuum” in which a dis-
ﬁuui}ndgrmnduhiowphdhnhnd:{Nuwum
that are not.coupled Lo one another (see Fig. 1). ‘Theee «fforts
are summarized well by Shore.! The (1, N) system allows
many analytic results to be derived because it hes u simple
aigcnvnluuqmﬁm’mdbeeluﬂ'lu-oqﬂbhwmb&
waing the Laplace transform.3-# In the special case (the Rice

del) of svenly spaced sublevel of the upper band, Schrb-
dinger's equation can be tracsformed into & delay-diffarential
aqmﬁon‘-’lndhumuhlbihmhwbﬁﬂn
ground-state probability experiences quasi-periodic growth
and decay.

In genersl, previous investigations dealt with the cass of the
known (simple, clasical) form of the alectric field acting on
& two-level systom, or else with s conetant slectric field. [The
case of & sinuscidal field under the rotating-wave approxi-
mation (RWA) and the case of « suddenly turned-on field,
although physically different from the constant-field case, are
mathematically identical to it for times later than the
switch-on time] For an investigation of a laser pulse passing
through a medium,? these plions about the lactric field
may ot be justified owing to reshaping of the initiel pulse as
a result of propagation, so it is necesaary Lo consider the case
of » time-varying field. Peterson et al.® have studied the
adiabatic case, in which the field ks turned on slowly rather
then suddenly, and have shown that on laboratory tima scales
even quite fast pulses can sometimes be in the adiabatic rather
than the sudden regime.

Yeh et of. 4 in contrast to Peterson et of., have recently dealt
with the quasi-continuum in the case of & time-varying-Tield
envelope in their “interrupled coarse-graining” theory. They
also Limit the electric fild to be slowly varying. In fact, for
the wesk-field case their limitation on the pulse
turn-on ﬁmiiﬂtﬁnt;iwninl’hf.tunwdiﬂmhldi-
nbaticity. Thus, fo weak fields at leset, Yeh's procedure
appears to be somewhat akin to the sdiabatic approximalion;
yet it also has features distinct from the adisbatic approxi-

jon since inua are not My idered Lo p
an adisbatic regime.

Witriol et ol.* have considered the problem of reducing the
number of levels in a model of a laser-stimulated molecul
species reacting 1o form another species that is removed from
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ngly depand t ott values of the various system parame-

ters.
Wa-ddmdn-mmoﬂm-inlld.l.n.d’.“d
ndudmthodifﬁcultydp-rl’wh.nluﬂthh the (2,
N)modﬂdlqwmﬁnmwhhulupmh-ﬂhnh
MhM.Q.anamﬁmumnd—mnut
hnhmunphy-hﬂymm-lh'uﬂmmﬂy
dmpupmbhmdldhumhudwithubnhm
wmmmwwmm First,

the field sasy vary in a totally pemeral wey: Tt may be quan-

thdwd-tu!,mdhthhﬂu—nhnnw.hmhnp-
pliad or not. Bocund, wa strive for high (if not perfect) accu-
racy rather than merely appe i [~ ent the

systams.

smdunmmmmmumunudmm
recent years have concernved the nature of intramolecular re-
W(Muﬂmmwmmmﬂhm
experimentally. Recently we pointed out that our prelimi-
mmﬂu“hﬂnthmdwﬂmdﬂnwnl\n
of the dipole moment {or other off.disgonal observables) are
useful in the context of IMR. Although we do not address the
question of IMR in this paper, we intend Lo do s in a future
publication.

INTRODUCTION OF THE THEORY

Consider » quantum system interscting with an electric field
ding to the Hamiltoni

Hity = Ho+ Ethg,

where the operstors Hy and p sre independent of time. 1 we
assume that the RWA has been made, then Hy represents o
matrix of detunings & = nw ~ E/N, rather than o matrix of
energies, und E{t} (which absorba s constant of 1/2h} tepre-
senta the envelope of the electric field rather than the oncil-
lating field itseli. We do nol sssume Lhat the field envelope
ia constant. In fact, our main concern is 1o discover the effecta
of 8 nonconstant Eit} on the evolution of the system. Thus
the RWA is not forced on us; indeed, we may even allow the
field tu be quantized. If the RWA ianot made we must re-
place the plus in the definition of HArY hy & minus, of elee p
will represent the negative of the dipole matrix.
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Fig. 1. A typical (1, M) aystem.  Transitions sre sllowed from Lhe
ground state 1o the upper band, not within the upper band itself.

We concern ourselves here only with the special case in
which the system ists of a nondeg te g d state
interacting with 2 band of upper levels but in which the upper
Ievels are not coupled directly among themselves. As far as
the rmhlﬂhtnwilldﬂiwmeonunnd.ﬂwhndmba
discrete, conti , or 8 combination of the two. However,
for simplicity, in our di jon and ion we will g Ny
assume that we are desling with a pure continuum. For such
asystem we employ the lollowing notation: The ground-state
amplitude is denoted by a(f). Upper levels are indexed by
the quantity A = w — E/A, which representa the detuning of’
the level that it indexes. The probshility amplitudes for the
upper levels are denoted by (i, A). The only nonzero ele-
ments of the dipole matrix are those coupling the ground stais
to the upper states, u(A), which we meurna to be real. For

pl » we aleo introduce a funclion g{A), which gives
the density of states in thwe upper band. This allows ue tolet
4 vary over the contiosmous rangs (—=, =} even in the discrete
case by ietting #{A) behave appropriately, 0.5, oa a delta
function in the case of & single diacrete level,

The problem that we address is this: Given & sysiem ss
dnuihdnbmnwln-oﬁnplliniunlmﬂiﬁmlwhichw
typically choose to be aily) = 1 and bitg, A) = D, where t ia
a time before which the incident field E(t} vanishes] how can
nlfa-ﬁtnwfﬂdlfllllmfwﬂnﬁmwﬁnﬁmolﬂn
system when there may be a latge number (possibly an un-
countable infinity) of levels in the systera? The answer that
we envisage for this probiem is a reduction of the aystem in
some sense to a system with a much Ik ber of levels.
In an ides] (and extreme) case we could, perhaps, reduce the
number of levels to two or three and solve Lhe system analyt-
ically; in a less ideal case we still might be able to reduce the
number levels sufficiently to make numerical solutions quite
inexpentive,

This, of course, is ne new idea. Converting complicated
systems Lo two-level systems (on the grounds that most of Lhe
levels do hot matter) is not However, b
of the special system that we have chosen to consider, we try
a somewhat different approach to the problem than has been
cemployed in the past.

In our notation, Schrddinger’s equations can be written
[

4 . -
& mcny['__utm..fmau.mda, (n

t%m-. 8) = iAbtr. A) + B Wl Abait). 0.2

Integeating Fa. (1.2) and substituling into Eq. (1.1) gives the
inlegrodifferential eyuation

RS Nurkey and €1 Cant el

d t
— -— it dxlt — )i, {4
2o emj:_su Jalt'dxls - ')
where
x(ty = f " AP ANerdd A oy

All the integrals become sums in the discrete case since Lhe
densily function becomes a sum of delta functions.

Consider Eq. (1.1) for the time development of a{t}, which
is the quantity of primary interest given that b(¢, A) may be
foursd straightforwardly if a(¢) is known. Then it seems
natural, in order (o discretize Eq. (1.1), 10 try Lo replace bit,
4} with some other quantities |in particular, a discrete set of
functiona b(1), by(2), eic.] that have known equatinns of
motion and that give an equation of motion for a (¢ ) but that
are not necossarily intuitively related Lo the actual function
bit, A). In particular, we may suppose that there exist
numbers &), Ay, Ay, . .. and u1, gy, . . . such that

-d-e(l)-islll L uabalt),

dt >0

ib.(l) = JA bale) + iE(Iuan(t). 4.2)
From the simil, of these tions to Eqs. (1.1) and (1.2)

and from Eqs. (2) and (3), it is oasy to see that the b, will exiat
if and only if

x{t) = ah'ﬂﬂl’&.ﬂ. (5)

where x{t} is as defined oaslier. In the sections that follow,
we discuss at some length Lhe pomibility of finding numbers
#, and A, for a given system and hence guaranteeing the re-
duction of Eq. (1.1} to Eq. (4.1). A preliminary discussion of
a different but related technique based on tridiagonalization
of the Hamiltonian is given in the following section.

Note that we have not assumed in any way that g, and a,
are real. Thus, even though Egs. (4.1) and (4.2) superficially
resemble Schridinger's equationa, it may be that the aystem
for which these would be Schradinger's equations would nut
have & Hermitian Hamiltonian end hence could not exist in
the real world. This should not bother us since Lhe b, were
introduced merely &s & mathematical convenience, However,
this realization leads us to ask if the discretized equations of
motion {4.1) and (4.2} allow us to compute any quantitiss of
physical interest other than the ground-state smplilude a(i ).
In fact, they do. The complers polarization %, defined” s

& = 2iN J' " atiuid (AN, AMdA, ()

in casily compuled in the discretized system. Multiplying Eq.
{113 by 2Na*(1)/E(t) ia seen to give the complex polarizaticn;
on the other hand, substituting for the time derivative of (1)
froen Eq. (4.1), we get an expression involving only a{t) and
balt). Therefure

&= 5N T as(thuahalth 7
LRI
1t is furtunate that ® is so easily calculated in the discretized

nystem, since & is the quaniily that couples Schridingers
equation 1o Maxwell's equations in the differential equations

1
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that describe the behavior of an oplical field in & bulk mate-
rial.

From Eqs. (2) and (3} it is clesr that the system ia com-
pletely characterized by the function u(A)3g(A), which we call
ihe shape of the band and refer to as w{A) for convenience.
We must make o distinction between two cases: whether
wi{A)~|A|~" (for some 1) aa |A] = = or whether w{A} dies
away [aster than every such power. The reason for this dis-
tinction is that we have found methods of dealing with either
case but have found no method that can deal with both cases.
A deeper reason for the exi of these two diap cases
5 nol evident.

SLOWLY DYING BANDS

First, consider the case in which w() dies away like |A] " for
some integer n us [A] — =. If this is true, then the function
wid)} can belppmxinuted-lnﬁnndﬁntﬁon.i.e..u- ratio
of two polynomials in A:

w(d) = 5—:2—: [p(4), ¢{4) polynomials). (a)

t:zch-rehﬁanhold-,nmlhtmhne-nliond

Suppose, in fact, that approzimation {8) holds strictly
rather than spprozimately. Our main result of this section
can be expressed in the following theorem.

Theorem

M u(APg{A) in o rations function (with simpile poles) of form
(Bl.lllenamdum'nnoﬂip.ﬂ)hh (4) oximts. The A, are
just the roots of q(A) that lie in the upper half comples A
plane, whereas the u, can by oxpresssd by the formuls

N E(A..J]m_
M I!ﬂ By (9}
where the prime on g{4) represents differentiation.

Proof

Compute x(¢) sccording to Eq. (). w(A) must die away at
least es fast as | |~ or shse the total dipole moment fthe in-
tegral of w(A)[ would not exist. The integral in Eq. (3) can
be written, therefore, as the limit of the complex line integral
around a large semicircle in the upper half A plane snd con-
sequently aa & sum of the integrals around the singularities
in the upper half-plane (since the integrand is analytic except
#t thuse points). Therefore

di

X{t) = T explidne) pla,) —_—
a, Plidat) p j;.q(d)

where the sum is to be taken over the upper half-plane roots
n of g(A) and the integrals are evaluated around those

puints. Since 9(3) has no repeated roota, the square of Eq.

(9} is the value of the integral ax given by complex variable

theory. Therefore Eq. (5} is valid (for these values of 1, and

48,). and 30 the reduction exists. Q.ED,

" The simpleat example of a rational band is the Lotentzian
and,

—1

A —sp 4 g’

where 7 i the width of the band, ¢ is the offset of the center

wid) = u(A) (A} = ,.wf (to)
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of the band, and 4 i the total dipole moment. This function
has exactly one pole in the upper half A plane. nemely, A =
# + ie, and the spplication of formuls (9) gives the reduced
dipale’matrit element 4. Thus the reduced equstions of
motion for the Lorentzian-band system are

gl«(l)l_r.l 0 Etthufair) an
de [biz) Elt)u

s+ ia[bt)
These equations wre often seen as the result of an approxi-
tnation thet is applied when Eq. (2) has been derived but has
not been found (o be solvable. In fact, these are formatly
identical with the equations obtained from the Weisakop!-
Wigner approzimation. It should be temembered, however,
that sccording to the derivation above they are exact for a
Lorentzisn band in an srbitrarily varying fiekd. There is no
Approximation here except possibly the RWA or the ap-
prozimations inherent in Mpposing & semiclassical intersction
with the electric field. This result has boen seen in analytic
Lorentzian-band solutions for the case of E(t) constant? and
for E(t) exponentially increasing.!® Furthermore, it can be
applied o give the sxact Lorentzian-band solution for any
E(t) function for which the two-level solution isknown. For
example, i Ref. 10 we gave the solution for it) for & system
of two discrets levels when E{t)im semiexponentially in-
creasing, i.e., when it incresses from seto and goes to & con-
stant value in a particular way (see Fig.2). Now we canim-
medigldymenlhﬂhtm:lﬁoohinn(ﬂ'hmﬂnum

detuning and the bandwidth, we immediately get the desired
solution:

a{r} = exp(i{ rIM l:’ M—R -f !-—*—'.3. ﬁar, '
2ha

A
where
+io
f- 26 O
and

oy e

Here, M is the conflyent hypergeometric function.
We conclude this section with a result that is not an appli-
cation of the rationai-band theorem but that is nonetheless

1608

I 200

]
g ———
wa LT
— o e
'8 s 7
K /
>
3
O e
‘toen nsoa aoenn 4 sea o 19 7 nag
LAMBGA = 1Mt 10!
}"ig. 2. Furm of the semiexponential pulse. Jiitanlly 47 = - the
Tiel! envelope increnses ox A e eventually i EOeS Lo o comstang

value,

e

oy .

P



17 4 ANt See Am. H/VOL 1L N, 2/ April 1y

related to Lhe Lorentzian- band result given abuve. Imagine
Lhat, instead of a continuuus band of levels, we have an oth-
erwise similar band of eveniy spaced dincrete lavels, In the
case of a Lorentzian-band shape, expression (10) must be re-
placed by

od 1

23 0

M * {nd —5)2 4 gt

where & is the spacing between levels. (In this instance only,

#n Tefers 15 the nth level of the given system rather than the

reduced system.) If x{t) ia computed using formula €3, we
finat" that for 1 < 2x/ (the recurrence time of the system)

fudd WP
(l.nnh 6} '

1+ tanh X2

x{th = g? expli(s + ia)e)

1-tanh X2

+pu? expli(s — iaht].
Therefore. 8o long ax we confine our attention Lo times less
than Lhe recurrence time, the discrete Lorenizian system can
be reduced exactly to » three-ltevel system with detunings s
+ i and dipole-matrix elements given by the square roots of
the coefTicienta of the inls in the squation sbove. If
we compare this with the result seen in the case of a continu.
ous Lorentzian band, we will notice that this three-level re-
duction is equivalent Lo replacing the discrete 1 tzian band
by two continuous L ian bands. Mathematically, one
of the continuous bands has width o and the other has the
negative width —¢.  Presumably it is this negative-width band
that causes the breakdown of the reduction at the first re-
currence. When tanh({xo/8) ~ 1, the negative-width band is
almost decoupled from the rest of the system, and only the
positive-width band ins. This is ble since when
the spacing 8 is less than the bandwidth & we might expect
that the levels in the discrete Lorentzian would be dense
enough to justify a continuum approximation.

QUICKLY DYING BANDS

Consider Lhe case in which 10(A) dies away as |A] —= = faster
than [A|“" for any n. If this is true, then it is possible
define orthogonal polynomials £, (A} with tespect to the
weight function w(A):

S i 2,08048 = 8,

Given that il ia possible to define orthogonal polynomiala,
there is & systematic procedure for developing spproximation
formulas for the class of integrals

Fud)tana,

where [{A) is to be an arbitrary function as far as the formula
is concerned.'"'? Furthermare, there is a sysiemalic proce-
dure for deriving the error terms of such formulas.’®  In
general, one finds a linear-approximation formula of the
form

f-wlA)IIA)dA Y i) (12
- H>n

where the &, are the routs of ime of the orthogonal polyne.

138 Bitkey and O 1 Cantrell

mials [.{8) and the i, are weight lactors. The error term
{which is not ahown) involves a high-order derivative of f(A).
If we apply approximation (12} to the case flA) = '8¢ we
gel

x(1)= 3 w, expliA, 1), {1y
n>0

which is of the form of Eqy. (5). € “onzequently, a quickly dying
hend can be approximately discretized by putting levels at the
positions of the rools of one of Lhe orthugonal polynamials and
using an dipole-matrix elements the square roots of the weight
Tactors that would be needed for an approximale integration
formula based on the orthogonal polynomial.

The error in s ralculation of the ground -state probability
amplitude using such a scheme can be approximated by
applying mean-value integral formulas to integredifferential
Eq. (2). If E{¢) does not become toa large within the decay
time of x{1), iL can be shown that the maximurm error in the
#round-state amplitude on the time interval 10, £] i less
than

] +
axJ; ﬁ EW)E® Mt de, (14)

where 3y ia the mazimum error in x{f) on this interval. The
units in this expression are correct if we recall that Eit} is
taken to imclude u factor of 1/2A.

A more obvious way Lo discretize a continuous band would
be aimpiy to replace the continuum by & set of avenly spaced
levels with dipole-matrix elements that are roughly the same
a8 (or proportional to) the value of the u{A) at the corre-
sponding position. (For conveni we refer Lo thia proce-
dure as Rice discretization since equally spaced levels are in-
volved.) Rice discretization ia not the best choice for precisely
the same reason that choosing equally spaced sampie points
in approximation formula {12) is not the best choice. There
ia aiso a physical reason for avoiding Rice discretization.
Equally spaced levels cause the phenomenon of recurrences,
in which constructive and destructive interference create a
quasi-periodic oscillation in the ground-state amplitude. We
saw earlier in the case of the discrele Lotenizian band that the
reduction Lo a three-level system worked until Lhe first re-
curzence Lime, but then it broke down.  The approach of using
expression (1) & a prescription for discretization avoids this
trap and oplimizes the discretization at the same time.

Expressium (14) for the error in a(r) that is due o the erTor
m x(t} implies Lhat our version of the discretization also
breaks down eventually. In fact, since the error term of ex-
pression (13) involves a derivative of f{A} (which is €'}, the
error in x (1) must have a polynomial dependence on f. Thus
the reduction does fail in Lime, but the error expreasion gives
Us m means to eslimale the Lime range for which the approxi-
mation is valid.

As an example, consider a uniform continuous band of
width 2Aqin which n(4) is w2/ 240} for 4] < Aqand is zern
outside this range. For this band shape, the orthogonal
polynomials are Legendre polynominls. The discrefized
syslem therefore has a ground state und a hand of discrete

levels positivned aecording to the roota flimes Aal ol a Le-

gendre potynominl; the dipole-matrix clements are propor-
Lionat {hy a factor of /7 to the square roots of the weight
factors for Gaussian integration and conneel the levels in the

@)
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band o the ground state but not to ather levels in the hand.
The error formula for Gaussian integration!! gusraniees a
haund on Lhe error in x(t). I there are to be N levels in the
discratized hand, the error in x(2) is given by

2!N¢I(~!]I

e AG)2N,
(2N + nuzm!]-‘m" !

léx| =

As & numerical example, take the case Ag = 0.3 em™!, with
wE(t) ramping linearly from zero to 0.05 em=! gt t = 1/30 nsec
and remaining constant theresfter. We adopt the goal of
providing six-figure accuracy for the ground-state probability
amplitude on the time interval § < i/3 nsec. As may be ex-
pected, expression {14) actually gives a slightly pessimistic
estimate for the necessary number of discretized levels. We
have integrated Schrodinger's equation using 16 discretized
levels chasen as discussed above. The resulting ground -state
probability amplitude (which is real} is depicted in Fig. 2. In
conirast, consider the Rice discretization, which involves re-
placing the band by a set of evenly spaced discrete levels
connected to the ground state by equal dipole-matrix ele-
ments. Figure 4 displays the etror in the ground-state
probability amplitude caleulated from Rice di izations
with 16, 32, 64, and 128 evenly spaced levels, compared with
the “cortect” ground-stale amplitude calculated from the
systam as diseretized by our method described sbove (using
16levels). Among the Rice discretizations, only the 128-level
case attaing sin-figure accuracy. In Fig. 4, notice that the
ground-state probability amplitudes as ohtained from the Rice
di izations appear to coincide periodically (and simulta-
neously) with the true ground-state amplitude. The reason
for this novel feature is not entirely clear to us.

Although the technique of approximating x(¢) using or-
th i-poly ial methods of quadrature obviously leads
to quile satisfactory results i with simpier di i-
zation sch the application of I la (13) has two in-
convenient axpects.  First, and most important, we have to
have an effective method of computing the roots of the or-
thogonal polynomials and a method of computing the weight
factors. Second, we cannot build & more sccurate discreti-
zation from a less aceurate one.  That is, if we decide that we
must have more accuracy, then there is no alternative Lo using
an orthogonal polynomial of higher degres, compuling its

"

-
1

i
.
T et reans e
Fig. .t Grownd-sate protudiilily amplitice for 2 uniform rectangular
Trandt of il width 0.6 cm=!, s calenlated by our technigue usipg 16
levels an the discretized hasd. This result is arcurnie to alwrt six
devimaf plaves
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Fig. 4. Error resulting from Rice discrelizations of 16, 32, 64, end
128 evenly spaced levels in Lhe cadculation of the of full width 0.8 cml"‘
Thy sero point of ervornd is taken Lo be the amplitude calculated wsing

our method (see Fig. 3).

roots, elc. We cannot simply take the less accurate discreti-
zation, add a few more levels, and try again. .
This is all that we have Lo say on discretization within the
framework of Eﬂ 5). As it bappena, however, there is an-
other approach to the discretization of quickly dying bands
that, aithough it is based on a completely differant premise

sbout how discretization should be perf; usts simil
math ical hinery to that di d above, and in &
more convenient way.

‘The aiternative approach to di I can be d
up in the lollowing theorem.
Theorem

‘The Hamiltonian of any system (of the type that we are dis-
cusaing in this section) can be tridi lized by a similurit
t f tion that is independent of Eif). The disgonal
elements of the Hamiltonian are

dy d; dy

0, -=5 - — - = .
*n L] (5]

and the codiagunal elements are
1
Ettyp, — — s
(.23 ) [

where thed, and ¢, come from a recurrence formula'? of Lhe
orthogonal poly ials [, with respect to w{A),

frr i {8) = (d, + e, AY, (A} = eafa-1{A).

Proof

We explieitly give the simitarity transformation. Note that,
although our vectors may have many sfements, we represent
them as having just two components, o scalar and & function
of A; the scalar represents Lhe ground -state component, and
Lhe function represents the upper-level components.  With
this nutatiun, the new hasis vectors sre

1 0 n
’UI' LIPHINY I PN o
M o

{riven the exact form of these vectors, He Hamiltanisn matrin
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in easily seen to be as stated in the theorem. That the vectors
sre orthogonal and form a complele set is s trivial

of the orthogonalily and pk of the orthogonal
polynomials. Q.ED.

This theorem puta ua in & much better position than that
in which we were left by the previous method since, even
though we still need to know the orthogonal palynomisls, we
o longer need 1o know the roots and weight factors.  Further,
successively more accurate discrelizations can now be built
up recursively.

The manner in which the total dipote strength and the band
shape figure independently in the tridiagons! Hamiltonien
i sstonishing. Only two matrix slements depend on E(t) and
#. Al other nonzerc slementa in the matrix are somehow
Eeometric constanta thet depend only on the shape {and not
on the strength) of the band. To compute the complex po-
larization we need only the first two probebility amplitudes.
Hence any approximation that we make regarding the elimi-
nation of the higher levels affects the polarization (which ia
lhuonlyphwiedqulnlilynt!mthnthepopuhlion that
intereats us) only indirectly,

T we weew 1o truncate the Hamiltoniss mptriz, keeping just
ﬂnhhnknwmddﬂnduntlhmnﬁniumi
sctually similer (o the discretized Hamiltonian derived earlier
inlllhucﬁon,h-hichllndetuninpmunmdm
orthogonal polynomial and the dipole-matriz elerments are the
square roots of the weight factors of an epprozimate inte-
gration acheme based on the orthogonal polynossial. This is
Pperhape not surprising since the mathsmatics of orthogonal
polynomsials p the entire subjoct. Nevertheless, this
observation serves Lo connect what we have found bere Lo the

d fr k of discretizati bodied in Eq. (5).
M&u-on,dmﬂupuviouutbodofdimﬂmﬁon in
Ui section permitied the derivation of error f las, we can
obtain estinates from these formulas of the error involved in
truncating the tridisgonal Hamiltonian.

The notion thet the mathematics of orthogonal polynomisks
may be useful in solving the dy ics of g asysiomes,
particularly in the tridiagons! case, ia not new,™14.15 Q.
thogonal polynomials have g Iy been seen ag a tool for
computing the dressed-state eigenvalues and eigenvectors of
A system experiencing & constant-amplilude field (or perhaps
a field that has been suddenly switched on). What we have
found is valid for a Field varying in an entirely general way.

Refecences 7 and 14 neverthelesa present resulls relevant
to the tridiagonal method of discretization. These suthors
start with a tridisgonal Hamiltonian (which is truncated for
the sake of computer cateulstions} and solve (in the case ofa
constant field) for Lhe populations.. The matrix slements of
the Hamillonian are chusen ae recursion coelTicienta for the
Chebyshev, Hermite, Legendre, or Laguerre orthogonal
polynomisls. Thua, in light of the Lheorem Kiven above, we
see that the numerical results given in Rel. 14 can be viewed
&3 approsimalions {in the case of a constant field) to popula-
tions in systems containing conlinuous bands of various

hapes—among which are included Lhe Gausai bard shape
and the uniform reciangular band shape.

We do net di the tridiagonsl method «of discretization
further hers. In a future publication, we will show thet the
method can be vastly generalized. The detailed discumion
of the method is more priate in that context than in
this.

R. 8. Burkes and C. D, Cantrell

SUMMARY AND DISCUSSION

We have considered the discretization of systems in which
there is a ground state snd o band of levels that interact with
the ground states but not with each other. This band is en-
visaged s & i and the problem is W introduce in
place of the band a discrete set (it i hoped that the set wili be
finite) of quantities that can be used to calculate Lhe
ground-state amplitude and the complex polarization. This
is not the same problem ss puting Lhe eip lues and
eigenvectors since we want our discretization to be useful in
the caee of a time-varying electric fiold E(t). In tact, only
reductions thet are good in the case of a tolally general E(¢)
have been discuseed, and hence the results derived can be
coupled with & numerical.differential-aquation solver 1o yolve
Schridinger's equation for the type of system (hat we have
considered

Wa have found two essentislly separate cases. In the one
cas, in which w(A) = w(A)2{A} ~ |A] =" {for some integer
n) s | 4] —+ =, we have found that w{A} can be approximated
48 a rational function p(A)/g{A). We have shown how to find
N quantities {where the degres of ¢(A) is 2V for which we
know the squations of motion and in terme of which we can
nﬂ-&-mﬁmﬂmdwommdﬂumplihﬂe
#(t). These squations of motion resetnble those for an (N +
1}-level Bchriddinger equation, except that the Hamiltonian
need not be Hermitian, Thers is no approximation in these
ground-stete amplitude and compie polarization can be
computed [for arbitrary fieide E(t}] after arhitrarily long times
in the reduced systam.

In the second ceas, whers w{A) diss 10 raro fester than any
power of |4 as |A] — =, we have found a similarily trans-
formation thet tridiagonalizes the Hamiltonian. The tridi-
agonal Hamiltonian is discrete but infinite, and the only ap-
proximation involved i in the truncation of this matrix Lo give
a finite sysiern. The similarity fi tion is plotaly
independent of tirse, 8o that once again the reduced systam
can be used in the case of a time-varying field. Furthermore,
the only elementa of the Hamiltonian mastrix that depend on
the field connect the ground state with the pext higher level.
Thus only these two levels have to be accuretely kmown to
cmjrate the complex polsrization.  Since any trancation of
the Hamiltonian (or, pomibly, replacement of the upper staler
by s reservoir) will leave the equations of mation of these levels
unchanged (though altering the actual values of some of the
probabitity amplitudes entering into them), the effect of such
sn approximation on the ground-state amplilude or the
cumnplex polarization can only be indirect. We have also Kiven
the matrix oblained Irom a certain similarity transfurmation
of the t ted tridiagonal Hamiltonian and shown how it
can be used to give an expression for Lhe error involved in the
truncstion.
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Note Added in Proof. Witriol'* sdvocates direct numerical
solution of integrodifferential equation (2). This & form of
ini in. We do nol mean to imply
every possible case. I,

that we have a method of attack f
for example, one shoulder dies ss | A]=* whille the other dies
a5 | A}~ withn >m,u:enEq.(Bli-inulidandthupp|mch
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Fora quantum -yum in wlm:h a umuua\- or qum-mnumm band of levels ia axcited by means of soveral di-
pole i

P e

| theory that simplifiss the numerical solution of the Schrd-
wlectric fislds {or electric-fleld

). it aleo takes il acoount

dinger equation. The ﬂuy time-warying
the sxact shape of the band a8 well s the fact that dilferent excitation channeia see guﬁlrmt band shapes. Accura-

ﬂdlhmhmhnhgh.iﬂhﬂl We show that the dephasi oﬂh:
ds Lo the p of wall-defi

todes in the basis cor

pmluhlllty ampli-
d waves in the new banis

that we introduce.

1. INTRODUCTION
Actual caleulstions involving real quantum systems can be
difficult in the sense that so many levels interact in such a

licated way that calcul can require vast quantities
of computer time. It is theref in optics
to construct ﬂmphfed modell in -Iuch one can sasily study
certain ph [l ily trying to mimic any
real system with the model. These phenomena include pas-
sage of oplical pulees through medis, intramoleculsr relaze-
tion (IMR), and Laser-induced dissociation.

One popular model is the (1, N) ayster, in which & special
state, the ground atate, can interact with a band of N levela
but the ¥ levels cannot intersct among themsalves. These
efforts are summarized by Shore.! In thia model, dense bands
of levels absorb population from the ground siste, making the
model weeful for the study of IMR. Another popular model
in the ladder system, in which a series of states can interact
with adjacent atates but not with any other state. The first
‘investigation employing the ladder-systemn model was that of
Goppert-Mayer in 19317 In this model, multiphoton ab-
sorption can occur, making it possible (for example} to study

tions of lsser chemistry. Haydock? showed that, in the
case of u constant elactric field (envelope), all diacrete ay

Rather than a compl model, we p
theory that aids in the ol
a continuous {or dense diacrete) band of levels o a cunwuble
form. By this we mesn Lthat the Schrbdinger equation is put
into such a form that ons can use a numerical differential-
aguation solver on a computer to det the time evoluti
of the probability amplitudes. Our method of reduction has
two basic virtues. First, time-varying electric fields are wei-
come. Second, continuous bands of levels may be present.
For various reasons, some of which are discussed in Section
2, the roplacement of richly structured bands by phe-
nomenoclogical damping may tol be entirely satisfactory.

- Therefore we not only take into sccount the exact band shape
but alse actually allow ench level not in the band to perceive
the band as having a different shape. {By the shape of the
band we mean the functional form of the dipole opetstor
matrix. Thus we do not force the dipole matrix into a specific
form.}

Yeh et al.® have considered another method for taking the
band shape into account in their interrupted conrse-graining
theory of (1, band) systems. They sasily derive qualitative
information about the evolittion of the system, given that the

lectric field n ined to be slowly varying. Om the other

a mnthamsticnl
o

can be converied inta ladder systema with ressonable sase.
We have shown* that the {1, band} system can be converted
into a Indder system even il the band is continuous and the
electric field varies and that this can be done with & similarity
transformation independent of time. Thus there is a certain
de:m of unity in the two modela.

, these two models do not by themselves cover
{mn mnuptunlly) sl phenomens of intersst.  In particulsr,

logical damping ia often added to the models.
L febvre and Savolsinen® have developed » complicated
model combining Teatures of both (1, N} systams and ladder
sysiems, with many adjustable parameters. Witriol® has also
developed such models. Galbraith et of.7 genoralized the
trestment of (I, V) systems in another way by coupling two

hand, our approach Lo the solution of (N, band) systems has
no such constraint snd wan designed Lo produce highly aecu-
rate quantitative information.

We also present results of a numerical application of this
technique. This example is interesting becaune some features
of it are bath analogous to and explainable by classical wave
theory, B of this, despite our ts in the sbove
paragraph, our method can provide qualitative ingight as well
84 quantitative information regarding the Lime evolution of
the system.

All the approaches mentioned above, including our own
apptoach, deal with the time svolution of the system as dic-
uted by the Schradinger equation for state vectors. Some
such as collisional damping, simply cantot be

(1, N) dystoms [or, alternatively, by using & (1, N} aystem in
which each level is replaced by two deg lovele]; they
found that many of the results and methods previously sp-
plisd to the (1, N) case can be extandod to cover this cass s
well.

0740-3224/85/030451-07902.00

dull with in this framework, requiring density-matrix

" ol tion for ad. rank hm be pos-
u’hhbn!.dwmcﬂmdhmthnml.hlt,lfm.ﬂdo
not knaw how 1o do it at the prosent time. Therefore, al-
though we state that the slectric field may vary arbitrarily in
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time, it should be noted that the timse of variation of the field

" {an well as the time interval of interest) is shorter than the

collisional demping time.

2. THEORY

We present » method of dealing with eontinuous bands of
levels, and we constantly refer to continuous bands throughout
the paper. Actuaily, our results hold, to a large degree, for
discrete bands (such as dense quasi-continuous bands). We
speak this way, however, bacsuse the concepts that we use are
more familiar in the continuous case and because we want to
distinguish the band that we are simplifying from other
(prasumsbly discreis) lovels in the uywtem. Morsover, we
speak of & classical slectric field even though our resulta are
good for a quantum fald. With this in mind, conaider a wys-
tem conaisting of N discrets levels and a continuous band of
levels.  We allow dipole trarsitions among the discrete levels
or betwesn the discrete levels and the band: however, no dipole
transitions are allowed within the band itsell (see Fig. 1).
Schematically, the Hamiltonian of a quantum system inter-

scting iclassically with an slectric field can be written
-

H(t) = 8 + E(t)u.
Our notation that the ing-wave ti

h-boennndc.nllhoughthh-hynnmmu!mllnmu
approach. The operator 3 s diagonal in the matrix repre-
sstitation that we us snd containe the detutings of the levels;
the form of the dipole matrix & reflects the selection rules
mentioned above. The slectric-fiekd sevelops E(t) ia allowsd
to vary in time.

How should the bund be trested computationally if we are
1o solve the Schrddinger squation numerically? The con-
tinuous band is often taken to act qualitatively as & reservoir,
abeorbing population until none remaine in the discrets states.
It is not uncommon 10 sliminate the bend by introducing
phenomenological damping in the form of complex detunings
of the disctets sates® This s unsatisfactory in
aome ways, although the introduction of complex detunings
s mathematically correct if the band hus o Lorentzian shape ¢
Although Lorentrian bande do sometimen ariee, the Lorent-
mmmﬂmhmmhwa-twnul
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Fig. L. A typical rystam in which a continuous band is encited
through multipls channels. In general, the systsm may naks any
iraneition except those between two levels of the band.

the vector corresponding to discrets lovels, and the Leat sle-
ment combines ull the elements corresponding to levels in the
band in the compact form of & function of A.

‘There is no reason to suppose that u, (A), which repressnts
the shape of the band as seen by the-kth discrets level, should
be simply related to p;{A) unless j = k. We will supposs,
however, that thers is & certain underlying shape u(A) of
which all the i, (A) are modifications. In perticular, we as-
sume thet there are polynomisls pe(A) so that

ua{B) = u(A)pald). n

By assumption, a{A) = 0 for & < O 0 for & > Agey; thua
Pu(A) nwed be accurate only in the interval Ay S A S Ay,
An an approximution, Eq. (1) can be myde quite sccurats,
since by the Stone-Weierstrass theorem of tesl snalysis
theory.® a continuous function ean be spproximated by
polynomisls on & closed finite interval to any desirsd degres
of sccurscy. Furthermore, the actust choice of u(d) i

hat arbitrary. For a given level of sccuracy in the ap-

b of the axtremely slowly decressing shoulders of the
band. Itilnotdnri“hclnﬂnﬁmbuﬂhmoximﬂon
i ressonable quantiatively unless o p J i

of the bandwidth {phenomenclogical d ,_rlh}ual—

lowed.
Consequently, we desire a more useful way of dealing with
excitation of the continourm. Not only must any
wuch mathod take the sxact shape of the band into account in
& more accurate wwy, but it also must not limit our sbility to
use a timme-varying elactric-fiald envalope E{r).

Denots the detunings of the discrets levels by A, (where
&k =1,..., N} and the detuning of a level in the band by A
(where A, 5 A X A,,). Lat sy be the dipole matrix ele-
mant contwecting the jth and kth discrete kevels, snd ot 4, (3)
be the dipols matrix elensent connecting the Ath discrete bevel
and the Ath continuous level. In this basls, vectors and ms-
tricen are naturslly partitioned into discrets and continuous
parts. We will writs our vectors, for instance, ss having N +
L elements: The first N alements are the actusl eloments of

proximation of Eq. (1), how closely x(A) approximates u,{4)
merely influences the degres of py (4) and not our ability to
make (in theory) the approximetion. That is, if u{A) is chosen
poorly, then ps (A) will be of higher degres.

It is possible to define a set of polynomials f,(A), orthogomal
with respect to the weight function u{(A)? (Refs. 10 and 11):

1. = WAV (AN, (AMA = 8. I
et

Such orthogonal polynomialas have proven quite useful in other
investigationa 341213 We uge them to define a naw basis, [
which the Hamilonian will be conveniently simplified. Let
our new hesis be denoted by

LY., YN, Ua.W,,...,

where the v, are the unmodified discrets states

.

A
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and the uy are based on the orthogonal polynomials, which
are defined above:

#lA)a(A)

lthWMtbﬁhﬁdﬂanm
the sutire state space; however, the space spanned by thess
mliudud-mrymwrﬂnlmuldbapmduuddming
-mie.:solutimouho&hrﬁdimr equation with the
population initially in the di states, so this basis is cer-
mwwhmm Clearly, this set of states
is countably infinite, whereas the conventional continuum
basis is uncountably infinite.
Nownmuihullﬂnmmomu-ixelemonttoﬂbe

Hamiltonian. Ry noling that afl polynomials
aatisfy & recurrence relation of the form!%.14
Fae1(8) = (dy + ea 8 (A) — cpfn_((A). & ]
'nl'!nd that
(wldlwa) = A8, (4a)
(u;l3lw;} = —djte;, (4b)
Cusfélupey) = Le;. {4c)

Similarly, by noting that all polynomisls can be written in
tarms of the orthogonal polynomials f (A), we have

pald) = § prfuld) ®)
m=g

for some numbers p,,,, where M = mazfdeg{psl. There.
fore

M1

J

g2 H—lhhn-wh,hmhﬁ.hﬂhhhm It
i tridingonal with & border that i not full, The tridingonel slensnts
are independent of the slectric feld.
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(v ulva) = pg, (6a)
(efulm) mpp k<M
=0 ifh>M. 6b}
Let us summarize what we have found so far, We have
found  similarity tranaf; Lion that i ind dent of time

and of the field envelope Et}in which (1) the detuning matrix
4 is tridiagonal, (2) the dipole matrix #haaonly a fow (ie, a
finite number) nonzero elements, and (3) all the matrix
o te in the tranef d system can be calcul d easily.
Put snother way, in our basia tha Hamiltonian is tridiagonal
(and infinite) with a boeder that is not full [having only a finite
ber of b ts, given by Equ. (4a) and (6); see
Fig. 2). Since the transformation is i dependent of time, the
Schridingee equation can be solved {nunserically, if desired)
in the new basis. thammmmmmniu
lhndoﬂtnhﬂutdominumumwﬁunulm.one
can spprozimate uniformly the band shape to any desired
degree of accuracy; furthermore, in the approximate aystem
there is » similarity traneformation that is independent of time
fotwhichtlnmunmhndilmurhdinh-l-dder.of
-hichmhulhihmnbudﬂuh-utlwahmmpbdw
levals not in the ladder.
'l'hilrul.lltillmnliuﬁmoﬂhltfoﬂheN-l.H-l
case presentod in Ref. 4. It is also & special case of an even
mmruluuﬂtﬂntnwﬂlminnfutmpubliu-

tion.
As an sxample, ider the cose of two-ch | sxcitation
of the Tchebychev continuum

wopal lx - (—“—)’]"’.
e o

where ¢ is the detuning of the center of the band and « is the
haif-width; ie., Auu =0 —oand A, w s + 0. Chebychev's
name is attached Lo this shape kince the orthoganal polyno-
miels formed are polysomials of the second kind.
Mﬁmﬂnhﬂﬂnt.inwiﬁwly.!hiuhpedmnuuem
utressanable, our resson for choosing it ie that the elements
oflluhidiquullhmilﬁnhnmnlrmnlyaimph." Recall
also that the choice of 4(A) is arbitrary {if we are willing to
sccept the penalty of an increase in M for & poor choice of
#{8)]. Thus, regardiess of our motives for chooaing this
overall band shape, we are entitled to do 30 whatever the ac-
tual shape of the band. In Eqe. (4b} and {4¢) we get

Ue, = af2
and
~dnfe, = 8,

Founumﬁulmmpl..nnlr-o.acn".l-A.-A,u
B =0, and pio = py = pag = 1/4/3, pa = —1/v/T (see Fig.
3). This represents two discrete levels that cannot interact
ﬂlhouhodur.mmin'ﬁ-hm-nmdiMCbehy-
elnulupehmﬂn.wnnﬁ_mdthoﬂmmlmdw
band bunching up near 4, We initially put all the popu-
lation in the ground state, The Gald s initially at zero but
mulh-rbho.meu"-u-lm:-:.nmﬁnin'enn-

Iln’mdiﬂ-nu-liquﬂuu
m-nrtinllllllddcrlihh-ilofﬁ.!. Even: here there are
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Fig. 3 A systom in which & band of overnll Chelychov shape is ¢x-
citad thwrongh chanmale. The single continuous band ls depicted
twries bn — that the two di staten voe & different band
shages.

{countably) infinitely wauy lavels. For the purpose of the
sxample, we Lruncats the system and retain only the lowest
100 lavels in the ladder. Thus, in practice, there are two ap-
prozimations made; Eq. (1) approzimdtes the band shape
{allowing introduction of a discrete besis), whereas the trun-
cation makes the number of levels Minits. The Schrodinger
squation is integrated from ¢ = 0. The results are shown in
Fig. 4, in which population is plotted against level number; the

®
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ground state is on the extreme left-hand side of the graphe,
and the topmost bevel retained in the ladder is on the exireme
ri‘ht-hnd:ido.Welﬂlﬂappllmtpuluo!pthﬁonﬂ,‘t
forma near the diecrets states snd moves at a constant velocity
up the ladder. When the pulse reaches the point at which we
have truncated the ladder, however, it reflects (with a great
des! of interference) and moves back toward the discrete
staten. Subsequent activity is shown in Fig. 5, which sxplores
what happens when our appeoximation of the truncation of
the band becomes important. When the reflected pulss
reaches the diacrete states, the fisld has been turned off, and
thers is no interection, so the pulbse is refllectad again.  Tn fact,
it continues to be reflectad for & (relatively) long time. If we
had retained, suy, only 50 levels in our lndeder, Fig. 4 would be
idential (to the eye) witk our Pig. 4 until about ¢ = 900 pesc,
at which time the pulse sould reach the top of the ladder and
begin to reflact. Basicelly, thare is so littde population in the
highest levels (unt the pulse reaches that ares) that the

her of Jevels retained in the ¢ ted systers is of no
comsequence almost until reflection begine. 1f this wavelike
behavior could be counted on {(we will shew below that it cen
be, at Jeast for the Chabychev band shape}, and if we know the
spead of the pualees (which turns out to be ), thes we could
easily determine the Dumber of levels that seust he kapt in the
ladder. If accurste probubility e desived for all
levels, then the namber of levels kapt must be larger than the
puaies spesd multiplied by the tines interesl of inderest. At the
ond of this time, bowsver, the puiss refllects, and the trunca-
tion of the ladder becomes important. 1, on the other hand,

Time = ¢ pesc Time = 1080 pesc:
Tene 270 poac Tims = 1300 peac:
Time = 540 peac Time = 1820 paac
T = 810 pae: T = 1050 peec

Fig. 4. Population versus level in the aystems of Pig. 3 in the ledder basis. ‘mnn-cl-n:udhﬂhdumuu-ﬂbm

ight-haued bevel s the
by tha bagiwing reflection of the pulis is ssen.

(] in the ladder. The wrticnl scale popy 1o pog
are trancated ) Am.-;lpm“wlhhﬂ-. In the final frame (¢ = 1800 paac), L

= IS (Any bigher papulations

ry -

Ty

g
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. Time = 1820 paec Time = 8750 pawc

above are not limited to ithe Chebychev band, as may be ex- original basis are nearly in phase, and hence the bend can
' pected from the arbitrarines of u{A). For example, in Fig. interact with the discrete states (if the field is turned on). Of
6 we see similar pulss propagation in the case of & uniform coutse, if the field is turned off the populations in the band
rectangular band with ¥ = 1, M = 1. Nonetheless, the reason m-h-y-comntinunmnwmimdmﬁnuumhnh.u-
for this wavelike behavior is certainly easier to d d in urdh-olch-nguinph-c. Tha behavior of Chelrychey-
- P the Chebychev cass than in any other. Eberly et al.'? dis- Iihnvumldhamﬂlﬂdtnhlhu’dﬁo(mm

mmmmm.mwm{.mm- in quantum systems.
with constant fiald) but concluded thet a wave anslogy was Finally, we should make & temark sbout the choice of x(A)
Time = 3510 paac Tina = BB40 paec not entirely appropriata, For the Chebycher band, however, in practice. Fim..itiuduiuhhtndmn(dlm-tnuin-
the wave analogy i instructive. imize M (thua simplifying interaction of the diacrete states
Consider an infinite Ch-byduvnndlunin-hichl.h with the band). Second, it is desirable to ch u(d) 30 e
quantities g, (n = 0, £1, 22, .. ), which can be viewed ss ta exhibit Chebychev waves (uwuinplifyiumlielﬁﬂd
probability amplitudes, obey the squation our qualitative knowledge). [n fact, thess considerations are
da,/dt = i[(#/2aa_1) + s0a + (e/2ane . not mutually exclusive. The most convenient overall band
L shape inpmﬁuhthenkhltmﬂmfotcnnbydmpdy-
Mammmmqmrumm nomials of the first kind. For thie shape, only the firet re-

in the Chabychev ladder that are not directly coupled to any cursion coefficisnts (n = 0) in Eq. (3) differ from those die-
discrete states. As a trial solution, use m-_odnhu.n(}hohychnmmhj\mubdm.

Time = 5130 pesc Thma = G900 posc a.{t) = explifwt — kn}l, Onu_no.umhmd.itilnllkm&ntinumhunf
) . function murmnofpolymhh.dehbydmmno-
which gives us the dispersion relation iaha of the first kind generally produces the fastest conve-
w=s+aoohk n gence, Th-tin.inpm.l.ﬂ:hdwiudu(ﬂ)nhinh-
’ M.

frors which follows an expression for the group velocity of

:

15,14
e wave packeta®™ \ 3. SUMMARY
Fia. 5. Continuation of Pig. & for long tises In which the trancation of the ledder males ol the band {lsdder) populstions insccurats. The vy = dw/dh = g sin k. mcussed multichannel excitati )
prabability pulse mumr:um::mnd in the ladder, with one reflsct ing b e . Glorey spreading wave packeta will of ourse, have the mex- We have discuse ":':'ih. ';";bh_"'m'_‘ :m
5 194 irum or minimum velues, namely, vy = £¢. Except for un- excitation of & discretized form of & continvur.  The system
i inpomntph-nhctmlwhid:mbonwodbylnlp- that we bave idered haa 1 discrats lovels that may
0. Do pmpr'ulemmfnmtimda.(n].ﬂq.ﬂ)hﬂudhpauion m-id:mummid—'ﬂlybywd-db*
lation of a classical by vibeating, leas string intersction or with a separat - band of levels. - Wa
oo mounted with massive beads. Anothee squivalent classical " say that this s 2 disguise of the problem b most of the
problem is that of longi di l]yvibnl.ium-umnm!d mlllhlhltwehueohhinedholdlqnnll,wiﬂlﬂhnbuﬂh
.07 by springs. Thua it is no surpries that wave packets appar- discrete. T i of similar problems sometimes insist
. . ently roove up and down the ladder at constant velocity. that the electric-field mwlopehmuuth-lchnp
o.0a] There is one difference from the two classical casen just slowly, but we have allowed the liald to vary without restric-
. mentioned in that the Schrédinger squation is a first-order Lions on the rate of change ot on the size of the field. Fur-
L @03 dilferential equation, whereas wavs equations are of necond thermore, we have taken into scoount the exact shape of the
- order. This means that, for a given &, thers is nosign ambi- band and have even allowed the various discrete levels to
1 0.04] guity in the group velocity. This is of little consequence un- perceive the band as being of different shapes.
. Jese the ladder systam is truncated (the enda of the Cheby- Our geners result is that there is a similarity transformation
0. 03] chev medium ass tied down), causing eventual ref) ti independent of the electri field (i.e., of time) that simplifies
However, it can be shown that the reflacted wave is conju- the Hamiltonian (and hence numericsl solution of the
0. 027 : gated, thus reversing & and the group velocity. Infact, it can Schrodinger equation) drastically. Tn this basie, the Hamil-
: be shown that the wave pdnumwmtby reflection wnian s mostly tridiagonal, except for & finite number of
o017 AN but only by spreading. Thus, even if the slectric field E(t) matrix elementa proportional to the electric fiekd. Thus the
is turned off, Chabychey wave packets con inue b ing inuoys band Lutns into an (infinite) dincrets Indder with
.00 T v i 1 1 v T v v T bach and forth for & long time. Pulss spreading is axhibited only a few of the lowest-lying Jevels coupled to the original
o s 10 13 w 23 ) E an as 0 in Fig. 5. The appatent cumulative degradation of the pulse discrete levets by means of a dipole transition. Transitions
LevEL s not dus 1o the reflection of the pulse; rather, it in dua to in- within the laddet, however, are independent of the fleld.
Fie.6. Popelation versus level in a ladder besia, N = 1, M = L oniform roclangular bend systam. Time, 510 peec. The wave pckat ls moving creasing interference with portions of the pulss that have We find that pulsss of probability are injected into th
1o the right and hes 5ot yet roflected for the firet time. HWHM of the band in the cmventional continuum basie is 0.3 cm~'; the band center spread bul have not yet reflected. ‘The motion need not tadder from the original discrete states, Thees puless move
is at resonance; uE (1 )/2A remps linourly Irors peto 0 0.06 cm™ at £ = 1/30 naec, remaining constant Lhereafler. represent any sctual displ t of populstion in the band up the Iadder forever in tse case of & real continuum, but if
umintheennwmhlulmminuu-b-h rathet it repre- only & finite number of levels wre rotained (because of the
we are int d in maintaining only the y of the levals must be less than the pulse speed multiplied by the senta an oecillation in the relative dephasing of the probubility ity of parformi puter celculstions), the pulses
amplitudes of the discrete states (of of the complex polar- length of time that the fiakd remairs on. . amplitudas in that basis. When the Chebychev pulse in near eventually reflect std move down the ladder agein. This
ization, 1 which ia almast the same thing), the requirements AIthmhﬂwChnbychwh.nd.h.peucmn{uuw : uuwduuchwud-.mmummmd-- reflexction could be viewsd as the ocigin of both srror in
are lesantringent. In this case, twice the ber of retaited implicity of its tridiagonal detuning matriz, the effscts seen i ph-l.nndhuumpw-mmmp\hﬁmﬁmth discretization of continua and of rec in quant

M;Mntthﬁlldilnnalthilpdnlhimlﬂlnt On systems. In the case of an overall Chebychev band shape,
hmw,mwwhhmmmmdmw— npmadﬂuldnnwbudpqnﬁthlmnlwmddwl
der, the probability amplitudes of the band states in the mm:-ummdﬁumdmm
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of spreading but not b of reflections. The medium (ie.,

the ladder) through which the wave packets move has the

same dispersion relation as the classical, vibrating massliess

string on which are d ive beads. H , choice

of the overall band shape is, to a Inrge degree, arbitrary, so thiy

Ie:ect is present in all systems with finite-width continuous
nds.

ACKNOWLEDGMENT

This research is supported by Robert A. Welch Foundation
under grant AT-873.

REFERENCES
1. B.W. Shore, “Coly in the quasi-contimuum model,” Cher.
Phys. Lett. 99, 240-243 (1963).

2. M. Goppert-Mayes, Ann. Phys. 9, 273 (1931).

3. R Haydoch, "I recursive solution of the Sclvidinger aque-
tion,” in Solid State Physics, E. Ehrenrwich, F. Seits, and D.
Tumbull, eds. {Academic, New York, 1980), Vol. 35, p. 115.

1. R. 5. Burkey and C. D. Cantref], “Discretization in the quasi-
continuum,” J. Opt. Soc. Am. B 1, 189- 175 (§9684).

5. R. Lefebvre and J. Savolsi “ Tunctions and recur-
rances in intramolecular procesess,” J. Chem. Phyy. $8, 2508-2065
{1974},

& For example. N. M. Witriol, A. J. Galli, W. H. Brumege, und C.
M. Bowden, “Criteria for the raduction of the sffective manifold

Vol. 2, No. ¥/ March 1385/). Opt. Sec. Am. B 67

of states in models of laser-induced dismaciation and ch ry,"
Opt. Lett. £, 24-26 (1980); N. M. Witriol, “ Including the conLin-
wam in the N-level molecule model,” Chemn. Phys. Leit. 98, 77-80
{1963).

T. H. W. Galbraith, J. R. Ackerhalt, and P. W. Milonni, “Coberent
puthping in s weakly evupled quasi-continuum madel,” J. Chesn.
Phya. 78, 790794 11983).

8. J.J. Yeh, C. M. Bowden, and J. H. Fherly, “Inierrupied coarse-
grained theory of unimoleculsr relaxation and stimutaied ve-
currences in photo-excilation of a quasi-comtinuum,” J. Chem.
Phys. 78, 50365046 {1982).

9. W. Rudin, Principles of Mathematico! Analysis iMcGraw-Hill,
New York, 1964), Chap. 7.

10. D. Juckeon, Fourier Series and Orthoganal Polynomials (Colle.
giale, Menashy, Wine., 1941), Chep. 7.

1i. R. Hamming, Numerical Methods for Scientiats and Engineers
(McGraw-Hill, New Yoek, 1962), Chape. 17-19.

12. J. H. Eberly, B. W. Shute, 7. Hialynicka-Birula, and |. Bialyn-
icki-Birula, “Coherent dynamics of ¥-level aloms and molacubes.
I. Numerical experiments,” 'iys. Rev. A 18, 2038-2047. Also,
Z. Biatynicka-Birule, |. Bislynicki-Birula, J. H. Eberly, and B.
W.Shore, "Coberent dynamics of N-level stoms and molecules.
JI Analytic solutions,” Phys. Rev, A 16, 20482054

13. C. D. Cantrell, V. S. Letokhov, and A. A. Makarow, in Coherent
Nonlinear Optics: Recent Advances, M. 8. Feld and V. S. Leto-
khov, ade. (Springer Verlan, Berlin, 1980), Chap. 5.

14. U. Hoch in Handbook of Math. ical Functi M.

Abrumowitz and 1. A. Stegun, oda. (U.S. Government Printing
Office, Washington, D.C., 1964), Chap, 22.

15. A. P. French, Vibrations and Waves (MIT Press, Cambridge,
Man, 1971), Chep. 7.

18. W. Pauli, Pouli Lectures on Physics (MIT Press, Cambridge,
Masa, 1973}, Vol. 2, Chap. 2

s

L

-



