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3
Pumping Processes

3.1 INTRODUCTION

We have seen in Chapter 1 that the process by which atoms are raised
from level 1 to level 3 (for a three-level laser, Fig. 1.4a) or from level 0 to
level 3 (for a four-level laser, Fig. 1.4b) is called the pumping process.
Usually it is performed in one of the following two ways: optically or
electrically. In optical pumping the light from a powerful source is absorbed
by the active material and the atoms are thereby pumped into the upper
pump level. This method is particularly suited to solid state (e.g., ruby or
neodymium) and liquid (e.g., dye) lasers. The line broadening mechanisms
in solids and liquids produce a very comsiderable broadening, so that
usually one is dealing with pump bands rather than levels. These bands
can, therefore, absorb a sizable fraction of the (usually broad-band) light
emitted by the pumping lamp. Electrical pumping is accomplished by means
of a sufficiently intense electrical discharge and is particularly suited to gas
and semiconductor lasers. Gas lasers, in particular, do not usually lend
themselves so readily to optical pumping because of the small widths of
their absorption lines. On the other hand, semiconductor lasers can be
optically pumped quite effectively, although electrical pumping is much
more convenient. The two pumping processes mentioned above are not the
only cnes available for pumping lasers: For instance, pumping can also be
achieved by a suitable chemical reaction (chemical pumping) or by a means
of a supersonic gas expansion (gas-dynamic pumping). It should also be
noted that, increasingly, lasers are being used for optical pumping of other
lasers (solid-state, dye, and gas lasers). These latter pumping processes will
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82 Chap. 3 - Pumping Processes

not be treated any further here and we refer the reader to Chapter 6 for
further details.

If the pump level (or bands) are empty, the rate at which the upper
state becomes populated by the pumping, (dN,/dr),, is given by (1.10),
where W, is the pump rate. The purpose of this chapter is to give specific
expressions for W, for both optical and electrical pumping.

3.2 OPTICAL PUMPING

Figure 3.1 is a schematic illustration of a quite general optical pumping
system. The light from a powerful incoherent lamp is conveyed, by a
suitable optical system, to the active material. The following two cases will
be considered: (i) Pulsed lasers. In this case medium to high pressure
(4501500 Torr) Xe or Kr flashlamps are used. (ii) Continuous wave (cw)
lasers. In this case high pressure (4000-8000 Torr) Kr or tungsten-iodine
lamps are most often used. In case (i), the electrical energy stored in a
capacitor bank is discharged into the flashlamp. The discharge is usualty
initiated by a high-voltage trigger pulse to an auxiliary electrode, and this
pulse pre-ionizes the gas. The lamp then produces an intense flash of light
whose duration (given by the product of storage capacitance and the lamp
resistance) ranges from a few microseconds up to a few hundred microsec-
onds. In both cases (i) and (ii), the active material is usually in the form of
a cylindrical rod with a diameter ranging from a few millimeters up to a
few centimeters and a length ranging from a few centimeters up to a few
tens of centimeters.

Figure 3.2 shows three configurations which are particularly important
examples of the general system sketched in Fig. 3.1."? In Figure 3.2a the
lamp (usually a flashlamp) has a helical form, and the light reaches the
active material either directly or after reflection at the specular cylindrical
surface 1. This system was used for the first ruby laser, and it is still widely
used for pulsed lasers. In Fig. 3.2b the lamp is in the form of a cylinder
(linear lamp) of radius and length equal to those of the active rod. The
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FIG. 3.1. General scheme of an optical pumping system.
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FIG. 3.2. Most commonly used optical pumping systems.

lamp is placed along one of the two focal axes, Fy, of a specularly reflecting
elliptica! cylinder (labeled 1 in the figure).(¥ The laser rod is placed along
the second focal axis F,. A well-known property of an ellipse is that a ray
F,P leaving the first focus F, passes, after reflection by the elliptical
surface, through the second focus F, (ray PF,). This means that a large
fraction of the light emitted by the lamp is conveyed, by reflection from the
elliptical cylinder, to the active rod. Figure 3.2c shows what is called the
close-coupling configuration. The rod and the linear lamp are placed as
close as possible and are surrounded by a close-coupled cylindrical reflec-
tor (labeled 1 in the figure). The efficiency of the close-coupling configura-
tion is usually not much lower than that of an eliiptical cylinder. Note that
cylinders made of diffusely reflecting material (such as compressed MgO or
BaSO, powders or white ceramic) are sometimes used instead of the
specular reflectors shown in Fig. 3.2. Although diffusive surfaces somewhat
reduce the pump transfer efficiency, they have the advantage of providing a
more uniform pumping of the active material. Multiple configurations
using more than one elliptical cylinder or several lamps in close-coupling
configurations have also been used. Figure 3.3 gives just two possible

Rod
Lamps

FIG. 33. Pump configurations using two
lamps: (a) double-ellipse; (b) close-coupling. {a)
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examples. The efficiency of these multiple configurations is lower than for
the corresponding single configurations of Fig. 3.2b and c. Nevertheless,
they are often used in high-power (or high-energy) systems.

3.2.1. Pumping Efficiency 5

The overall pumping efficiency can be split up into thff.e_f&"i of
efficiency:

() Transfer Efficiency n,, which is defined as the ratio of the pump
power (or energy) actuaily entering the rod to the power (or energy) emitted
by the lamp.

(ii) Lamp Radiative Efficiency 4,, which gives the efficiency of conver-
sion of electrical input to light output in the wavelength range Ajto A, in
which the effective pump bands of the laser medium lie (e.g., 0.3 to 0.9 Jm
for Nd**:YAG). The lamp radiative efficiency is therefore given by

(2=RI)[\:1, dA
nr = P (3' l)

where R is the radius and / the length of the lamp, 7, is its spectral
intensity, and P is the electrical power delivered to the lamp. Notice that,
according to (3.1), I, can be written as

P
h= 3.7 "& (32)

Wwhere g, is a normalized spectral intensity distribution (i, [NigydA=1).
Equation (3.2) allows one to calibrate 1, once the uncalibrated spectrum of
the emitted light and the lamp radiative efficiency v, are known.

(iii) Pump Quantum Efficiency 7> Which accounts for the fact that not
all of the atoms raised to the pump bands subsequently decay to the upper
laser level. Some of these atoms can in fact decay from the pump bands
straight back to the ground state or perhaps to other levels which are not
useful. We will define the pump quantum efficiency 7,(A) as the ratio of the
number of atoms which decay to the upper laser level to the number of
atoms which are raised to the pump band by a monochromatic pump at
wavelength A,

The problem of improving the radiative efficiency is a challenging
technical one for a lamp manufacturer. What are needed are lamps whose
emission spectrum is a good match to the absorption spectrum of the pump
bands. The quantum efficiency, on the other hand, is a quantity over which
one can have little control since it depends on the properties of the given
material. The transfer efficiency, however, depends a great deal on the
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optical system chosen to convey the pump light to the laser rod. Iis
calculation is, therefore, important if one is to provide the optimum transfer
conditions. The remainder of this section is devoted to this topic,

Before dealing with the calculation of the transfer efficiency, let us
begin by finding a unified approach for analyzing the two pump configura-
tions of Fig. 3.2a and b. Thus we shall assume that the pitch of the helix of
Fig. 3.2a is very small. The presence of the reflecting cylindrical surface 1

-allows us to represent the helical pumping system as shown schematically in

Fig. 3.4a, where the shaded rod (lateral surface labeled §,) is the laser rod
and where the lamp is represented by the cylindrical surface §, having the
same radius R, as the lamp radius (see Fig. 3.2a). In the case of Fig. 3.2b,
all the rays emitted by the lamp tangentially to its surface S, will be
transformed, upon reflection at the surface of the elliptical cylinder, to a
bundle of rays around the second focal line F,. The envelope of these rays
is a surface S, this being the lamp image as formed by the elliptical
cylinder. In Fig. 3.4b the particular rays which bound the S, surface both
horizontally and vertically have been indicated. It is apparent that the
image S| is elongated in the direction of the minor axis of the elliptical
mirror. It can be shown that this image is itself an ellipse. The major and
minor axes of this eilipse, R), and R,, respectively, can then be obtained
from Fig. 3.4b by simple geometrical considerations. If we assume that the
radius R, of the lamp is much smaller than the minor axis of the elliptical
mirror, we get

R, = R,_( } + :) (3:2a)
1- 2
R, = RL( - ) (3.2b)

(b)

FIG. 3.4. Reduction of the two systems of Fig. 3.2a and bto a single system.
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where e is the eccentricity of the elliptical mirror. Now, if this eccentricity is
very small, the image S, is again a circle of the same radius as that of the
lamp. In this case the system of Fig. 3.4b reduces to that of Fig. 3.4a and
the surface §, of Fig. 3.4a is the surface §| of Fig. 3.4b.

Now that the two systems of Fig. 3.2a and b have been reduced to the
single system shown in Fig. 3.4a, we can proceed to calculate the fraction of
the power emitted by the surface §, of Fig. 3.4a which actually enters the
surface S, of the active rod. To do this we will assume that S, can be
considered as a blackbody surface at temperature 7. According to the
Stefan-Boltzmann law, the total power emitted by the lamp is given by

P| = USBT4S| (3.3)

where agg is the Stefan—Boltzmann constant. The calculation of the power
entering the rod then follows from a simple thermodynamic argument.'®
Let us suppose the laser rod is replaced by a blackbody cylinder having the
same dimensions as the rod. Obviously, the power P,; entering the surface
S, will remain the same. Now, if the blackbody cylinder is kept at the same
temperature T as the lamp, then, according to the second law of thermody-
namics, there will be no net exchange of power between the two blackbody
surfaces (lamp and rod). This means that the incident power P,, must equal
the power P,, emitted by the rod. Since P,, is given by P,, = 05, TS,, we
get

Py=P = °snT4sz (3‘4)

Then we readily find from equations (3.3) and (3.4) that the value of the
transfer efficiency #, is given by

Py & R,

"SR TS TR

1 1 1

where rod and lamp have been assumed to have the same length. The
above expression holds provided R, < R,. If R, > R, (a situation that
obviously can only be achieved with the system of Fig. 3.2b), the transfer
- efficiency is expected to be always equal to 1. This is, however, rigorously
true only when the elliptical pump cavity has zero eccentricity. For finite
values of eccentricity, there are calculations available giving the transfer
efficiency as a function of the ratio between the lamp and rod diameters.('”
One? should also take account of the fact that the reflectivity of the pump
cavity is never 100%. In practice, the transfer efficiency of an optimized
elliptical cylinder can be as high as 80%. Since the radius R, of a helical
lamp is usually at least twice the rod radius R,, the efficiency of a helical
lamp is appreciably smaller than that of a linear lamp in an elliptical

(3.5)
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reflector. On the other hand, helical lamps provide a more unifqm pump-
ing of the laser rod (see the next section) and are often used in high-energy
systems when laser beam uniformity is more important than laser effi-

ciency.

3.2.2 Pump Light Distribution

In the previous section we have calculated the fraction of pump light
reaching the rod. In this section we want to calculate, for a few. representa-
tive cases, the distribution of this light within the active rod.

As a first example, we consider the case of a helical flashlamp or,
equivalently, that of a very low eccentricity elliptical reflector with lamp
diameter larger than the rod diameter. In both of these cases the configura-
tion of Fig. 3.4a applies. We further assume that the lateral surface of the
rod is polished. Then, since the refractive index of the rod is usually larger
than that of the surrounding medium, the pump light tends to be concen-
trated toward the rod axis. This can be understood with the help of Fig. 3.5,
which shows a rod of radius R and refractive index n surrounded by a
medium of unit refractive index. The lamp is not shown. We recall,
however, that its radius has been assumed to be equal to (or larger than) R.
In this case, the rays falling on point P of the rod surface can arrive from
any direction within the angle # shown in Fig. 3.5. The two extreme rays 2
and 3 are indicated in the figure. Upon entering the rod, these rays are
refracted and become the rays 2 and 3, where the angle & is the critical

FIG. 3.5. Concentration of rays in a cen-
tral core of a cylindrical rod, due to re-

fraction.
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angle (sin® = 1/n). Therefore, all rays arriving from the lamp will be
refracted within the angle 26 between the rays 2’ and 3. Applying the same
argument to all points P of surface §, we arrive at the conclusion that the
ceatral core (radius R/n) of the rod is more heavily pumped than the outer
part of the rod. The calculation of pump energy density p in the rod
becomes particularly simple if we make the following assumptions: (i) We
only consider light entering the rod in a plane orthogonal to the rod axis
and (ii) we neglect the attenuation of this light as it propagates into the rod,
In this case the energy density p, at a point within the rod at a distance r
from the axis is¥

0, = n’p (0<r<R/nm (3.6a)
p,,=27"2psin-'(;l’ir) (R/n<r<R) (3.6b)

where p is the value that the energy density would have at that same point
of the rod if its refractive index were unity. This density is related to the
mtensity of the light emitted by the lamp by equation (2.194). If the
simplifying assumptions (i) and (i} are not made, the expression for p, is
much more complicated.”®? In Fig, 3.6, computed plots of the dimensionless
quantity

f(aR,r/R)y=p,/n’0 (3.7

are shown for several values of aR, where a is the absorption coefficient at
the pump wavelength (the pump light is assumed to be monochromatic).
The same figure also shows the predictions of equation (3.6), indicated by a
dashed line. Note the difference between the dashed curve and the solid
curve corresponding to aR = 0. While both curves refer to the case where
there is no absorption in the fod, the solid curve, unlike the dashed one,
takes account of the fact that light can enter the rod from any direction.
Note also that, when aR #0, the attenuation of the pump light as it
propagates inward from the rod surface tends to smooth out the distribu-
tion p,. From the data of Fig. 3.6 it is seen that, at the center of the rod
(r = 0), the quantity f(aR,0) can be closely approximated by the expression
f=exp(—1.1aR).

The fact that, for very small values of aR, the energy density in the
central region of the rod is n’p deserves some further consideration. Let us
assume that the lamp has the same radius as the rod and is placed along the
focal axis F, of Fig. 3.2b. Since the rays 2 and 3 of Fig. 3.5 are tangent to
S, they must have come from two rays which are tangent to the lamp
surface. After refraction, rays 2 and 3 become rays 2 and 3’ which are
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f'[pn /“ZP] .

FIG. 3.6. Radial variation of the pump energy density p, for several values of the pump
absorption coefficient @ (monochromatic pump). The data have been taken from Reference 5.

tangent to a circle of radius R/n. We can, therefore, say that the rod acts
like a cylindrical lens in producing an image of the lamp at its center which
is n times smaller than the lamp itself. Since the volume of this image is n°
times smaller than that of the lamp, we can now understand why the
corresponding energy density p, is increased by n?,

We have seen that, for very small values of aR, the pump energy
density is uniform only for r < R/n, while it is nonuniform outside this
central core. A nonuniform energy density is certainly not desirable for an
active material. This inconvenience can be overcome!® by surrounding the
active rod by a cylindrical cladding of transparent material with the same
refractive index as the rod (Fig. 3.7). In this case, if the radii of both the
cladding and the lamp are made equal to #R, we can repeat the argument
of Fig. 3.5, starting from a point P of the cladding. The refracted rays 2’
and 3’ will, in this case, be tangent to the surface of the active material, and
all the incoming light will be concentrated into the active material. In the
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FIG. 3.7. Transparent cylindrical cladding of
radius nR to provide a uniform pump density
in the active rod (shaded area).

case of aR =0 and for light entering only in the plane of Fig. 3.7, the
energy density will now be uniform in the active material and be given by
equation (3.6a). Another way to provide a more uniform pumping is by
grinding the lateral surface of the rod. In this case the pump light, upon
entering the rod, will be diffused, and the light concentration shown in Fig.
3.5 will not occur. In Fig. 3.8 computed plots of the dimensionless quantity

faR,r/R)=p,/np (38)

for several values of aR are shown for this case.!"” Here again a is the
absorption coefficient at the pump wavelength (for monochromatic pump
light). Note that for aR = 0 we have p, = np. The factor » arises in this case
simply from the fact that the light velocity in the rod is # times smaller than
its vacuum value. For a given lamp emission the energy density p, is thus
expected to be n times larger than the value p which a rod of unit refractive
index would produce. From the data of Fig. 3.8 it is seen that, at the center
of the rod, fi(aR,0) can be closely approximated by the expression fi
=<exp(— 1.27aR). A comparison of (3.8) with (3.7), at r = 0, then shows
that, apart from the relatively small difference between f and f,, the pump
energy density at the center of the rod is actually reduced by an amount
as a result of roughening the lateral surface. However, the whole cross
section of the rod, rather than just the central core of radius R/n, is now
more or less uniformly illuminated. In fact it can be shown frou. Figs. 3.6
and 3.8 that the integrated pump energy density over the rod cross section
is approximately the same in the two cases.

We now consider the case where the lamp radius R, is smaller than the
rod radius Rz. We assume the pumping geometry 1o be that of Fig. 3.2b. If
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FIG. 3.8 Rod with rough-ground lateral surface. Radial variation of the normalized pump
energy demsity (g,/np) versus normalized radius (r/R) for several values of the pump
absorption coefficient o (after Reference 1).

the rod lateral surface is polished, an elliptical image of the lamp will be
formed in the rod (see Fig. 3.4b). Due to refraction at the rod surface, the
major and minor axes of this image are both reduced by a factor n from the
values given in expressions (3.2q) and (3.2b). To avoid this nonuniform
pump distribution, the rod fateral surface can again be rough ground.

So far, the discussion applies to monochromatic pump radiation. For
polychromatic radiation, the same relations as in (3.6) to (3.8) apply and so
also do the curves of Figs. 3.6 and 3.8 provided, however, that p, and p are

replaced by the spectral quantities p,, and p,.

3.2.3 Pumping Rate'®

Let us first consider a monochromatic pump of frequency w. The
pump power absorbed per unit volume of the rod, dP/dV, is then given by

ar _ 39
v WNghw | (3.9)
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where W is the absorption rate and the upper pump level has been assumed
empty. With the help of (2.53¢) and (2.61), equation (3.9) can be written as
4P _ o,y 3.10
dav " n s (.10)
where p, is the pump energy density at the point in question. For polychro-
matic pump radiation, (3.10) can be written in terms of the corresponding
spectrally dependent variables, viz.,

dP,

‘27'\ - %GNSP,.A
where P, is such that (dP,/dV)dA is the power absorbed per unit volume
from pump radiation with wavelength lying between A and A + 4A.

As a particularly relevant example, we now consider the case in which
the lateral surface of the rod is rough ground. With the help of (3.8) and
(2.19¢), equation (3.10a) can be written as

St

(3.10a)

e i 40N f,1 7

av = }1,/ ,f; A ‘ (3.1])
where v, is the transfer efficiency of the given pump configuration. The rate
at which the upper state becomes populated by the pumping process is then

dN, f | P,
= d\

") ke av

7,0
- 4_,,,st ;J' I dA (3.12)

where 7, = N,(A) is the pump quantum efficiency. A comparison of (3.12)
with (1.10) then gives

.9/,
W, = 4y, f ;w 5 dA (3.13)
With the help of (3.2), we can re-express Eq. (3.13) more conveniently as
e —au- P o
W, =dyn, 55 f — = £rdA (3.14)

Note that, according to (3.7), the right-hand side of (3.13) and (3.14) should

be multiplied by #, and Jy replaced by f, in the case of a rod with a polished
surface,

Equations (3.13) and (3.14) are the desired expressions for the pump
rate. They depend on the properties of the active material [quantum
efficiency n,(A) and absorption cross section a(A) of the pump bands) and
on the spectral emission of the lamp (1, or g,). Since f, = f,(aR, r/R), it
follows that W, will also depend on the concentration of active ions, on the
rod radius R, and on the normalized radial coordinate »/R. A calculation
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TABLE 3.1. Efficiency Terms for Optical Pumping (%)

Case n L8 T Ting T
1 30-40 25 30-60 50 1.1-3
2 80 50 16 40 26

of W, therefore requires knowledge of all these quantities. To simplify
matters, an overall pumping efficiency %, is sometimes introduced. This is
defined as the ratio of the minimum possible power required to produce a
given pumping in the rod (i.e., (W, )N, Vhugy, where (W, is the average
value of W, over the rod volume V, and w, is the frequency of laser
transition) to the actual electrical power input, P, to the lamp required to
produce this pumping. Therefore we can write

-t
K = TR g

(3.15)
The pump efficiency 7, can be split up into the product of four terms'” : (i)
the transfer efficiency n,; (i) the lamp radiative efficiency #,; (iii) the
absorption efficiency 5, which gives the fraction of the useful radiation
which is actually absorbed by the rod; (iv) the power quantum efficiency
T,g» Which is that fraction of the absorbed power which ieads to population
of the laser level. Notice that this last quantity is similar to the pump
quantum efficiency », defined previously. Estimates for these efficiency
factors defined above are available in the literature.(” Table 3.1 gives these
values for a 6.3-mm-diameter ruby rod pumped by a xenon helical flash-
tube (Case 1) and for a 6.3-mm-diameter Nd**:YAG rod pumped by a Kr
lamp (Case 2). It must be stressed, however, that the values given in the
table are only rough estimates, and an accurate calculation of W, at each
point of the rod can only be obtained through Eq. (3.14).

3.3 ELECTRICAL PUMPING®»

This type of pumping is used for gas and semiconductor lasers. We will
limit ourselves here to a discussion of the electrical pumping of gas lasers.
In this case pumping is achieved by allowing a current of suitable value to
pass through the gas. Ions and free electrons are produced, and since they
are accelerated by the electric field, they acquire additional kinetic enecrgy
and are able to excite a neutral atom by collision. For this impact
excitation, the movement of the ions is usually less important than that of -
the electrons. For a low-pressure gas, in fact, the average electron energy is
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FIG. 3.9. Near-resonant energy transfer between two atoms (or molecules) A and B.

much greater than the corresponding ion energy. After a short time, an
equilibrium condition is established among the electrons, and this can be
described by an effective electron temperature T,.

Electrical pumping of a gas usually occurs via one of the following two
processes: (i) For a gas consisting of only one species, the excitation can
only be produced by electron impact, i.e., according to the process

e+ X=>2X*+e (3.16)

where X and X* represent the atom in the ground and excited states,
respectively. Such a process is called a collision of the firsr kind. (ii) For a
gas consisting of two species (say A and B), excitation can also occur as a
result of collisions between atoms of different species through a process
known as resonant energy transfer. With reference to Fig. 3.9, let us assume
that species A4 is in the excited state and species B in the ground state. We
will also assume that the energy difference AE between the two transitions
is less than kT. In this case, there is an appreciable probability that, after
the collision, species A will be found in its ground state and species B in its
excited state. The process can be denoted by

A*+ B> A+ B* + AE (3.17)

where the energy difference AE will be added to or subtracted from the
translational energy, depending on its sign. This process provides a particu-
larly attractive way of pumping species B, if the upper state of A4 is
metastable (forbidden transition). In this case, once A4 is excited to its upper
level by clectron impact, it will remain there for a long time, thus constitu-
ling an energy reservoir for excitation of the B species, A process of the
type indicated in (3.17) is called a collision of the second kind.!

*Oollisitlms of the first kind involve conversion of the kinetic energy of one species into
potential energy of another species. In collisions of the second kind, potential energy is
converted into some other form of energy (other than radiation) such as kinetic energy, or is
transferre-d as potential energy (in the form of electronic, vibrational, or rotational energy) to
another like or unlike species. Collisions of the second kind therefore include not only the
reverse of collisions of the first kind (e.g, e+ X* > e+ X ) but aiso, for instance, the
conversion of excitation energy into chemical energy. ’

—_
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3.3.1 Electron Impact Excitation'®

Electron impacts can involve both elastic and inelastic collisions. In an
inelastic collision, the atom may either be excited to a higher state or be
ionized. All three of these phenomena take place in an electrical discharge
and influence its behavior in a complicated way.

For the sake of simplicity, let us first consider the case of impact
excitation by a beam of collimated monoenergetic electrons. If F, is the
electron flux (electrons/cmsec), a total collision cross section o, can be
defined in a similar way to the case of a photon flux [see equation (2.62)},
namely,

dF, = —o,N,F,dz (3.18)

Here dF, is the change of flux which takes place when the beam propagates
a distance 4z in the material. Collisions which produce electronic excitation
will only account for some fraction of this total cross section. If we let o,
be the cross section for electronic excitation from the ground level to the
upper laser level, then, according to (3.18), the rate of population of the
upper state due to the pumping process is

(dN,/dt),= 0,N,F, = N,N,vo,, (3.19)

where v is the electron velocity and N, is the electron density. A calculation
of the pump rate requires a knowledge of the o,, value in addition to
information about the e-beam parameters. This quantity o,, is in turn a
function of the e-beam energy E (i.e., of v), and its qualitative behavior is
sketched in Fig. 3.10. Note that there is a threshhold E, for the process to
occur and that this threshhold is approximately equal to the energy which is
required for the 0> 2 atomic transition. The cross section o then reaches a
maximum value (at an energy which may be a few electron volts higher
than E,,) and decreases thereafter. The peak value of o and the width of the
o = o(E) curve depend on the type of transition. The simplest calculation
for electron-impact cross section is made using the Born approximation.
The basic assumption here is that there is only a weak electrostatic
interaction between the incident electron [which is described by the wave
function exp(ik, - 1)] and the electrons of the atom, so that the chance of 2
transition occurring in the atom during impact is very small and the chance
of two such transitions may be neglected. In this case the Schrodinger
equation for the problem can be linearized. The transition cross section
involves a factor of the form [u?expi[(ky — k,) - rlugdV, where 1, and u,
are the wavefunctions of the ground and excited states respectively, and k,
is the wavevector of the scattered electron. It is further assumed that the
electron wavelength A = 27 /k, is appreciably larger than the size of the
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FIG. 3.10. Qualitative behavior of electron-impact excitation cross section versus the energy
of the incident clectron: (a) optically allowed transition; (b) optically forbidden transition
involving no change of multiplicity; (c) optically forbidden transition involving a change of
multiplicity. Curves a, b, and ¢ have been derived from those given in Reference 12 for 2p and
2s transitions in H and 25 transition in He, respectively.

atom [A = (12.26/ V)A, where ¥ is the electron energy in electron volts], In
this case the factor expi{(k, — k,) * 1] appearing in the above integral can be
expanded in a power series about the atom position. One can distinguish
three general types of electron impact depending on the type of transition
involved: (i) optically aliowed transitions; (ii) optically forbidden transi-
tions involving no change of multiplicity; (iii) transitions involving a
change of multiplicity.

For optically allowed transitions, we retain only the first nonvanishing
term in the expression of expi(k +r) (i.e., ik +r, where k = ky — k,) and this
leads to a cross section of the form

o, « | ulg(E) (3:20)

where | u|* is given by (2.43) and g(E) is a function of the electron energy.
For an optically allowed transition, the electron impact cross section g, is
seen to depend on the same matrix element | #| which occurs in the
expression for the photon absorption cross section. The transition probabil-
ity for electron impact is thus proportional to the corresponding photon
absorption probability. The quantity g(£) turns out to be a relatively
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slowly varying function of E. The decreasing part of the corresponding
o(E) curve in Fig. 3.10 varies as £ ~'In E and the width of the curve may
be typically 10 times larger than the threshold energy E,, (Fig. 3.10a). The
peak value of o is typically 10~ "%cm?.

For optically forbidden transitions involving no change in multiplicity
(AS =0, e.g,, 1'S>2'S transition in He, see Fig. 6.4), the Born approxima-
tion gives a nonvanishing cross section for the next-higher-order term in the
expansion of expi(k - r). The corresponding cross section o, can again be
expressed as in (3.20). The quantity |p|* is now given by |efu}x%u, dx|*
rather than |e fu$ xu,dx|?, which of course is zero. The rate of fall of the
g(E) curve is somewhat faster than in the previous case, the curve behaving
as E ~! rather than E ~'In E. Peak values of o are typically of the order of
10" cm? and the width of the curve now may be only 3—4 times larger
than the threshold energy E,, (Fig. 3.10b).

When a change of multiplicity is involved (e.g., 1'S—>2°S in He, Fig.
6.4) the Born approximation gives a zero cross section in any order of
expansion of exp(ik - r). In fact, such a transition involves a spin change
while, within the Born approximation, the incoming electron only couples
to the orbital motion of the atom.! It must be remembered, however, that it
is the total spin of the atom plus the incident electron which must be
conserved, not necessarily that of the atom alone. Transitions may, there-
fore, occur via electron exchange collisions, wherein the incoming electron
replaces the electron of the atom involved in the transition and this electron
is in turn ejected by the atom (during the collision, however, the two
electrons are quantum mechanically indistinguishable). To conserve spin,
the incoming electron must have its spin opposite to that of the jected one.
The peak cross section for this type of transition is usually fairly high
(~107'6cm?). The cross section rises very sharply at threshold and falls off
rapidly thereafter. The width of the curve may now be typically equal to or
smaller than the value of the threshold energy (Fig. 3.10c).

The discussion so far applies to a monoenergetic beam of electrons. In
a gas discharge, however, the electrons will not be monaenergetic but will
instead have some particular energy distribution f(E)[ f(E)dE is the proba-
bility for an electron to have its energy lying between E and E + dE ] In
this case the rate of population of the upper state is obtained from (3.19) by
averaging over this distribution, viz.,

dN.
(S )f NN (va) (321

TThis assumes a negligible spin--orbit coupling, which is true for light atoms (e.g., He, Ne)
while it is not true for heavy atoms like Hg.
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where
(va) = f 00(E)f(E)dE (3.22)

If a Maxwellian energy distribution is assumed then f(E)o E'/?
- exp[—(E/kT,)}, and the only quantity which needs to be known is the
electron temperature T,. This can be related to the applied electric field &
provided we make the assumption that, at each collision, some fraction § of
the kinetic energy of the electron is lost. If v, is the average thermal
electron velocity, the average kinetic energy is about mo}, /2. The collision
rate is vy, //, where [ is the electron mean free path. The power lost by the
electron is therefore 8(v,,/{)(mv},/2), and this must be equal to the power
delivered by the electric field, which is & vy;,. Since the drift velocity vy,
is in turn given by e/6 /mv,,, the power delivered by the electric field is
e16%/mv,. By equating the two above expressions we finally get the
following expression for the electron temperature (7, = mv?, /2k), viz.,

-
T, 25) 7k & (3.23)
Since the mean free path / is inversely proportional to the gas pressure p,
(3.23) shows that, for a given gas, T, depends solely on the & /p ratio. This
ratio is the fundamental quantity involved in establishing a given electron
temperature, and it is often used in practice as a useful parameter for
specifying the discharge conditions. For a given gas mixture there generally
exists some value of the & /p ratio which maximizes the pump rate. Too
low a value of & /p results in too low a value of the electron temperature T,
to excite the laser pump levels effectively. Conversely, too high a value of
&/p (e, of T,) leads to excitation of higher levels of the gas mixture
(which may not be so strongly coupled to the laser transition) and to
excessive ionization of the gas mixture (which may result in a discharge
instability, i.e., a transition from a glow discharge to an arc).
According to (1.10) and (3.21) the pump rate W, is

W, = N.(va) (3.24)

where (vo) is given by (3.22), the electron temperature being expressed
through (3.23) as a function of the applied field &. The electron density N,
can then be expressed as a function of the current density J and the drift
velocity v, as

N, = J/evgp (3.240)
According to the previous calculation vy, can be written as
YR AV AV
Cdrife Moy ( ) ) (?) (3.24))
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From (3.24), with the help of (3.24a) and (3.24b) we obtain
J 9y 1/4 m /2
w, =1 [<"°>(E) () (3.24¢)

and the expression in the square brackets depends only on the product /&,
i.e., on the & /p ratio. Since this ratio is generally kept at its optimum value,
a change in pump rate is achieved by changing the current density J in the
gas discharge.

The calculation given above is a rather crude one since it is based on
the assumption of a Maxwellian distribution which in fact is not found to
hold in practice.'” For neutral atom and ion gas lasers, however, the
departure from a Maxwellian distribution is not so great and this distribu-
tion is therefore often used. However, in molecular gas lasers oscillating on
vibrational transitions, the gas is usually weakly ionized and the mean
electron energy is low (E =1 €V, since only vibrational states need to be
excited) in comparison with that (10-30 eV) needed for neutral atom and
ion gas lasers. Accordingly, the assumption of a Maxwellian distribution is
expected to be inadequate for molecular lasers. One needs in this case to
carry out an ab initio calculation to obtain the electron energy distribution
f(E). This is done using the appropriate electron transport equation (the
Boltzmann equation), and it requires a knowledge of all possible electron
collision processes leading to excitation (or de-excitation) of the vibrational
or electronic levels of all gas species in the discharge. The calculation
therefore gets quite involved, and sometimes it may be impracticable
because of the lack of appropriate data on electron collision cross sections.
Detailed computer calculations have therefore only been performed for gas
mixtures of particular importance such as the CO,-N,-He mixture used in
high-power CO, lasers.{'>'¥) These calculations do indeed show a consider-
able departure from a Maxwellian distribution. However, the average
electron temperature and the overall excitation rates still turn out to be, for
a given gas mixture, a function only of the (& /p) ratio, as indeed indicated
by our crude calculation.

3.3.2 Spatial Distribution of the Pump Rate

In the positive column of a glow discharge the dc electric field, hence
the drift velocity o4, are independent of the discharge current J. It then
follows that the spatial dependence of the electron density N, [see (3.24a}],
hence of the pump rate W, {see (3.24)], is the same as that of the current
density J.
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In the situation where the gas is contained in a cylindrical tube and the
discharge current is flowing along the tube, the radial dependence of J can
be analytically specified.'*'” For both neutral atom and ion gas lasers,
electron-ion recombination can be assumed to occur only at the walls.?
Thus, if the ion mean free path is much shorter than the tube radius R,
recombination occurs by ambipolar diffusion to the walls. In this case one
can apply the Schottky theory for a gas positive column, and the radial
distribution of the discharge electrons is predicted to vary as Jy(24r/R)
where J, is the Bessel function of zeroth order. This function is plotted in
Fig. 3.11. Note that the electron density drops to zero at the tube walis.
Note aiso that an ion balance equation can be obtained using the condition
that the rate of electron—ion pair production must equal the rate of
electron-ion pair recombination at the tube walls. This equation leads to a
relation between the electron temperaturet T, (whose value establishes the
ionization rate) and the product PR (whose value, via diffusion, establishes
the recombination rate). Accordingly, for a given gas, T, turns out to be a
function of pR only. The ion balance equation thus leads to a relation
between T, and pR in much the same way as the energy balance equation
leads to a relation between T, and & /p [see (3.23)]. Experimental results
have shown that the Schottky theory does hold for noble gas lasers
involving neutral atoms and for high-pressure noble gas ion lasers. It is also
interesting to note that a Bessel-like radial behavior of the electron density
in the discharge has also been used to give accurate predictions of the
radial distribution of inversion in a CO, laser.('®

When the ion mean free path becomes comparable with the tube
radius (as happens in the relatively low-pressure ion gas lasers), electrons
and ions reach the walls by free flight rather than by diffusion. In this case
one should use the “free-fall” model of Tonks-Langmuir for the plasma
discharge."” In this case the radial distribution of the discharge electrons,
although no longer given by a Bessel function, still has a bell-shaped form
(Fig. 3.11). Note also that the ion balance equation again leads to a relation
between the electron temperature and the PR product.

When the gas is excited by a current flowing transversely to the
resonator axis (as, for example, with two electrodes placed along the
resonator axis, see Fig. 6.15) a reliable prediction of the spatial distribution
of the pump rate becomes difficult. In fact the distribution is affected by

tlon-electron (e + A) recombination within the discharge volume is an unlikely process since
it would require the recombination energy to be removed (radiativety) within the short
duration of the collision. A three-body process e + 4, + M where the excess energy is given
to the third partner, M, is also unlikely at the gas pressure used (& few Torr).

YA Maxwellian distribution is assumed in the Schottky theory,
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FIG. 3.11. Radial behavior of the electron density for a gas contained in a cylindrical tube

(longitudinal discharge): (a) Schoitky theory (high-pressure gas); (b) Tonks—Langmuir theory
(low-pressure gas).

the shape of the electrodes, by the type and geometry of the auxiliary
ionizing sources which are sometimes used, and by the flow conditions of
the gas mixture in the discharge chamber. Experimental measurements of
the resulting population inversion have indicated a rather nonuniform and
asymmetric pump distribution for this type of discharge (a 50% variation of
pump rate from center to periphery of the discharge channel may typically
be observed).

3.3.3 Pumping Efficiency

As we have seen from the preceding discussion, the electrical pumping
of gas lasers is & very complicated process, and a closed expression for the
pump rate (such as that obtained for the optical pumping case) cannot, in
general, be given. Just as in the optical pumping case, however, we can
again define an overall pumping efficiency 1, as the ratio between the
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minimum power required to produce a given inversion (i.e., ¢ W, )N, Vhw,,
where (W, is the average value of W, over the discharge volume ¥V, and
hw., is the energy of the upper laser level) and the electrical power input P
to the discharge. Therefore we can write

(Wp> =, Vﬁfﬁp (3.25)

Note that it has been assumed that only one pump level (of energy hiw,)
plays a role, and n, has therefore been defined in a slightly different way
from that for the case of optical pumping [compare (3.25) with (3.15)).
Calculations of 4, are available in the literature for a few gas mixtures of
notable interest. In particular, for a CO,:N,:He (1:1:8) gas mixture and for
an average electron energy of 1 €V, n, may be as high as 70%.('> '

3.3.4 Excitation by (Near) Resonant Energy Transfer'®'®

In this case, too, the phenomenon can be described by a suitable

collision cross section o,:

(% )“- N Ngvo,, (3.26)
where (dN /dr),, is the number of transitions per unit volume per unit time
for the process (3.17), N, is the upper state population of atoms A, N, is
the lower state population of atoms B, and v is the (relative) velocity of the
two atoms. For a gas at temperature T, the quantity vo,, must be averaged
over the velocity distribution.

The behavior of o, versus the energy defect AE between the two
levels deserves some comment. Since we are dealing with a resonant process
we would expect ,,(AE) to be a sharply peaked function of AE, with the
maximum obviously occurring at AE = 0, In this excitation process, what
actually occurs physically is as follows: When atom 4 approaches atom B,
the latter will be subjected to a potential energy of either attractive (see Fig.
2.22) or repulsive (see Fig. 6.21) type. We shall denote this potential by
U(r,R) where r refers 1o the electron coordinates and R the nuclear
coordinates of the two-atom system (see also section 2.9.3). The relative
motion of the two atoms [i.e., R = R(¢)] therefore produces a time-varying
potential U(r,s)."! This term will act as a time-dependent Hamiltonian
X, (r,) which couples together the translational and internal motions of

1‘Nm.e that, when the two colliding species are atoms, the only nuclear coordinate of interest is
the internuclear distance. When, however, the colliding species are molecules, the interaction
potential will also depend on the mutual orientation of the two molecules.
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the two-atom system. A time-dependent perturbation analysis shows'® that
the transition cross section a,; can be written as

f = H, (f)exp (iw,t) dt i (327

where H(#) = [YXN)X, (r,0)y,()dr is the transition matrix element be-
tween the initial state y; [species 4 in the excited statc and B in the gound
state] and the final state y, [species A in the ground state and B in the
excited state]. In equation (3.27) wy is given by w; = AE/h, where AE is the
energy defect of the resonant process (see Fig. 3.9). The energy transfer
cross section g, is thus proportional to the power spectrum |H’,,(m,.f)|z of
the matrix element H () at the frequency AE /% We can therefore say that
0,5 is established by the Fourier transform U(r,w) of the time-varying
potential U(r,?) at the frequency w, required to induce the transition. Since
U(r, t) is expected to be nonzero only for a time of the order of the collision
duration Ar, [given by (2.101)), its Fourier transform is expected to have a
bandwidth of the order of 1/Ar,. More precisely, for binary collisions, the
frequency behavior of both |H.(»)? and 6,, can be shown to be of the
form exp(—»Ar.). Thus o, is resonantly large over a range AE, of the
energy defect AE, given by

Oyp <

= 3.28

AE, Bt (3.28)

In the case of Ne one has A7, ~ 10~ s [see (2.103)), and from (3.28) we
find AE, = 0.006 ¢V. Note that this value is appreciably smaller than
kT(=~0.025 eV at room temperature). For an energy defect AE less than
AE,, 0,, may be as large as 10~ "*cm?®. Therefore near-resonant collisions

provide a very convenient way of selectively populating a given transition.

PROBLEMS

3.1 A ruby rod with 6.3 mm diameter is pumped by a helical flashlamp of ~2 cm
diameter. Calculate the pump transfer efficiency.

3.2 A laser rod in an elliptical pumping chamber has rough ground sides in order to
achieve a uniform pump distribution, The flashlamp and rod diameters are
assumed equal. Let 7, be the lamp spectral intensity, S the lateral surface, and
V the volume of the active material. By considering only radially propagating
rays, show that the (average) pump rate is

- n _ ~2aR S’AdA
o N",Vf"'“ R
S, aR ar],-ar AA
= N!an‘[e e™le Aw
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Show thal, if we assume exp(aR) — exp(— aR)=<2aR and exp(— aR)={,, the
above expression reduces to (3.13).

3.3 Using (3.14) and (3.15) show that N = 20, [mgaR{ S/ A)grdA, where ¢ fo
is the average of f, over the rod cross section.

3.4 Show that the power quantum efficiency ¢ i8 given by

LA T4
ko [cdpssavyanay

where the volume integrals are taken over the rod volume. With the help of
(3.11), (3.14), and (3.2) show ghat

" U e 0 g dn
JEN)

where ¢ f,) is the average of £y over the rod cross section.

3.5 Using the results obtained in Problems 3.3 and 3.4, show that T ™ N Npga»
where the absorption efficiency n, is given by

T =2 [ aR{fi>gadM

3.6 For radially propagating rays, using the expression for W, given in Problem 3.2,
show that Tog = A AUA/Ag)gr dA/ fA)g dA and y, = ThM)gad), where
h(A) = | - exp(~2aR).

3.7 With the help of Fig. 3.8 calculate {fi) for each value of aR.
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