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4
Passive Optical Resonators

4.1 INTRODUCTION

This chapter deals with the theory of passive optical resonators. What
we mean by a passive optical resonator is a cavity consisting of reflecting
surfaces and containing a homogeneous, isotropic, and passive dielectric
medium. We recall that a mode of a resonator was defined in Section 2.1 as
a stationary e.m. field configuration which satisfies both Maxwell’s equa-
tions and the boundary conditions. The electric field of this configuration
can then be written as

E(r,1) = Em(r)exp(iwt) (4.1)
where w/27 is the mode frequency.

The resonators used in the laser field differ from those used in the
microwave field in two main aspects: (i) Laser resonators are usually open,
i., no lateral surface is used. (i) The resonator dimensions are much
greater than the laser wavelength. Since this wavelength usually ranges
from a fraction of a micron to a few tens of microns, a laser cavity with
dimensions comparable to these wavelengths would, in fact, have too low a
gain to allow laser oscillation. The above-mentioned properties (i) and (ii)
have a considerable effect on the performance of an optical resonator. For
example, the fact that the resonator is open means that, for any cavity
mode, there will inevitably be some losses. These losses are due to diffrac-
tion of the e.m. field, which leads to some fraction of the energy leaving the
sides of the cavity. They are, therefore, known as diffraction losses. Strictly
speaking, therefore, the mode definition (4.1) cannot be applied to an open
optical resonator, and true modes (i.e., stationary configurations) do not
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108 Chap. 4 Fassive Optical Resonators
ev’ ' such a resonator. In what follows, however, we shall see that e.m.
.g-wave configurations having very small losses do exist in open
susonators. We will therefore define as a mode (sometimes called a quasi-
mode) an e.m. configuration whose electric field can be written as
E(r,t) = Equ(r)exp[(—t/27,) + iwt] (4.2)
Here 7, (the decay time of the square of the electric field amplitude) is
called the cavity photon decay time. The property (ii) mentioned above
means that, as we shall see later, the cavity resonant frequencies are closely
spaced. Indeed, according to (2.14), the number of resonator modes N
falling within the width A, of & laser line is given by N = Bnp?VAr,/c’. As
an example, if we take » = 5 X 10" Hz (center of visible range), ¥ = 1 cm?,
and Awy= 1.7 x 10° Hz [width of the 0.6328 pm Ne Doppler line, see
(2.114)] we get N =~4 X 10° modes. If the resonator were closed, all these
modes would have similar losses, and with this resonator used as a laser
cavity, oscillation would occur on a very large number of modes. Such
behavior would be undesirable since it would result in light from the laser
being emitted in a wide spectral range and in all directions. This problem
can be overcome to a large extent by the use of open resonators. In such
resonators, only the very few modes corresponding to a superposition of
waves traveling nearly parallel to the resonator axis will have low enough
losses to allow laser oscillation. For all other modes the corresponding
waves will be almost completely lost after a single pass through the
resonator. This is the fundamental reason why open resonators are used in
lasers.! Although the absence of lateral surfaces means that far fewer
modes can oscillate, the number of modes oscillating may still be apprecia-
bly larger than unity, as we shall see later on.

The most widely used laser resonators have either plane or spherical
mirrors of rectangular {or more often circular) shape separated by some
distance L. Typically, L may range from a few centimeters to a few tens of
centimeters, while the mirror dimensions range from a fraction of a
centimeter to a few centimeters. Of the various possible resonators we make
particular mention of the following types.

(i) Plane-Parallel (or Fabry—Perot) Resonator (Fig. 4.1). This consists
of two plane mirrors set parallel to one another. To a first approximation
the modes of this resonator can be thought of as the superposition of two
plane e.m. waves propagating in opposite directions along the cavity axis,
as shown schematically in Fig. 4.1. Within this approximation, the resonant

*The open resonator configuration is also useful for reasons of convenience: Tn the case of a
flashlamp pumped laser, for example, a lateral surface would interfere with the pumping.
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FIG, 4.1. Plane-parallel resonator. -

frequencies can be readily obtained by imposing the condition that the
cavity length L must be an integral number of half-wavelengths, i.e.,
L = n(A/2), where n is a positive integer. This is a necessary condition for
the electric field of the e.m. standing wave to be zero on the two mirrors. It
then follows that the resonant frequencies are given by

v=n(c/2L) (4.3)

It is interesting to note that the same expression (4.3) can also be obtained
by imposing the condition that the phase shift of a plane wave due to one
round-trip through the cavity must equal an integral number times 27, i.e.,
2kL = 2nw. This condition is readily obtained by a self-consistency argu-
ment. If the frequency of the plane wave is equal to that of a cavity mode,
the phase shift after one round trip must be zero (apart from an integral
number of 2x) since only in this case will the amplitudes at any arbitrary
point, due to successive reflections, add up in phase so as to give an
appreciable total field.

(i) Concentric {or Spherical) Resonator (Fig. 4.2). This consists of two
spherical mirrors having the same radius R and separated by a distance L
such that the mirror centers of curvature C, and C, are coincident (i.e.,
L =2R). The geometrical-optics picture of the modes of this resonator is
also shown in the figure. In this case the modes are approximated by a

) L :

FIG. 4.2. Concentric (spherical)
resonator.
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FIG. 4.3. Confocal resonator.

superposition of two oppositely traveling spherical waves originating from
the point C. The application of the above self-consistency argument again
leads to (4.3) as the expression for the resonant frequencies.

(iif) Confocal Resonator (Fig. 4.3). This consists of two spherical
mirrors of the same radius of curvature R and separated by a distance L
such that the mirror foci F, and F, are coincident. It then follows that the
center of curvature C of one mirror lies on the surface of the second mirror
(ie., L= R). From a geometrical-optics point of view, we can draw a
closed optical path as shown in Fig. 4.3. This path does not give any
indication of what the mode configuration will be, however, and we shall
see that in fact this configuration cannot be described either by a plane or
by a spherical wave. For the same reason, the resonant frequencies cannot
be readily obtained from geometrical-optics considerations.

() Resonators Using a Combination of Plane and Spherical Mirrors.
Examples of these are shown in Fig. 4.4 (hemiconfocal resonator) and Fig.
4.5 (hemispherical resonator).

Resonators formed by two spherical mirrors of the same radius of
curvature R and separated by a distance L such that R < L < 2R (ie.,

FIG. 4.4. Hemiconfocal resonator.
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C1

FIG. 4.5. Hemispherical resonator. 1 2

placed at an intermediate position between the confocal and concentric
one) are aiso often used. In addition, we can have L < R. For these cases it
is not generally possible to use a ray description in which a ray retraces
itself after one or a few passes.

All of these resonators can be considered as particular examples of a
general resonator consisting of two spherical mirrors of different radius of
curvature (either positive or negative) spaced by some arbitrary distance L.
These various resonators can be divided into two categories, namely, stable
resonators and unstable resonators. A resonator will be described as unsta-
ble when an arbitrary ray, in bouncing back and forth between the two
mirrors, will diverge indefinitely away from the resonator axis. An obvious
example of an unstable resonator is shown in Fig. 4.6. Conversely, a
resonator for which the ray remains bounded will be described as a stable
resonator.

The purpose of the following sections is to calculate the mode configu-
rations and the corresponding resonant frequencies and diffraction losses
for the most commonly used resonators.

FIG. 4.6. Example of an unstable
resonator, 1
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4.2 PLANE-PARALLEL RESONATOR

4.2.1 Approximate Treatment of Schawlow and Townes")

The first study of a plane-parallel resonator appeared in the classic
work of Schawlow and Townes,!"? in which they proposed an extension of
the maser concept into the optical frequency range. Schawlow and Townes
gave an approximate treatment of the problem in which they used an
analogy with a closed rectangular cavity, whose solution is well known (see
Section 2.1).

Before presenting the treatment of Schawlow and Townes, we should
recall that the E-field components of the modes of a rectanguiar cavity
such as shown in Fig. 2.1 can be written as

E, = ecosk xsink,ysink,zsinwt
E, = esink,xcosk,ysink,z sin ot (44)
E, = esink xsink,ycosk,z sinwt
where k, = In/2a, k, = mn/2a, k, = nn /L (I,m,n being positive integers)
and where the resonant frequencies are given by

cifny? 2 2)'/2

=SB+ (2 + (5] “9)
Note that (4.4) can be put in complex form by expressing the sine and
cosine functions in terms of exponential functions. When this is done, each
E-field component can be seen to be expressed as the sum of eight terms of
the form expli(xk x + k,y=* k,z—wt)+ccl] ie, as the sum of eight
plane waves propagating along the directions of the eight wave vectors
having components *+k_, *k, and *k,. The direction cosines of these
vectors are, therefore, +(/A/4a), x(m\/4a), and +(nA/2L), where A is
the wavelength of the given mode. The superposition of these eight plane
waves gives the standing wave of (4.4).

Now, Schawlow and Townes assumed that, to a good approximation,
the modes of the open cavity of Fig. 4.1 are described by those modes of
the rectangular cavity of Fig. 2.1 having (/,m)< n (the cavity of Fig. 4.1
being obtained from that of Fig. 2.1 by removing the lateral surface), The
justification of this assumption can be seen when we note that, from what
has been said above, the modes of this cavity can be expressed as the
superposition of plane waves propagating at a very small angle to the z
axis. Therefore, the removal of the lateral surface is not expected to
drastically change these modes. On the other hand, those modes which
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correspond to values of / and m which are not small compared to n will he
greatly affected by the removal of the resonator sides. Once the side:
removed, however, these modes have such high diffraction losses that the;
need not be considered further.

With the assumption that (/,m)< n, the resonant frequencies of the
plane-parallel cavity can be obtained from (4.5) by a power series expan-
sion of the expression within the square root, namely:

2 2
_cln 1 (I +m) L
V—i(z + -2- _'—'_" —402 (4.6)

This expression can be compared with (4.3), which was derived using a
simple one-dimensional argument. There is a well-defined cavity mode with
a well-defined resonant frequency for each set of values of the three
quantities /, m, and n.

The frequency difference between two modes having the same values
of / and m and whose n values differ by 1 is

Ap, = c/2L 4.7

as one can find immediately from (4.6). These two modes differ only in
their field distribution along the z axis (i.e., longitudinally). For this reason
Av, is often referred to as the frequency difference between two consecutive
longitudinal modes. The frequency difference between two modes which
differ only by having a difference of unity in their m values (i.e., the
frequency difference between two consecutive rransverse modes)! is

Ap, = #ﬁz (m + %) (4.8)

For typical values of L, Av, is of the order of a few hundreds of megahertz
while A, (or Aw) is of the order of a few megahertz. Figure 4.7 shows the
frequency spectrum of a plane-parallel resonator. Note that modes having

L

tThe usage of the terms “longitudinal mode™ and “transverse mode” in the laser literature has
sometimes been rather confusing, and can convey the (mistaken) impression that there are
two distinct types of modes, viz. longitadinal modes (sometimes called axial modes) and
transverse modes. In fact any mode is specified by three numbers, e.g., 1, m, [ of (4.5). The
eleciric and magnetic fields of the modes are nearly perpendicular to the resonator axis, The
variation of these fields in a transverse direction is specified by /, m while the field variation
in a longitudinal (i.e., axial} direction is specified by n. When one refers, rather loosely, to a
(given) transverse mode, it means that one is considering a mode with given values for the
transverse indexes (/, m), regardless of the value of n. Accordingly a single transverse mode
means & mode with a single value of the transverse indexes (/, m). A similar interpretation can
be applied to the “longitudinal modes.” Thus two consecutive longitudinal modes mean two
modes with consecutive values of the longitudinal index # [i.c., # and (n + 1) or (n — 1)].
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FIG. 4.7. Resonance frequencics of a plane-parallel resonator,

the same n but with different / and m values satisfying /2 + m? = const
have the same frequency and are therefore said to be frequency degenerate.

Sc far we have not considered the cavity losses, and the cavity
resonances have been assumed 1o be infinitely narrow. Actually, as already
pointed out, optical resonators have unavoidable losses due to diffraction.
A mode can, therefore, be represented as in (4.2), and this means that its
resonance will have a linewidth (FWHM) given by

Aw, = 1/1, (4.9)

as can be shown by taking the Fourier transform of 4.2).

4.2.2 Fox and Li Treatment®

A more rigorous treatment of a plane-parailel resonator has been given
by Fox and Li® who studied the problem under the so-called scalar
approximation, which is often used in optics. In this approximation, the
e.m. field is assumed to be nearly transverse and uniformly (e.g., linearly or
circularly) polarized. The field can then be described by a scalar quantity U
representing, for instance, the magnitude of the electric fieid (or of the
magnetic field). If we let U, be some arbitrary field distribution on mirror 1
(Fig. 4.8). This distribution will, due to diffraction, produce a field distribu-
tion on mirror 2 whose expression can be obtained by the Kirchhoff
diffraction integral.’> The field U,(P,) at a general point P, of mirror 2 is
then given by

Py = = i [ SHDIEREN + cost)

where 7 is the distance between points P, and P,, # is the angle that PP,

as, (4.10)
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X1

X2

FIG. 4.8 Mode calculation for a plane-parallel resonator by use of the Kirchhoff diffraction
integral.

makes with the normal to the surface at P|,dS) is a surface element around
P\, and k = 2 /A. The integral in (4.10) must be evaluated over the whoie
of surface 1.

Instead of considering a general distribution U,, let us consider a
distribution U corresponding to a cavity mode. In this case, if the two
mirrors are identical, the field distribution on mirror 2, as calculated by
(4.10), must again be equal to U apart from some constant factor. Accord-
ing to (4.10) we must, therefore, have

oU(Py) = - ﬁj; U(Pz)exp(ilf)(l + cos@) as, @1

where o is a constant. Equation (4.11) is a Fredholm homogeneous integral
equation of the second kind. Its eigensolutions U give the cavity-mode field
distributions over the mirrors. Since the integral operator of (4.11) is
non-Hermitian, the eigenvalues o are not real, and both the amplitude and
phase have straightforward physical meanings. If we put o = |elexp(i¢), we
can immediately see that y, = 1 — |o|* gives the fractional power loss per
pass due to diffraction. The quantity ¢ gives the phase delay of the wave in
propagating from one mirror to the other, as can be more readily seen when
it is realized that the time factor exp(iwr) has been omitted from both sides
of (4.10) and (4.11). The quantity 2¢, therefore, gives the phase delay in one
round-trip and it will be a function of k, i.e., of the wavelength, Upon
equating 2¢ to an integral number times 2, we obtain the resonance
frequencies (as already discussed for a simple case in Section 4.1). So we
see that the eigensolutions and corresponding eigenvalues of (4.11) give all
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the quantities of interest, namely, field distribution on the mirrors, reso-
nance frequencies, and diffraction losses. Once the field distribution U/ on
the mirrors is known, it is possible through (4.10) to calculate the field
distribution at any point inside (standing wave) or outside {traveling wave)

the resonator.
When L a, i, when the cavity length is much greater than its

transverse dimensions, (4.11) can be considerably simplified. In fact we can
put cosf=~1 and r~L in the amplitude factor appearing under the
integral sign. To get a suitable approximate expression for the phase factor
kr, we write r as
r=[L2+ (x;—x) + (0 - )]
= L+(!/2L)[(x,—-x2)2+(y,—y1)2]+£ (4.12)
where a power expansion of the expression appearing under the square root
has been made. One can neglect ¢, the remainder of the power series,
provided that ke < 2. Since € consists of a converging series having terms
of alternating sign, it follows that its value is smaller than the magnitude of
the first term. It therefore follows that, for the condition ke <2x to be
satisfied, it is sufficient that ka*/L*<« 27 or, in terms of the Fresnel

number' N = a2/ L\, we require N « L2/ a’. So, given the two assumptions
L>» a and N « L*/a?, we can then write,

exp(ikr) = exp{(ikL) + i(nN/a))[(x, — %) + (31— y2)’]}  (413)
By using the dimensionless quantities
¢= (N /a)x
9= (N /a)y

and with the help of (4.13), we can now put (4.11) in the dimensionless
form

o*Ulkym) = =i [ Utk mexp{in] (6 = &) + (m — '] dben
(4.15)

1/2

(4.14)

YThe Fresnel number N is a dimensionless quantity often used in diffraction optics. A physical
interpretation of this number can be obtained as follows. A plane e.m. wave of (ransverse
dimension 2a has an angular spread due to diffraction 8;==A/2a [see (1.11)}. On the other
hand, for mirrors of wransverse dimensions 2e and spaced by L, the geometrical angle 8,
subtended by one mirror at the center of the other is §, = a/ L. We then sce that N = §,/28,,.
Hi:lh Fresnel numbers thus imply a diffraction spread small compared to the geometrical
angle.
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where we have defined
o* = gexp( — ikL) (4.16)

For mirrors of square or rectangular shape, it is possible to separate the
variables in (4.15). We in fact put

U(gn) = UH Uy (m) (4.17)
o* = of oy (4.18)

Then (4.15) gives the following two equations for U/{) and U, (n):

of Udy) = exp| - i(‘”/“)]f:,g Ui(.f,)exp[iw(e, - fz)z] d§, (4.19a)

o3 Uy = expl = (n/9)] [ * T, (ayeseim(n, = mf ]y (4.199)

It can be shown that the function U, gives the field distribution for a
resonator consisting of two plane mirrors with dimension 2a in the x
direction and infinitely long in the y direction (strip mirrors). A similar
interpretation holds for U,. We will label the cigenfunctions and the
eigenvalues of (4.19a) and (4.19b) by the corresponding m and [/ values,
respectively. Therefore, according to (4.17) and (4.18), we will have
Umf (E’ ﬂ) = U.Em (E) UEI (f) (420)
O = 050 “421)

For circular mirrors, the treatment is somewhat similar. In this case,
however, it is more convenient to express (4.11) as a function of cylindrical
rather than rectangular coordinates, and the variables can again be sepa-
rated in this coordinate system.

Although equations (4.19) are much simpler than the original equation
(4.11), they are not amenable to an analytical solution. They have been
solved by Fox and Li® with the help of a computer, for several values of
the Fresnel number N. They used an iterative procedure based on the
following physical argument. Let us consider a wave traveling back and
forth in the cavity and assume that, at a given time, the field distribution
U,(£,) on mirror I is known. The field distribution Uy(£,) on mirror 2 which
results from the field distribution U, can then be calculated through
(4.194). In fact, if we replace the function Ug§,) in the right-hand side of
(4.19a) by the function U, and then perform the integration, we will obtain
the function U, = Ug§,) which results from the first transit. Once U, is
known, we can then calculate the new field distribution on mirror 1 due to
the second transit, and so on. Fox and Li have shown that, after a sufficient
number of passes, regardless of the initial field distribution on mirror 1, a
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FIG. 4.9. Amplitude of the lowest-order mode of a plane-paralle] resonator for three values of
the Fresnel number (after Fox and Lit?),

field distribution is reached which does not change any more from pass to
pass. This distribution will then be an eigensolution of (4.19). This proce-
dure also allows one to calculate the eigenvalue and hence, as explained
above, the diffraction loss and resonant frequency of the given mode. If the
initial field distribution is chosen to be an even function of £, one ends up
with an even mode, while the odd modes are obtained by choosing the
initial field distribution to be an odd function of £. As an example, Fig. 4.9
shows the results obtained for the amplitude of U = U(x/a, N) when Uis
initially chosen to be a uniform and symmetric field distribution (i.e.,
U, = const). For the case N = 6.25, approximately 200 passes are needed to
reach the stationary solution, as shown in Fig. 4.10. In a similar way, the

lowest-order antisymmetric mode is obtained when one chooses a uniform '

and antisymmetric initial distribution (i.e., U=lfor0 <x<aand U =
—1for —a < x < 0). Figure 4.11 shows the field distributions Ux/a,N)
obtained in this way for two values of the Fresnel number.

According to (4.20), the overall field distribution Uni(x, y) is given by
the product U, (x)Uy(y). The mode which corresponds to the case where

Sec. 4.2 - Plane-Paralle! Resonator H9
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FIG. 4.10. Field amplitude U at the position x /a= 0.5 versus the number of transits (after
Fox and Li¥),

x/a

FIG. 4.11. Amplitude of the lowest-order antisymmetnic mode of a planc-parallel resonator
for two values of the Fresnel number (after Fox and Li® ).



120 Chap. 4 + Passive Optical Resonators
1 Y T
T
-1 I ” EMq B
”
2 TEMgp
-2 | i
—::).1 ; 1'0 00 FIG. 4.12. Diffraction loss per pass v4

versus Fresnel number for a plane-
N parallel resonator (after Fox and LI,

both U(x) and U(y) are given by the lowest-order (i.e., m = [ = 0) solution
(Fig. 4.9) is called the TEMg, mode. The mode TEM,, is obtained when
U(x) is given by the lowest-order solution (m = 0, Fig. 4.9) and U(y) by
the next-higher-order solution (i.e., / = 1, Fig. 4.11) (and vice versa for the
TEM,, mode). The letters TEM stand for transverse electric and magnetic
field. For these modes, both the electric and magnetic fields of the e.m.
wave are orthogonal to the resonator z axis.

1t is readily seen from (4.19) and (4.21) that ¢* depends only on the
Fresnel number N and on the mode indexes m and /. Accordingly the
diffraction losses (y, = | — |o*|*) will depend only on N, m, and /. Figure
4.12 shows the diffraction losses versus N for the lowest-order symmetric
(TEM,) and antisymmetric (TEM;;) modes. One can see from the figure
that the losses rapidly decrease as N is increased. This can be easily
understood when it is remembered that N is proportional to the ratio
between geometrical (6,) and diffraction (6,) angles. This result can also be
understood by noticing that, with increasing N, the field at the edge of the
mirror {x = *+ a) decreases as shown in Figs. 49 and 4.11. In fact, it is this
field which is mostly responsible for the diffraction losses. Note finally that,
for a given Fresnel number, the loss of the TEM,, mode is always greater
than that of the TEM,, mode.

The resonance frequencies are obtained by equating the phase of o to
an integral number times . Thus, using (4.16), we get

kL + 9%, = nom (422)

where we have explicitly indicated that the phase ¢* of 0* depends on the
mode indexes m and /. Note that while k depends only on A(k = 27 /}), ¢*
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depends both on A (since it depends on the Fresnel number N) and on the
mode indexes m and /. Equation (4.22) therefore allows a calculation of the
resonance wavelengths A (and hence the resonance frequencies ») as a
function of the mode indexes », #, and m. The computer results of Fox and
Li for a* confirm that, for sufficiently high values of the Fresnel number
(N > 10), the resonant frequencies which are obtained in this way are in
good agreement with the predictions of (4.6).

4.3 CONFOCAL RESONATOR(?

The treatment of the confocal resonator using the scalar approxima-
tion was developed by Boyd and Gordon.¥ In this treatment, we again
call the cavity length L and refer the points of the two mirror surfaces to
coordinate systems (x,, y;) and {(x,, y,), as shown in Fig, 4.13. For the sake
of simplicity, the two mirrors will be taken to have square cross sections of
dimension 2a. In the scalar approximation, the eigensolutions are again
given by (4.11). When L>» a, we can again put cos#~1 and r= L in the
amplitude factor. To find a suitable approximation for the phase factor kr,
we must first calculate the distance between P, and P, as a function of the
coordinates of the two points. When this is done, the resulting expression

?(K‘.yﬂ ‘ X2.¥2

. — — — ——

1 L

FIG. 413 Mode calculation for a confocal resonator using the Kirchhoff diffraction integral.
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for r can be expanded in a power series to give

re=L—/L)Yxx,+ y, y;) (4.23)
This expression provides a good approximation for kr provided that, as in
the plane mirror case, the condition N « L?/4? is satisfied. After introduc-
ing the dimensionless variables ¢ =N (x/a) and  =/N(y/a), (4.1 )
reduces to

o*Ulky,m) = —i j: Uk m)exp[ - 2u(§,; + nymy) | dbydn, (4.24)

in which o* is again given by (4.16). We again look for a separable solution
as in (4.17) and (4.18), which leads to

ot Ugts) = exp[ ~ i(n/4)] [ *g Ub)exp(~ i2nt\dy)de,  (4.25)

%3 Uy(m) = exp| — i(a/4)] [ ‘:rfu,,(n, Yexp(— i2mnmy)dn,  (4.26)

The physical meaning of the expressions in (4.25) and (4.26) is the same as
for the Fabry-Perot resonator: They are the solutions for one-dimensional
mirrors (strip mirrors). Equations (4.25) and (4.26) have a discrete set of
eigensolutions which we will denote by the indexes m and /, i.e.,

Um,t(f:'i)' UEM(S)UWI(") (4270)
ot = ai‘mo:l (427b)
Unlike the plane mirror case, this integral equation can now be solved
analytically. It can be shown in fact that U, (§) and U,/(n) are propor-
tional to the Flammer spheroidal angular functions, while the correspond-
ing eigenvalues o}, and oY are proportional to the Flammer spheroidal
radial functions. These functions have been tabulated
As regards the eigenfunctions, a considerable simplification is possible
when N » 1. In this case, the range of integration in (4.25) and {4.26) can
be extended to cover the range from —oo to +oco. In this case the
right-hand sides of both (4.25) and (4.26), apart from a proportionality
factor, are just the Fourier transforms of Uy and U, respectively. Thus,
according to (4.25) and (4.26), the required eigenfunctions must be invari-
ant under a Fourier transform. The product of a Gaussian function with a
Hermite polynomial is known to have this property. Returning to the
original x and y coordinates, the eigenfunctions are then given by

U p(x) = H,,,[ x( 3& )I/ZJexp[ ~(7/LN)x?) (4.28q)

Gu) = B (5" eel /007 sy
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FIG. 4.14. Lowest-order symmetric mode of a confocal resonator.

where H,, and H, are the Hermite polynomials of mth and /th order. The
overall eigenfunction is then

Un(%, ) = HuHexp[ —(n/LA)(x* +)7)]  (429)

We will now consider a few examples. If m = 0, then Hy=1, and
therefore from (4.28a) we have '

Uso(x) = exp[ —(m/ LA)x?] (4.30)
Figure 4.14 shows a plot of the behavior of U versus x / a for two values of
the Fresnel number N. The electric field amplitude on the mirror is reduced
to 1/e of its maximum value at a distance w, from the center, where w, is
given by

w, = (AL/m)'/? (431)

When m =1, then H, = (8%/L))'/*, and Fig. 4.15 shows a normalized
plot of U versus x/a for two values of the Fresnel number. Since the
overall mode pattern is determined by (4.27a), the lowest-order modes will
be as follows:
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FIG. 4.15. Lowest-order antisymmetric mode of a confocal resonator.

(i) TEMy, Mode (m =1=0). The eigensolution is Uylx, y) =
exp — #{x? + y?)/ LA}, and the mode has a Gaussian radial profile both
along the x and y directions. In this case the mode pattern corresponds to a
circular luminous spot on the mirror {Fig. 4.16) with a dimension given by
w,. For this reason w, is called the spot size at the mirror." As an example,
for A = 0.6pm and L = 0.5 m we get w, =0.3mm.

(if) TEMy Mode (m =0,1=1). The eigensolution is Upy(x, y)=
H,(y)exp[— m(x? + y?)/ LA}, and the radial behavior of the field along the
x direction is as in Fig. 4.14 while Fig. 4.15 shows the behavior along the y
direction. The pattern of light formed on the mirror by this mode is shown
in Fig, 4.16.

(iii) TEM,, Mode (m = [=1). The eigenfunction is now U,(x, y)
= H(x)H(y)exp| — #(x* + y?)/ LA, and the radial behavior is as in Fig.
4.15 along both the x and y directions. In a similar way we can find the

*We note here a new possible interpretation of the Fresnel number. With the help of (4.31) it
is readily shown that N = (1/=)a?/w?). Apart from a propertionality constant N is seen to
be given by the ratio of the mirror cross section (ma® for a circular mirvor) and the mode
cross section (rw? on the mirror).
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FIG. 4.16. Mode patterns of some low-order modes.

eigenfunctions and the mode patterns for the higher-order modes (see Fig.
4.16).
So far we have discussed only the eigenfunctions of (4.25) and (4.26).
In discussing their corresponding eigenvalues, we will need to avoid the
limitation posed above that N >» 1 (the mirror cross section is much larger
than the mode cross section). In fact, it can be shown that for N > 1, we
have |a| =1 and the diffraction losses vanish. So, for a meaningful discus-
sion of the cigenvalues o, we will need to go back to the Flammer
spheroidal radial functions. Fortunately, however, the expression for ¢,
turns out to be quite simple and so, using (4.22), the resonance frequencies
turn out to be simply given by
c[2n+(l +m+ I)]
- 4L
The corresponding frequency spectrum is shown in Fig. 4.17. Note that
modes having the same value of 2n+ m + [ have the same resonance
frequency although they have different spatial configurations. These modes
are said to be frequency degenerate. Note also that, unlike the plane wave
case (Fig. 4.7), the frequency spacing is now ¢/4L. The frequency spacing
between two modes with the same (/,m) values (e.g., TEMy) and with n
differing by 1 (i.e., the frequency spacing between two adjacent longitudinal
modes) is, however, ¢ /2L as for the plane case. We now go on to consider

(432)
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the magnitude of g, ie., the diffraction losses. Figure 4.18 shows the
behavior of the diffraction losses y, = 1 — |of versus the Fresnel number as
obtained from the value of the Flammer spheroidat radial functions. A
comparison of Fig. 4.18 with Fig. 4.12 shows that, for a given Fresnel
number, the diffraction loss of a confocal resonator is much smatler than
that of a plane resonator. This can be easily understood by noting that, in a
confocal resonator, as a result of the focusing properties of the spherical
mitrors, the field tends to be much more concentrated along the resonator
axis (compare, for instance, the curves of Figs. 4.9 and 4.14 or the curves of
Figs. 4.11 and 4.15 at the same values of the Fresnel number).
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F1G. 4.18. Diffraction loss per Pass y; versus Fresnel number for a confocal resonator (after
Boyd and Gordon(®),
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Once the field distribution over the mirross is known, the field distribu-
tion at any point inside as well as outside the cavity can be obtained by
using the Kirchhoff integral. It can be shown(® that this field distribution is
given by

Wo V2 x 2y x4 p?
U(x, y,2)= H H, exp| — ———
(x.222) w(z) "‘( w(z)) ’( w(z) ) p[ w(z)
(e e dime 433
Xexp{—i —*ZR—(Z)—-"‘ z-(+m+ )@(Z) (. )
If the resonator center is taken to be the origin (Fig. 4.19), the beam spot
size w(z) which appears in (4.33) is given by
w(z) = wo[ 1 + (2z/L)’]
where w, is the spot size at the center of the resonator and is given by
1/2
wo=( %) (4.35)
In Fig. 4.19 the beam dimension (i.c., spot size) as a function of position
along the resonator axis, as obtained from {4.34), is indicated by the solid
curve. Note that the minimum spot size occurs at z = 0, The quantity wy, is
therefore usually referred to as the spot size at the beam waist. Note also
that for z= + L/2 (i.e, on the mirrors), (4.34) gives w=(LA/7)"/? in
agreement with {4.31). The spot size at the mirrors is thus y2 larger than
that at the resonator center. This result is readily understood when it is

remembered that the mirrors tend to focus the beam at the resonator

center,
We now consider the phase term appearing in the last exponential
factor of (4.33). The functions R(z) and ¢(z) are given by'®

172 (434)

R(z) = z[l +(£ )1] | (4.36)
L
1 " : 2'_3
—*
0

FIG. 4.19. Spot size and equiphase surfaces for a TEMgo mode in a confocal resonator.
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and

= tan~'( 22 4.37

#(z)=1an"'( ) (437)

It can be shown from (4.33) that the equiphase surfaces are, to a good
approximation, spherical with radius of curvature equal to R(z). The sign
of R(z) is taken as positive when the center of curvature is to the left of the
wavefront. In Fig. 4.19 the equiphase surfaces at a few points along the
resonator axis are indicated by dashed curves. Note that for z = 0 (center
of the resonator) we have R = oo and the wavefront is plane, as expected
from symmetry considerations. Note also that for z = + L/2 (ie., on the
mirrors) we have R = L. This shows that, as expected, the two mirror
surfaces are also equiphase surfaces. The expression for ¢(z) in (4.37)
allows one to calculate the mode frequencies. Thus, by substituting the
phase term from (4.33) into (4.22) we find that kL — (! + m + Die(L/2) -
&(— L/2)] = nm. With the help of (4.37) we thus get (4.32).

44 GENERALIZED SPHERICAL RESONATOR

We will now consider the general case of a resonator consisting of two
spherical mirrors with radii of curvature R, and R, separated by a distance
L. The sign of the radius of curvature is taken to be positive for concave
mirrors and negative for convex mirrors. Our aim is to calculate the mode
amplitudes, diffraction losses, and resonance frequencies. Since R, and R,
may take any values (either positive or negative), there will be some mirror
combinations which constitute an unstable resonator configuration (see, for
instance, Fig. 4.6). We are therefore also interested in finding the condition
for the stability of a general spherical resonator. For the discussion that
follows it is convenient to define two dimensionless quantities g, and g, as

g=1- RL, (4.38a)
L .
n=l-g (4.38b)

4.4.1 Mode Amplitudes, Diffraction Losses, and
Resonance Frequencies

To calculate the field distribution, let us first imagine the equiphase
surfaces 1 and 2’ of Fig. 4.19 to be replaced by two actual mirrors with the
same curvatures as those of the equiphase surfaces. Let us also imagine the

i W T
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original mirrors 1 and 2 to have been removed. The resonator will n. e
formed by mirrors 1’ and 2’, and the field distribution inside the resona..
will obviously not have changed. Accordingly, the spot size and equiphase
surfaces, both inside and outside the resonator, wil! remain as in Fig. 4.19.
On the other hand, we can see from (4.36} that the two equiphase surfaces
i’ and 2’ are no longer confocal. Therefore in order to find the modes of a
resonator formed by the two mirrors 1’ and 2' we can first calculate the
position of the two corresponding confocal surfaces 1 and 2, thus reducing
the problem to that of an equivalent confocal resonator. The location of this
resonator can be obtained using (4.36) with L replaced by L,, the length of
the equivalent confocal resonator. Given the radii R, and R, of mirrors 1’
and 2’ and their spacing L, the quantities which can be determined are: (i)
the distance of one of the two mirrors (say mirror 1) from the beam waist
(i.e., the origin of the z axis); (ii) the length L  of the equivalent confocal
resonator. Having determined the above two quantities, the field distribu-
tion can be obtained from (4.33) with the help of (4.34), (4.35), {(4.36), and
(4.37) in which L has been replaced by L_, namely,

27172
w=w0[l+(%-f)] (4.39)
LA /2
Wy = ( 2; ) (4.40)
R(z)=z|1+ (23)2] (441
z
¢-tan"(2ﬁ) (4.42)
A particulasly relevant case is that where R, ;i_f_fl = R {symmetric
resonator). In this case from (4.41) we find that
L}=(2R- L)L (4.43)
The spot size at the mirror is obtained from (4.39), (4.40), and (4.43) as
1/2 2 /e
w;-(%)/[(ﬁ‘%‘—m] (4.44)

The ratio of this spot size to that of a confocal resonator [see {4.31)] is

w! i i/4 R aas
”, [(L/R)[z—(L/Rﬂ] '[l—gz] (445)

where (4.384) and (4.385) have also been used. The quantity w]/w, is
plotted versus L/ R in Fig. 4.20. We see that: (i) The minimum spot size
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FIG. 420 Symmetric resonator: plot of the spot size w; on the mirror (normalized to the
corresponding w, for a confocal resonator of the same length) versus the ratio of resonator i
length L to mirror radius R. ) |

Diffraction loss in percent

occurs for L/ R = 1 (confocal resonator). (ii) The spot size diverges for both
L/R=0 (plane resonator) and L/R =2 (concentric resonator). Note,
however, that, except when very near these two extremes, the spot size is
not very different from that of a confocal resonator.

What has been said so far concerns only the calculation of the &
eigenfunctions, i.e., of the field distributions. To calculate the diffraction
losses it is necessary to actually solve the Fredholm integral equation for
the particular case under consideration. Figure 4.21 shows the calculated
diffraction losses versus Fresnel number for a range of symmetric resona-
tors (which are characterized by their corresponding g values). We note
that, for a given Fresnel number, the confocal ( g = 0) resonator has the
lowest loss. To calculate the resonator frequencies, we consider a general
resonator and let z, and z, be the z-coordinates of the two mirrors referred
to the origin at the beam waist. From (4.22) and (4.33), one obtains the |
following expression, from which the resonance frequencies can be found: 02 0406 10 2 "4 6810 20 4060 100

kL =+ m+ 1)[o(z)) — ¢(2))] = (4.46) N-a¥iL

Where ¢(z,) and ¢(zy) are obtained from (4.42). Equation (4.46) gives FIG. 4.21. Diffraction loss per transit versus Fresnel number for the TEMy, mode (a)} and
#(22) — (2)) TEMo mode (b) of several symmetric resonators (after Li('®). Copyright 1965, American
n+(l+m+1) — ]

p= _C_

3L (4.47) Telephone and Telegraph Company. Reprinted with permission.
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{n,0,0) (n+1,0,0)
1(n,1,0),(n,0,1)]
Lin,11),1n,0,2),in,2,0)]

-— (c/zL}(aL/n’m“'

-y C/bL

FIG. 4.22. Mode spectrum of a symmetric spherical mirror resonator when the radius of
curvature R is much larger than the cavity length L.

After some lengthy algebra the following expression is obtained:

.y 172
v=L n+(l+m+l)-—c{i—%—'—&—}

s (4.48)

where g, and g, are given by (4.38). Note that the frequency degeneracy
which occurs for a confocal resonator (Fig. 4.17) is lifted in the case of a
general spherical resonator. As an important example we consider a near-
planar resonator with two identical and nearly flat mirrors, ie., with
(L/R)< 1. Then cos™'(g,g)"/> =cos™'[1 — (L/R)=(@2L/R)'/? and
(4.48) becomes
- < 1(2L\"?

The resulting frequency spectrum is indicated in Fig. 4.22 (compare with
Fig. 4.7).

4.4.2 Stability Condition

The stability condition can be obtained by an argument based on
geometrical optics.® With reference to Fig. 4.23, let us consider a ray
leaving point P, of some general plane B inside the resonator. This ray,
after reflection from mirrors 1 and 2, will intersect the plane § at P,. If we
let x, and x, be the coordinates of P, and P, with respect to the resonator
axis, and 8, and 8, the angles that the corresponding rays make with the
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FIG. 4.23. Matrix method for finding the stability condition for a general spherical resonator.

axis, then for small values of x and #, the quantities x, and #, are obtained
from the corresponding quantities x, and 8, by a lincar transformation.
Thus, in matrix form

X
g,
where the matrix elements A, B, C, and D will depend only on the

resonator geometry. The ray leaving point Py(x,,8)) will, after two reflec-
tions, intersect the plane B at point Py(x,,#,) given by

Xg
8, (4.50)

A B
=’cp

x,0 |4 Bjx | |A Bf|xe
= = (4.51)
8, |C D|i&| |C D||%
Therefore, after n round trips, the point 2,(x,,8,) is given by
Xn A B Xp 4 52
a.|"|c || (4-52)

For the resonator to be stable, we require that, for any initial point {x,, 8,),
the point (x,,8,) should not diverge as n increases. This means that the
matrix

A B|

C D
must not diverge as n increases. Since the determinant of the matrix,
AD-BC, can be shown to be unity, one then has from matrix calculus‘'”
that

A B
C D

A sinnf — sin(n — 1)8 Bsinnf
Csinnf Dsinnf - sin(n — 1)

1

sin§ (453)
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where
cosf =}(4A+ D) (4.59)
From (4.54) we see that, for the matrix (4.53) not to diverge, we require that
—1<§(4+D)<1 (4.55)

In fact, if (4.55) is not satisfied, # will be a complex number and sin(n8)
will diverge as n increases.

By calculating the coefficients A and D for a generalized resonator and
then using (4.55) we finally arrive at a very simple expression for the
stability, namely,

0<g g <l (4.56)

This stability condition is depicted in Fig, 4.24. In this figure, the
slable regions correspond to the shaded area. A particularly interesting
class of spherical resonators is that corresponding to points on the straight
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FIG. 424. g,, g, stability diagram for a general spherical resonator. The stable region
corresponds to the shaded parts of the figure. The dashed curves correspond to the possible
confocal resonators.

Sec. 4.5 «  Unstable Resonators 135

line AC, making an angle of 45° with the g, and g, axes. This line
corresponds to resonators having mirrors of the same radius of curvature
(symmetric resonators). As particular examples of these symmetric resona-
tors, we notice that those corresponding to points 4, B, and C of the figure
are the concentric, confocal, and piane resonators, respectively. Therefore
all three of these resonators lie on the boundary between the stable and
unstable regions. The disadvantages of a concentric resonator are that: (i)
It produces a very small spot size at the resonator center (Fig. 4.2), which
can be a problem in high-power lasers. (ii) It is rather sensitive to mirror
misalignment. Concentric resonators are therefore seldom used. Confocal
resonators, on the other hand, typically give a spot size [see (4.35)] that is
too small for effective use of all the available cross section of the laser
medium. For this reason confocal resonators are not often used. Plane-
parallel resonators can make good use of the cross section (see Fig. 4.9).
Like concentric resonators, however, they are rather sensitive to mirror
misalignment. For the various reasons discussed above, the most commonly
used laser resonators make use of either two concave mirrors of large radius
of curvature (say from two to ten times the resonator length) or a plane
mirror and a concave mirror of large radius. These resonators give a spot
size somewhat larger than that of confocal resonators (see Fig. 4.20), and a
reasonable stability against misalignment. Such resonators lie in the stable
region near point C of Fig. 4.24.

4.5 UNSTABLE RESONATORS(®

The stability condition for a generalized spherical resonator was dis-
cussed in the previous section (see, in particular, (4.56)], and the unstable
regions were shown to correspond to the unshaded regions of the 2182
plane in Fig. 4.24. Unstable resonators can be separated into two classes:
(i) positive branch resonators, which correspond to the case 518> 1, and
(i) negative branch resonators, which correspond to the case £18:<0.

Before going on to a quantitative discussion of unstable resonators, it
is worth pointing out here the reasons why these resonators are of interest
in the laser field. First, we note that, for a stable resonator, the spot size w is
typically of the order of that given for the case of a confocal resonator (see
Fig. 4.20). This implies that for a resonator length of the order of a meter
and for a wavelength in the visible range, the spot size will be of the order
of or smaller than 1 mm. With such a small cross section the output power
(or energy) available in a single transverse mode is necessarily rather small.
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For unstable resonators, on the contrary, the field does not tend to be
confined to the axis (see, for example, Fig. 4.6), and a large mode volume
in a single transverse mode is possible. With unstable resonators, however,
there is the problem that rays tend to walk off out of the cavity. The
corresponding modes, therefore, have substantially greater (geometrical)
losses than those of a stable cavity (where the losses are due to diffraction).
This fact can, however, be used to advantage if these walk-off losses are
turned into useful output coupling.

To find the modes of an unstable resonator, we can start by using a
geometrical-optics approximation, as first done by Siegman.®® To do this,
we begin by recalling the two main results which were obtained for the
eigensolutions of a stable resonator (see Fig. 4.19): (i) The amplitude is
given by the product of a Hermite polynomial with a Gaussian function.
{ii)) The phase distribution is such as to give a spherical wavefront. The
presence of the Gaussian function limits the beam spot size and essentially
arises from the focusing properties of a stable spherical resonator. The fact
that the wavefront is spherical is, on the other hand, connected with the
boundary conditions set by a spherical mirror. In the unstable case no
Hermite—Gaussian solution is possible (Problem 4.16) since the beam is no
longer focused toward the resonator axis. It is, therefore, natural to assume,
as a first approximation, that the solution in this case has an amplitude
corresponding to uniform illumination, while the wavefrent is still spheri-
cal.

After this preliminary discussion, let us consider a general unstable
resonator such as that of Fig. 4.25a. As explained above, we will assume the
mode te be made up of a superposition of two spherical waves of uniform
intensity.(”? The centers P, and P, of the two waves are nof the centers of
curvature of mirrors M, and M,, and their positions are easily calculated
by a self-consistent argument: The spherical wave originating from P,,
upon reflection at mirror M,, must give a spherical wave originating from
P, and vice versa. The positions of points P, and P, are then obtained by a
straightforward calculation based on geometrical optics. The results for the
quanlities 7, and r,, indicated in Fig. 4.25a, are

n=g{{ g &85 1] T 82}_I- (4.57a)

’2'81{[8182(8182_])]|/2+8182"81}_I (4.57b)

where g, and g, are given by (4.38).
So far only the mode configuration has been considered. To calculate
the loss of this mode, we will limit ourselves to a consideration of the
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FIG. 4.25. (2) A general convex mirror unstable resonator; (b) symmetric double-ended
unstable resonator.

symmetric (i.c, R, = R, = R, where R is the radius of the mirrors), double-
ended (i.c., a; = a, = a, where 2a is the mirror aperture), unstable resona-
tor (Fig. 4.25b). In this case, it can be readily shown that, on passing from
one mirror to the other, the spot of each spherical wave becomes magnified
by a factor M given by

M=g+(g-1)" (458)

where we have set g = g, = g,. The quantity M is, therefore, called the
one-way (symmetric) magnification factor. Since we have assumed uniform
illumination, the loss per pass is then seen to be

S2—= 8 _Mi-1
= = 4.59
Y S, M? ( )

where S, and §, are the cross sections at the mirrors 1 and 2, respectively,
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of the beam originating from point P. As already mentioned, this loss per
Pass also gives the fractional output coupling from each end. Note that
both M and vy are independent of mirror diameter 2a.

So far, only one mode (which turns out to be the lowest-loss mode) has
been considered. To find the higher-order modes, still working within the
geometrical-optics approximation, we will again restrict ourselves to consid-
ering the symmetric double-ended case. In this case, the field at position x
of mirror 2 is due to the field at position x /M of mirror 1. Tf we let U, and
U, be the corresponding field distributions, we can write

Uy(x) = M], ZU(3) (4.60)
where the amplitude factor 1/M'/? on the right-hand side of (4.60)
accounts for the fact that the beam dimension is increased by a factor M
on passing from mirror 1 to mirror 2. For U(x) to be a cavity mode, we
require (since the cavity is symmetrical) that Uy(x) = o, U,(x). So, from
{4.60) we get

a U(x) = Mll = U(E) (4.61)
which is an eigenvalue equation. A similar equation applies to the y
coordinate. The overall eigensolution is then U(x, y) = U(x)U(y), and the
corresponding eigenvalue is o = 0,0,. One can immediately verify that the
zeroth-order solution of (4.61) is U, = const and o, = | /M '/, Combining
these solutions for both x and J coordinates, we get U(x, )= const and
o= 1/M. This is just the mode which was previously considered and whose
losses are given by (4.59). It is, however, easy to show that the higher-order
solutions of (4.61) are of the form

U(x)=x" (4.62a)
where n > 0 and the corresponding eigenvalues are
o, =1/ M"+1/2 (4.620)

Note that the case n = 0 (zeroth-order solution) corresponds to the lowest-
loss solution.

What has been said so far can be readily generalized to an asymmetric
unstable resonator. We will limit the discussion to a consideration of a
particularly important class of asymmetric resonators, namely, the confocal
resonator. This class can be further subdivided into: (i) negative branch
(Fig. 4.26a) and (ii) positive branch (Fig. 4.26b) confocal resonators, These
two branches are represented in the 81-22 plane by the two branches of the
hyperbola shown as dotted curves in Fig. 4.24 [the equation of the hyper-
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FIG. 4.26. (a) Negative-branch and (b) positive-branch confocal unstabie resonators.

bola is (2g, — 1X2g, — 1) = 1]. Of these various resonators, only the (sym-
metric) confocal one (g, = g, = 0) and the plane-parallel one ( a=g;=1
lic on the boundary between the stable and unstable regions. All other
confocal resonators are unstable. The mode of an unstable confocal resona-
tor is made up of the superposition of a spherical wave (originating from
the common focus) with a plane wave. In this case we can define a
round-trip magnification factor M given by M = |R,/ Ry, where R, and R,
are the two mirror radii. The quantity M gives the increase in diameter of
the plane wave after one round trip. If the diameter 2a, of mirror 1 is made
sufficiently large (2a, > 2Ma,), only the plane beam will escape out of the
cavity, The round-trip loss (or fractional output coupling) of this single-
ended resonator is then given by (4.59).

The discussion so far has been based on a geometrical-optics approxi-
mation. To get a more realistic picture of the modes of an unstable
resonator one must use a wave approach (e.g., use the Kirchhoff diffraction
integral again). This will not be discussed at any length here. We will just
present and discuss a few relevant results. As far as the eigensolutions are
concerned, the wave approach shows the following: (i) The phase of the
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solution corresponds to a wavefront that is close to spherical, with radius
almost equal (though always a little larger) than that predicted by geometri-
cal optics. (ii) The amplitude of the solution shows a radial variation which
differs considerably from the geometrical-optics result [i.e., equation
(4.62a)]. The radial variation shows a characteristic ring pattern which
arises from diffraction effects. As an example, one such pattern is shown in
Fig. 4.27. The wave theory does show, however, that different modes, i.e.,
different self-reproducing spatial patterns, do exist. These modes differ
from each other in the number of rings they display and also in their
location and strength. A clear-cut distinction between the lowest-order and
higher-order modes is no longer possible. A distinction is still possible,
however, when the eigenvalues of the equation, which give the diffrac-
tion losses, are considered. In fact, a new characteristic feature appears: At
each half-integer value of a suitably defined equivalent Fresnel number
(N.y) a different and distinct mode becomes the “lowest-order” (i.e., the
lowest-loss) mode. This is shown in Fig. 4.28 where the magnitude
of the eigenvalue o is plotted versus N, for three consecutive modes
(the corresponding loss is then given by 1 — |o]?). Note that, for each
half-integer value of N, there is a large difference between the losses
of the lowest-order mode and those of other modes. This shows that a
large transverse-mode discrimination can be obtained under these condi-
tions. For a symmetric double-ended resonator N, is given by N, =
[(M?~1)/2M]N, where N is the usually defined Fresnel number N =
a’ / LA. Note that, when M = | (i.e., for a low-loss resonator), we have N
< N. For a positive branch single-ended confocal resonator, N is given by
Neg=[UM- 1)/2]-(a3/ L)), while for a negative branch it is given by
No=[(M+1)/2] {(a2/L)X). In Fig. 4.28, the geometrical-optics value of
|oj for the zeroth-order solution is also indicated [according to (4.59), this
value is |o| = 1 /M, independent of mirror dimension and hence of Nl
Note that, at each half-integer value of N, the lowest-order mode (i.e., the
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FIG. 428, Typical example of the osciflatory behavior of the magnitude of the cigenvalue ¢
versus the equivalent Fresnel number for three consecutive modes.

one whose curve displays a maximum for that value of N,), has an
appreciably smaller loss y = (1 — |o/>) than that predicted by geometrical
optics. This is also apparent in Fig. 4.29, where the loss y is plotted versus
the magnification factor M. In this figure, the solid curves (which apply to
successive half-integer values of N} are obtained by diffraction theory,
while the dashed curve corresponds to the geometrical-optics result. The
fact that the true losses are smaller than those predicted by geometrical
optics is again an effect arising from diffraction: Diffraction effects pro-
duce a field amplitude with such a ring structure that the losses are
minimized.

As a conclusion to this section we list the main advantages and
disadvantages of unstable as compared to stable resonators. The main
useful properties of an unstable resonator can be summarized as follows: (i)
large, controllable mode volume (ii), good transverse-mode discrimination,
and (iii) all reflective optics (which is particularly attractive in the infrared,
where metallic mirrors can be used). The main disadvantages are as
follows: (i) The output beam cross section is in the form of a ring (i.e., it
has a dark hole in its center). For example, in a confocal resonator (Fig.
4.26), the inner diameter of the ring is 2a, while its outer diameter is 2Ma,.
Although this hole disappears in the focal plane of a lens used to focus the
beam (far-field pattern), the peak intensity in this focal plane turns out to
decrease with decreasing ring thickness. In fact, for a given total power, the
peak intensity for an annular beam is reduced by (M2 — 1)/ M? from that
of a uniform-intensity beam with a diameter equal to the large diameter of

1ar @
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FIG. 4.29. Coupling losses- of an unstable resonator versus the magnification factor M;
dashed curve: geometrical-optics result; solid lines: wave theory results (after Siegman(®),

the annular beam. (ii) The intensity distribution in the beam does not
follow a smooth curve, but exhibits diffraction rings. (iii) An unstable
resonator has greater sensitivity to cavity perturbations compared to a
stable resonator. The above advantages and disadvantages mean that
unstable resonators find their applications in high-gain lasers (so that M
can be relatively large), especially in the infrared, and when high-power (or
high-energy) diffraction-limited beams are required.

PROBLEMS

4.1 Consider a confocal resonator of length L = 1 m used for a He-Ne laser at a
wavelength A = 0.6328 pm. Calculate the spot size at the resonator center and
on the mirrors.

4.2 For the above resonator calculate the frequency difference between two
adjacent longitudinal modes.

4.3 For the resonator of Problem 4.1 calculate how many different mode frequen-
cies fall within the width (FWHM) of the Ne lLine [see equation (2.114)).
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4.4 Consider a hemiconfocal resonator of length L = 2m used for a CO, laser at
wavelength A = 10.6 um. Calculate the spot size on both mirrors,

4.5 For the above resonator calculate the frequency difference between two
adjacent TEM,, modes. Given that the width (FWHM) of the CO, laser line is
50 MHg, find how many TEM,, modes fall within this width.

4.6 A laser operating at A = 0.6 um has a power gain of 2 X 102 per pass and is
provided with a symmetric resonator consisting of two mirrors each of radius
R=10m and spaced by L =1m. Choose an appropriate size of mirror
aperture in order to suppress TEM,, mode operation while allowing TEM,,
mode operation.

4.7 Consider a resonator consisting of two concave spherical mirrors both with
radius of curvature 4 m and separated by a distance of 1 m. Calculate the spot
size of the TEMg, mode at the resonator center and on the mirtors when the
cavity is oscillating at the wavelength A = 514.5nm [one of the Ar* laser
wavelengths). -

4.8 How are the spot sizes at the two mirrors modified if one of the mirrors of the
above problem is replaced by a plane mirror?

4.9 One of the mirrors in the resonator of Problem 4.7 is replaced by a concave
mirror of 1.5m radius of curvature. Calculate: (i) the position of the beam
waist; (ii) the spot size at the beam waist and on the two mirrors.

4.10 A resonator is formed by a convex mirror of radius R, = — 1 m and 2 concave
mirror of radius R, = 1.5m. What is the maximum possible mirror separation
if this is to remain a stable resonator?

4.11 A confocal unstable resonator is to be used for a CO, laser at a wavelength of
A =106 pm. The resonator length is chosen to be L = 1m. Which branch
would you choose for this resonator if the mode volume is to be maximized?
Calculate the mirror apertures 2a; and 2a, so that: (i) Ny =17.5, (ii) single-
ended output is achieved, and (iii) a 20% round-trip output coupling is
obtained. Then find the two mirror radii R, and R,.

4.12 Using a geometrical-optics approach (and assuming lowest-order mode oscilla-
tion), calculate the round-trip loss of the resonator designed in the above
problem. What are the shape and dimensions of the output beam?

4.13 What is the radial dependence of the energy density within the resonator {or of
the intensity of the output beam) for a TEM,, mode? What is the value of the
intensity spot size w,?

4.14 Show that the total power it a Gaussian beam is P = I(mw}), where I, is the
peak (on-axis) beam intensity,

4.15 By direct substitution, show that (4.25) has the eigensolution I/ = exp(— #£?)
when N = o0. Find the corresponding cigenvalue af.

4.16 Show that an equivalent confocal resonator can only be found when the g1 &2
parameters of a generalized spherical resonator satisfy (4.56).
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4.17 Calculate the (ABCD) ray transfer matrix for free-space propagation of a ray.
between two planes 8 and 8’ separated by a distance L. Calculate the

determinant of the matrix.

4.18 Calculate the (4 BCD) matrix for a ray which is reflected by a spherical mirror
when planes 8 and B’ are coincident and immediately in front of the mirror.
Calculate the determinant of the matrix.

4.19 Show that, when the planes in the above problem are coincident and at a
distance L from a spherical mirror, the corresponding matrix can be obtained
as the product of the matrices calculated in Problems 4.17 and 4.18. Calculate
the determinant of the matrix.

420 Using the results of Problems 4.17, 4.18, and 4.19, derive the stability condi-
tion (4.38).

4.21 Using the geometrical-optics relationship between the conjugate points of a
spherical mirror, prove equation (4.57).
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