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Introduction

The study of seismicity by statistical and phenomenological analysis of real
earthquake catalogs has this disadvantage that the data usually sample time intervals of
about one hundred years or even less. This time interval is very short in comparison with
the duration of tectonic processes responsible for seismic activity, therefore the patterns of
earthquake occurrence identifiable in a real catalog may be only apparent and not recur in
the future. On the other hand, a synthetic catalog obtained by numerical modelling of the
seismogenic process can cover very long time intervals, thus allowing more reliable
estimation of seismicity parameters.

Mathematical models of lithosphere dynamics are tools for the study of the
earthquake preparation process. These models are also useful in earthquake prediction
studies. An adequate model should indicate the physical basis of premonitory patterns
determined empirically before large events. Note that the available data often do not
constrain the statistical significance of the premonitory patterns. The model can be used
also to suggest new premonitory patterns that might exist in real catalogs.

A block model simulates the dynamics of the block structure and the tectonic
movements of a real seismic region and is used to produce a synthetic catalog of
earthquakes. The basic principles of the model are developed in Gabrielov et al. (1990).

Although there is no adequate theory of the seismo-tectonic process, various
properties of the lithosphere, such as spatial heterogeneity, hierarchical block structure,
different types of non-linear rheology, gravitational and thermodynamic processes,
physico-chemical and phase transitions, fluid migration and stress corrosion, are probably
relevant to the properties of earthquake sequences. The qualitative stability of these
properties in different seismic regions suggests that the lithosphere can be modeled as a
large dissipative system that does not essentially depend on the particular details of the
specific processes active in a geological system.

The model exploits the hierarchical block structure of the lithosphere proposed by
Alekseevskaya et al. (1977). According to this model, the blocks of the lithosphere are
separated by comparatively thin, weak, less consolidated fault zones, such as lineaments
and tectonic faults. In the seismotectonic process major deformation and most
earthquakes occur in such fault zones.

A seismic region is modelled by a system of absolutely rigid blocks divided by



infinitely thin plane faults. Relative displacement of all blocks is supposed to be infinitely
small relative to their geometric size. Blocks interact between themselves and with the
underlying medium. The system of blocks moves as a consequence of prescribe motion of
boundary blocks and of the underlying medium.

As the blocks are absolutely rigid, all deformation takes place in the fault zones
and at the block base in contact with the underlying medium. Relative block
displacements take place along the fault planes. This assumption is justified by the fact
that for the lithosphere the effective elastic moduli in the fault zones are significantly
smaller than those within the blocks.

The blocks are in viscous-elastic interaction with the underlying medium. The
corresponding stresses depend on the value of relative displacement. This dependence is
assumed to be linear elastic. The motion of the medium underlying different blocks may
be different.

Block motion is defined so that the system is in a quasi-static state of equilibrium,

The interaction of blocks along fault planes is viscous-elastic ("normal state") so
far as the ratio of the stress to the pressure remains below a certain strength level. When
the critical level is exceeded in some part of a fault plane, a stress-drop ("failure™) occurs
(in accordance with the dry friction model), possibly causing failure in other parts of the
fault planes. These failures produce earthquakes. Immediately after the earthquake and for
some time after, the affected parts of the fault planes are in a state of creep. This state
differs from the normal state because of a faster growth of inelastic displacements, lasting
until the ratio of the stress to the pressure falls below some other level.

This numerical simulation gives rise to a synthetic earthquake catalog.

Block Structure Geometry

A layer, d, with thickness H limited by two horizontal planes is considered (Fhg.1),
and a block structure is defined as a limited and simply connected part of this layer. Each
lateral boundary of the block structure is defined by portions of the parts of planes
intersecting the layer d. The subdivision of the structure into blocks is performed by
planes intersecting the layer. The parts of these planes, which are inside the block

structure and its lateral faces, are called "fault planes".
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The geometry of a block structure is defined by the lines of intersection between
the fault planes and the upper plane which bounds the layer d (these lines are called
"faults”), and by the angles of dip of each fault plane. Three or more faults cannot have a
common point on the upper plane, a common point of two faults being called a "vertex".
The direction is specified for each fault and the angle of dip of the fault plane is measured
on the left of the fault. The fault planes-can have arbitrary dip angles, which are specified
on the basis of information on the deep structure of the region under consideration. The
positions of a vertex on the upper and the lower plane by which the layer 4 is bounded are
connected by a segment ("rib”) of the line of intersection of the corresponding fault
planes. The part of a fault plane between two ribs corresponding to successive vertices on
the fault is called a "segment”. The shape of a segment is a trapezium. The common parts
of a block with the upper and lower planes are polygons, and the common part of a block
with the lower plane is called "bottom".

We assume that the block structure is within a confining medium, whose motion is
prescribed on its continuous parts contained between two ribs of the block structure

boundary. These parts of the confining medium are called "boundary blocks".

Block Movement

The blocks are assumed to be rigid and all their relative displacements take place
along the bounding fault planes. The interaction of the blocks with the underlying medium
takes place along the lower plane, any kind of slip being possible.

The movements of the boundaries of the block structure (the boundary blocks) and
of the medium underlying the blocks are assumed to be an external force on the structure.
The rates of these movements are considered to be horizontal and known.

Non-dimensional time is used in the model, therefore all quantities that contain
time in their dimensions are referred to one unit of the non-dimensional time, so that their
dimensions do not contain time. For example, velocities in the model are measured in
units of length, so a velocity of 5 cm means 5 cm per one unit of the non-dimensional
time. When interpreting the results a realistic value is given to the unit. For example, if it
is one year, then the velocity of 5 cm prescribed for the model means § cm/year.

At each time the displacements of the blocks are defined so that the structure is in

a quasi-static equilibrium, and all displacements are supposed to be infinitely small



compared with the block size. Therefore the geometry of the block structure does not

change during the simulation and the structure does not move as a whole.

Interaction between the Blocks and the Underlying Medium

The elastic force which is due to the relative displacement of a block and the
underlying medium, at some point of the block bottom, is assumed to be proportional to
the difference between the total relative displacement vector and the vector of slippage
(inelastic displacement) at the point.

The elastic force per unit arca f* = (f,"#,") applied to the point with coordinates

(X,Y), at some time £, is given by

fxu = Ku(x - Xu - (Y’ Yc )((P - (Pu) - xa);
(D
Sy =Ky - yu + (X - X )@ - Qo) - ya)-

where X,, Y, are the coordinates of the geometrical center of the block bottom; (xu, yu) and
@, are the translation vector and the angle of rotation (following the general convention,
the positive direction of rotation is anticlockwise) around the geometrical center of the
block bottom, for the underlying medium at time 7; (x,y) and @ are the translation vector of
the block and the angle of its rotation around the geometrical center of its bottom at time
1 (x4, ¥a) is the inelastic displacement vector at the point (X,Y) at time £.

The evolution of inelastic displacement at (X,Y) is described by the equations

dxa dyﬂ - u
=W, xua — =W fy. 2
dt / dr & @)

The coefficients K, and W, in (1) and (2) may be different for different blocks.



Interaction between Blocks along Fault Planes

At time t and some point (X,Y) of a fault plane separating the blocks numbered i
and j (the block numbered i is on the left and that numbered j on the right of the fauit), the

‘components Ax, Ay of the relative block displacement are given by

Ax=x -x- (Y- Y@ + (Y - Y,
(3)
Ay =y -y + (X - X0 - (X - XD,

where Xci, Yci, XJ, Y2 are the coordinates of the geometrical centers of the block bottoms,
(xi, ¥i), and (%, y;) are the translation vectors of the blocks, and i, ¢ are the angles of
rotation of the blocks around the geometrical centers of their bottoms at time ¢.

In accordance with the assumption that relative block displacements take place
only along fault planes, the displacements along a fault plane are related to the horizontal

relative displacement by

A = exAx + eyAy,

(4)
A =Aq/cos o, where A,=eAy-eAr.

That is, the displacements along a fault plane are projected onto the horizontal
plane (Fig.2A). Here A, A are the displacements along the fault plane parallel (A;) and
normal (4)) to the fault line on the upper plane, (e, ey) is the unit vector along the fault
line on the upper plane, o is the dip angle of the fault plane, and A, is the horizontal
displacement normal to the fault line on the upper plane.

The elastic force per unit area f = (fi,f}) acting along the fault plane at the point
(X,Y) is given by

fi=K(A-8),
(3)
Si=K(A - 8).
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FIGURE 2 Vertical section of the block structure orthogonal to a fault.
Relative displacements of blocks (A) A, and A and forces (B) po, /i, and f; are
shown.



Here 8, O are inelastic displacements along the fault plane at the point (X,Y) at time ¢,
parallel (8,) and normal (&) to the fault line on the upper plane.

The evolution of the inelastic displacement at the point (X,Y) is described by the

equations
dor dé
— =Wf, — =Wf. 6
dt % dt A ©

The coefficients K and W in (5) and (6) may be different for different faults. The
coefficient K can be considered as the shear modulus in the fault plane.

In addition to the elastic force, there is a reaction force which is normal to the fault
plane; the work done by this force is zero, because all relative movements are tangent to

the fault plane. The elastic energy per unit area at (X,Y) is equal to

e = (fi(Ac- &) + filA - 6))/2. (7

From (4) and (7) the horizontal component of the elastic force per unit area normal

to the fault line on the upper plane, f,, can be written as:

fom 5= - (8)

It follows from (8) that the total force acting at a point of the fault plane is
horizontal if there is a reaction force, which is normal to the fault plane (Fig.2B). The

reaction force per unit area is equal to

po=fitg o ®

Since we have introduced the reaction force (9), there are no vertical components
of forces acting on the blocks and no vertical block displacements,
Formulas (4), (5) and (8) lead to the following formulas for the horizontal

components of the vector (fi .fy) of the elastic force per unit area at the point.



AxXx + e e |1 -
X

r’2 ez\ 4 3 Se

f = K|je® + = Ay + e e |1 - Ax - 8 e -
Y x vy 2
cos o |

The formulas given above are valid for the boundary faults too. In this case one of
the blocks separated by a fault is a boundary block. The movemént of such a block is
described by its translation and rotation around the origin of coordinates. Therefore the
coordinates of the geometrical center of the block bottom in (3) are zero for a boundary

block. For example, if the block numbered j is a boundary block, then X =V)=0in(3).
Eguations of Equilibrium

The components of block translation vectors and the angles of rotation around the
ceometrical centers of the bottoms are found from the condition that the total force and
the total moment of forces acting on each block are both zero. This is the condition of
quasi-static equilibrium of the system, and at the same time the condition of minimum
energy. The forces arising from prescribed movements of the underlying medium and of
the boundaries of a block structure are considered only in the equations of equilibrium. In
fact it is assumed that the action of all other forces (gravity, etc.) on a block structure is

balanced and does not cause displacements.

According to (1), (3-5), (8), and (9), forces acting on the blocks are linear
functions of translation vectors and the angles of rotation. Therefore the system of
equations which describes the equilibrium is linear and has the following form

Az=b (10)
where the components of the unknown vector z = (21, 2a, ..., Z5,) are components of the
translation vectors .and angles of rotation around the geometrical centers of the bottoms (»
is the number of blocks), i.€. Zzm2 = Xm, Z3m-1 = Vms Z3m = @m (m is block number, m = 1, 2,

vy R

10




The matrix 4 (3mx3n) does not depend on time and its elements are given by (1),
(3-5), (8), and (9). The moment of the forces acting on a block is calculated relative to the

geometrical center of its bottom. The elements of 4 can be calcuiated by the formulas

r

m
S,mec + Z SmepCmp,
¥ u om 1

]
l

Im+1,3m+1 )
p=1
T
m
m
a = a =) S"K"FcmP,
3mel, 3m+2 3m+2,3m+1 P 2
p=1
r
m
m,,.mp mp mp m mp mp
a = a = S K C - - -
Im+1,3m+3 3m+3,3m+1 Zl P ( 2 (Xc Xc) C'1 (Yc
pﬂ
m
- Y )).r
c
r
m
m
a = S'K"c_ + ¥ g "g"Pcre,
Ims+2,3m+2 4 u om <] 3
p=1
r
m
a = a - Smep C,mp mp m _ mp mp
3m+2,3m+3 dm+3,3m+2 Z <] ( 3 (Xc Xc) Cz (Yc
p=1
m
- Y))r
c
2 2 2
a = K"¢ [J"(X + Y*)ds - s’“[(x‘“) + (y’“)zn +
Im+3, 3m+ 3 u m S u [~ <

r
m
+ ) K’”’[ J(CTPx* 4 SRS S 2C7PXy) ds - s:[c;“’(zx“”’x"‘ -
S < <

D=1

c =4 c <

- (X"‘)z} + cmp[zy‘“"y’“- (Y“‘)z} + 2C7F (XY™ x"Py". y "“’X’“)J].
c 1 c ¢ [+ 2 -] c

Here 5.7, X.", ¥.™ are the square and the coordinates of the geometrical center of
the bottom of'a block numbered m, K" is the coefficient X, in (1) for é block numbered m;
7m is the number of vertices of a block numbered m; S;", X,"P 7.™® are the square and
coordinates of the geometrical center of the fault segment between block vertices
numbered p and p + 1 (if p < ) or 7, and 1 (if p = rm); K™ is the coefficient X in (5) and
(10) for the fault to which the segment belongs. As defined above a fault segment means a

11



part of the fault plane limited by the upper and lower planes and lines which connect
positions on the upper and lower planes of two sequential vertices of the fault.

The coefficients ¢, Ci™F, Co™F, C3™F are calculated by the formulas

2
] _ o (") c
c = min cos‘w , C'lP = (") °c + —X— %,
m 2
1spsr P * cos‘a
m mp
2
c . (e"?)“c
m m m x m
c"P = emPemp[c o ], C’3p = (&) e+ —F0e
m
: x ¥ " cos‘a Y cos‘a
mp mp

where o, 5" F, ," © are the values of &, e, and ey for the fault to which the segment

belongs.

Let m = k. If blocks numbered m and k¥ have no common segments, the elements

@zmei 3kej (1, ] = 1, 2, 3) of the matrix A are equal to zero. Otherwise

a = - L'STKTRCE,

Jm+1, 3k+1
D

a = a = - Y'S"K"PCTP,
Im+1,3k+2 3m+ 2, 3k +1 P 2
P
k k
= Y8RP (CTR(Y"P- YY) - COPXTP- XT)),
3m+1,3k+3 P 1 c c 2 c [
P

= - Y/S"K"PCTP
P 3 !
134

Im+2,3k+2

= Y/SPKP(CTP(YTR- YY) - TP (X" X9)),
3im+2,3k+3 D 2 c c 3 c c

P

= LSTKTRPACTR (YT YY) - COP XY XD,

Im+3, 3k+1 P c 2 c
P
= Y/S"KR"P (TP (YR ¥T) - CUP(XTP- XT)),
Im+3,3k+2 e 2 [ c 3 c

Im+3, Ik+3
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In these formulas summarizing over commoen segments of blocks numbered m and
k is only made.

The components of the vector b = (b1, b, ..., b3,) are defined from (1), (3-5), (8),
and (9) as well. They depend on time explicitly because of the movements of the
underlying medium and of block structure boundaries and, implicitly, because of the

inelastic displacements and are calculated by the formulas

s e"?
(ol "
= c [K"[s"x"+ F x dS| + T K"°r |8 &"?- —=¥ |ds| + 4 .
Iim+1 m u u ou m a m £ x cosa 3m+ 1
. - Su p=1 8 mp
P
4 7 r1'I'l Slemp
_ m m_m mp mp %
Jm+2 B cm Ku Suyu+ Jﬂmy'ads] * Z K Im[atey * CCosy st] * d3m+2
\ \ g p=1 g mp .
v P
4 4
b =c K" F |y (Xx - X"} - x (Y - Y") + o™ (X* + Y¥) |ds - _
Ims+3 ml ufi sm a = a c u

u

- S:w:{(Xm)2+ (Ym)z]] + Y K"FJ [a (e:P(X- X" - e"P(y- Y”)J +
o4 c p-l Sm t [ o4 b4 =]
p

e"?(x - X"y + "y - ")
X c Y

+ 8 c]d8]+d

1 cosa Im+ 3

mp

Here x,", yu", and @," are the components of the translation vector and the angle of

the rotation, around the geometrical center of the block bottom for the medium underlying
the block numbered m.

If a block numbered m has no common segments with the boundary blocks, the

items dsme {1 = 1, 2, 3) are equal to zero. Otherwise

= Y/'S"K'P(C™P(x -9 Y'P) 4+ C"P(y +9 X"P)),
P 1 m 2 mp mp

Iim+ 1l o P mp C c
_ 4 @@ mp mp _ mp mp mp
Im+2 - § SpK (Cz (me (Pmch ) * CB (ymp * ‘Omec ))’
= Z'K”P[sm[x (CTP(X"F - x™) - C"P(Y"P - ¥™)) «
Im+ 3 o P mp 2 c c 1 - c

+ y (cmp(X:P~ X:) - CZP(Y:P- ")) + ¢ (xmp(cmPY:- cjpxm)+

mp 3 [+] mp ] 2

+ Y"P(C"PX" - cmpym))] +w f (C"Px? &+ C"Py? - 2cmpxy)ds]
c 2 [~ 1 c mpsm 3 1 2
P
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Discretization

Time discretization is performed by introducing a time step At. The state of a
block structure is considered at discrete values of time =ty + iAt (i =1, 2, ... ), where #;
is the initial time. The transition from the state at ¢ to the state at 1, is made as follows:
(i) new values of inelastic displacements x,, ¥a, 8, 0 are calculated from equations (2) and
(6); (ii) the translation vectors and rotation angles at #,; are calculated for the boundary
blocks and the underlying medium; (iii) the components of b in equations (10) are

calculated, and these equations are used to determine the translation vectors and angles of

rotation. Since the elements of A in (10} are not functions of time, it is sufficient to find

A and the associated inverse matrix only once, at the beginning of the calculation.

Formulas (1-9) describe the forces, the relative displacements, and the inelastic
displacements at points of fault segments and block bottoms. Therefore some
discretization of these surfaces is required for numerical simulation. The space
discretization is defined by a parameter €, and is applied to the surfaces of fault segments
and to block bottoms. The integrals over the surfaces of fault segments and block bottoms
in formulas for elements of the matrix A and for the components of the vector b are
replaced by finite sums in accordance with the discretization,

The discretization of a fault segment is done as follows. Each fault segment is a
trapezium with bases a and b and height i1 = H / sin o, where H is the thickness of the
layer d, and o is the dip angle of the fault plane. If we define

n; = ENTIRE(k/g) + 1, and np = ENTIRE(max(a,b)/€) + 1,
the trapezium is divided into nyn, small trapeziums by two groups of segments inside it:
m-1 segments parallel to the trapezium bases and spaced at intervals h/m;, and n;-1
segments connecting the points spaced at intervals of a/ny and b/n,, respectively, on the
two bases (Fig. 3). The small trapeziums obtained in such a way are called "cells". The
coordinates X, Y in (3) and the inelastic displacements &, 9 in (5) are supposed to be the
same for all points of a cell. These values of the coordinates and inelastic displacements

are considered as the average values for a cell. When substituted in (3-5), (8), and (9),

they yield the average (over the cell) elastic and reaction forces per unit area. The forces
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FIGURE 3 Discretization of the fault segment (12, =4, ny = 5).
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FIGURE 4 Division of the block bottom into trapeziums and triangles.
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acting on the cell are obtained by multiplying the average forces per unit area by the arca

of the cell.

The bottom of a block is a polygon. Before discretization it is divided into
trapeziums (triangles) by segments passing through its vertices and parallel to the Y axis
(Fig. 4). The discretization of these trapeziums (triangles) is performed in the same way as
in the case of fault segments. The small trapeziums (triangles) are also called "cells". For
all the points of a cell the coordinates X, ¥ and the inelastic displacements x,, y, in (1) are

assumed to be the same.

Earthquake and Creep

Let us introduce the quantity

(11)

where { is the elastic stress given by (5), P is a parameter of the model which is assumed
to be equal for all the faults and can be interpreted as the difference between the lithostatic
{due to gravity) and the hydrostatic pressure, and pg 1S the reaction force per unit area
given by (9+). The value of P reflects the average effective pressure in fault planes, and
the difference P - py is the actual pressure for each cell.

For each fault the following three values of x are considered

B> Hi> H,.

Let us assume that the initial conditions for the numerical simulation of block
structure dynamics satis{y the inequality « < B for all the cells of the fault segments. If, at
some time #;, the value of X in any cell of a fault segment reaches the level B, a failure
("earthquake") occurs. By failure we mean slippage during which the inelastic
displacements §,, & in the cell change abruptly to reduce the value of X to the level H.
Thus, the earthquakes occur in accordance with the dry friction model.

The new values of the inelastic displacements in the cell are calculated from

=8 +v:, & =4+ (12)
where 8, 8, f;, fi are the inelastic displacements and the components of elastic force vector
per unit area just before the failure. The coefficient v is given by

¥= UK - PHJ(K( + Hf; tg o)) (13)



It follows from (5), (9), (11-13) that after the calculation of new values of the
inelastic displacements the value of x in the cell is equal to H.

After calculating the new inelastic displacements for all cells that have failed, the
new components of the vector b are calculated and, from equations (10), the translation
vectors and the angles of rotation for the blocks are found. If x > B for some cell(s) of
fault segments, the procedure given above is repeated for this cell (or cells). Otherwise the
state of the block structure at the time £, is determined as follows: the translation vectors,
the rotation angles (at #) for the boundary blocks and for the underlying medium, and
the components of b in equations (10) are calculated, and then equations (10) are solved.

Different times could be attributed to the failures occurring at different steps of the
procedure: if the procedure consists of p steps, the time # + (f - 1)8¢ can be attributed to
the failures occurring at the jth step, and a value of ¢ is chosen to satisfy the condition
pdt < At

The cells of the same fault plane in which failure occurs at one and the same time
form a single earthquake.

The parameters of the earthquake are defined as follows.

The origin time is £ + (j - 1)3t.

The epicentral coordinates and the source depth are the weighted sums of the
coordinates and depths of the cells included in the earthquake (the weight of a cell is
given by its area divided by the sum S of areas of all the cells included in the earthquake).

The magnitude, M, of earthquakes can be defined by using the difference between
the energy of the system before and after an earthquake, which can be considered as the
strain energy E released through an earthquake. As shown in Keilis-Borok et al. {1997) in
the block-structure model there is the linear dependence between E and S, that can be
explained by the fact that the energy is distributed along planes, and the energy released
through an earthquake depends mainly on the total square of the fault plane involved in

the earthquake. Therefore the use of

M=0981gS+3.93 (14)
proposed by Utsu and Seki, (1954) where S is the total area of the failured cells, measured

in kmz, seems to be reasonable.



Immediately after the earthquake, it is assumed that the cells in which failure has
occurred are in a state of creep. It means that, for these cells, in equations (6) which
describe the evolution of inelastic displacement, the parameter W, (W; > W) is used
instead of W, and W, may be different for different faults. After each earthquake a cell is
in a state of creep as long as ¥ > H, while when < H;, the cell returns to the normal state

and henceforth the parameter W is used in (6) for this cell.

Hierarchy of Faults

Fault features can be taken into consideration through the values of the constants
K, W, W, and the levels B, H, H..

The hierarchy of faults is controlled by the hierarchy of structures separated by
them. Larger faults separate larger structures. Note that accordingly to the fault definition
the lager fault does not mean the longer fault,

It seems natural that the same value of elastic displacement leads to a smaller
elastic force for the larger fault than for a smaller one. Thus the value of X has to be
smaller for a larger fault.

Larger faults separating larger structures are usually the more strongly fractured
and less consolidated zones than smaller faults, and the same force can lead to larger
slippage (inelastic displacement) for a targer fault than for a smaller one, Thus the values
of Wand W have to be larger for larger faults than for smaller ones.

The more strongly fracturing of the larger faults can be a cause that earthquakes
occur in the larger faults for smaller values of the parameter K than in the smaller ones.
This can be reflected in smaller values of the levels B, H;, H, for the larger faults than for

the smaller ones,

The qualitative arguments given above can be used as some indications for

selecting the values of constants K, W, Ws and levels B, H;, H; if the fault hierarchy is

known.



181

| 3 B

-

i1

REFERENCES

Alekseevskaya,M.A., Gabrielov,A.M., Gvishiani,A.D., Gelfand,LM. and Ranzman,E.Ya.,
1977. Formal morphostructural zoning of mountain territories. J. Geophys. Res.,
43: 227-233. .

Gabrielov,A.M., Levshina,T.A. and Rotwain,LM. 1990. Block model of earthquake
sequence. Phys. Earth and Planet. Inter., 61: 18-28.

Keilis-Borok,V.L, Rotwain,I.M. and Soloviev,A.A., 1997. Numerical modeling of block
structure dynamics: Dependence of a synthetic earthquake flow on the structure
separateness and boundary movements. Journal of Seismology, , 2, 151-160.

Utsu,T. and Seki,A., 1954. A relation between the area of aftershock region and the

energy of main shock. J. Seism. Soc. Japan, 7:233-240.



