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Abstract. We present a formulation for mechanical modeling of geological processes in the
seismogenic crust using damage rheology. The seismogenic layer is treaied as an elastic me-
dium where distributed darnage, modifying the elastic stiffness, evolves as a function of the
deformation history. The model damage rheology is based on thermodynamic principles and
fundamental observations of rock deformation. The theoretical analysis leads to a kinetic
equation for damage evolution having two principal coefficients. The first is a criterion for the
rransition between strength degradation and recovering (healing), and is related to friction. The
second is a rate coefficient of damage evolution which can have different values or functional
forms for positive (degradation} and negative (healing) evolution. We constrain these coeffi-
cients by fitting model predictions to laboratory data, including coefficient of friction in sawcut
setting, intact strength in fracture experiments, first yielding in faulting experiments under
three-dimensional strain, onset and evolution of acoustic emission, and dynamic instability.
The mode] damage rheology accounts for many realistic features of three-dimensional defor-
mation fields associated with an earthquake cycle. These include aseismic deformation, grad-
ual strength degradation, development of process zones and branching faults around high-
damage areas, strain localization, brittle failure, and state dependent friction. Some properties
of the model damage rheology (e.g., cyclic stick-slip behavior with possible accompanying
creep) are illustrated with simplified analytical results. The developments of the paper provide
an internally consistent framework for simulating long histories of crustal deformation, and
studying the coupled evolution of regional earthquakes and faults. This is done in 2 follow up

work.

1. Introduction

Rocks exhibit a wide variety of rheological behaviors
ranging from viscoelastic deformation to plastic flow and lo-
calized faulting. A great challenge of theoretical geodynamic
studies is to incorporate multi rheological behavior, including
faulting, into models that simulate deformational processes in
the upper crust. At the present time, a generally accepted
method for describing time-dependent deformational proc-
esses in the brittle-elastic parts of the lithosphere is not avail-
able. The purpose of this paper and a follow-up work (V.
Lyakhovsky, Y. Ben-Zion, and A. Agnon, manuscript in
preparation; herein after referred to as paper 2) is to develop a
useful framework for studies concerned with seismic and
aseismic deformations in large domains of space and time.

The overall large-scale structure of our model is a layered

elastic-viscoelastic half-space incorporating damage rheology.
In the present paper we focus on theory and observations rele-
vant to the damage rheology and its coupling with viscous re-
laxation. In paper 2 we discuss the other components of the
model and provide various simulation examples.

Copyright 1997 by the American Geophysical Union.
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Brittle behavior is often modeled by a rigid elastic-plastic
solid that is governed by simple static-kinetic friction or Byer-
lee's law [Brace and Kohlistedr. 1980]. However, such mod-
els do not account for details of strength evolution and they
thus cannot be used to study important portions of the defor-
mation field. such as nucleation of stip instabilities. The rate-
and state-dependent (RS) friction model [e.g.. Dieterich,
1979, 1981; Ruina, 1983] provides a framework that can be
used to simulate all important aspects of an earthquake cycle,
including stable slip, nucleation of instabilities, rupture
propagation, and healing. However, the RS formulation as-
sumes that deformation at all stages occurs on well defined
frictional surfaces, and it does not provide a mechanism for
understanding distributed deformation. In addition, it is not
clear [e.g., Andrews, 1989; Ben-Zion and Rice, 1995] to what
extent the existing RS friction laws are valid for natural con-
ditions involving complex geometry, Jarge values of slip, slip
rate, and time, etc.

Various simple conceptual schemes based on a network of
blocks and springs le.g., Burridge and Knopoff. 1967; Carl-
son and Langer, 1989] have been used to simulate static,
quasi-static, and dynamic sliding processes. Rice [1993] and
Ben-Zion and Rice [1993, 1995] criticized the validity of rep-
resenting a fault in elastic solid with a block-spring array.
They simulated slip histories on various types of a two-
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dimensional (2-Dy strike-slip fault in a 3-D elastic half-space
with models incorporating continuum elasticity. Cowie er al.
[1993). Sornerre er al. {1994]. and Ward [1996] simulated the
development of fault patierns and regional earthquakes in 2-D
elastic solids: we discuss these models in more detail in paper
2. Lockner and Madden [199] a. b] developed a numerical
multiple-crack model for the failure process of a brittle solid
which simulates growth of microcracks on a regular array of
potential crack sites, This and similar numerical models re-
producc various common features of fracturing processes, es-
pecially those occurming in some fabricated materials. but they
cannot explatn fault patterns observed in experiments [e.g..
Reches. 1988 or in the field [e.g.. Segall and Pollard, 1983).
Fracture distributions in situ and fragmentation of rocks in
laboratory samples show fractai-like patterns [e.g.. King,
1983: Turcorre, 1986: Ckubo and Aki, 1987. Aviles et al,
1987]. Thus fracture network simulations should not depend
on specific length scales, such as length scales prescribed in
regular arays.

A rheological model of the faulting process should include
suhcritical crack growth from very early stages of the loading,
material degradation due to imcreasing crack concentration,
macroscopic brittle failure. post failure deformation. and
healing. Suitable variables should be defined to characterize
the ahove deformational aspects quantitatively in a framework
compatible with continuum mechanics and thermodyna: .ics.
Among such approaches are Robinson's [1952] linear cumu-
lative creep damage law, Hoff's [1953] ductile creep rupture
theory. Kachane's [1938. 1986] brule rupture theory,
Rabotnew™s [1969, 1988] coupled damage creep theory, and
many modifications of these theories. Several researchers (see
the review of Kachanov, [1994]) proposed models with a
scalar damage parameter changing from 0 at an undamaged
siate la | at failure. The scalar damage models fit reasonably
well existing experimental results, including culmination of
damage in concrele subjected to fatigue loading {Papa, 1993]
and damage increase in 2024-T3 aluminum alloy under differ-
ent loading and temperature conditions [Hansen and
Schrever, 1994). In the study of Hansen and Schrever [1994],
the scalar isotropic damage model correlates with all meas-
ured quantities except the change in the apparent Poisson ra-
tio, For this reason, Ju [1990) and Hansen and Schrever
[1994] suggested upgrading the damage parameter from a
scalar to tensor quantity. Such an anisotropic tensorial damage
model contains at least three adjustable parameters which
permit correct simulation of the apparent Poisson ratio.

Variations of elastic moduli and Poisson's ratio with extent
of damage, under different types of load, can also be described
using a nonlincar elastic model with scalar damage provided
that it is scaled properly with the ratio of strain invariants.
This has been done in the damage model proposed by Lvak-
hovsky and Myasnikov [1984, 1985], Mvasnikov et al. [1990].
and Lvakhovsky er al. [1993). Previous applications of this
model to geodynamic problems were given by Ben-Avraham
and Lyakhovsky {1992), Lvakhovsky et al. | 1994}, and Agnon
and Lyakhovsky {1995). The scalar damage model accurately
reproduces results from the four point beam test [Lyvakhovsky
et al.. 1997). Here we provide additional developments of the
above model, and constrain the final model parameters by
comparisans of theoretical predictions with various laboratory
results. In paper 2 we incorporate the damage rheology into a
model of a 3-D layered half-space and provide examples of
simulated patterns of seismicity and faulting.
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2. Distributed Damage in Rocks

We briefly list below some indications of damage in natu-
ral rocks and rock samples which form the observational hasis
for our theoretical damage model for the crust. Pioneering
studies of Iractures and faults treated the crust as an infinire,
perfectly clastic medium [e.g.. Anderson. 1931). Subsequent
studies accounted for the finite length of faults, and the per-
lurbation to the regional stress field due to the proximiy of
additional faults [Chinnery. 1966 a. b]. Field mapping often
shows that the density of faults depends on the scale of the
map. so higher resolution increases the number of faults in a
given domain {Schelz. 1990]. This complexity limits the use
of methods that specify the positions of isolated cracks in the

- deforming region.

Classical fracture mechanics postulates that in a lincar
clastic solid an isolated crack will propagate ai velocities ap-
proaching the speed of sound in the medium once a eritical
stress intensity factor K, has been reached or exceeded at the
crack tip [/rmein, 1958). Al lower stress intensity factors the
crack remains stable, A more general approach in classical
fracture mechanics is to consider the strain encrgy release rate
G during crack extension [e.g.. Freund. 1990]. Dynamic crack
exiension occurs when G reaches a eritical value G,

These {racture mechanics approaches have been used suc-
cessfully to predict catastrophic crack propagation in metals,
ceramics, and glasses. In grainy materials. however, the stress
field is highly nonuniform on the grain scale. Stress tntensity
factors K and strain energy release rates G are caleulated mac-
roscopically. neglecting stress concentrations due o grain
contacts and encrgy rclease due to intergranular sliding. Such
materizls subjected to long-term loading show significant
rates of macroscopic crack extension at values of K and G
significantly lower than the critical. This phenomenon is
known as subcritical crack growth [Swanson, 1984. Arkinson
and Meredith, 1987. Cax and Scholz, 1988).

The investigations of granite fracturing by Yukutake
[1989]. Lockner er al. [1991). and Reches and Lockner
[1994] show thal Iracturing cannot be described in terms of
propagation of a single crack. Several experimental studies re-
vealed that clastic parameters strongly depend on the defor-
mational history (i.c.. damage extent). leading 1o vanishing
clastic moduli at large stresses just before failure [Lockner
anted Bverlee, 1980]. While linear elastic fracture mechanics
assumes the size of the inelastic zone at the crack tip to be
negligibly small, the experiments show that this zonc has a
significant size.

In most cngineering and rock-like materials a slowly
propagating crack is preceded by an evolving damage zonc
distributed around its tip [e.g.. Bazant and Cedolin, 1991;
Lockner et al.. 1991). The distributed damage modifies the
clastic cocfTicients in the medium around the tip and hence
controls the macrocrack trajectory and the growth rate [Huang
et al., 1991; Chai, 1993]. The finite size effect of the fracture
process zone 1s oflen treated with models which specify a co-
hesive zone near the crack tip within the plane of the crack
[Dugdale, 1960; Barenblan, 1962; Ida, 1972; Palmer and
Rice. 1973, Rubin, 1995 a, b]. This approach is useful when
the crack geometry is well defined, and in contrast to linear
elastic fracture mechanics, the cohesion zone models do not
contain an unphysical crack tip singularity.

Field observations suggest that the size of the damage zone
(or process zone) grows with the size of the fracture, in viola-
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lion of the premises of the critical stress intensity factor ap-
proach [Ruhin. 1995 a. b). This is decisively documented
araund dikes that form by “he injection of magma into frac-
teres |Delaney er al., 1986: Baer. 1991 Weinberger et al..
1993: Hoek. 1995]. and is also compatible with results of Pa-
pageorgion and Aki [1983] who inverted seismic strong mo-
lion data for earthquake source parameters in the context of
their specific barrier model. An earty theoretical discussion of
this phenomenon is given by Andrews [1976].

Andrews and Ben-Zion {1997] showed that earthquake
Tupture can propagale along an interface separating different
clastic media in a wrinkle-like mode associated with little loss
of energy to friction. Thus it is energetically favorable for
ruptures to be located along the malterial interface between the
gouge and the surrounding rock, rather than within the gouge.
In such circumstances the damage zones of successive earth-
quake ruptures continue Lo create fresh gouge material. thus
adding to the overall thickness of the {damaged) fault zone.
This may help to explain field and laboratory correlations
(c.g.. Hull, 1988: Roberrson, 1983] between gouge thickness
and cumulative number of earthquakes (or slip) along the
fault.

It is important 1o consider an additional property of rocks
when choosing a rheology for simulations of earthquake cy-
cles. Experimental studies of rock deformation [e.g., Nishi-
hara, 1957, Ambartsuim un, 1982: Weinberger et al., 1994]
reveal a strong dependence of elastic coefficients on the type
of loading. which results in abrupt changes of the elastic
moduli when the loading teverses from lension to compres-
sion. Abrupl changes of elastic properties are commonly ob-
served in grainy materials. For example, the tensile Young
modulus of graphite is 20% less than the compressive one
[Jenes. 19771. Jumps of Young moduli can be 30% for differ-
ent types of iron. and in concrele the compressive modulus
may be up 1o 3 times larger than the tensile one
[Ambartsumyan, 1982]. Results of various experiments with
Westerly granite, marble. diabasc, and weak granite from
Kola Peninsula. compiled by Lyakhovsky [{1990] and Lyak-
hevsky er al. [1993). show high sensitivity of rock elasticity 10
the type of loading.

It is reasonable to assume that the extent of the latter non-
linearity in the clastic response of rocks depends strongly on
the state of damage. Perfecily intact and undamaged tock
should not display nonlinear elasticity for smali strains. On
the other hand. a rock that is highly damaged along a planc
can respond to uniaxial extension normal 10 the damage plane
with small elastic stress, whereas it will respond to uniaxial
compression in a manner similar to intact rock.

In the following sections we first discuss the thermodynam-
ics of damage growth in elastic solid. Then we construct a
phenomenological model that relates damage to the elastic rc-
sponse in an internally consistent manner. Finally, we con-
strain the obtained model parameters by comparisons of theo-
retical predictions with experimental results.

3. Model of Medium With Distributed Damage

3.1. General Thermodynamic Formulation

Here we presenl the construclion of a new rheological
model accounting for elastic deformation, viscous relaxation,
and evolution of damage (material degradation as well as
healing). We follow the approach of irreversible thermody-
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namics [Onsager, 1931 Prigogine. 1953: deGroor and Ma-
-ur. 1962). which was successfully applied 10 kinetics of
chemical reactions and phase transitions [e.g.. Firs. 1962:
deGroor and Mazur. 1962] and as a basis for vanational
methads of continuous media models [¢.g.. Sedov. 1968: Mal-
vern. 1969]. Following this framewark. Mosolov and Mvas-
nikev [1963] first formulated a varational approach o the
model of viscoplastic media [see also Ekland and Temam.
1976). Lvakhovsky and Mvyasntkov [1985] first used the bal-
ance equations of energy and entropy to establish a thermody-
namical foundation for a rheologice! model of damaged mate-
rial [Myasnikov et al. 1990: Lyvakhovsky et al.. 1993). A
similar approach was later used as the basis of other damage
models [e.g., Valanis, 1990 Hansen and Schrever. 1994].

Many workers in continuum thermodynamics have postu-
lated that the tree energy density is a function of various staie
variables. including “hidden varables” [Celeman and Gurtin,
1967: Lubliner. 1972] not available for macrascopic observa-
tion. In order 10 simulate a process of fracturing in terms of
continaum mecharics. a nondimensional intensive damage
variable o is introduced. The variable ¢ can be envisioned as
the density of microcracks in a laboratory specimen. or as the
density of small faults in a crustal domain. The free encrey of
a solid, F. is assumed 1o be given by

F= F(T.Eij_u). ()

where T and g are the macroscopic temperature and Cauchy
tensor of infinitesimal clastic deformation. respectively. and o
is a nondimensional damage state variable. The elastic strain
lensor g is wrilten as the differcnce between a current metric
tensor g, and 2 metric tensor describing the irreversible de-
formation, g'y;

£, = &~ - )

It may be represented through small elastic displacements u,.

1 au. aU'
g, ==+ L ()

2l ax,  ax
The strain rate tensor is given as a temporal derivative of the
current metric ensor

c ) (4)

Yo
The balance equations of the internal energy U and entropy S
accounting for imeversible changes of viscous deformation
and material damage |e.g.. Malvern, 1969] have the form

ip—=i(F+TS)=lci-ei-—V,J,., (&)
dt dt p. " )
ds J;
=V ||+ T 6
d ‘(TJ ©

where p is mass density. Here J; is heat flux and " is local en-
tropy production. Both J, and T’ result from dissipative irre-
versible processes such as intemnal friction and creation of new
surfaces. Substituting (5) into (6) and using an equation for
production of free energy fe.g.. Gibbs, 1961}

aF oF

dF = -SdT +——dg;; + —da, 7
3¢, 1" 3 @

and the definition of the Cauchy stress tensor
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dF
g, =p—- (8)
N at‘,ij
the local entropy production may he represented as
dg?
:__L:V1T+_i_0i._ﬂ__l_f_gg__ {9a)
pT* pT Y du  Todo dt

The first term of equation (3a) describes entropy production by
heat conduction. the second term is due ta dissipation for 2
viscous fiow. and the third term is related to the damage proc-
ess. We neglect heat production by radioactive decay and
chemical processes, These processes are independent to first
order: hence, as is commonly assumed. each lerm in (9a) must
he positive. The part of the entropy production related to the
Jamage process. Tq 18

-.12Fda (9b)

We expand Tqas 2 .Taylor series with respect 1o do/dt around
an equilibrium state (o) where doddi=0:

do do da )
ru(a,_&-) =Toa)+ T, (oa)gl—+ I, (a(-d—l—) 20. (%)

Here T, and T are expanston corfficients. In the case of con-
stant damage the deformational process is reversible and en-
ropy production is zero {T,=0). This condition implies that
I,=0. The entropy production T’y should be nonnegative for
any level of damage and direction of its evolution including
healing (damage decrease) and destruction (damage increase).
That is possible only if the second term of the Taylor series,
I.. is identically zero and T:>0. Thus the quadratic term in
(9¢} is the dominant term of the Taylor series. Back substitu-
tion into (9h) gives
rfde) o L2
\dt Too dt
From (9b) - (9d) the equation of damagc evolution has the
form

(9d)

do __-oF (10)
dt do

where C=1/ 7T is a positive function of the state variables
deseribing the temporal rate of the damage process. We nole
that (10} describes not only damage increasc, but also a proc-
ess of material recovery associated with healing of mi-
crocracks, which is favored by high confining pressure, low
shear stress. and especially high temperature.

3.2. Elastic Moduli of a Damaged Material

The elastic properties of a damaged solid should depend on
the damage level. and quantification of this has been the sub-
ject of much research [e.g. Kachanov, 1993]. An undamaged
solid with @=0 is modeled by an ideal linear clastic material
governed by Hook's law. At the other extreme, a material with
a=1 is densely cracked and loses its stability. Below we de-
scribe a nonlinear elastic behavior of damaged material for all
values of the damage parameter (0<oi<!), including strain lo-
calization and brittle failure.

Many experimental studies measure nonlincar stress-strain
relations for rocks and rock-like materials. For example,
Walfsh [1965] showed that Young's modulus of a cracked
elastic solid under uniaxial compression is smaller than the

modulus of the same solid without cracks: conversely. crack
closure under increasing COMPIESSive SIESS CAUSCs i gradual
increase in the modulus. Opening and closure of microcracks
fead 10 abrupt changes ol clastic [FOPCITiCS Upon SIress rever-
sal from tension lo compression fe.g. Weinberger of al.,
1994]. Various formulations attfempt 10 model such phenom-
ena. The models of Ambansumyan-Khachatryan \Aurbartsu-
myan, 1982] and Jones [1977] assume that the compliance
(Poisson’s ratio divided by Young's modulus) changes when
the associaled stress component FCVErSes. Hansen and
Schrever [1995] consider opening and closing of microcracks
10 simulate activation and deactivation of damage in terms of
continuum mechanics. For materials with & weak nonlinear
response. Lomakin and Rabomov [1978] assumed that the
clastic moduli depend only on the type of loading. To evaluate
the damage eliects, Lyvakhovsky ef al. [1997] derive the mac-
roscopic stress-strain relations for a 3-D elastic solid with
noninteracting cracks embedded inside a homogencous ma-
trix. and test the solution against rock-mechanics cxperiments.
The cracks considered are oricnted perpendicular either o the
maximum lension axis or maximum compression axis. In the
first case they dilate during loading, while in the second they
contract. The solution for the elastic energy of such a solid
was derived following the self-consistent scheme of Budian-
sky and O'Comell [1976]. Following the formulation dis-
cussed by Lvakhovsky et al. {1997]. the elastic potential is

writlen as L
U=;[31|2+IJI:—YI|JE]- (1n

where A and p are Lame constants, 1,=€y and L:=g,g; are (wo
independent invariants of the strain tensor €. and v is an ad-
ditional elastic modulus (summation notation is assumed).
The second order term with the new modulus y accounts for
microcrack opening and closure in a damaged material. The
term incorporates nonlinear clasticity cven for an infinitesimal
strain. and it simutates abrupt change in the elastic propertics
when the loading reverses from compression Lo tension. Using
(8). the stress tensor is derived from (11 as

I 1
Gi_|= A-“Y""_-JI'F I|8u+ Zu‘ny— E'J (Iz)

The stress-sirain relation (12) can be rewritten to mimic the
usual form of Hook's law by introducing cflcctive clastic
modulbi

=2t h=n (13)
where the strain invariant ratio Q:I.NI; characterizes the type
of deformation as discussed below.

Lvakhovsky and Myasnikov [1987, 1988] discussed the
relation between scismic wave velocity and state of stress for
the damage rheology model we use. They found that small
amplitude harmonic waves propagate in this model as in a
lincar anisotropic clastic solid with elastic stiffness tensor de-
pending on the initial state of strain, Three different modes of
waves exist. one P wave and two S waves. Thus in spite of its
initial isotropic formulation and a scalar damage parameter,
the present nonlinear elastic model accounts for a stress-
induced anisotropy.

The encrgy in the form of (11) is used below to describe the
elastic behavior of a damaged material with intermediate val-
ues of the parameter o (O<a<]).
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Table 1. Matrix 9°U/d€;0¢y
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£11 [ £za £y E3 E:s
€11 A+2“_’Y:—> ;.—'Y(Cl'i'e:) A—Y(CI‘FCSA’ 0 0 0
+ei -2, e +ere;
Ean )\--Y(C]*‘C'_j) J\+2u-‘]}-’; 7\.-7(62“‘33) 0 ¢ 0
+Eeser +¥;c§ —21e.  +ieaes
£33 A-—7Yley+e3) A-vlea+es) A+2u-v% 0 0 0
+Y5ee3 +15ezes +'\ﬁc§ — 2%,
Era 0 0 0 PITE 0 0
E13 0 0 0 0 M- 0
£33 0 0 0 0 0 LT

Here e =¢; f,]ﬁ is a normalized value of the deformation along principal axes “i”.

3.3. Loss of Convexity and Strain Localization

Two different mathematical conditions are appropriate for
analyzing material stability. The first is convexity of the elas-
tic encrgy which provides a unique solution of the static
problem [Ekland and Temam, 1976]. This cnterion was
adopted and expanded by R. Hill. T.Y. Thomas. J. Mandel, C.
Trusdell. and others [e.g. Bazanr and Cedolin, 1991]. The
second s ellipticity of the elasto dynamic equation [e.g.
Rudnicki and Rice. 1975]. These two conditions are not al-
ways identical, especially for nonlinear elasticity fe.g.
Schrever and Neilsen. 1996 a. b, The first condition is a
stronger one. and convexity may be lost prior to the elipticity.
For that reason we start with the first condition for material
stability.

The maximum possible value of the damage parameter o
for a given strain [EASOT € 18 defined by the requirement of
convexity of the clastic energy U of (11). This condition im-
plies positivity of all eigenvalues of the matrix o U/dg,0E
whaose dimension is 6x6 for six independent components of
the strain tensor (€. Ex. £ E120 E1n Env). The matrix CoOmpo-
nents in the coordinate system of the principal axes are given
in Table 1. The first eigenvaiue is equal to

x, =2 -%=2u°20. (14)
This condition implies stability against simple-shear defor-
mation. The second and third eigenvalues satisfy the quadratic
cquation
x° —(4p—3y?’;+3?~.)x+(2p—'yﬁ)3 +
H2p - EN3A-16) + (M~ Y HI~ED) =0,
The roots of this equation are nonnegative if
(2 —1E)" + (2= BICGA -5 +
T -y N3-ET 20
It either (14) or (15) is not satisfied. the ¢lastic energy is not a

convex function of the strain tensor and the static problem has
multiple solutions. It can be shown that conditions (14) and

(15)

(15} coincide with conditions of positivity of the eigenvalues
of the acoustic matrices which comespond to 1wo difterent
polarizations of shear waves. Thus loss of convexity of the
clastic energy in the present model also provides the criterion
for strain localization used by Rudnicki and Rice | 1973].

3.4. Kinetics of the Damage Process

Equation (1() provides a seneral form of damage evolution
compatible with thermodynamic principles. Practical use of
the equation requires an additional functional refation between
the damage parameter o and the three elastic moduli A. . and
¥. With the current level of experimental constraints. some
simple assumptions should be made. Henee we assume lincar
dependencies of the clastic moduli A. g, and y on damage:

A=ho+ oA,
M =Ho+aH,. (16)
Y =0,

where A=k, H=H,, and y=0 correspond Lo initial elastic meduli
of the uncracked material. Combining equations (i, (1.
and (16) yields an equation of damage evolution

da A, 2
'ci':_cp[_.,—rilh+urll_Yril\[gJ' (n
which may be rewritten in the form
do A n i
=S =yl =B+ -E I
dt d'[zvfg ¥ é] "

The positive coefficient Cy, given by CpyY.. describes the rate of
damage evolution for a given deformation.

To use equation (18) in a 3-D damage cvolution model., we
cmploy two additional constraints. The first is that there cxists
a critical strain invariant ratio &, which corresponds to a ncu-
tral state between healing and degradation of the material. As
will be shown in a later section, this is a generalization of
friction, which is a widely obscrved constitutive behavior in
racks and ather brittle materials. High shear strain relative to
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1 L] L} L] L]
3 : : UNSTABLE .
=] . ' .
— 08 I 'STABLE: ; :
2 ' : . ;
3 0.8 1 : Loss : :
S 1 1] . L] 3
© ' ' convexity * Loss
.i.f 04 ' {eq. 15) ' convexity |
> : X ' {eq. 14) .
502 | ! : : :
w o |e=B &=k g
2 0 bl [ L 1 1 1 1

2 415 -1 05 0 05 1 15 2
"Type of deformation (&)

Figure 1. Thick line gives the maximum value (o) of the
damage parameter o as a function of strain invariant ratio &
The range ~V3<&<E, corresponds 1o stable behavior with
healing. For £>C,, there is material degradation leading to loss
of stability according to equation (14) or (15},

compaction (0>&>E,,) or extension (£>0>&,) leads to degrada-
tion, while high compaction with absence of or low shear
component (E<E,) leads to healing of the material. The coeffi-
cient &, may be estimated from the onset of damage-induced
instability or first ytelding in rock mechanics experiments, An
intuitive possibility for the second constraint, discussed by
Lyvakhovsky [1988] for a similar model, is that of a constant
bulk modulus (A*+2/3°) under isotropic compaction (E=~v3).
However, back substitution to {18} gives with this assumption
a zero rate of healing for £=-¥3, This is a significant short-
coming for a model expected to describe carthquake cycles
containing both degradation and healing. Agnon and Lyak-
hovsky [1995} slightly changed this assumption and chose
only the modulus A 1o be constant. Under their condition (16)
has the following form

h=kg=const: p=pg+obey,s y=0y,, (19

where ¥, is calculated from the conditions (14) and (15) of
convexity loss for the maximum value of the damage parame-
ter {o=1), when the strain invariant ratio is £=§,. Figure |
shows the dependence of the critical damage on the strain in-
variant ratio for Ag=p. In this case, condition (15) is realized
tirst for £2&, and prescribes the scale ¥..

With the assumptions (19}, equation (18) is rewritten in a
simple form containing only two unknown model parameters

d—“=c,,13(§—§0). (20}
di
The two model parameters &, and C, are assumed in our
model 1o be material properties. As will be discussed in a sub-
sequent section, the parameters may be constrained by results
of rock mechanics experiments. Comparing our model predic-
tions with laboratory data of rate and state-dependent friction,
representing average properties of sliding surfaces, we find
that in such a context the coefficient C, does depend on dam-
age. Accordingly, we adopt in that section different rate coef-
ficients (equation 42) for material degradation and healing,
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4. General Properties of Damaged Material

In this section. three general properties of the model ar¢
analyzed using analytical solutions. The first solution for a 1-
D extension problem illustrates strain and damage tocalization
in a previously weakened zone. The second. 2.D case. sug-
gests that there i$ no stress singularity around a fully de-
stroyed zone. The last example shows that the interaction be-
tween the damage evolution and viscous relaxation results in
stick-slip shear motion.

4.1. One-Dimensional Deformation

For 2 uniaxial strain, assuming a linear dependence of
Young modulus on damage. E=E,[1-t]. reduces equation

{20} to
do_ (a_)
dt ox )’

where u is displacement depending only on the x coordinate.
and A is a coefficient which depends on the type of loading.
Since in the 1-D case the strain invariant ratio is §=x!, A is
one of two constants: Ce(1-Ey) for tension or Cu(—1-8) for
compression. Positive and negative values of A correspond 10
fracturing and healing. respectively. For the 1-D case we con-
sider only a fracturing process.

We investigate the damage evolution of a body with unit
length and fixed displacements at the houndarics. u(0)=0 and
u{l)=u, in a one-dimensional deformation. These boundary
conditions give the body stress

(20

1
dx
g=uy| | =———— (22)
0 on(l-a)
o
and the strain is given by
-1
I
du dx
—=uy|E -(l-G)I——— (23}
x| ) Eq-(1-)

Substitution of (23) into (21) results in an equation of damage
evolution for the investigated body,

dx
|-

da

]
—=Aull (- (24)
a e -([

For a uniform initial condition (et =const), equation (24) has
the solution o(t)=At, leading to a complete destruction of the
body with finite time. For a nonuniform initial condition (ot
#const), the solulion of (24) may be writlen in the form

atx. =1-—E(1-ax O -1, @)
0 .

where f(1) depends on ofx,0), Equation (25) implies that the

deformation localizes at a point x, which is the maximum of

the initial damage distribution. To see that, assume that at

some time t’ the elastic modulus in the interval [xy—c, xu+c]

may be approximated by a parabola

E(x.t') = Eg(1 = (x.1)) = a (x = xg)" + b7 (26)
Substitution of (25) and the parabolic approximation {26) of
the modulus into (23) yields a corresponding approximation of
the strain distribution in the vicinity of the point xq,
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Equation (273 shows that the deformation localizes in the vi-
cinity of the poinl x.. where the initial damage distribution
was maximum. during a process where the damage at X, ap-
proaches unity or elastic modulus goes 1o zero (b/auy— 0).

Now consider the elasiic energy transfer from the relaxing
part of the body to surface energy of the localized damaged
sone. We assume that a(x.0)=0. over a small interval of
length L. and atx.0)=0, (<0) elsewhere. In this case. the so-
Jution of equation (2i) may be represented as a{x.)=0:(1) at
points initially belonging to the interval L, and o(x.y=,{1)
elsewherc. On the basis of (24), the two time-dependent func-
tions o, and o, satisty

il

E_EL_AU? . "-d.-_-, )
T AN T D0 ey Ld-a)

(28)
dots 2 10y ’
— = Aug .

& uO[(l-L)(l-a3)+L(l—a,)]

For small ¢, and o and with L=0. equations (28) dictate at
the initial stage of the damage evolution an increase of oy with
a rate greater than the rate of increase of ;. Thus the ratio
/ey, increases with time. This is in line with the previous re-
<ult on strain localization for a continuous distribution. The
damage process localizes in the interval where the initial
damage is high. At the final stage of the evolution. with
o>— 1, equations (28) have the solutions

oy A

o, = const, = —
! de 142(‘—‘3‘1)1

The damage process continues only in the small L interval,
where ait) achieves a unit value at finite time and macro-
scopic failure of the body occurs. The energy transferred into
the high damage region, G=|ovdt. can be written from the
previous results as

G = L(1- LjudEq{1 - )’ x
(l—ag)dg

J (29)
x
[(1-a1)L+u—a2)(|—L)]’

dt.

Integrating (29) from a time when 0= o to the time of de-
siruction when ow=1, the energy flux G remains finite and is
given hy
_Epual-ay)
2(1-L)
L Eoug(l—L)[(l-a,)L+2(|-Eg)]'

2[(1—&,)L+(l-'&2)(1—L)]2

(30

For the limiting situation L—0 the energy transfer is
G=1/2E4u,’(1—,)). In this case it is seen that all the elastic
energy of the relaxed part of the body is transferred to surface
energy of the damaged zone. If the rate of the damage process
(given by the constant A) is sufficiently large, and/or the
length of the initially damaged part is sufficiently small, the
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rate of the deformational process will increase and part of G,
will become kinetic and radiate acoustic waves. In this case.
only a portion of the inital elastic energy is converted to a
surface energy.

4.2, Two-Dimensional Stress Concentration

Extrapolating the results of the previous example 1o a 2-b
case, one may expect strain and damage localization in a
small region which leads to stress concentration similar to lin-
ear elasticity. However. continuous damage evolution until
wotal destruction eliminates the classical stress singularity. To
illustrate that. we analyze stress amplification around a circy-
lar hole in a 2-D plate subjected 10 remate isotropic extension.
In a cylindrical coordinate sysiem. only the radial component
w,=uxr) of the elastic displacements is nonzero. and the stress

tensor is given by

do w dw
=i —+— + 20—
O (dr r] p‘dr
cm-1(99+3)+2p9-. (31)
T T r
G, =0

Using (31) in the equation of equilibrium for the lincar ¢lastic
material gives a general solution in the form

B
w(r)=Ar+—. (32)
T
From (32) the stress distribution around a circular hole with
radius R in the linear elastic plate subjecied to remote cxten-

sionpis
R?
Oy =p[l— - }
i

R3
Gwzp P+— L
P

The solution has a stress amplification at the boundary (Gecle=x
=2p) and a 1/r° decay. As a result of this amplification. the
damage process starts at the edge of the hole and it is local-
ized in a thin boundary layer having high gradients of damage
and elastic moduli variations. The elastic displacement axr)
has a corresponding high gradicnt near r=R, and in that region
the term duvdr is dominant in relations (31} for the stress ten-
sor. Neglecting the term w'r for a finite radius R of the hole,
and using the boundary condition G, = 0, give instead of (32)
the condition w=const (deydr=0) at the boundary. If the dam-
age at the houndary reaches its critical vatue, the tangential
stress component there becomes zero in addition to the radial
component. Stress components around the circular hole in a
damaged material remain finite even for infinitely small radius
of curvature. Instead of singular-like stress distribution, the
model predicts an evolving high gradient damage or process
z0ne. The geometry of the process zone and the rate of damage
evolution are controlling factors for both the crack trajectory
and the rate of crack growth in most engineering materials
[Chudnovsky et al.. 1990; Huang et al., 1991].

(33)

4.3, Stick-Slip Motion

The previous cases neglect viscous stress relaxation and
deal only with elastic behavior of damaged material. Here we
analyze in one dimension the behavior of a viscoelastic dam-
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age material subjected to a constant shear strain rate. For
simplicity. the viscosity of the material 0 is assumed constant.
The constitutive relation for a Maxwell viscoelastic body is

(
=S T] X (34)
dif2u ) 2n

where T is shear stress and e is total strain rate (equation 4).
As discussed above. the shear modulus p (equation 19) is as-
sumed to be a linear function of the damage parameter. Thus
the equation of damage evolution (20) may be represented by

L

-

du . . Tl .
_d"l""'cd‘aofr (E‘EJ —€5 - (35)

where g, is a critical strain corresponding 1o the onset of ma-
terial degradation. For a given dilation I,. &, corresponds 1o a
certain &, When the deformation is larger than & the damage
increases. and when it is lower the damage decreases. Thus
the elastic modulus changes together with the damage be-
tween zero (loss of convexity and stress drop) and its maxi-
mum value. Within these limits the system of equations (34)
and (35) has a singular saddle point corresponding to the un-
stable equilibrium solution

T=2ne u=n—. (36)

ECr

The two coupled nonlinear equations (34} and (35) describe
the temporal variations of shear stress and shear modulus in a
damage material subjected to a constant rate of shear strain.
The Maxwell relaxation time is t,=1/pL. while a characteristic
time scale of the damage process is of the order of
L= Can(E =€), of y=p/CaYEnls(€-Ey) for a 3-D problem.
The ratio t./t, controls the style of evolution of the mechanical
svétem. A small 1./l implies that the shear stress T can in-
crease [or a given strain rate without significant change in the
clastic modulus of the material. IF this stress causes the elastic
strain to be less than critical, then stable creep is realized. A
higher level of the applied strain rate results in elastic strain
larger than the critical, which leads to material degradation
and stress drop. No significant material healing is expected
after siress drop. and the applied constant strain rate does not
produce significant conseguent siress.
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Figure 2. Phase plane with evolution of viscoelastic damage
material subjected to a constant strain rate,
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The material evolution displays another style if the ratio
/1, is of the order of 1 (Figure 2). Relatively low applied
strain rates {e~pg,/n) correspond to a set of trajectories tend-
ing (o stable creep. The shear modulus is increased up 10 its
maximum value and the shear stress approaches the valuc
1=21je. Higher sirain rates (e>>HE/T) also produce material
healing at the initial stage of evolution. but the critical efastic
strain £, is achieved before the shear modulus obtains the
value JL,=ne/t, (horizontal dashed line wn Fig. 2). At this
point the damage evolution reverses its direction. and a degra-
dation stage begins. leading to a stress drop. The dynamic
stress drop, which is not analyzed here. quickly reduces the
elastic strain 10 some low value, keeping zero shear modulus,
There is a locus of trajectories that starts from the line p=0
and shows significant material recovering logether with in-
crease of elastic strain. When the shear stress is large enough,
the damage evolution reverses direction again. and a new deg-
radation stage begins. leading 1o the next stress drop. 1t the
strain rate is so high that the value . is larger than the
maximum shear modulus of the material with zero damage,
the steady creep can not be realized, and only stick-slip behav-
ior occurs. This process forms a repeating limit cycle which
physically corresponds to stick-slip shear motion of the viscoe-
lastic damage material.

5. Estimation of Model Parameters

Savage et al. [1996]} draw a connection between macroscopic
friction measured on saw-cut specimens and internal friction
that characterizes shear fracture of intact rock. They write the
strength of an intact rock as the sum over the plane of the in-
cipient fault of both friction on closed microcracks and
strength of the remaining grains. The approach taken here ex-
tends that connection. We focus our attention on confining
pressures sufficient for closure of microcracks, so stress con-
centration may arise only once the shear stress meels the fric-
tional criterion. Then favorably oriented cracks slide and load
their tips giving rise to damage increase (equation 20). The
difference between the frictional strength of prefaulted sur-
faces and the strength of the intact rock is given by the excess
stress that is needed to increase the damage from its initial
value 10 critical, That stress difference is rate dependent; since
# can he calculated readily [rom the model. it constrains the
rate coefficient C,. In the limit that the strain remains near-
critical for damage growth (E-£, — 0), the time for fracture is
infinite, but the strength is friction-like. In this case a smooth
surface will evolve along which the damage will approach the
critical level (0.—1). These features are explored below ana-
Iytically, and illustrated by numerical examples. Our main
concern here is to estimate the model parameters &, and C,
which govern the style of damage evolution. The parameter &,
may be estimated from different types of rock mechanics ex-
periments: the parameter C, is less well constrained.

5.1. Friction and the Onset of Damage

One of the best studied rock property is the friction angle.
We relate the critical strain invariant ratio &, to the friction
angle @ by considering the critical shear stress for Mohr-
Coulomb sliding:

T=an{p)g,,

where G, is normal stress. Consider a saw-cut interface be-
tween two intact blocks in a friction experiment carried out
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Figure 3. Modified internal friction £, as a function of friction
for different Poisson ratios v=0.2, 0.25, and 0.3.

under confining pressure. Except for the interface {and per-
haps thin adjacent boundary layers), the sample has negligible
damage. Stresses are transmitted elastically to the interface,
and the corresponding strain can be calculated using Hook's
law and conditions of triaxial compression (£4,=En>En<0).
The condition for fault slip is then [Agnon and Lvakhovsky,

1995]
3

o= (37)
* gt e e 2y

[

where
_ sin(g)
T sin)/3

Physically (37) means that the model parameler &, is some
modification of the intemal friction. Figure 3 shows the de-
pendency of the modified internal friction (€,) on the friction
for three values of AJ/Hq corresponding to values of Poisson
ratio 0.2, 0.25, and 0.3. Thus for Westerly granite with friction
angle @~30° [Byerlee, 1967 equation (37) gives &~-0.8.
The result varies little for different rocks with Poisson ratio
values between 0.2 and 0.3.

5.2. Three-Dimensional Faulting Experiments

The modified internal friction £, may also be estimated us-
ing results of faulting experiments under 3-D strain fields
given by Reches [1983]. Figure 4 displays empirical relation-
ships between the first and second stress invariants for the
first yielding in those experiments. “The data appear to be well
approximated by the relation

I,=1}. (38)

Following the notation of Reches [1983], the stress invanianis
are J,=G+0.+0, J;=0,6:+0,0:+020x Most of the experimen-
tal points for different rock types can be fitted by equation (38)
with the empirical coefficient r=0.20-0.27. Assuming that the
initial rock samples have negligible levels of damage uniil the
first yielding (i.e., that they behave as linear Hookean solids
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with elastic moduli A. ) and using Hook's law. the modi-
fied internal friction &, associated with initation of the dam-
age process is given from the stress {equation 38) as

—ad
Sa= = 2 =. 9
J';(A'Oj“ﬂ )- +4A0”10 +:_r(3)"0fuﬂ + 2)-

Taking the Poisson’s ratio of the rocks close 10 .25 (Ae=ll).
the corresponding range of variation of &, is found from (391
to be between —0.7 and —I. Our previous estimate based on
Bverlee’s law for axial symmelric compression experiments
{37) falls within this range.

5.3, Onset of Acoustic Emission

The emission of acoustic signals during compressive failure
experiments begins at the ~nset of dilatancy. and this activity
accelerates in proponiion to the rate of dilatancy which is often
observed together with localization of deformation {Schalz.
1990 and references therein]. Figure 5a shows observed
acoustic emission (AE) data of Sammonds et al. [1992], ob-
tained during a deformational experiment on Darley Dale
sandstone with a nominal strain rate of 10"* ™' and confining
pressure of 50 MPa. After a roughly linear elastic loading in
the first 2500 s (axial stress up to 220 MPa} there is a steep
rise in AE associated with first yielding and onset of cracking.
Material degradation then leads to a second yielding. involv-
ing dynamic instability and abrupt stress drop at 3700 s (pcak
stress of aboul 290-300 MPa). The observed first and second
yielding points can be used to estimate the modcl parameters
£, and Cy. In our framework, the damage of the sample. ini-
tially assumed equal to zero (=0}, stanis to increase rapidly at
the first yielding when the deformation exceeds the critical
value £, Calculated damage evolution. obtained from equa-
tion (20). is similar to the experimental rise in AE rate (Figure
5b). The calculations give loss of convexity, or dynamic stress
drop, within a finite period of time and allow us lo estimate
the second model parameter Cy. We obtain a good fit to the

18
~ 16 F + Candoro limestone
3 14 = Granite
2 o Barea sandstone
:“j ]2 r ]
z 10
=
S s
£ ¢} r=0.27 Ay
2
o 4 F
3 r=0.20
2 F “'n
O 1 1 1 1
0 2 4 6 g8

First invariant (J,, kbar)

Figure 4. Experimental relations between first {J,=0+G2+03)
and second (1,=0,0,+0,0++0,0,) stress invariants at the first
yielding under 3-D stress field for different types of rocks
jafter Reches, 1983], and their approximation by equation
{(38).



@ |
I M
| N }soo
4 10000: -
E ‘ 7 200 F
re e E
H [ s — z
é 500()'> / / | 100 a
/ ”
'l/‘(/\—-’/w——-"‘- -/—’/“ L
[+ 1000 2000 3000 4000 5000
Time |8)

LYAKHOVSKY ET AL.: DISTRIBUTED DAMAGE, FAULTING. AND FRICTION

2.5E-4 T 350
(b) X Second 3
- Cdine -3 3
20E-1 § | yiclding 1
. : First E- 250
< 15E-4 + | vielding - 3,
A s - c 4+ 200 =
= d 1.5
2 10E4 £ 71502
° I 3 %
- T 100 @
50E-5 + ] 7
[ + 50
0.0E+0 ¥ + 0

0 1000 2000 3000 4000
Time {s)

Figure 5. (a) Observed acoustic emission (solid line) and axial stress (dashed line) during deformational ex-
periment on Darley Dale sandstone with a nominal strain rate of 107 s~' and confining pressure of 5 MPa
{Modified with permission from Nature {Sammonds et al., 1992]; copyright Macmillan Magazines Limited).
(b} Calculated damage evolution (da/dt - solid line} and axial stress (dashed line) by the damage rheology

model with £,=—0.75 and Cy=0.5 5",

experimental results of Sammonds et al. [1992] with §=-0.75
and C,=0.5 ™. The value of the modified internal friction &,
is again in good agreement with the previous estimates.

5.4. Intact Strength

Most experiments on fracture or intact strength of rocks do
not record AE and the first yielding is not defined. Only the
second vielding is reporied. However, these data also can be
used to estimate Cy if the strain rate during the loading is re-
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Figure 6. Frictional stress for sawcut series (solid circles) and
intact series (open circles) for Westerly granite [after Stesky et
al.. 1974). The heavy solid line shows the friction law of Bver-
fee [1967). The heavy dashed line gives the yielding stress for
the modified internal friction &=-0.8. Thin solid and dashed
lines give the simulated yielding stress for C,;=1,3,55™".

ported and the friction angle is given by the angle of saw-cul
samples. Figure 6 shows the results of saw-cut Wesierly
granite samples after Sresky er al. (1974). which are in a good
agreement with Bverfee’s [1967] friction law for Westerly
granite

1=05+060c, (kbar).

Using the previous estimate (5=—0.8) for Weslerly granite
based on the Byeriee friction law, damage evolution is simu-
tated for strain rate of 2.7107 s~ {Sreskv et al.. 1974] and
different values of C =1, 3, and 5 s, Three lines shown in
Figure 6 represent maximum differential stress (stress enve-
lopes} versus confining pressure simalated for the three differ-
ent C;. The curve for Cy=3 s™' fits well the experimenta) data
ol Steskyv et al. [1974] and gives ancther estimale of the dam-
age rate constanl.

It appears that the parameter &, is well constrained and
varies little with different types of rocks and loading condi-
tions. The values of the damage rate constant C, vary by an
order of magnitude based on a limited range of experiments
with a similar strain rate of about 107 s™'. Thus additional
constraints for C; with different strain rates are needed. Some
of those may come from fitting simulated seismicity patterns
of the type discussed in paper 2.

6. Model Implications

6.1. Necking of Thin Plate

The large-scale extension of thin sheets may, under certain
conditions, generate further instabilities by the formation of
fault zones or ocal necks. First we provide an expression for
the direction of the neck trace for plastic material. Expressions
for a perfectly plastic material were given by Storen and Rice
[1975] and were used by Agnon and Eidelman [1991] for
analysis of continental rifts. To maintain a constant length and
rigid blocks, the neck must form along horizontal directions of
zero extension. or velocily characteristics, symmetrical about
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Figure 7. Dircction of neck trace in a thin plate with respect
1o the axis of maximum compression.

the principal incremental strain axes. For incompressible
plastic plates. the direction 6 between the neck and the axis of
maximum compression (Figure 7) is defined by the ratio p
between the rate of shortening €; and extension €
an*(8)=p= B
Es

The orientations of preferred faults in a brittle material were
determined by Reches [1983] numerically and analytically for
different cases. For p<O the orieniation of a fault plane with
respect 10 the coordinate system of the principal strain axes is
given from equation (27) of Reches [1983]

2
S =i2_:(l + sin(q)))y2 .

3 o
—,,J:Ip%(l - sm(tp))/3 .

Sg=

50
! m  Damage (numerical}
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a4 pe.---- Brittle (Reches. 1983)
30 1
<D
o 4
(%3]
2 o
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where S, and S, are slip directions and ¢ is a {riction angle.
The ratio S, 10 S» gives the angle 6 between the fault plane
and axis of maximum compression as

T i - sin( @)
(-S‘—) = tan‘(9)=|p|ﬂm.
S- 1+ sin(@)

(i

Frictional sliding is characterized by p=1. and ihe angle be-
tween a fault trace and the axis of maximum compression ¢an
he expressed through the Coulomb criterion as B=+{45°—¢/2).
Simpie calculations show that equation (40) reproduces €x-
actlv this angle for p=1.

Figure 8a shows 8 for a perfectly plastic plate and a brittle
plate with friction angle @ =30°, 40°, 50° (equation 40), Also
<hown are results of numerical simulations with the present
model of damage evolution for a material with the medified
internal friction E=-0.8. This corresponds 10 a friction angle
@ =40° for Poisson ratio v=0.25 (se¢ Figure 3). Each numeri-
cal calculation starts from random initial damage distribution.
With time. the damage increases and forms localized zones of
very high damage (Figure 8b) with orientation depending on
the parameter p. The values based on the numerical simula-
tions fit well the prediction of the faull plane orentation in
brittle material. These results. and additional simulations dis-
cussed in paper 2. illustrate that our damage rheology model
is suitable for the study of the evolution of fault branching and
other structural irregularities.

6.2. State Dependent Friction and Nonlinear Healing

Following and confirming the pioneering experiments of
Rabinoviez [1965] on metals, studies ol rock frction provide
evidence that the static friction increases slowly with the du-
ration of stationary contact [Dieterich, 1972]. Dieterich

Figure 8. (a) Fault zone orientation in plastic material (heavy line), brittle material with friction angle ¢=30°,
40°. and 50° (dashed lines). and model of damage evolution of 2 material with the modified internal friction

E,=—0.8 (squares with ver

-al bars). The assumed &, corresponds to the friction angle ¢ =40° for Poisson ratio

v=0.25 (see Figure 3). (b) Numencal simulation of localized high damage zones in a thin plate under 2-D
loading with p=—€,/€;=1. Bands of connected damage zones have developed at an angle of about 25" to the

principal stress direction €.
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[1979. 1981]. Ruina [1983] and others interpreted results of
laboratory friction expenments involving hold times of the
pulling mechanism and jumps in sliding velocities in terms of
rate- and state-dependent friction. As was mentioned in the
introduction. the RS friction. like our model. provides a con-
ceptual framework incorporating all imponant siages of an
earthquake cycle. It is therefore useful 1o compare resulls
based on our model prediclions with laboratory measurements
of RS frictional parameters.

In contrast to laboratory frictional experiments, our model
does not have sliding surfaces. but rather damaged zones of
weakness. Nevertheless. a comparison of our model resulls
with laboratory RS (and other frictional) data is useful. since it
alfows us 10 adapt our model to macroscopic situations involv-
ing various faulting phenomena.

Following equation (20). material healing starts when the
deformation is less than critical (E<&,). As discussed in the
context of Figure 3. for zero initial damage the coefficient E
may be estimated from the friction of the material. Once this
coefficient is fixed. substituting the effective elastic moduli
(13}into (37) we may calculate the friction angle as a function
of the initial damage (Figure 9). This is not the same as the
static friction that is measured in laboratory friction experi-
ments. but both coefficients have a similar physical sense, and
they are expected 1o be proportional to each other [Savage e!
al.. 1996].

Dieterich [1972)] reported detailed results of frictional ex-
periments with different normal stress and hold times up to
10° < and fitted the static friction with the equation

po=p" + Alogy (14B0), (41

where 1 is the duration of the hold time in seconds, j1'=0.6-0.8,
A=(.01-0.02. and B=1-2 s™'. The results were interpreted as
representing enlargement of the real contact arca with time
duc w indentation creep around geometrical asperities. Using
our previous assumption on the relation between o and L, and
emploving equation (20) for material healing under normal
stress G,. the damage rheology model predicts linear increase
of the static [riction with time. This relation cannot fit the ex-
perimental data. and it Izads to a quicker increase of . than
the logarithmic law. This suggests that the rale of healing de-

]
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=
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Figure 9. Variation of the friction as a function of damage c.
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Figure 10. Malerial recovering in stationary contact from ini-
tial damage o, to o,y due 10 normal stress. The increase of
static friction is proportional to the logarithm of the hold time

duration.

pends on the damage itself. This imposes that for healing the
damage rate coefficient is proportional to the exponent of the
current level of o Thus we substitute a function for thc pa-
rameter Cy in equation (20) to incorporate dilferent cocffi-
cients lor degradation and healing in the form

Cala(E-E0) for £2&,

:1 ”:(-‘:'in) for $<3,.

da _
di  )Cpexpt

where C, is constant describing the rate ol degradation and C,
and C» are constants describing the rate of healing. With this
madification the equation for healing has the logarithmic so-
lution

ay=o, - C.in(10)x

(43)

C oy
X I“gm[l _E"i'cxp[c_}!: g_‘gu n J

|

Thus a damage decrease (healing) starts from some initial
value oy, (Figure 10) which is critical vaive for any type of
deformation &. Normal compression reduces the actual strain
invariant ratic below &, and provides conditions for healing.
According to (43), the healing is logarithmic in time in
agreement with Diererich {1972, 1979] and following works.
Comparing (43} with cquation {4!) for static friction, and us-
ing the relation between damage and friction (Figure 9), we
may suggest that the coefficiemt Caln(10) should be of the
same order as A (ie. C-_.-IO_z). and the rclation
C/Caexp{[04/Ca]l2) is of the same order as B,

Miao et al. |1995] reported experimental resulis showing
time changes of Young's medulus during the icaling of
crushed rock salt. In those experiments, Young's modulus in-
creases relatively fast at the beginning of the process. After
2000-3000 min the evolution rate significantly decreases, pro-
ducing a loparithmic-like relationship between Young's
modulus and densilication time [Miac er al, 1995, Figure
10]. Our model unilies this obscrved behavior with the cx-
perimental results of Dieterich on state dependent friction.
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7. Discussion

We have described a damage rheology model based on
thermodynamic principles and fundamental observations of
rock deformation in situ and in the lahoratory. The model has
many realistic features of 3-D deformation fields which can be
summarized as tollows

7.1. Strength Degradation and Healing

A siate of siress corresponding to strain >3, leads to ma-
terial degrudation. with a raic proportionat 1o the second strain
invariant multiplied by (€-3,). Conversly. when g« the
same pracess results in material strengthening. At each time
the cxisting value of the damage parameler reflects an inte-
arated history of the damage process. The values of the dam-
age rate constants C, and C, in equation (42) define the dura-
tion of the rock memory for positive {degradation) and nega-
live (healing} damage evolulion, respectively. Infinitely large
C, and C, comespond 1o zero memory, in which case the
model gives ideal elastoplastic behavior. Infinitely small Cy
and C, give Hookean elastic hehavior.

7.2, Process Zone

Positive damage evolution starts at low loading when the
strain becomes critical &, and it produces gradual damage in
a “process zone” around completely damaged (“destroyed™)
regions. Because of the finite size of the process zone, our
model does not have the unphysical stress singularities of the
idea! classical crack solution. The equations of stress have a
regular solution at every point, and they incorporate tracture
zones having a finite rate of growth. Such process zones arc
ohserved in many experiments with rocks and design malteri-
als [e.g.. Lockner et al., 1991] and thetr existence often gov-
erns the rate and trajectory of the failure evolution.

7.3. Aseismic Deformation, Strain Localization, and
Seismic Events

When damage increases. values of the effective elastc
moduli decrease. and at some point the elastic energy may
lose its convexity. In that situation the slope of the stress-
strain relation is negative. The strain localizes in a high dam-
age zone with zero o negative effective moduli, and it may
become unbounded if loading continues. The deformation pre-
ceding strain localization is stable or with negiigible energy
foss 10 seismic emission. while the deformation following
strain localization is abrupt or seismic. Thus our model ac-
counts for aseismic deformation, seismic events, and the
transitions between these two modes of failure.

Simplified 1-I> and 2-D versions of the damage rheology
madel lead to analytical results incorporating a variety of de-
formational phenomena, such as strain localization (equation
30) and stick-slip behavior (equation 36). A practical version
of the general formulation provides a basic expression
{equation 20) for the evolution of damage in terms of 1wo
model parameters: a critical deformation &, separating mate-
rial degradation from healing, and a constant Cy governing the
rate of damage evolution. We have attempted to constrain
these parameters with relevant laboratory friction and acoustic
emission data (Figures 4-8). Additional constraints are
needed. especially for C,. A variant of the basic damage
evolution law, motivated by the ime-dependent friction meas-
urements of Dieterich [1972]. contains two different forms
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(equation 42) for damage cvolution during material degrada-
lion and healing. The modified evolution law provides loga-
rithmic healing with time (equation 43) in agrecment with the

experimental results,

The damage rheology of the present work is used. together
with addinonal developments. in a lollow-up paper where we
simulate the coupled evolution of regional earthquakes and
faults. A number of potential improvements 10 our dumage
rheology model should be explored in parallcl.
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