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INTRODUCTION

The Earth was formed as a planet of the Solar System about 4.5 billion years ago. Whether
because of an initial high temperature, or due to radioactivity, the temperature distribution
inside the Earth is slightly super-adiabatic, thus allowing for thermal convection at the outer
core, which gives rise to the Earth’s magnetic field, and convection at the mantle providing the
mechanism for plate tectonics. Because the surface of the Earth is much colder temperature
(~ 273K) than the base of the mantle (~ 3000A’), the cold thermal boundary layer develops a
few lithospheric plates, rigid layers with an average thickness of 0-80 km under the oceans and
150-200 km under the continents. The lower limit of the lithosphere is defined by an isotherm
of ~ 1600K. The layers are in relative motion at a velocity of 2 — 10 km/year, accumulating
strain at their borders and thus generating stress. When the stress exceeds the resistance of
the material a rupture occurs with a sudden release of energy, and with a consequent drop
of the accumulated stress; this energy release, part of which propagates through the Earth
as seismic waves, 1s known as an earthquake. However, tectonic plates continue to move, and
the process is repeated. Thus a stationary state has been reached, consisting of deformation,
stress accurmulation and earthquake occurrence. This process is known as seismic cycle, and
the interval of time elapsed between two consecutive earthquakes as recurrence time.

The various processes that constitute the seismic cycle occur at different time scales. The
accurnulation of stress caused by platae motions takes 100-1000 vears {order of magnitude of
10% -~ 10'° s) and corresponds to the duration of the seismic cycle, and the release of energy
is of the order of 1-2 minutes (order of magnitude of 10? s). Thus any model must take both
these time scales into account, in addition to a third time scale, that of aftershocks, thatcan
last for one year (order of magnitude of 107 5). We can thus say that eathquake occurrence is a
complex process of stress relaxation characterized by three time scales, one of them much lower
than the other two. Besides, during the seismic cycle, apart from the main shock, foreshocks
and aftershocks, there also occur events of lower energy with an apparently random time and

space distribution.

1 RECURRENCE OF EARTHQUAKES AND PROB-
ABILISTIC PREDICTION

1.1 Earthquakes

As a result of the study of the 1906 San Francisco earthquake, Reid proposed a mechanism for

the origin of earthquakes, known a elastic rebound theory, based on a loading process followed by
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a sudden energy release (Scholz, 1990), see Figure. According to Reid’s model, an earthquake is
just the rupture we have been talking about in the introduction, defined by its slip (a measure
of the discontinuity across the fault plane), also known as dislocation.

From a mathematical point of view it is not convenient to deal with discontinuities (laws
of physics are not valid there), and they are substituted by an equivalent system of forces:
equivalent in the sense that a seismograph would record the same displacement field as that
generated by the dislocation (see Aki and Richards, 1980, for a complete description). It has
been found that the system of forces equivalent to a dislocation is a double couple with zero
moment. The spatial orientation of the double couple is given in terms of two symmetric
elements of a second-order symmetric tensor. Because we are considering only shear faults, the
diagonal elements will vanish. Hence, all elements of the matrix (A] associated to the tensor
will be zero except for two symmetric elements, ag; = az2 = 1 for example. The strength of
the double couple is given by the moment of either couple, known as seismic moment M (a
scalar), and found to be the product of the medium rigidity, the area of the fault plane and
the average dislocation. As a final result, the seismic source is represented by a second order
symmetric tensor the matrix of which is given by M[A]. Because the trace of the matrix is zero,
its determinant is zero, and hence has only four degrees of freedom: one degree for the norm M
of the tensor and three degrees for the spatial orientation of the double couple, or, equivalently,
the slip, which is known as focal mechanism. The focal mechanism can be refrieved from the
direction of the first motion of the P-wave. and the seismic moment from its amplitude. These
four parameters characterize the geometry and strength of the seismic source. However, we also
need to know its spatial location (hypocenter) and the occurrence time. These four parameters
are routinely determined from the arrival time of seismic waves at different seismic stations. In
short, an individual carthquake is characterized by two sets of four parameters, on sct consisting
in the spacio-temporal location, and the other in the geometrical orientation of the source and
its strength.

The strength of the carthquake is given in terms of the magnitude, a measure of the en-
ergy released by the earthquake and propagated as clastic waves, which is computed from the
measurement of the maximum amplitude of a given part of the scismogram, approximately
proportional to the logarithm of the seismic moment. It would be preferable to measure the
carthquake’s strength from the energy released, but this cannot be measured directly. It secems
that the best solution consists in characterizing the earthquake strength through the {scalar)

seismic moment.



1.2 Seismic cycle

Reid also observed, and this has been widely confirmed, that large earthquakes repeatedly
occur on preexisting faults. Due to {riction the fault 1s locked and accumulates strain at both
sides until the tangential component of the stress exceeds the forces of friction leading the fault
to rupture again. As the tectonic process can be considered as stationary, the accumulated
stress will also be stationary, suggesting that earthquakes occur at preexisting faults at more
or less regular intervals of time, known as recurrence intervels. Shimazaki and Nakada (1980)
suggested a qualitative model for earthquake prediction based on the observed recurrence times,
see Figure. Let T| represent the resistance of material to rupture, and T, the drop of stress
after the rupture, which will depend on the local friction on both sides of the fault. If 7} and T,
are constant, the model will be predictable (periodic recurrence times) and with constant slip
(all earthquakes with the same magnitude). This similarity of each earthquake originates the
concept of characteristic earthquake, according to which faults are segmented, and the distinct
individual segments behave in a predictable way.

Unfortunately, the periodic recurrence time has not been observed, and two variations of
the predictive model were proposed by Shimazaki and Nakada, the time predictable model and
the slip predictable model. In the time predictable model T, is constant and T, is variable,
see Figure; the occurrence time of the next earthquake is obtained from the observed slip of
the last one. In the slip predictable model T} is variable and 7, is kept constant: the slip
of the next earthquake can be predicted on the basis of the time elapsed since the previous
earthquake. However, comparing both models with observations (instrumental, historical and
paleoseismic data} we can see that the mean recurrence time is well defined, but with significant
and unpredictable fluctuations. In other words. no deterministic prediction is possible.

Fortunately, however, not everything is lost. In the first place, the total slip across a fault
has to balance plate motions: if a fault is segmented the total slip of the distinct segments,
averaged over several seismic cvcles, has to be consistent with the expected slip. In the second
place, the processes that drive plate tectonics are approximately stationary, thus allowing, in
principle, an estimation of the mean recurrence time. In the third place, we have seen that
the active faults are segmented and each earthquake occurs in a given segment. If the seismic
history of a seismic fault is known for a period of time longer than the recurrence time, it
1s possible to detect whether a segment remains intact. This unbroken segment is known as

seismic gap. If a seismic gap 1s detected, it can be attributed high potential hazard.



1.3 The recurrence of earthquakes as a nonlinear system

It has been widely observed that the recurrence time of earthquake occurrence is not periodic;
in other words, we cannot predict deterministically the occurrence of the next earthquake from
the observations of a few past earthquakes. Much has been studied in physics about nonlinear
dynamical systems, although their application to seismology is still scarce. There is a model
that, at first sight, fits our needs, the drinping faucet (Shaw, 1984). From an experimental
point of view, water from a tank is measured as it passes through an adjustable brass nozzle.
Depending on the flow rate of water, the drop rate can be periodic, quasi-periodic or chaotic.
Upon substitution of the word water by the word stress, the analogy between recurrence of
earthquakes and recurrence of drops is total. To simulate the dripping faucet Shaw (1984)
designed a very simple mathematical model: a mass, representing the drop, grows lincarly
in time, stretching a spring that represents the force of surface tension. When the spring
reaches a certain length the mass is suddenly reduced, representing a drop detaching, by an
amount dependent on the speed of the mass when it reaches the critical distance. We thus
have driven nonlinear oscillator, the nonlinearity arising from the sudden change in mass, and
with position, velocity and mass providing the three variables required for the occurrence of
chaotic behavior in a system evolving in continuous time. Numerical simulations show that the
dripping faucet model is able to reproduce the main features of the (few) observed recurrence

time of earthquakes.

1.4 A probabilistic approach to recurrence time prediction

The goal of any model is to predict future events. A generalization of Reid’s model led 10
Shimizaki and Nakada's time-predictable and slip-predictable deterministic models. Under the
hypothesis (Hagiwara. 1974) that the statistical distribution of the uitimate crust strain mav
be represented by a Weibull distribution, Rikitake (1973, 1999) estimated the probability of
occurrence of great earthquakes . We have tested Hagiwara-Rikitake’s approach with data
generated by the dripping faucet model in the chaotic regime and found that the estimated
recurrence time with its associated standard deviation was kept almos constant through the

evolution of a window of 15 points for a generated time scries of 2,000 elements.



2 THE PHYSICAL BASES OF THE SEISMIC CYCLE

2.1 Phenomenology of seismic catalogs and fault population

Up to now we have characterized the seismic cycle by the main shock. However, a look at any
seismic catalog reveals the occurrence of other events apart from the characteristic ones.
As reported by Main (1996), an analysis of the seismic catalogs and fault population reveals

the following characteristics:

1. Fault populations are broadly scale-invariant over several orders of magnitude (power

law distribution).

2. Earthquake frequency-magnitude statistics also imply power law scaling (Gutenberg-

Richter law).

3.  Earthquakes have a relatively constant and relatively small stress drop over a wide range

of scales during dynamic slip (3 MPa compared with tectonic stress, ~ 10 — 100 Mpa .
4. Fault and fracture breaks are rough, with self-affine or self-similar scaling.

5. Earthquake population in diverse tectonic zones exhibit spatial variability, clustering

and intermittency, quantitatively consistent with multifractal scaling.

6.  The distribution of spacings of hvpocentral locations of earthquakes and laboratory

acoustic emissions are power law in both space and time,

7. Earthquakes have aftershock sequences that decay at a rate R({} determined by Omort’s
law R{t) = (_z‘f_e%]?’ where p is a power law index and Ry and ¢, are constants.
8. Seismicity can be induced by stress perturbations smaller than the stress drop in indi-

vidual events; i.e.. earthquakes can be “triggered™.

In short. we can say that the seismic catalog is characterized by a clustering in the seismic
cycle (foreshocks, main shock. aftershocks), power law distributions (Gutenberg-Richter’s law,
Omori’s law), fractal and multifractal scaling and action at distance. From a phenomenological
point of view, these are the characteristics of a fractal structure. Following Ito (1992), we can
say that earthquakes are natural fractals. We are thus left to find the physical process
according to which the occurrence of earthquakes emerges as a fractal structure, as many other
natural phenomena.

The best known scale free phenomena in physics are the critical phenomena that occur at

the phase transitions. Well known phase transitions are liquid-gas transition at the critical
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temperature and the magnetic transition ferromagnetic-paramagnetic. In general terms we can
view a phase transition as a transition order-disorder: in the liquid-gas transition, liquid is in an
ordered state, and gas in a disordered; in the magnetic transition, below the critical temperature
the material is in an ordered state {dipoles are in the same direction}, and above the critical
temperature in a disordered state (dipoles lie on a random direction}. An earthquake is a
large-scale fracture of the earth’s crust, with a sudden release of stored energy, and it occurs
when the stored energy exceeds the resistance of the material. The critical point will thus
be defined as the resistance of material to failure. The ordered state will correspond to the
stressed material, and the disordered state to the unstressed material (note that although we
are dealing with stress as a scalar, it is a tensor!).

Take again the example of the liquid-gas phase transition. For a given range of pressure and
temperature, liquid and gas coexist, with a step in density; as the critical point is approached the
density step decreases, vanishing at the critical point. For temperature higher than the critical
one, liquid and gas cease to be distinct entities. It is interesting to note that, as we approach
the critical point critical opalescence appears: close to the critical point long-range fluctuations
appear in the density of the fluid. If light is shone on to a fluid near its critical temperature
it is strongly reflected and causes the fluid to appear milky-white, due to the existence of
fluctuations at all scale lengths, obeying a power law distribution. It thus appears that the
liquid-gas phase transition can be defined by two parameters: the density step of the phase
transition and the length-scale of the fluctuations. Both parameters define the evolution of all
classes of critical phenomena, and are generically termed order parameter and correlation
length.

The order parameter é(r. ) accounts for the temporal and spatial evolution of some defined
parameter along the line that separates two phases: clearly, at the critical point the order
parameter vanishes. In the liquid-gas transition the order parameter is defined as o(x) =
p() — pgas(z). There is no general scheme for defining order paramecters: one has to consider
each new phvsical parameter afresh. In the case of an earthquake, it occurs when the stored
energy excceds the frictional stress oy (x), so we can define the order parameter as o(x) =
o(z) — 0o {x); because of the inhomogeneities of the fanlt. we will have different values along 11.
Note that we can also define the order parameter in terms of the slip u(z) on the fault, which
is proportional to the stress drop, which in turn is related to the accumulated stress. Also note
that the order parameter vanishes as the critical point is reached.

The correlation length £ expresses the typical distance over which the behavior of a variable
is correlated with. or influenced by. the behavior of another variable, and can be viewed as a
measure of the typical linear dimension of the largest picce of correlated spatial structure. The

correlation length is related to the spatial fluctuations of the order parameter. It has been found



empirically that the correlation length is proportional to £ ~| p—p. |“, where p is the parameter
that defines the phase transition and p, its critical value (that is, temperature, pressure, stored
stress in the above examples.) Clearly, at the critical point ¢ diverges and all scale lengths
are present, and follow a power law distribution. This divergence of the correlation length is
a necessary condition for the action af distance. In the case of earthquakes, the correlation
length can be associated with the length of the fault.

In summary, the theory of critical phenomena is able to account for all phenomenological
characteristics of the seismic catalogs, i.e., selfsimilarity (power law behavior) and action at
distance. Care has to be taken, however, in remembering that the critical opalescence (fluc-
tuations at all scale lengths), the equivalent to the occurrence of foreshocks, main shock and

aftershocks, occurs only close to the critical point.

2.2 Self organized critical models

The theory of critical phenomena is able to explain the phenomenology of earthquake catalogs.
On the other hand, they are referred to laboratory conditions: one or more parameters need
to be tuned to reach the critical point (for example, pressure and temperature in liquid-gas
transition). This fact also implies that critical phenomena are not time dependent and, as a
consequence, do not display any characteristic time scale. This aspect disagrees with observa-
tions, characterized by two time scales (three if after shocks are allowed to), one related to the
loading process and the other to the rupture time. We can define a tuning parameter as the
stress loading, a function of the piate velocity. Any phyvsical model for earthquake occurrence,
thus, has to incorporate this characteristic time scale, as well as the time scale of rupture which
will occur when a critical point is reached. Basically two such models have been proposed, with
multitude of variations: the slider-block model and the sand-pile model. Further, it has been
shown that, under very general conditions, a mapping can be defined from one of them to the

other, revealing that they represent different aspects of the same phenomenon.

2.2.1 Slider-block model

As a working hypothesis, widely accepted nowadays, we assume that earthquakes occur re-
peatedly on preexisting faults. Burridge and Knopoff (1967) constructed a slider-block model
to simulate the stick-slip rupture on a fault. The model consists of two (tectonic) plates that
sandwich a chain of NV blocks (later on extended to a bidimensional network of N x N blocks)
of equal mass m, mutually coupled by springs of Hooke constant k. and equilibrium length a.
The biocks are pulled by the bulk of one plate moving at velocity V' through constant elastic

shear k, against the friction I, between the two plates. The friction prevents sliding of the



blocks until a critical value of the pulling force is reached. The block sticks and the force on
the spring increases until it equals the friction resistance to sliding on the surface, and then
slip occurs. The extension of the spring is analogous to the elastic strain in the rock adjacent
to a fault. The slip is analogous to an earthquake on a fault. When the slip occurs, the stored
elastic strain in the spring is relieved and this process corresponds to the elastic rebound on a

fault. In the stationary state, the equation of motion for the ith block is
mX = kX1 — 2X: 4 Xio1) — kp(Xo = V) ~ Fp(X0)

where X, is the departure of block 7 from its equilibrium position.

This set of coupled differential equations has to be solved numerically for the whole system
simultaneously, and is very time consuming. An extension to two dimensions with an analog
cellular automaton was designed by Nakanishi (1990), much faster in computation. The blocks
interact with their nearest neighbors, so in any step in a loop one has to consider the possible
slip of any of the blocks of the system. If we define the size of the earthquake as the number
of blocks that have slid, the size distribution follows a power law, thus satisfying Gutenberg-
Richter law. However, no aftershocks are allowed in this model: all events are independent,
corresponding to independent steps in the loop. On the other hand, this is the condition of
applicability of Gutenber-Richter law: to be computed, foreshocks and aftershocks have to be
removed from the seismic catalog. To generate aftershocks, the hypothesis of viscoelasticity his
to be introduced. In the siider block model. two different time scales are present: a very large
one, related to the plate motion, and a short one (considered as instantaneous)corresponding
to the total slip of the system.

It is of interest to point out some features of the slider-block model: for high dimensional
systems (a large number of blocks) the system behaves at the edge of chaos, and for low
dimensional systems {a few blocks, often used to simulate the interaction between faults).
the system is chaotic. Thus, the prediction of individual earthquakes is not possible in a

deterministic sense, and only a probabilistic approach will be possible.

2.2.2 Sand-pile model

Consider a pile of sand on a circular table (Bak et.al., 1988, Turcotte, 1997). Grains of sand are
randomly dropped on the pile until the slope of the pile reaches the critical angle of repose. This
is the maximum slope that granular materiai can maintain without additional grains sliding
down the slope. The sand-pile never reaches the hypothetical critical state. As the critical state
is approached additional sand grains trigger sandslides of various sizes, and the frequency-size
distribution of landslides is a power law. On average the number of sandgrains added balance

the number that slide down the slope and off the table, but the actual number of grains on
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the table fluctuates continuously. The evolution of the above system is well illustrated using
a simple cellular automata model {Vespignani and Zapperi, 1998). Consider a squared grid of
N boxes, and let z; be an integer (or continuous) variable that represents the number of grains
(energy) that we add to the system. At each time step an energy grain is added to a randomly

chosen site, until the energy of a site reaches a threshold z.. When this happens the site relaxes
Zp —r 2 — 2,

and the energy is transferred to the nearest neighbors
7, — z; + y,.

The relaxation of a site can induce nearest neighbor sites to relax on their turn, i.e., they exceed
the threshold because of the energy received. New active sites can generate other relaxations
and so on, eventually giving rise to an avalanche. The distribution of avalanches follows a
power law distribution. As already noted, under very general conditions we can assimilate the
relaxation of a grain to the sliding of a block in the spring-block model, which can be described

by a cellular automaton model similar to the one just described.

2.3 Self-Organized Criticality

The two models previously described are typical examples of large interactive svstems. To
describe their behavior, Bak et.al. (1988) introduced the concept of Self-Organized Criticality
(SOC). A system is said to be in a state of Self-Organized Criticality if it is maintained near a
critical point. According to this concept a natural system is in a marginally stable state; when
perturbed from this state, it will evolve naturally back to the state of marginal stability. In the
critical state there is no longer a natural length scale, so that fractal statistics applies.

The SOC model solves, for example, the problem of the external tuning for the system to
reach the critical point, but is very sensitive to other parameters such us the velocity of the
driving plates. Perhaps it is too simplistic, but has helped us to understand the gencral features
of earthquake occurrence as a complex system, which is composed of a very large number of
elements and initiated the point of view of assimilate the occurrence of earthquakes to critical
phenomena.

Vespignani and Zapperi (1988) have shown that the number of states needed to describe
each site can be reduced to the following three main states: stable, critical and active. Stable
sites are those that do not relax {become active) if energy is added to them by external fields or
interactions with active sites. Crifical sites become active with the addition of energy. Active

sites are those transferring energy; they interact with other sites, usually nearest neighbors.
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Correig et.al. (1997) provide an example of a three state system, the so called minimalist

model.
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Aagrwend wach Dermreason |

[u]vicism are moment per unit area, and this makes sense becans: the contrite-
tion from £ has to be a surface density, weighted by the infinjtesimai area elemment
4Z to give 2 moment contribution. We define

Mg =[]V Cipme 13.18)

to be the compenents of the moment density tensor, m In terms ofthi.? symmetric
tensor, which is time dependent, the representation theorem for _d:splacemem
aL x due to general displacement discontinuity [, =] across T is

wfx, r) = J‘_J-rn,., * Gapg 4L {3.19}

When we have lsamed more about the Green lunction tin Chapter 4}, we shail
find that the ime dependence of the integrand in {3.19) it quite simpie, because
il x is many wavelengths away feom &, then convoluticn with G gives a field at
(. 1) that depends on what occurs at £ anly at “ratarded time.” Le. 1 minus some
prapagation ume betwesn & and x,

Fer an isotropic bedy. it follows from (2.33) and (3.18) that

Mow = ivefundd 0)]0py + utvLugd ] + v fudd, ]). (320

Further. if the displacement discontinuity (or slip) is parallel to I at &, the scalar
product v - {u] is zero and

Mg = piv,fu,] + vo[u,] {3.20)

in the case of © iving in the plane 3 = 0, with slip anly in the £,-direction.
we have the source mode! considersd in Section 3.2 and for this the moment
density tensor 15

| 4] 0 plwig o]
m o= Q2 0 0 ,
P{“l(f. 9] © 0

which is the now familiar double couple. )
In the case of a tension crzek in the &3 = 0 plane, only the slip component
[#s] is nonzere, and rom (3.20) we find

usl, 7] Q Y
m = 0 l[us(rt’.'- 7] 0

v
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Weibuil distribution anaiysis

Tha assumption that ¢« — £ is governed by a Caussian
viously insdequats becayss ¢ i¥ 2o be defined over a ran
order to improve this point, Hagiwara (1974b) pro
distribution (Waibulf, 1951), which has bee
research, to the present analysis of probab
distnibution i« vary useful far analyyes of
tory products and so on,

Let us denote 2 smal time interval by A¢ The procabdity for crysea)
fupture to occur between ¢ and ¢~ Af 18 grven by Mt)Ar on the cendition
that the rupture dig noc OCCUr pROr to t A(¢), called the hazard rate, @
distributad in a Wetbul distnbution as:

ALty = Be™

distnbution 5 op.
ge for which ¢ < 0. In
posed to apply 1 Wejbud
n widely used in quatity conkrol
iity. It has been proved that the
the failute rime of buiidings, fac.

[15-30]
whers £ > O0and m > —] .
The cumuiative failure rate i grven as:
Fin=1—Rro [15-31]
whare R(¢} iy called the reliability and defined by
.
. ~ . et .
R() = exp [ Df Aede] = exp (— m_-'T) [15.32]
Failure density functian f{t) is then obtained as:
_dR(t) Remeny -
LGRS “ai K exp (— ST 115-33}

The mean time

0 rupture, or mean life so cailed in quality control re-
sexrch, is given ay:

F.‘[rl'f !f(t)d(-('_"__f__l‘)-lrru-l}r(u)

[13-34)
e

-y, -y,

Ny ¥ loglog, LiX va logf Mk lor « Weibull dintributicn naiyms of Lhe whoiw su1 af dats
withigi frnine.

lnglog 1°R
Set 000l

Hota
- -10

Fig. 1. Log € va. log log LIA(€) in Weibull model curve-itting.

(1)60

168 THEORY OF BARTHQUAKE PREDICTION

whers " denctes 2 gamms function. In similar fashion, the mean square of
the time to rupture is obtained as:

- =2t} .
et f oo (£ £ (230
a

The standard deviation of the rupture time iy defined by (E{r?] — El[e“
ortiich is obtained as:

(ELe1] = EP[e])% = E[e) [I‘ ("’ = 3) —re (M)]“/r [ﬂ“_z) (15-36]

m+1 m+1 m]

When the double loganthm of 1/R is tzken. we obtain:

log, log, (%) = lag, (”T‘?-I) +{m * 1) log, t [15-37}

The above discussion has been developed in terms of ¢, [t may be approxi-
trately assumed, however, that strain accumulation due to a plate moton
proceeds with a constant strain rate u. The time OLigin is taken at the oecur-
rence time of a large earthquake when most of the strain energy accumulated
iz released, In that case, we assume:

£ =ut {15.38]

and so the entire discussion above can be made in terms of ¢, For instance,
[15-37] can be rewritten as:

—n—1
log, iog, (E(%l) = log, ( g;:—-;—l— ) “{m+1)log, ¢ [15-39]
which indicates that log, log, (I/8) is linearly correlated with log,e.

In order to determine m and X from sctual data, we usuatly proceed in
the foilowing way. Counting [requency of earthquake oceurrence n, for each
Strain range having an interval Ae, probability density for a range between
deand (i + 1)Ae(i= 0,12 ..}can be obtained from:

fide = n /N (13-490)
whers N is the total number of the data. Accerdingty, the cumulative ptob-
ability is obtained as:

Frte L x5 nN
r-Q i

[15-41}
-0

0 that R can readily be caiculated from [15-31].

The above-mentionsd procedurs is applied to the data of ultimate strain
which are given in Table 15.XIi. Omitting extreme values of ultimata strain
such as those {or the 1906 Sa: Francisco, 1928 Scuth Buigaria and the 1933
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Hallmarks of Self-Organized Criticality

Features

Sandpiles

Earthquakes

Boundary condition
Critical parameter
Dynamic fluctuation

Power law distribution

constant "grain" rate
repose angle §,
small fluctuation in angle, Ad_ <4

<

avalanche volume or energy

constant strain rate
tectonic stress ¢,
small stress drop, Ag, < g,

source length,seismic moment,

energy (Gutenberg-Richter law)

P. Bak | Self-organized criticality

[ ST S,

4, — Z,— 7,
Inn — +Y)
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EARTHQUAKE OCCURRENCE AS
CRITICAL PHENOMENA

the distribution of almest all properties

of earthquakes are self-similar, i.e.,
follow a power law

action at distance

these are the characteristics of critical
phenomena that occur at phase transi-
tions order/disorder

P. Bak ! Self-aryamized crncatiov
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MINIMALIST MODEL

Is a toy model designed to describe an extended sys-
tem with active propagating particles interacting with
other active or passive static particles. Starting from a
homogeneous mass distribution of active and passive
cells, the system evolves to a self-organized critical
state.

Define a regular 2-D lattice. The cells of this larttice
might :t:a found in three possible states: active, passive

or empty.

active cell «— asperity ready to break

passive cell «— broken asperity

In short, the equivalence can be stated as follows:
annihilated cell «— healed slip

The equivalence between the minimalist model and
the How of seismicity can be clearly stated in terms of a
model of nucleation and origin of seismicity developed
by Cochard and Madariaga (1994, 1996).

These authors modeled the dynamics of the faulting
through a rate-dependent friction law, and starting
from an homogeneous initial stress distribution, found
that when friction is strongly rate dependent, the heal-
ing process destabilizes producing premature healing
of slip and partial stress drop, that in turn results in

large variaticns of the state of the stress.

As noted by Cochard and Madariaga (1996), the rup-
ture propagation “adjusts” itself to satisfy a scaling
law, suggesting that a state resembling that of self-

organized criticality has been reached.
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CELLULAR AUTOMATA

Number of active ¢
° w fg . ells 1. Configure intial conditions of the grid
1

[+-}
< =]
!

1 n

A L 1

2. Add a unit energy to a random site of the grid.
- look for the energy of the site exceeds or not a given
threshold:
- If YES, call RELAX. GOTO 2.
- ELSE, GOTQ 2

SUBROUTINE RELAX

- explore the entire grid and update where needed

- stgrength of the event (cascade): total number of

units of energy

TIME SCALES - cascades: < inter-event time

- cascades: instantaneous

- each cascade is an independent event (a step in the

loop}

oosoz

- no aftershocks

s

- small cascades cannot be assimilated to noise

Predicting natural hazards resem-
bles the game of croquet in Alice in
Wonderland, where the ball was a live
hedgehog who would not stand still or
- remove clustering (foreshocks and aftershocks) g0 where the players intended. We
- are the remaining earthquakes independent events? can make statistics about the habits -

of hedgehogs, but we are still far

from understanding the rules of the
- the results of the statistics applied to cellular game.

SEISMIC CATALOG

- which of them, if any, can be considered as noise?

automata and seismiccatalogs, are comparable?

(Cinna Lomnitz)
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Modified Omori’s law

K
T {t+ o)

R: occurrence rate of aftershocks
t: time

K, ¢, p: constants

The cumulative number of aftershocks N(t), de-

fined as N(t) = {n(s)ds is

K [C(l—p} - (e+ t)(l—p)]
(p-1)

N(t) =

Mean Earthquake Recurrence Time: -
can forecast the average time between large events.
Seismicity Rate

ri /Ty

= [%exp (-%2) - 1] exp [—ﬂ +1 3

R: seismicity rate

r: the reference seismicity rate,

7+ and 7: stressing rate prior and following the
stress step b=
Ar: earthquake stress change :
A a fault constitutive parameter

o the normal stress

t time

t. aftershock duration.

Eq. (3) gives Omori’s law for t/¢t, < 1.

—
]
The mean earthquake recurrence time ¢, can be ap- N
proximated as
_AT L
e = tg——. 4
A (4)
If we define
T=:—. b= ;exp(—i)—l]. C=t.
T T Ao
then eq.(3) can be integrated to obtain the cumulative
function "
exp(t/C) + Bl
ty=TClh | ———~——|, -1 <A <0 5
F(t)=TCln 1+ B ‘ -~ , (5)

which can be fitted to data to obtain ¢, and ¢,.



CUMULATIVE EVENTS
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The power-lé;v increase in regional seismicity before large events was first
documented by Bure and VARNES (1993) and Burc er ol (1994) who rou:ld thfit
the clustering of intermediate events before a large SIIOFk produc?es an ticrease in
cumulative regional energy release (or in cumulative ‘reglonal Bentoff strain, &(r) =
Z;Z? E}?) that can be fit by a power law time-to-failure relation of the form

dry=A+ B, — ()" (1)

where 1. is the time of the large event, B is negative and m is usually about 0.3.
< . Fl - -

Another testable hypothesis that has emerged from the critical point model for
seismicity is the possibility of log-periodic fluctuations in seismicity approaching
criticality. SORNETTE and SAMMIS (1995) showed that if the spatial renormalization
can only be made at a discrete fractal hicrarchy of scale lengths, then the critical
exponent is imaginary in time and Equation (1} becomes (1o a first approximaltion,
retaining only leading term in (he periedicity)

£ = A+ B, - r)"” I+ C cos(Zn'nqg(l‘ =1, »j/)] (3)

i fog /

Such log-periodicity has been documented in several cases (SORNETTE and SAMMIS,

1995 VARNES and Burr, F996). but it has yet to be established as a untversal

precursor to large events. The modcling study presented below siggests that it may

not be universal. However, if observed. log-periodicity allows a more precise
estimate of 7 (SorNETTE and SAMMIS, 1995; SAMMIS ef of 1996).
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