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SUMMARY

A time dependent stochastic process with three states (solid, broken and moving) is con-
sidered in a hierarchical system made of embedded cells of increasing levels. An carth-
quake of a given scale k is associated with the moving state of a cell of level £ and results
from the coherent self-organization of fractures of lower scales. A direct cascade of stress
redistribution generates small scale stress heterogenettics in the neighborood of the active
fracture. An interesting feature of thc model is that the size of the domain where stress
redistribution takes place grows proportional to the length of the fracture. In the frame-
work of the general model, inspired by the progress in the use of the renormalisation
techniques in approaching critical point phenomena, we independently study a “[ractura-
tion” submodel and a “friction” one. These submodels are two states models which act
on different time scales. In the “friction” submodel which comprises broken and moving
states, the transitions between these two states are associated with a stick-slip behaviour
in a completly fractured fault zone. In the “fracturation” submodel which comprises solid

and broken states, we model the brittle behaviour of rock material. In both moedels we
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obtain a spatio-temporal clustering of earthquakes, realistic aftershocks sequences whose
frequencies decrease respects the modified Omori law, and a frequency-magnitude rela-
tionship which respects the Gutenberg-Richter law. We show that the model behaviour is
controlied by the stress héterogeneity in the fault zone, evidence a relationship between
| the periodicity of the largest earthquakes and the b-value, and indicate how the different

physical ingredients underlying each submodel can be gathered in a more general model.

Key words: seismicity — hierarchical system — cascade — fracturation & friction — Omori

' law — heterogeneity.

1 INTRODUCTION

“ Earthquakes mainly occur in fault zones, boundaries between tectonic plates, and result from the rel-
ative large scale motions of these plates. These fault zones include a large number of faults which
interact together (Harris 1998) to accomodate the large scale deformation. Most faults are schemat-
ically characterized by two phases during their history: an aseismic long time period, without rela-
tive motion of the two sides of the fault, separated by short periods of seismic activity (foreshocks-
main shock-aftershocks sequence, swarm of small earthquakes). Other faults produce aseismic slip
(slow earthquakes, creep) with a large number of microearthquakes. Collected information has re-
‘ vealed a spatio-temporal clustering of the seismicity and different statistical behaviours. Such are the
. Gutenberg-Richter power law of the size-frequency statistics (Gutenberg & Richter (1944) who re-
call that “earthquakes may be expected to occur in the future, as in the past™), the Omori law which
describes the aftershocks frequency decrease (Omori 1894, Utsu, Ogata & Matsu'ura 1995) as well
: as the foreshocks frequency increase (Papazachos 1975), the relation betwecen the energy radiated by
‘ an earthquake and its size (Kanamori & Anderson 1975).
Fracturation process determines the length of the major fault as well as the distribution of cracks
at all scales. Friction can then play its part in the fractured zone. In a recent past, the developpment
- of a constitutive law of rock friction (Dieterich 1979) gives a frictionnal interpretation of a large
range of deformation phenomena (Scholz 1998) associated with pre-existing fractures: creep (Scholz
1990), seismic regimes (Marrone & Scholz 1988, Tse & Rice 1986), aftershocks (Dieterich 1994,
nucleation phase (Campillo & Ionescu 1997), seismic cycle (Ben-Zion 1996, Rice & Ben-Zion
1996), coseismic phase (Cochard & Madariaga 1994). Nevertheless, shear fractures do not always
occur along pre-existing structures and the rupture could be initiated in or propagate into intact or

healed bulk rock. For long time periods, and to include the large scale heterogeneity of rheological
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rock properties, the analysis of the rupture of a fault zone has to include the fracture mechanism
{Yamashita & Ohnaka 1991).

Earthquakes genesis can also be tackled with tools of non linear physics (e.g. Dubois & Gvishiani
(1998)). The seismogenic layer of the Earth has been considered to exhibit a state of “self organized
criticality” (5.0.C.) (Bak & Tang 1989; Main 1997). A large number of phenomenological models
{see references in Main (1996)) reproduce this statistically stationary state characterized by spatial
and temporal correlation functions with a power law behaviour. This is also obtained by Correig,
Urquizd & Vila (1997) who use a cetlular automatom to model the aftershocks frequency decrease.
Discarding the state of S.0.C., Knopoff (1997) suggests that the healing of cracks and the rate of
healing have to be taken into account in a fault zone (Marrone 1998) to obtain an understanding of the
self-organization of earthquakes. The Burridge-Knopoff (B.K.) model (Burridge & Knopoff 1967)
models a fault by a spring-block system lying between two rigid tectonic plates; it reproduces the
Gutenberg-Richter law. Including a relaxation time, Hainzl, Zéller & Kurths (1999) also reproduce

the Omori law and the increase with time of the foreshocks frequency.

Our approach can be compared with renormalisation techniques used for other examples of critical
point phenomena in different areas of physics (Binney el al. 1992). It can be seen as a link between
the physical approachs recalied above, the B.K. multiblocks approach. and the scaling approuches o
carthquakes. In our previous work (Allégre et al. 1995, 1998) a fault zone is modeled by a hierarchical
system made of embedded cells. Earthquakes which occur within the fault zone are the result of (ec-
toni¢ loading. Each earthquake is a critical phenomenon which is the expression of a self-organization
of fractures at all scales. This view is supported by field observation (King 1983) or laboratory ¢xper-
iments (Tapponnier & Brace 1976). The potential elastic energy coming from outside increases the
density d of cracks at the lowest level; the density of cracks at higher levels is directly calculated from
d by a criterion of coherent organization of fracture (we call it the S.O.ET. rule; Allegre. Le Mouél
& Provost (1982)). The corner stone of this former approach (that we will call integral approach) is
the appearance of a critical density of cracks 4. the density of cracks versus « at a given level & tends
toward a (Heaviside) step-function f (d — d.) with increasing 4. The whole organization process,
through all the scales, is completed during a chosen unit of time and, after an event, part of the cnergy
is redistributed in the non broken part of the medium while another part is emitted by acoustic waves
or consumed by friction. With this kind of approach it is possible to obtain some characteristic classes
of seismic behaviours (scismic noise, swarms, earthquakes with or without precursors; Allégre et al.
(1995)), a typical time distribution of aftershocks (Allegre et al. 1998), and also, following somewhat

different lines, to generate an algorithm of prediction based on the variation of the local slope of the
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magnitude-frequency relationship (Blanter, Shnirman & Le Mouél 1997). A large range of critical
behaviours is also observed depending on the fracture criterion (Shnirman & Blanter 1999).

The present model is an implementation and an improvement of the integral approach; we now
study a hierarchical system of identified cells, each of them being in one of a given number of states.
Non stationary transition rates between the various states and a stochastic process at the lowest scale
define the location in time und space of each transition. We can determine the origin (in time and space)
of the modeled structures (fractures) and their history on different time scales, Qur basic assumptions
are as follows: the rupture can be initiated by the fracturation of a solid part of the medium (asperity)
or take place in a broken part through the friction process. The rupture can propagate until it is stopped
by more solid parts (barriers; Aki (1984)). These more solid parts of the medium favor in turn the
loading up of the shear stress which can be eliminated by both earthquakes or creep processes. We also
include healing of cracks and a direct cascade (from higher levels to lower ones) of stress redistribution
after each event. The stress redistribution generates small scale stress heterogeneities from which one
can compute the stress field at different scales. A time delay is precisely defined using the shear wave
velocity, and this implies a more sophisticated S.0.ET. rule with memory. We can describe in terms
of a cascade model (Ellsworth & Beroza 1995) the nucleation phase and the coseismic phase of an
earthquake. A low frequency of the stick-slip behaviour at the lowest scale can be associated with
the seismicity along creeping faults or during slow earthquakes. We eventually generate long duration
synthetic catalogs containing time, magnitude and location of the cvents,

We will rather systematically compare the model results with scismicity observations. We are
aware that confrontation of theory and experience cannot, in the present case, lead to what could he

called a proof of the validity of our approach. We will come back to this peint in sec. 5.

2 THE GENERAL MODEL

In this paper we use the integral approach of the S.O.ET. model (Allegre et al. 1995, 1998) as a
starting point for a stochastic time dependent model of a fault zone in which we incorporate the stress
redistribution following seismic events. In a homogeneous system, indeed, the redistribution of stress
at different scales and locations is the main cause of the heterogeneous distribution of cracks.

We propose first a general model which supposes the co-existence of “friction” along existing
fractures, and “brittle fracture” of the solid parts of the medium (“asperities”, “barriers™). These two
rupture mechanisms are then independently studied, their characteristic behaviours described. as well
as the seismic phenomena they are associated with. The first variant, the “friction” modcl, starts from
a completly fractured state (all the cells. at all scales, are broken) and there is no healing process. In

the second variant, the “brittle fracture” model, we neglect friction and assume that only the solid
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(unfractured) part of the medium concentrates the elastic potential energy; rupture is initiated in a

solid part and can propagate in the fractured part. The rupture threshold is constant for each model but

larger in the case of the fracturation process.
[Figure 1 about here.]

Let us present our basic assumptions. The seismicity generation process takes place in a certain
domain of a fault zone. This domain is modeled by an abstract hierarchical system composed of
embedded D-dimensional cells in the way explained in Fig. 1 (with D = 2): the highest level is
associated with one cell and is subdivided in R ” cells of the same shape, R being the renormalization
factor. For each of these cells we repeat the same operation until we obtain a hierarchical sytem of
cells with A° different scales. Let £ = 0 be the smallest scale, and & = K the largest. Qur model is
based on the simultaneocus consideration of all scales. It is important to stress that our hierarchical
system of cells does not represent a system of solid or quasi-solid blocks. Each cell at each level rather
represents a boundary between two blocks, or a fracture. It can then be associated with a possible fault
plane which is localized somewhere within this cell. Each cell (crack) will interact with neighboring
cells (cracks) and possibly create a fracture at farger scale in a larger cell.

We suppose that, as the result of the long term, large scale, tectonic fracturing process, our system
is polarized in the direction of the fault plane of the largest possible {racture. We shall call this direction
the “main direction”. For the sake of simpiicity, we suppose that the rupture propagates only along
this “main direction”. We only study the case of simple shear stress loading, which corresponds to
a strike-slip earthquake faulting mode. This idealized geometry can be modeled by a 2-dimensional
hierarchical system which represents a plane (Fig. 1, D = 2). The source of this loading is the motion
of two tectonic plates in opposite directions. We suppose a conslant rate of motion and a constant
normal stress; accordingly, shear stress would increase constantly but for the strain energy dissipated
by earthquakes or non-elastic deformations (creep, plastic deformation). The process is associated on
the one hand with a discontinuous energy dissipation, and, on the other hand, with a temporal vartation
of the average shear stress. Furthermore, the complex geometry of fracturing creates a heterogencous
stress distribution. We neglect the heterogeneity of clastic and fragile properties of the medium.

According o Bath (1974), the duration of an earthquake, 7, defined as the rupture time, has the

following empirical dependence versus magnitude:

L
logr =lopg{—)=05M+ 110 O
.
where L is the earthquake fault length, v, the fracturation velocity, and M the earthquake magnitude.
A larger earthquake has a longer duration; while a part of the earthquake fault continues 0 move,

some others have alrcady stopped, and during the fracturation process it is impossible 0 determine
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the final magnitude of the event. In this paper we consider a constant rupture velocity of the order of
magnitude of the shear wave velocity.

We now expose in more precise terms the stochastic dynamical system that we study in this paper.

2.1 The hierarchical system

The hierarchical system is obtained, as said above, by dividing a D-dimensional cell into R” smaller
cells and so on, K times. There are thus n(&) = RP% %) cells at scale k, k£ = 0, ..., K. Let us denote
by C = CF i€ {1,2,...,R**}P the RP" =% cells of scale & and by A, (C'F), j < &, all the cells
of scale j contained in C'¥ (Fig. 1). In case j > &, AJ-(Cf") stands for the unique cell of scale j in
which CF is included. Thus Ax(Ag41(C)) are all the cells of level k contained in the same cell of the

nexl larger scale cell that contains C. At each moment any cell can be in three possible states :

(i) solid {non fractured or non broken) : state s.
(i1) broken (locked by friction, fractured and motionless) : state b.

(iil) moving (active) : state m.

e s boml.

The characteric length of a cell of scale & is
Lk = lyRE. (2)

where {y is the length of the cells of the elementary level. For a given cell of scale &, to be in the slate
solid means that there is no fracture of length {(/) in it. On the contrary, a broken or a moving cell
have fractures of size {{£). A broken cell is weaker than a solid one, and consequently a smaller shear
stress suffices to initiate its motion. A moving cell corresponds to a rupture of size /{£) taking place.
The propagation of this rupture is not instantaneous but rather takes a characteristic time, A7%. Duc

to our assumption of a constant rupture velocity this means

(see however section 3.2). After defining the state transitions, we describe the smallest scale dynamics,
then the inverse cascade (from small scales to large scales) of rupture (fracture and friction), and finally

the dynamics of the direct cascade (from large scales to the smallest scale) of stress redistribution.

[Figure 2 about here.]



S.O.ET model 7
2.2 The state transitions

There are 4 possible transitions for the cells (c.f Fig. 2):

s - om (4)
b — m (5
m - b (6)
b oo s ™

“fracturation”: the s — m transition is associated with a fracturation process. We model by this
transition the brittle behaviour of rocks under a given state of stress: appearance of new cracks, crack
development and cracking along old healed cracks. We do not detail any precise failure mechanism
but just consider the initiation of cracks and their propagation along distance /(£). This phenomenon
implies a motion of both sides of the ¢rack,

b — m and m — b are the two transitions that constitute the stick-slip process.

“friction”: the b — m transition is associated with a friction process. The slip takes place on an
irregular fractured surface (micro-fault plane). During all the broken state time, the opening of the
crack is kept constant; we neglect the complex geometry of (his pre-existing crack.,

“stopping”: corresponding (o a stress drop, the m - b transition represents the stopping of hoth
rupture processes (friction and brittle). The locally accumulated shear stress is released by the motion
of the sides of the old or of the new crack. When the releasce reaches a large enough amount, the motion
stops and the sliding surface becomes a static microcrack (broken stale).

“healing’: The & — = wransition is associated with a healing process. This phenonenon resulls
from physico-chemical processes at the microscopic scale in rocks: compaction in presenece of fluid,
grain growth and crack cristallization. We consider that a healed crack has the same mechanical prop-
erties as a never fraciured part of the rock material.

The two other transitions do not occur since a solid cell first starts moving and stays sliding
during AT before it becomes broken (recall that broken means fractured but not moving); rorcover

a moving cell can obviously not become solid without stopping,.

2.3 The smallest scale

We define the whole process in terms of non stationary transition rates between the various states, In
general, these transition rates wiil depend on the present state of a cell and on its past, as well as on
the past of its neighbor cells. Al the smallest scale it depends in addition on the local stress, which in
turn changes due to seismic events and global large scale loading. We come to the details.

We attach (o each cell ¢ = (' areal number, ¢ = ¢ (C'. !}, which varies with time and represents
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the local accumulated stress. The dynamics at the smallest scale is given by a time dependent stochastic
process. In the following we write oy, for the variable transition rate from state u € {s, m,b} (o
v € {s, m, b}. Recall what this means: given that a cell is in state , the probability that it undergoes
a transition towards the state v in the infinitesimal time interval dt is «,_,,d¢. The transition rate for

b — s is fixed to some constant value 3 independent of the state of the system:
Ay s = ﬁ’ (8)

we neglect the complex dependency on physical parameters as temperature, local pressure, amount of
fluid, of the geochemical healing process (b — ).

The transition rate s — m depends on the local stress only. For its dependency on the local shear
stress we use the following expression (¢ = o{C, t))

0 fore < o,
les_,.m((?): k‘s(a—-as)és

Ts

foro > o, 9)

where o, is the fracture threshold, & is a constant with the dimension of the inverse of a time and 4,
is some phenomenological material constant,

The transition rate m — b is deterministic:
amb(t) = 8(t — [to + ATY]). (10)

Here t; = (o(¢) is the time when the cell became moving for the last time and AT is a time delay
(see eq. 3). Thus in other words, a cell that has slarted to move becomes broken (and not moving)
allmost surely after a time ATV. A constant rate of stress release (stress drop) during A7 justifies
this assumption.

The transition ratc b — m has two contributions corresponding to two different possible mecha-

nisms.
1 2
Cepym = Gy + Oy, (1)

The first is the analogue of the transition s — m. It is a spontaneous random transition that depends

only on the actual local siress in the cell,

0 foro < g,
a — J;

(12)

41 J—
Wm0 = 4 g ¥ foro > o
as

where now o, the friction threshold, &, is a constant with the dimension of the inverse of a (ime and
dy is some phenomenological material constant.

The second contribution corresponds to a transition that is induced by some neighbor cell (intra-scale
propagation): a broken cell starts moving a time ATV (intra-scale growth of “fracturation™) after a

neighbor solid cell along the main direction started moving (nucleation of the “fracturation”). In more
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precise terms, a broken cell becomes moving at time ¢ if, at time ¢ — AT, one of its “neighbours”
underwent a transition solid-moving. Here the “neighbour” cells of C' are those in the set Ag(A(C))
(the RY celis within the same cel} of scale | that contains C') which lie along the main direction with

respect to C. Thus
af_ (8} = 8(t — [to + AT?), (13)

where now tg = fo(t) is the latest time point when a neighbor cell (in the above sense) underwent
a transition & — m. Such an intra-scale propagation will also hold for scales £ > {} (sec below).
The intra-scale propagation direction is the same as the direction intervening in the critical rule of the
inter-scale rupture propagation (S.0.ET. rule) which we detail in the nexi section.

In our numerica! experiment we will denote n(¢) the sum of all the transition rates, at time ¢, at
the elementary level of the hierarchical system. It is a measure of the actual stochastic activity in our

system,

2.4 The inverse cascade of “fracturation”,*“friction” and “blocking”

In previous papers on the S.O.ET. model (Allegre et al. 1995, 1998), only solid and broken cells were
considered in the hierarchical system. The transfer of fracturation from lower levels (o upper oncs
(inverse cascade) was determined by a simple rule: if at least one straight line (fotlowing the main
direction) of cells (R cells) of level & is composed oniy of broken cells, the corresponding cell of
level & + 1 is also broken (Fig. 3). In this case the state of all cells at all levels 1s entirely delernmined
by the configuration at the smallest scale. At each time, the state ol larger scales is a function of the
instantancous picture at the smallest scale. The different scales do not have any proper dynamics since

they are, so to speak, “slaves” of the smallest scale.
[Figure 3 about here.]

Here we consider a system with a memory, a next neighbour correlation (c.f. above the intra-
scale propagation) and a more claborated S.O.ET. rule. The new S.O.FT. rule associates with a ¢cll
¢ at level & a “virtual” state which is a function of the configuration of the RY cells in Ag_, (C').
However, the “real” state of C' will also depend on its history and on its next neighbours. No additional
stochasticity is introduced at scales larger than the elementary scale (A = 0).

The new S.O.ET. rule is as follows: C = C'¥ is “virtually” moving if the moving cells in Ay, (C)
are in a critical state with respect to the classical S.O.ET. rule. (' is “virtually” broken if ihe broken
cells in Ax_ (C") are in a critical state with respect to the classical S.O.FT. rule. In case of a conilict
between both rules the moving rule prevails. In all other cases (" is “virtually™ solid.

The rules for the various transitions of a cell of level &k are as follows.
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() Suppose C'is in the state solid. It undergoes the transition sotid — moving if it becomes “virtu-
ally” moving.

(i1) Suppose C' is in the state moving. It undergoes the transition moving — broken at time ¢
if it started t0 move at time ¢+ — AT*. That means that, once it starts moving, it stays moving for
AT* (according to eq. 1) before it becomes broken. Therefore it may happen that, while a cell is
moving, the smaller scale configuration changes in such a way that it becomes “virtually” non moving;
nethertheless the cell keeps moving till the time AT* is completed. This is the main difference between
our new concept with memory and the classical static S.O.ET. rule: if, as in Allegre et al. (1995),
the moving state at all scales & # 0 is a function of the instantaneous configuration at scale & =
0, the lifetime of the moving cells (the average duration of the moving state during the numerical
experiment) can be smaller for higher degrees. Let us detail this difference with the most simple
example: R = 2,k = 1, D = 1. The hierarchical system is made of two cells C? and C'? of level 0,
aligned along the main direction and included in the unique cell ' of level 1. If the cell ¢ 0 staﬁs o
move at t; for an interval of time AT®, and the cell C' starts (o move at t; € [t,:¢, + ATY) for an
interval of time AT, C} is moving: (a) during [t2: 81 + ATP] in the case of the static S.O.FT. rule;
(b) during {¢,:¢; + AT!] in the present case of the S.0.ET. rule with memory.

(1ii) Suppose ' is in the state broken. It undergoes the transition broken — solid if it hecomes
“virtually” solid (hierarchical geometric blocking), Let us extract [rom the most simple example (as
above R = 2. A = 1. D = 1) an interesting behavior: if C'{ is broken during [tiity + _Xff] and
% is broken during [fo; ¢y + '_\tg‘j] with { € [t 8 + At’lj], C'{ is only broken during [ty: min(t; +
At‘f. ta+ AtD)] < (At"f + At?)/? (superscript 3 indicates that At intervals are related to the broken
state lifetime). Consequently, even if physico-chemical healing processes are longer the larger the
scale is, the process of healing by geometrical blocking (non cooperative behaviors at smaller scales)
can be more rapid for larger {ractures. This is due (o the increase of possible blockings (“barriers™) at
every smaller scale.

(iv) Suppose (" is in the state broken. It undergoes. at time !, the transition broken — moving il it
becomes “virtuatly” moving at time ¢, or, if at time £ — AT*, one of its solid neighborsin A { A, ()
lying in the main direction which respect to (" started moving (intra-scale propagation, already men-

tioned in section 2.3 for the 0 scale).

Keep in mind that the inverse cascade of rupture is instantaneous according to the S.0.ET, ruie. Con-
sequently, a transition at the lowest level could correspond (o a similar transition at higher tevels. This
does not mean that the rupturc process itself is instantaneous because this process is in fact made of all
the ruptures at lower levels which occured before this transition (intra-scale propagation and S.0.ET.

rule with memory).
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2.5 The direct cascade of stress redistribution

We detail here the source of the stress heterogeneity. As we saw in the previous part, the small scale
dynamics depends on the local stress in elementary cells CP, i € {1,2, ..., R*=*}P This local stress
is changed on the one hand by the external large scale loading process, and on the other hand by the

internal stress redistribution following the seismic events (varying with time):

do(C7.t) ‘ ;
S = L), (14)

where £ (supposed to be constant) and [;(t) are respectively the external loading rate and the internal
stress redistribution rate. A seismic event is a cell in the moving state (see however sec, 3.2) . For a cell
C* of level k we denote by T°(C'¥) and T*(C'F) the sets of time points 7* and r* when it respectively
starts to move from a solid and a broken state. For the sake of simplicity we suppose that the stress is

redistributed uniformly in time during the event. Therefore, we write /;(f} as follows

Lty = 15 + L (1) (15)
i ASO;‘C-

B=3 2 2 Eerrarnit) 7 (16)
k=0 ¢k reTH(CF) ’

nin=>5 > §rrpars (7] ‘FAI (17)

=0 "k Tk
& O(] rel (C})

with,

1t LT ATR]
ﬂhf+Aﬂn:{ clrr+ar
0 else

Thus A}, and A’sf ) arc the internally redistributed amounts of stress, during time A7, into the
cell (' of the elementary tevel when a cell € j‘ has moved respectively from a solid or a broken state.
For each transition through the moving state, three contributions arc taken into accounlt. Suppressing

the indices * and ¢ we have

Aok, = Aol + Aok + Ad) (18)

redi,j wnifii.)
where Aoy, AGrcq, Aapip are respectively the tocal stress drop, the redistribution of stress from
neighbour cells, and the uniform stress drop.

First, if a cell €' = (? al the elementary level moves, it undergoes a local stress drop which we

suppose constant. This local stress drop does not happen for moving cells at higher levels and thus
Agf;-f;z}‘,r = _O'!'uc(si_jék[] (19)

Sccond, if cells at higher level move, they induce a stress redistribution in adjacent cells. To model
this stress redistribution we introduce tor cach scale & a mask £, 7 € {—1,0.4+1}" which, for cach

event, determines the change of local stress in a neighborhood of the cell where the event ook place.
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For simplicity we only consider the next and nearest next neighbors, Moreover, we suppose that all the
redistribution masks are obtained via a scaling of the mask at the smallest scale £°, More precisely, if
an event takes place in a cefl Cj-‘ of level k, the stress in the elementary cell C? changes according to

the following formula

ki C? k _ D
A0l g, = {F’ P T E MG AL O (20)
] else
The mask F is derived from F? according to the rule
F}k — /\Rak Fvlﬂ (21)

with some parameters 8 and A. The boundary is treated by 0-extension.
(Figure 4 about here.]

For a typical example in two dimensions, see Figure 4 where we approximate in a discrete and
abstract way the actual observed redistribution patterns (Okada 1985, 1992). Four parameters are used
to define the mask £ in 2 dimensions. Here, we simply consider that there is a relative increase of the
shear stress along the main direction (A4q. A; on Fig. 4) coupled with a relative decrease in the other
direction (A; on Fig. 4); these relative variations represent a few percents of the local shear stress.
Note that, with these definitions, an event of scale % affecis the stress in all the smallest scale cells
located in a neighborhood of j that grows proportionally to /(£}. As said in section 2.4, an event at
the elementary scale may instantaneously produce larger scale events through the inverse cascade; the
stress redistribution corresponding (0 these events generates a large heterogeneity in the stress ficld
through the presently discussed direct cascade. This is one of the key points of the model: multiscale
interactions govern the seismogenic process.

Third, an cvent at scale & is supposed to produce a total global stress drop _\o;[ob, which we will
specify below. In order to respect this constraint, we add, in the case of an event at scale k. to every

cell of the elementary level an uniform stress change :

Aok

unifii,g

= Nok,.; suchthat > Ao, = Aof,. V) (22)

Let us detail how we calculate the global stress drop, Ao, Kostrov (1974) has suggested a
formula generalizing Brune’s (1968) one to the case of a seismic process taking place in a volume. V.

s

Each event of seismic moment M, is associated with a negative variation of the average strain, A

My (23
Ty i
where p t$ the shear modulus. The corresponding change of the average stress, Ao, is
M,
Ao, = pAs, = =222 (24)

oV
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In our hierarchical system, the seismic moment, My (&), of an event of level & is given by
Mo(k) = pS(kju(k), (25)

where u (k) is the displacement caused by the event and .S (k) the fault surface area. The displacement
is proportional to the linear size of the corresponding moving cell (u(k) ~ R*), while the surface is

the product of the length I(%) of the cell by its height h{k) ~ [(k): S(k) ~ R**. It follows that
Mo(k) = p RPN, (26)

where ¢ ~ pl?{K)u(K) is a constant. From Eqs. 24 to 26, it comes out that the global stress drop.

Ay, due to an event of level & writes
Aagios(k) = —pa R 27

where o ~ 0.5pl! (K)u(K) (we assume V ~ [3(K}). From eq. 18 and 22, we deduce the uniform

stress drop which is redistribuled in the whole domain.

3 A “FRICTION” MODEL AND A “FRACTURATION"” MODEL

The general model described above has a very complex behaviour, and no large range of parameiers
values has yet been explored. Therefore, in the present paper, we expose two submodels which have
been explored in some detail and constitute the two first steps of a complete numerical simulation
which will be exposed in a future work. Considering the two submodels separately is a preliminary
approach 1o understand the origin of the different characteristics of the general model. We study here
two distinct ranges of parameters which correspond on the one hand (0 a “fracturation” model and on
the other hand (o a “friction” model. They do nort describe the faulting mechanism al the same tine
scale; they are in fact complementary submodels of the more complete one which corresponds to the
theoretical formalism exposced above (section 2). For the sake of simplicity and saving computation
time, we consider in the following D = 2. If we conserved our anisotropic S.O.ET. rule (lhe critical
configuration is an alignment along only one particular direction) and our schematic stress redistribu-
tion mechanism which introduces again anisotropy, a three dimensional approach would not constitute
a major change in principle (see sec. 2, Figures 3 and 4), even if, in the classical renormalisation tech-
niques, the dimensionality of the system exerts an important control on its behaviour. Nevertheless, a
full realistic 3D approach would not be so simple (o implement, given that faults may oceur in different

orientations. and that the addition of gravitational cffects may be significant.

| Table 1 about here.]
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3.1 A “friction” model

This model corresponds o a completly fractured fault zone. To study this “friction™ process starting
from our general model, we simply take (c.f. Tab. 1 C) a completly broken initial state (all the cells,
Yk, are broken) without healing process (3 = ().

Let us give the basic properties of this simpler model within the framework of the general one.
We are left with two states, broken and moving. The transition b — m at the elementary level is
determined by a stochastic random process (eq. 12) while at higher scales (k > 0) it is determined by
the S.0.E.T. rule applied to the cells of the lower level (K — 1). The transition m — b is deterministic
at all scales, k; a cell stops moving a time AT* after it started moving at time ¢. If during this time
span (¢,t + AT¥), the moving cell becomes virtually moving again (because at smaller scale a SOFT
configuration occurs) it still will stop at ¢ + ATF,

Before generating a seismic catalog (time, magnitude, location), let us precise what we call, in
this model, an earthquake, its magnitude, its nucleation, time and location.

We define the nucleation time-point and its position in a recursive way. If a cell 7 at level & starts
moving, it either participates in the nucleation of an event of larger scale & -+ 1, or it represents the
endpoint of a “friction” cascade. It is the endpoint in a “friction” cascade, if, during its moving time
AT¥, the cell Ay (C7) does not start moving. Note that Ay (C') may already be moving, in which
case automatically the event occuring at ¢ is the endpoint of a friction cascade. We say that a cell
of level & participates in the nucleation of an event, if, during A7, its moving time, the cell A4, ()
undergoes a transition to the moving state as well. This motion, however, may have been initiated by
some other cell in Az (Ax4,(C)). We now define the nucleation location and time at scale & of a larger
event of scale & - L: it is the position of the first cell in A, {A .41 (C"}), lying in the main direction with
respect to (', which started 10 move and the time when it started 10 move. This defines in a recursive
way the nucteation location and time of any event al the smallest scale. In case a cell C'* at level & is
the endpoint of a cascade (see above), we report in the catalog its nucleation time and location at the
elementary scale through the recursive scheme described above; we say that an earthquake of level &
was initiated at this time point and location.

An earthquake of level k is associated with the moving state of a cell of tevel £, This event has to
be given a magnitude, completely defined by its level &. This magnitude, M k), can be obtained from
eq. 26 using the relationship log(My(k)) = 1.5M (k) + const, or directly from M (k) = log(S(k)} +

const (Kanamori & Anderson 1975), In both cases, we obtain
M{k) = 2k log(R) + const. (28)

Let us insist on some important peculiar characteristics of the model. First, we can describe the
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nucleation phase, the coseismic phase and the stopping phase of an earthquake (c.f. section 4.3) as a
cascade model (Ellsworth & Beroza 1995). Second, the propagation of the moving state (due to stress
redistribution) at the elementary level can proceed at different rates and could be associated or not
with a higher scale event. Let us illustrate different situations in the onc dimensional case of figure 5

(N and t; are defined in the caption).

(i) ty -t > AT the propagation proceeds very slowly, there is not higk.zst level event and this
corresponds to the seismicity along creeping faults (we now call creep this behaviour).

(i) ty — £, > ATK: the propagation procecds slower than the rupture, there is not highest level
event and this corresponds to the seismicity during a slow earthquake.

(iil) tn — t; < ATX: the propagation is very rapid, there is an event of the highest scale with a

stick-slip mechanism.

[Figure 5 about here.]

3.2 A ‘“fracturation” model

As in our previous approach (Allégre et al. 1995, 1998), this model corresponds to a weakly fractured
fault zone where the healing process is effective at the lowest scale (3 # 0). This process generates a
hierarchical gcometric blocking at higher scales. To particularize the “[racturation” submodel from the
general one, we simply adopt (c.f. Tab. | B) an instantaneous propagation of rupture (AT* — 0. ¥4)
and a continuous shear stress dissipation by friction. Thus we end up with a two states model, solid
and mobil-broken. To incorporate the dissipation by friction, we let &, go to infinity in eq. 12, in such
a way that, as soon as the stress reaches the critical threshold value o, the cell undergoes a transition
b — m and stays moving tor an infinitesimally small time A7 before it becomes broken again. Note
that the transitions & — m — b are nol visible in our condensed two states (solid and mobil-broken)
“fracturation” model. During the infinitesimal time AT, the excess of stress with respect © s is
evacuated from the system, eliminated by the “friction” process.

Let us recall, in the framework of the general model, the basic characteristics of this simpler
model. We have two states, solid and mobil-broken (we now use broken for this double state). The
transition s — b at the clementary level is determined by a stochastic random process (eq. 4 0 9)
while at higher scales it is determined by the S.0.E.T. rule applied to the broken cells of the lower
level. The transition & — « is also determined by the S.O.FT. rule: a cell which is not in the broken
state is in the solid one.

To gencratc a scismic catalog (time, magnitude, location), let us define precisely what we call,

in this model, an earthquake, its magnitude, its nucleation time and location, An earthquake is here
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associated with the s — b transition. Since the rupture instantancously propagates through the higher
levels, transition s — b at the elementary scale is called an “hypocenter”; this is indeed the nucleation
of the fracture which can go up the scales, thanks to an inverse cascade. All these nucleations are
noted in the catalogue. Of course, there is no earthquake duration in this case. For a given event, the

magnitude is given by eq. 28, as in the “friction™ model.

4 RESULTS OF NUMERICAL SIMULATIONS

As said above, we study two distinct ranges of parameters which correspond on the one hand to a
“friction” model and on the other hand to a “fracturation” model. We are interested in the most general
properties of the events sequences obtained from the numerical simulations; these are the magnitude-
frequency relationship, the temporal variation of the number of foreshocks and aftershocks per unit of
time, the periodicity of strong events. For both models, in a wide range of parameters values, events
(earthquakes) sequences perfectly obey both Gutenberg-Richter and modified Omori laws.

Let us first discuss the parameters kept constant in each modet (c.f. Tab. 1A). R is taken equal to
2; a larger renormalization factor would only provide a more realistic magnitude-£ relationship (eq.
28) and an increase of the number of foreshocks and aftershocks (Allégre et al. 1998). The latter
statement is still valid when considering the effect of an increase of the number of scales, A’ (sce Fig.
12). A small number of scales is not a big drawback because of the self-similar behaviour at al! scales
except the elementary one (K = 0); note that the typical length of an elementary cell is related to this
number of scales. All the parameters concerning the stress field (a;, o5, Aoy, p2) are of the order of

magnitude of the observed ones. Parameters related to egs. 9, 12 (d;. 8., ks, ky) are arbitrarily chosen.

4.1 Method of analysis

We obtain as a result numerical catalogs of events (see above). These catalogs contain the times of
events, the “hypocentre” coordinates, the hierarchical level reached by the event and the corresponding
magnitude (c.f. eq. 28). We also follow the evolution of the total transition rate at the lowest scale, of
the average shear stress, and of the heterogeneity of the stress field.

Making use of eq. 28 for the conversion from hierarchical level to magnitude, we estimate the

b-value of the Gutenberg-Richter relationship through the formula

b

1
= Stoerrg e ) (29)

where & and &,, are respectively the average and the minimum hierarchical levels in the considered
set or sub-set of events. This formula is the maximum likelihood estimate of the b-value in the case

of a non-limited range of discrete magnitudes with integer values (Molchan, Kronrod & Panza 1997,
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Kulldorf 1961), The limitation of the magnitude of events by the highest scale in our model is not
important for the comparative analysis. The magnitude band of the model is derived from the number
of hierarchical levels through eq. 28, and the maximum magnitude is fixed by the characteristic length
of the highest level.

For the temporal analysis of foreshocks and aftershocks, we used the program AFT developed
by Utsu, Ogata & Matsu'ura (1995). This program is available in the IASPEI Program library (Lec
1997). We estimated the parameters of two different models of the aftershocks decay (or loreshocks
increase): the modified Omori law (Utsu, Ogata & Matsu’'ura 19935} and its modification known as
Otsuka model (Otsuka 1985). The modified Omori model assumes a power-law decay:

A
(t+c)?
f(t) is the number of events per time unit, ¢ the time from the main shock, p the Omori exponent and

flt) = (30)

c a shifting parameter. In Otsuka model the long tail of the power-law is reduced by introducing an
exponential with a characteristic time T:

A4 t

1) = Gy expl= ) 1)

Parameters of eqs. 30, 31 are compuled in the program AFT using the maximum likelihood method and

the Davidon-Fletcher-Powel optimization procedure (Utsu, Ogata & Matsu’ura 1995). Unforwnately,
this program does not work with sequences containing more than 3000 events. We then developed our

own code which can be applied to unlimited sequences.

4,2 Identification of the events

Let AT, ;. be a time span which will be defined below. Main shocks and aftershocks are identified in

the following way:

if an event of level £ at time ¢ is preceded by only lower levet events in {t — A7), 7, 7], itis a main
shock with precursors.

if an event of level & at time ¢ is not preceded by an event during [t — A7/, ], it 18 & main shock
without precursor.

if an event of level & at time ¢ is preceded in [t — AT, 7, {] by an event of level & which is not an
aftershock, it belongs to a swarm of level £.

if an event of level & at time { is preceded by a larger level event during [t — AT, 4.7, il is an

aftershock.

AT, is chosen (by trial and error) in such a way that about 90% of the aftershocks of a main shock

(identified as said above) which occured at time ¢ are contained in [{;f + AT, f]. AT, depends
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essentiaily on the parameters of the mask. These rules are somewhat arbitrary, but we have observed
that the results do not depend much on AT, if this value is few orders of magnitude less than the

average time interval between two main shocks.

4.3 Numerical results of the “friction’* model

In the “friction model” (¢) is the total transition rate b — m at the elementary scale and we will
interpret in terms of foreshocks-main shock-aftershocks the short time period from the nucleation

phase to the stopping phase of a given event.

[Figure 6 about here.]

“Friction” model with immediate load We suppose a very small loading rate which will not

change significantly the system during the characteristic duration of a foreshocks-main shock-aftershocks

sequence. Starting from an homogeneous state, the system can have been loaded up to the critical stress
value (RP% oy bars) by the stress (F) applied to the boundary of the domain by plate tectonics. Ac-
cording to eq. 12, this is indeed possible in the case of a homogeneous system, because nothing occurs
as long as o, < o, We can as well take as the initial (f = 0) configuration o; = ¢, = oy Vi. A [irst
transition & — m is randomly chosen in the volume. This first nucleation is enough to obtain, without
additional loading, an increase of the foreshocks activity, a main shock and aftershocks. Let us exptain
this behaviour, The perturbation of the stress field around the first moving cell (Ae,.;) is larger than
the uniform stress change (Ao, ) caleulated from the global stress change (Ao ,;). Consequently,
at the elementary level, the rate of transitions & — m (w(¢)) increases; the heterogeneity of the stress
ficld increases after each event at the clementary level, and so on. The process is auto-accelerated,
events at higher level occur and, finally, a strong event may occur. This is the time of the largest stress
field heterogeneity. A strong cvent (or strong events) significantly unloads the whole system. This
starts the cascading of the aftershocks which unload the areas of high stress and decreascs the average
stress (0,). The value of »(f) decreases rapidly at the beginning, burt this decreasing is then slowing
down due to the decreasing of #,,.

The general results are as follows. First, in a very large range of model parameters values, we
obtain sequences with an increasing frequency of foreshocks preceding a main shock or several strong
events (swarm) followed by a sequence of aftershocks with a decreasing density. Second, the tem-
poral decay of the number of aftershocks per time unit obeys in general the modified Omori law, in
many cases perfectly. The value of the power exponent is usually around 1.5, Third, the events sizes
distribution follows very well the Gutenberg-Richter law; b-values vary in the range 0.5-5.0 depend-

ing upon the different parameters values sets, and vary also with time, for given parameters, during
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the foreshocks-main shock-aftershocks sequence. Fourth, foreshocks also often follow a power law
increase.
We now present in more detail the behaviour of the system for different values of the parameters

for and around the ones reported in Tab 1 A and C.
[Figure 7 about here.|

Results corresponding to the parameters values set of Tab 1 A and C (lhe reference sequence)
are shown on Fig. 6 versus both linear (Fig. 6(a)) and logarithmic (Fig. 6(b)) time scales, reckoned
from the time of the first nucleation (see above). On each subfigure the first graph shows the level of
the events, the second one shows the total transition rate & — m at the elementary scale, the third
one represents the evolution of the average global siress, the fourth one the evolution of the standard
deviation of the swress distribution for levels 0 and 1, and the last one shows the density d of currently
moving cells at the elementary level; note that at the moment of the main shock this number is less
than at the time of the strong foreshocks. Both values of ¢ are much less than the critical density
value (0.618) of the corresponding integral S.O.FT. model. This “reference” sequence summarizes
the typical behaviour of the “friction” model. The main shock is preceded by a short sequence of
foreshocks. With the logarithmic time scale we clearly sec the temporal clustering of events: strong
foreshocks are themselves preceded by foreshocks and have their own aftershocks. The main shock has
a rather long sequence of aftershocks. Fig. 7 shows that the tempor! aftershocks activily decay with
time obeys very well the modified Omori taw. Fig, 7(a) shows in a Jogarithmic time scale the cumulated
number of aftershocks compared with the theoretical curve (cq. 30) for the values p = 1.52, ¢ = 203
given by the maximum likelihood estimation. Fig. 7(b) shows the cumulated number of aftershocks

versus the number given by eq. 30.
[Figure 8 about here.}

The events sizes statstics follows the Gutenberg-Richter law. Fig. 8 shows separately the magnitude-
frequency curves for foreshocks and aftershocks with b-values respectively equal to 1.43 and 2.06. The
stope break for the magnitude-frequency curve for all events (b = [.85)at k& = A — 1 is a finite size
effect (only one highest scale event is recorded in the analysed sequence). Fig. 9 shows the temporal
variation of the 6-value, estimated at time ¢ by eq. 29 using the last 200 events before . We see that
the &-value has a mintmum just before the main shock as this is often observed for large earthquakes

(Smith 1981), even if not systematically.

[Figure 9 about here.|
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Such an observation was discussed in Main et al. (1990) and has been observed in controlled tests by
Sammonds, Meredith & Main (1992). These authors call for a (short or prolonged) strain-softening
mechanism. Similarly, in our approach this minimum of the b-value stems from the growth and the
coalescence of old cracks, two major ingredients of the strain-softening mechanism, Coalescence at
all scales (self-organization) is an intrinsic property of the S.0.ET. rule, and no particular mechanism
(e.g. pore-fluid pressure) is implicitly modeled; this is an advantage (and may be a drawback) of our
model.

We have then varied the parameters around the values of the reference sequence and found that the
behaviour is unexpectedelly insensitive to the change of most parameters. Except for marginal cases
with no strong events or too short sequences of aftershocks, the system provides almost perfectly
both a Gutenberg-Richter distribution of events sizes (with b-values for foreshocks smaller than for
aftershocks) and an Omori law of the temporal aftershocks decay (see discussion, sec. 5). The model
appears to be the mosi sensitive to changes of the parameter k, which has the dimension of the inverse

of a time.
[Figure 10 about here,]

The foreshocks-main shock-aftershocks sequence can be more complex than in the reference case.
Fig. 10(a) shows a main shock followed by a short sequence of aftershocks. Afterwards, during a rather
long time interval, no event occurs, and, after this “quict” period. the aftershocks sequence starls again
to finally relax the sysiem. Fig. 10(b) shows the case of several main shocks (swarm). The case without

strong event corresponds to creep (see Fig. 13, this case will be met in a next paragraph).
[Figure 11 about here.]

An interesting log-periodic variation of the aftershocks frequency is superimposed on the trend
(Fig. 11(a)). On Fig. 11(b) these log-periodic oscillations are seen around the theoretical straight line,
This reflects the temporal distribution of the major {lcading) aftershocks which are themselves fol-
lowed by a sub-sequence of aftershocks (Correig, Urquizi & Vila 1997). In some cases we obtained
a similar behaviour for the foreshocks sequences, but with only 2-4 oscillations (Fig. 6). Note that
an attempt to rigorously test this patiern in earthquakes catalogs (Gross & Rundle 1998) produced a
negative result. In the same way, it is not observed in all our numerical simulations; we have not yet

been able to define (he range of parameters where this patiern clearly occurs.
[Figure 12 about here.]

Let us now see how the model behaviour depends on the number of levels K if the scaling works

properly, this dependence must be weak, Figures 12(al), (b1), (c1) show sequences obtained with 3,
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6 and 7 levels (K = 4,5, 6) retaining only the five highest levels. All the other parameters of the
model are kept the same; this corresponds to systems with different spatial sizes but the same physical
parameters. The sequences corresponding to the different K obey almost perfectly the Gutenberg-
Richter law of events sizes distribution and the Omori law of aftershocks decay. The most important
difference is the duration of the power-law behaviour of the aftershocks sequence as estimated by the
parameter 7" in the Otsuka formula (eq. 31). It decreases with the number of levels (Figures 12 : (a2),
(b2}, (c2)). This decrease of T is due to the fact that the direct cascade redistributes more stress at the
lowest Ievel for a higher value of K. A more sophisticated rule including a redistribution of stress at all

scales would increase the value of T' (and make the difference of behaviour in function of A weaker).
fFigure 13 about here.}

“Friction” model with constant load What happens after the main shock and aftershocks have
passed? How does the external loading start new events? Is it possible to obtain an anatogue of the
seismic cycle? We understand the term “seismic cycle” as the recurence time (quasi-periodic or almest
stochastic) of strong earthquakes, generally preceded by a growing seismic activity (foreshocks), fol-
lowed by sequences of aftershocks and with a relatively aseismic behavior between foreshocks-main
shock- aftershocks sequences (Fedotov (1965) ; see also the detailed review with a large bibliogra-
phy in Scholz (1990)). In the model described above no strong events occur again; all the received
energy is dissipated in small events; in this "weak™ system (low value of £') the dissipation keeps the
average stress below the critical value (Fig. 13(a)). In the case of a "'strong” system (strong valuc of
£7) with a high rate of external loading, the average stress can be larger than the critical value (Fig,
13(b)). Both cases can be interpreted as creep. But, in another “friction” submodel derived {rom the
present one through only a small modification, we do obtain a seismic cycle; we suppose that the local
stress heterogeneity is slowly decreasing with Lime due to some kind of “diffusion™ process, at a rale

assymptotically proportional to the square root of time:

L/
. A
NOEY N

where v is a dimensionless constant parameter, o(C', t) the local shear stress in the cell (', o, (i} the

o(C 1+ Al = oat) + () = aut) (32)

average stress, and T a reduced diffusion coefficient (s~'). Fig. 14 shows the numerical results for
the set of parameters of the reference sequence except for £ = 107 bars/sand T = 1074571,
v = 1. Each peak corresponds 1o a foreshocks - main shock - aflershocks sequence which has the

same statistical behaviour as the reference sequence.

[Figure 14 abowt here.]
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4.4 Numerical results of the “fracturation” model

In the “fracturation” model, = (£) is the total transition rate s — b and b — s at the elementary level.
At higher scales, the s — b and b — s transitions are respectively associated with a seismic event or
a geometric blocking. Given a slow physico-chemical healing at the lowest scale, we study the seis-
micity over long time periods. The stress balance is between the external input and both discontinuous
“fracturation” events (s — b transition) and continuous “friction” (broken cells C' lose the excess
stress o {(") — o, they receive from outside (£} or from internal redistribution). We now present some
typical earthquakes sequences and describe the statistical behaviour of the model for different values
of the parameters. The unit of time in all the figures 1s 10%s. In captions we indicate the differences

between the Tab. 1 A and B parameters values and the ones of the current numerical experiment.

4.4.1 General properties of a sequence (a realization for a given set of parameters)

[Figure 15 about here.]

Temporal distribution of earthquakes: Fig. 15 shows a typical sequence on a short time period
(a time interval containing 2 events of the highest level). We can observe several main shocks of differ-
ent amplitudes: (b2) and (b3) of level 6, (b1) of level 5, (¢) and (d) of level 4, (e) of level 3; depending
on their geometrical distribution, the same number of broken cells can give events of different levels
{comnare (al) and (a3)). Comparing (a3} with (a2} shows that the average stress is correlated with the
number of solid cells at the elementary level, Some main shocks have precursors ((b3).,(c1),(c2)), while
sonie other ones have not ((b1).,(b2).{e)}. These precursors can be themselves followed by aftershocks
((b3).{c1}). Each main shock has its own aftershocks sequence. The last main shock on the picture (b3)
has a large aftershock followed by a sub-sequence of aftershocks; this large energetic release reduces
the duration of the main aftershocks sequence. For lower level main shocks (b < X — 1 = 5), due to
the small number of levels (K = 6) and the value of the scaling parameter £ (eq. 21), one observes on
the one hand a longer duration of the aftershocks sequence, and on the other hand a smaller number
of them. This long duration of the aftershocks sequence is not observed for higher level main shocks
(k > 4); it is a consequence of the direct cascade mechanism which redistributes all the stress drop
from higher levels evenis directly onto the elementary level. The evolution of the average shear stress
is self similar {(a2),(c2), (d2) and (e2) have the same behaviour but on different time scales). The inter-
seismic period between the two main shocks of the highest level ((b2) and (b3)) is 600 years, the time
lengths of figure (el) is 4 years and the time length of figure b(1}) and (b2) are 45 days. Note that the
global stress drop associated with (b3) is due to a (emporal seismic migration: a level 4 event triggers

alevel 5 event which in turn triggers a level 6 evenl. Finally, one clearly sees on figure 15 the temporal
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clustering of the events. The spatial clustering is also present: aftershocks (main shocks) occur in the
neighborood of the main shock (foreshock), where the redistribution of stress is positive. Given our
two dimensional system and the anisotropy of the critical S.0.ET. rule, we postpone the study of the

spatial distribution of our events.
[Figure 16 abont here.]

Aftershocks: Fig. 16 shows a typical aftershocks sequence (during 2 months) without large events
among them (this explains the low number of aftershocks because there is no secondary sequence of
aftershocks). Rule (30) is respected (Fig. 16(a4) and Fig. 16(a5)), and this is the case for a large range
of parameters (see below). Let us explain the aftershocks generation mechanism. The redistribution
of stress rapidly increases the transition rate s — b according (o €q. 9. The increase of the transition
rate b —» s is much slower because during the aftershocks sequence this rate is inversly proportional
to the number of solid cells (Fig. 16(a3)); in other words, just after the main shock, the “fracturation”
process is more efficient than the healing process. Later on, both local and global stress drops (Fig.
16{al) and 16(a2)) favor the decrease of the transition rate s -+ b while each fracturation increases the
transition rate b — s. This balance is reached rapidly just afler the main shock and more slowly tater
on, in agreement with the modified Omori law, The main cause of this typical (1/(f + ¢)¥) behaviour
is the heterogeneity of the stress field (Fig. 17(b)); in the case an event perturbs a medium where the
stress field is completely homogeneous, the decrease of the aftershocks frequency i1s exponential (Fig.

17(a)).
{Figure 17 about here. |
[Figure 18 about here.]

Foreshocks: Foreshocks are here obviously present: the fracturation mechanism cannot directly
reach (he highest level and the organization of a fracture at a given scale requires lower scale fractures.
Nevertheless, due to the history of the fault zone, their time distribution is very complex. For studying
only the distribution of foreshocks we select in our catalogs examples where earthquakes ol lower
amplitude precede a main shock, and we eliminate the aftershocks (i.e. all the lower level cvents
occuring after the higher level one). If the medium is weakly fractured (high value of ) and the
stress field is homogeneous (o, = o, ), the foreshocks activity satisfies the modified Omori law (with
t — ~—t; the typical exponent is called ¢ instead of p (Fig. 18(a)). If the medium is not fractured (high
value of 3) and the stress field is heterogeneous, the foreshocks activity respects the modified Omori
law (f — —#) with a lower value of ¢ (Fig. 18(b)). If the medium is fractured (low value of :3) and the
stress field is heterogeneous, a main shock occurs without foreshocks and it is very difficult to isolate

the foreshocks from the background scismicity.
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{Figure 19 about here.]

Magnitude-frequency relation Fig. 19 shows the magnitude-frequency relationship for a typical
sequence on a very long time period (0.3 M y). The slope of the magnitude-frequency relationship for
the main shocks is smaller than the slope of the magnitude-frequency relationship for all the events,
which is in tum smaller than the slope corresponding 10 the aftershocks sequences for different levels
of main shocks. The magnitude-frequency relationships for aftershocks sequences of main shocks
with different magnitudes do not have significantly different slopes. The b-value could be casily made
closer to 1 with a more appropriate renormalisation factor (c.f. eqs. 28 and 29). The slope break

between levels X and X — 1 is an effect of the finite domain.

4.4.2 Statistic properties on a set of sequences

In the following we select main shocks of level £ > 4 (i.e. 4,5,6) and ATy, is adjusted for each

sequence.
[Figure 20 about here.]

Aftershocks: The behaviour of the aftershocks sequence essentially depends on the sharpness of
the s — & transition (4; in eq. 9). As showed above, the aftershocks sequence is due to the increase of
the tocal shear stress resulting from the direct cascade of stress redistribution. Each aftershock modifics
in its turn the tocal shear stress in its neighborood; this perturbation decreases with the magnitude
following the scale dependent law of parameter 4 (eq. 21). Figure 20 shows that the power law decrease
(1/{t + c)P) is still respected if 6, > 2; below this threshold value, ¢/ AT, r; becomes too large: the
global and local stress drops due to each aftershock are not large enough to decrease the s — &
transition frequency, and a constant rate of aftershocks results. We observe that the p value decreases
if the value of 4, increases (Fig. 20(a)). The number of aftershocks and the b-value (Fig. 20(c) and (d))

do not depend on 4.
{Figure 21 aboul here. |

Influence of the stress redistribution: The external loading rate F and the healing rate 3 are
physical parameters which obviously compete in the process. We have studied the variation of different
outputs of the model in function of the density of fractures for different values of £ ¢ [107% 1074
and 3 € [107;107°]. In figures 21, 22, 23 each point results from a numerical simulation over a
sequence of long duration AT (AT = 10°AT, ;).

Fig. 21(a) shows the b-value of the frequency-magnitude distribution versus the density of broken

cells of the lowest level (in fact the density average over the whole sequence duration). We observe a
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minimum at d ~ 0.3 and a plateau for a large range of ¢ € [0.4; 0.7]. The theoretical curve obtained by
the integral approach has a minimum at d. = 0.618, the critical value of this approach (see caption Fig.
21). This difference in behaviour is due to the stress redistribution which organizes the “fracturation”
process in @ weakly fractured medium: the mask increases the stress in the neighboring cells along the
main direction of the cracked cells. Thus the fault zone can generate high magnitude events even if the
density of cracks is less than the critical value.

Fig. 21(b) shows the ratio f = w, /w; between the total stress eliminated by the “fracturation” process

(through the global stress drop, wy = > >~ uaR*F~% eq. 26) and the total stress eliminated by
k events

the “friction” process (see 3.2, wy = FAT — w)), versus the density of broken cells. The theoretical
curve obtained from the integral approach has a maximum at the critical value of this approach. For
d > d. the two behaviours are similar; below this value, the “‘fracturation” process is more efficient
for the present model with stress redistribution; the maximum value of f is reached at the value of

giving the minimum of the b-value (Fig. 21(a)).
[Figure 22 about here.]

The stress input during the broken lifetime (1/3): Let us now study the behaviour of our system
versus £/ which has the dimension of a stress. Figure 22 shows that some of the system main
characteristics are largely controlled by this single parameter. The “fracturation process”™ (fig. 22(a))
is negligible il £/ > 10°. Below this value a typical peaked behaviour is observed. We witl come
back to this result in section 5, The b-value versus ( £/ 3) curve shows that b is controlled by (£/.4) a8
long as (F'/3)< 102 and exhibits (fig. 22(b)) a clear minimum. For high values of 1.’/ 3, the number of
high degrec cvents is weak and the 6-value is controiled by the healing mechanism. The critical (£ /1)
value for which 6 is minimum could be also inferred from fig. 22(c) whose different curves represent
the densities of cracks versus £'/;7 for different values of ;3; the convergence point corresponds (o the
critical density of cracks and the critical value of £/ 3. Note that this value, expressed in bars, is of the
order of magnitude of the average stress (sce table 1). A dimensional analysis could be investigated in

a future work.
[Figure 23 about here.]

The seismic cycle: After eliminating the strong aftershocks and foreshocks, as explained previ-
ously, we noted the time intervals between two events of tevel £ > K — | (i.e. 5,6). For a minimum sel
of 50 time intervals, we calculated (J, the ratio of the average time interval 10 the standard deviation
of the distribution of these time intervals. Larger values of ¢} refiect a more periodic behaviour. On
figure 23(a) we have drawn () versus £/ for (E'/.3) varving only in [1072; 10%] (for lower or higher

values, the high level main shocks number is (oo weak). A large fluctuation of () exists, but a more
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periodic behaviour is observed for lower values of £/3. On figure 23(b), the b-value s represented
versus Q. An increase of the b-value is coupled with a more periodic behaviour. Such an observation

is still difficult to make in real seismicity due to the short time period covered by earthquakes catalogs.

5 COMPARISON WITH EXPERIMENTAL EVIDENCE. A DISCUSSION

We are aware that even a good reproduction by a model of some regularities or empirical laws of real
seismicity might not be taken for a strong evidence of the validity of this model. One of the reasons
is that many of the regularities or empirical laws which have been claimed to be found in the exper-
imental evidence are controversial (to various degrees). Only may be the Gutenberg-Richter law and
the Omori law are not. But these two very general laws do not constrain the models as strongly as
it could be hoped. Indeed the Gutenberg-Richter distribution is rather easy to obtain (Allegre et al.
1998). Simple toy models of self-organized criticality -such as a sand pile or a forest fire- display a
power law distribution of the cluster sizes (Turcotie 1999). The Omori law appears more difficult
to fit with model series. Again simple models, for example the ones which exhibit the edge of chaos
dependance (Chen, Bak & Obukhov 1991), produce results which obey it. That does not make the
confrontation of the model results with these two general and generally accepted empirical laws less
necessary; Gutenberg-Richter and Omori laws must be observed. Let us note that obeying simultane-
ously both laws is signicantly more constraining than obeying either one or the other. Comparison with
more controversial observed regularities or empirical laws of seismicity must be accompanied by the
required caveals. And, when necessary, the subdomain of paramelters for which the agreement between
the model products and experimental evidence must be at least sketched (models in general and our
own in particular have several adjustable parameters). In any case, confronting the model results with
regularities or empirical laws observed in real seismicity -even controversial to some cxtent- is more
efficient than confronting them with experimental evidence as a whole, without sorting. Moreover it
gives the opportunity to explain why the model works the way it does.

We discussed several times the stress pattern in the model (sect. 2.5 and 3), while little is known
about the seismogenic stress in nature. In fact we do not use in our reasoning any detaifed knowledge
of the stress field. We only call for a heterogeneous siress field which results from the mechanism of
multiscale redistribution of stress described in sect. 2.5 and chosen for its simplicity (stress is relaxed
in some cells, enhanced in neighbour ones, and this at all scales). What is an important aspect of the
model is that the zone of influence where stress redistribution takes place (Fig. 4) grows proportional
to the tength of the fracture. This is consistent with much of the literature on faulis growth (e.g. Main
(1996)), contrarily o what happens with many 5.0.C. models which do not have this property since

they rely on the nearest neighbour effects at the smali scale.
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The above discussion bears on the comparison of the model productions with real seismicity laws
(statistics on occurence time and magnitudes). Confrontation with field tectonics is another require-
meni. We postpone this (ambitious) objective untill we make use of the localisation properties of the

model we have just mentioned in the present work (see next section).

6 CONCLUSION AND PERSPECTIVES

The new approach presented here, with a direct simulation of the stress redistribution, is an exten-
sion of the previous S.O.FT. model. We have now built a numerical laboratory which will allows a
large number of experiments characterized by different time scales, from the dynamics of the rupture
(“friction” submodel) to the history of a fault zone (“fracturation” submodel). Our present modeling
produces a large range of observed seismic sequences with a precise tlemporal (and spatial) location
of the events.

The multiple scale approach coupled with the S.0.ET. rule with memory has allowed us to incor-
porate the major components of the brittle fracture: healing of cracks, increase of microcracks density,
rupture threshold, heterogeneity of the stress field, propagation of the fracture. Incorporating these
properties in our abstract modeling gives rise (o a large number of complex behaviours which can be
related to the complexily of real earthquakes. The simplicity of the model is an advantage to hetler
understand the physical origin of the complexity of the behaviours. Statistical properties of our system
have been studied, even if the main goal of the present paper was morc specifically to reproduce the
spatio-temporal clustering of earthquakes.

We have shown that the (1/(¢ + ¢)?) behaviour of the aftershocks frequency is a direct expression
of the heterogeneous stress distribution at the main shock time (see sec. 4.3 and 4.4). This conclu-
sion is valid for both submodels since the mechanism of the stress redistribution is the same. In real
earthquakes, aftershocks are present in most cases and the variation of the p value can be analysed in
function of the heterogeneity of the stress distribution.

The physics of the healing (physico-chemical process or geometrical blocking) has to be taken
into account in a fault zone. The ratio (E'/ ) between the external loading rate and the healing appears
as a general control parameter. The value of this parameter discriminates between the domains of
applicability of the two submodels, The foreshocks activity during the long time period preceding an
earthquake indeed strongly depends on £/ 3. If this rate is high, an increase of seismicity is observed
before the main shock, and foreshocks obviously occur; the unstable state is reached through the
fracturation of the solid parts of the medium. On the contrary, with a low healing rate, the system
always stays in an unstable state around a critical distribution of cracks, and the foreshocks activily is

random.
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The relative density and the distribution (structural heterogeneity) of the solid parts of the medium
on the one hand favor the loading up of the shear stress which can be eliminated by earthquakes and

on the other hand control the dimension of the largest earthquake which can occur in a fault zone.

A quasi-periodic seismic cycle is obtained in both submodels when the stress field becomes quasi-
homogeneous during the loading period (interseismic phase). In the case of the “fracturation” sub-

model the periodic character of the seismic cycle is enhanced when b-value decreases.

There are a lot of items we intend to tackle in the future. We have (o develop systematic studies
of the statistical properties of our system and determine the origin of their variations. To understand
the mechanism which leads to the main shock, and to decide wether this mechanism is different or
not from the relaxation process, we have to study how the distribution of the stress field influences
the increase of the foreshocks activity. The relative density of the main shocks with precursors has to
be evaluated, and we will try to draw a phase diagram representating the different types of seismic
processes: creep, swarm of small earthquakes, earthquakes with or without precursors. We will try
to develop the relationship between these seismic processes and, for exemple, the parameters of the
friction and fracturation laws (eqs. 9, 12) (as done here for the aftershocks frequency decay in function

of &, ). We will also pay a lot of attention to the particular case of earthquake triggering,

We will also consider a three dimensional hierarchical model with a tensorial stress fietd rather
than a scalar one and interactions between cracks of different oricntations (e.g. following Alldgre &
Le Mouél (1994)). It will be possible to compare our synthetic catalogs -containing both times and
locations- with real data and Lo constrain in turn our physical parameters. This stage is of course
the most important from the geophysical point of view. We have to interact with rock mechanicists
to incorporate in our model more realistic ingredients for the rupture propagation and to develop a
fragility criterion in a static (nucleation) or in a dynamic case (growth). It will be possible to caiculate
synthetic seismograms of large events taking into account the history of the rupture. It wili also be
important to refine the mechanism of the stress redistribution during the relative short time period
following an event and its relation with the aftershocks activity and the heterogeneity of the stress
field. With our mutiple scale approach we will try to answer the following questions: how an a priori
heterogeneous stress field at the lowest scale can produce major ruptures accomodating the globat
tectonic stress field (introduced at the highest scale) and how does the system redistribute at lower

scales this global tectonic stress field?
Geology is obviousty heterogencous. Introducing a three dimensional fault zone model with pre-
existing geological structures is a promising perspective, In the domain of the fault zone where an

gvent takes place, the system will not only receive a constant rate of potential elastic energy but also an

unsteady rate through the interaction with the neighbor fault systems (see the multi-domains approach
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in Allegre et al. (1995)). This can be done in the framework of a three dimensional rupture process

where our multiple scale approach constitutes a necessary simplification.
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LIST OF FIGURES

1 Abstract representation of a fault zone: opposite tectonic motions on both sides of
the fault zone generate an increase of the micro-cracks density. We study the different scales
rupture phenomena through a hierarchical system. Here we draw the used hierachical system
withD = 2and R = 2.

2 Different possible states of a cell and possible transitions. Note that the s — b and the
m — s transitions are forbidden.

3  Thecritical configurations of the S.O.ET. rule (D = 2, R = 2). In brackets the number
of critical configurations for a given number of broken or moving cells. The arrow indicates
the “main direction™.

4  Typical stress redistribution pattern generated by the motion of the central cell (subject
itself to a stress change As) (for any level k). The shear stress increases along the main
direction (A; > Ao > 0) and decreases along the other direction (A, < 0).

5  Ideal propagation of the friction (from left to right) in a one dimensional hierachical
system (N = R'C). The t; are the fracturation times of cells C; and ¢; < ¢; if i < j.
Depending on the value of (¢5 — £;) one obtains different kinds of seismic events (see text).
6 The reference sequence of the friction model in a linear time scale (a) and a logarithmic
one (b). From top to bottom: the sequence of events, the total transition rate, the average
shear stress, the standard deviaton of the local shear stress, and the density of moving cells
at the elemenrtary level.

7 (a) cumulated number of aftershocks of the reference sequence versus a logarithmic
time scale and the curve representative of the modified Omori law (eq. 30); (b) cumulative
number of aftershocks of the reference sequence versus the theoretical number (straight line).
8 Magnitude-frequency law of the reference sequence : number of events (full line, b =
1.85), number of foreshocks (dotted line, & = 1.43), and number of aftershocks (dashed
line, b = 2.06) versus the hierarchical level (or magnitude c.f. eq. 23).

9 Evolution of the b-value during the reference sequence. b-value is computed for con-
secutive (ime spans each containing 200 events.

10 More complex sequences: (a) a seismic quiescence a few seconds after the main shock
(parameters values of the reference sequence except for #° = 1.5): (b) a swarm of large
earhquakes. From top to bottom in logarithmic time scale: the events sequence, the tolal
transition rate and the average shear stress (parameters values of the reference sequence
except for A’ = 20 bars). Note that the modified Omori law is still respected in these (wo
cases.

11 (a) the cumulative number of aftershocks versus time in a logarithmic scale and the
curve representative of the modificd Omori law (eq. 30). (b) the cumulative number of al-
tershocks obtained in the numerical experiment versus the theoretical one (straight line),
Parameters values of the reference sequence except for 7 = 3.

12 Experiment with different numbers of levels: left side graphs show the cvenls se-
quences versus time; right side graphs represent the cumulative number of aftershocks ver-
sus time in a logarithmic scale and the representative curve of the Otsuka law (eq. 31)
for estimated p and T parameters (parameters values of the reference sequence except for
AP = 5 bars).

13 Examples of creep sequences. From top to bottom the sequence of events, the wolal
transition rate, the average shear stress, the standard deviaton of the local shear stress and
the density of moving cells at the elementary ilevel. (a) is for the “weak” state with o, < oy
(parameters values of the reference sequence except for £ = 1074 bars s™1); (b) for the
“strong” state with o, > o, (parameters values of the reference sequence except for £ =
10-? bars s~ ).

14 Examples of seismic cycles obtained with the parameters values of the reference se-
guence and homogeneisation by diffusion (see text). From top to bottom: the sequence of
events, the total transition rate, the average shear stress, the standard deviaton of the local
shear stress and the density of moving cells,

15 Intermediate sequences of earthquakes: (al), (b1), (b2), (b3), (c1), (d1), (e1). Average
shear stress versus time: (d2), (c2), (e2). Number of solid cells versus time: (a3).
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16 (al)is a main shock-aftershocks sequence. (a2) and (a3) show respectively the corre-
sponding evolution versus time of the average stress and of the number of solid cells. (a4)
shows the cumulated number of aftershocks in a logarithmic time scale and a representative
curve of the modified Omori law (eq. 30). (a5) shows the cumulative number of aftershocks
versus the theoretical one (straight line).

17  The cumulative number of aftershocks versus time in a logarithmic scale calculated
from a critical configuration of broken cells at the elementary level {the highest level cell is
broken) and without stress redistribution (A = (), without healing (3 = 0), without external
loading (F = 0): (a) all the solid cells have the same local stress o, > o, (b) the average
stress of all the solid cells is oy, but, for each individual solid cell, the stress is randomly
chosen in [o; o+ 204 ). The best fitting curve is plotted and its formula is written {(a) gives
an exponential frequency decay; (b) a (1/(t + ¢)”) frequency decay).

18 (al), b(1): exemple of complete foreshocks sequences with a linear time scale (pa-
rameters values set of Tab. 1 A and B with different initial conditions; see {ext). (a2}, (b2):
the sequences of the selected foreshocks in a logarithmic time scale. (a3), (b3): the cumu-
lated number of foreshocks in a logarithmic time scale and a theoretical estimate from the
modified Omori law (eq. 30); (ad), (b4): the cumulative number of foreshocks versus the
theoretical one (straight ling).

19 The magnitude-frequency relationship for all events (solid line), for main shocks only
(dashed line), for aftershocks of main shocks of level K (dotted-dashed line), for aftershocks
of main shocks of level X — 1 and X — 2 (dotted lines). Calculated b-value are indicated.
20 Versus &,: (a) the average value and standard deviation of the parameier p of eq. 30
compiled from a large number of aftershocks sequence (~ 10°; we run the model for a very
long time to get this large number) , (b) the average value of the paramelter ¢ of ¢q. 30, (¢) the
average number of aftershocks and the standard deviation of this number , (d} the average
b-value.

21  Evolution of b-value (a) and of f value (b)(see text), versus the average density of
fractures at the lowest level. Open circles arc from numerical experiments with different
values of F and 3 (see text), while the solid line is calculated from the integral approach (if
f; and d; are respectively the events frequency and the cracks density at level [, the events
frequency at the higher level is fiy = fi(1 — dip ) (1 — (1 = df)).

22 Evolution versus E /3 of (a) f, the ratio between the total (all over the whole sequence)
stress dissipated by the “fracturation” process and the total stress dissipated by the “friction”
process, (b) the b-value and (c) the density of fractures at the lowest level.

23 (a) evolution of parameter () versus £/ 3. (b) evolution of b-value versus ().
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Figure 1. Abstract representation of a fault zone: opposite tectonic motions on both sides of the fault zone
generate an increase of the micro-cracks density. We study the different scales rupture phenomena through a
hierarchical system. Here we draw the used hierachical system withD = 2 and R = 2.
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Figure 2. Different possible states of a cefl and possible transitions. Note that the s — b and the i — 5
transitions are forbidden.



36 C Narteauer al.

(2) (4) (1)

Figure 3. The critical configurations of the S.OET. rule (D = 2, R = 2). In brackets the number of critical
- configurations for a given number of broken or moving cells. The arrow indicates the “main direction”.
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main

direction

Figure 4. Typical stress redistribution pattern generated by the motion of the central cell (subject itself o a
stress change A3) (for any level k). The shear stress increases along the main direction (4; > A, > 0) and

decreases along the other direction (A, < 0).
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Figure 5. ldeal propagation of the friction (from left to right) in a one dimensional hierachical system (N =
RX). The ¢, are the fracturation times of cells C; and ¢; < {; if i < j. Depending on the value of (t — ¢;) one
obtains different kinds of seismic events (see text).
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Figure 6. The reference sequence of the friction model in a linear time scale (a) and a logarithmic one (b). From
top to bottom: the sequence of events, the total transition rate, the average shear stress, the standard deviaton of
the local shear stress, and the density of moving cells at the elemenrtary level.
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(a)
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Figure 7. (a) cumulated number of aftershocks of the reference sequence versus a logarithmic time scale and the
curve representative of the modified Omori law {eq. 30); (b) cumulative number of aftershocks of the reference

sequence versus the theoretical number (straight ling),
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Figure 8. Magnitude-frequency law of the reference sequence : number of events (full line, & = 1.85), number

of foreshocks (dotted line, b = 1.43), and number of aftershocks (dashed line, & = 2.06) versus the hierarchical
level (or magnitude c.f. eq. 28).
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Figure 9. Evolution of the 6-value during the reference sequence. b6-value is computed for consecutive time
spans each containing 200 events.
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Figure 10. More complex sequences: (2) a scismic guiescence a few seconds after the main shock (parameters
values of the reference sequence except for #° = 1.5); (b) a swarm of larg. carhquakes. From top 10 bottom
in logarithmic time scale: the events sequence, the total transition rate and the average shear stress (parameters
values of the reference sequence excepi for A” = 20 bars). Note that the modificd Omori law is still respected

1n these two cases.
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Figure 11. (a) the cumulative number of aftershocks versus time in a logarithmic scale and the curve represen-
tative of the modified Omon law (eq. 30). (b) the cumulative number of aftershocks obtained in the numerical

experiment versus the theorctical one (straight line). Parameters values of the reference sequence except for
D=3
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Figure 12. Experiment with different numbers of levels: left side graphs show the events scquences versusy
time; right side graphs represent the cumulative number of aftershocks versus time in a logarithmic scale and
the representative curve of the Otsuka law (eq. 31) for estimated p and /" parameters (parameters vatues of the
reference sequence except for A* = 5 bars).
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Figure 13. Examples of creep sequences. From top to bottom the sequence of events, the total transition rate,
the average shear stress, the standard deviaton of the local shear stress and the density of moving cells at the
clementary level. (a) is for the “weak™ state with o, < o, (parameters values of the reference sequence exceplt

for £ = 107" bars s™'); (b) for the “strong” state with o, > o, (parameters values of the reference sequence
except for £ = 107 bars s~ 1).
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Figure 14. Examples of seismic cycles obtained with the parameters values of the reference sequence and
homogeneisation by diffusion (see text), From top to bottom: the sequence of events, the total transition rate.
the average shear stress, the standard deviaton of the local shear stress and the density of moving cells.
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Figure 15. Intermediate sequences of earthquakes: (al), (b1), (b2), (b3), (c1), (d1), (e1). Average shear stress
versus ume: (d2), (c2), (e2). Number of solid cells versus time: (a3},



S.O.ET model 49

{at)
? i
13 . H
! :
L1 ! i
aF i 1I
= i
= 7 Ii i f
2+ | i
i HI e *
. L P
15000 L] 15000 38000
lime
(a2) {a3)
&5 ] 057 -
— ]
056i‘
! |
[} LELT |
‘:m %:051 | ‘
- ! oss J
S 0 ew B
B 1] 15000 lﬁlJ]]D ﬂSﬁBm o 15000 ﬁ(lm
time time
(a4) {as)
200 . 0. - .
a T P2
; . ) 0
150 p=1.5442 ‘ |5oI Fy i
e |
S| c=567.0221 ool e ;
| i ‘ Py .
50§ | 50} =
! X ‘
U _____./__ | u/ !
10* 10’ 10° o ES) 100 150 200
time N (5}

Figure 16. (al) is a main shock-aftershocks sequence. (a2} and (23) show respectively the corresponding evo-
fution versus time of the average stress and of the number of solid cells. (a4} shows the cumulated number of
aftershocks in a logarithmic time scale and a representative curve of the modified Omori law (eq. 30). (a5) shows
the curmnulative number of aftershocks versus the theoretical one (straight line)
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1500

Figure 17. The cumulative number of aftershocks versus time in a togarithmic scale calculated from a critical
configuration of broken cells at the elementary level (the highest level cell is broken) and without stress redis-
tribution (A = 0}, without heating (3 = 0), without exiernal loading (£ = 0% (a) all the solid cells have the
same local stress o, > o; (b) the average stress of all the sohid cells is o5, but, for each individual solid cell,
the stress 1s randomly chosen in [o,; o, + 2o ]. The best fitting curve 1s plotted and its formula is written ((a)

(a)

Homogeneous case

f{t)=1.8 exp{-v850)

Heterogeneous case

fh=3e3i+110)"°

10 10 10" 1o 10
time

gives an cxponential frequency decay; (b) a (L/(1 + ¢)?) frequency decay).
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Figure I8. (al), b(1): exemple of complete foreshocks sequences with a linear time scale (parameters valucs set
of Tab. I A and B with different initial conditions; see tex1), (a2), (b2): the scquences of the selected foreshocks
in a logarithmic time scale. (a3), (b3): the cumulated number of (oreshocks in a logarithmic time scale and a

theoretical cstimate from the modiiied Omori law (eq. 30); (a8), (b4): the cumulative number of foreshocks
versus the theoretical one (straight line).
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Figure 19, The magnitude-frequency relationship for all events (solid ling), for main shocks only (dashed line),
for aftershocks of main shocks of level X {dotted-dashed line), for aftershocks of main shocks of level A7 — |

and X' — 2 (dotted lines). Calculated b-value are indicated.
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Figure 20. Versus d;: (a) the average value and standard deviation of the parameter p of eq. 30 compiled from a
large number of aftershocks sequence (~ 10°; we run the model for a very long time to get this large number)
, (b} the average value of the parameter o of eq. 30, (¢) the average number of aftershocks and the standard
deviation of this number , (d) the average b-value.
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Figure 21. Evolution of b-value (a) and of f value (b)(scc text), versus the average density of fractures at the
lowest level. Open circles are from numencal experimenis with different values of F and 3 (see text}, while
the solid line is calculated from the integral approach (if f; and d; are respectively the events frequency and the
cracks density at level /, the events frequency at the higher level is fi+) = fi(l — dipr ) (1 — (1 — & }7).

.|
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Figqre 22. Evolution versus L /3 of (a) f, the ratio between the total (all over the whole sequence) stress
dissipated by the “fracturation” process and the total stress dissipated by the “friction” process, (b) the b-value
and (c) the density of fractures at the lowest level.
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LIST OF TABLES

1 Table A: Parameters which are kept constant in both model (Ao, = Ao}, = Acl )
table B: parameters of the “fracturation”model; table C: parameters of the “friction™ model.
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“fracturation” model

“friction’” model

R 2

D 2

Ur 3000 ms™!

T 100 bars

T, 110 bars
ATioe 30 bars

e 2 RPK bars

E 1079 bars 71

ks 10-9 g™}

by 3

o 1.5

table A

Table 1. Table A: Parameters which are kept constant in both model (Aoy,. = Aof,. = Ac},,): table B:

i} 3101 57! 3 g
e - ks 25107% 57!
6 1.5 6° 0.5
Ao, 3 1,2,-7,0 Ao 3 1.2,-4,-8
A 5.8 10~ bars Ab 2 bars
Initial completly Initial completly
Condition solid Condition broken
cvent s—=b event m
table B table C

parameters of the “fracturation”model; table C: parameters of the “friction” model.



