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Pioneers

Henri Poincaré (1854-1912) F
George David Birkhoff (1884-1944) US
A.M. Lyapunov (1857-1918) R
A.N. Kolmogorov R
E.N. Lorenz US
Contemporaries

Benoit Mandelbrot F
Vladimir I. Arnold R
Yashi Sinai R
Mitchell Feigenbaum us
Stephen Smale Us

Books for Further Reading

General;

Baker, G.L. and J.P. Gollub: Chaotic Dynamics, Cambridge Univ. Press 1990 {181
pp., the best introduction)

Thompson, J.M.T. and H.B. Stewart: Nonlinear Dynamics and Chaos. Wiley 1986
(the best second book)

Hilborn, R.C.: Chaos and Nonlinear Dynamics, Oxford Univ. Press 1994 (a good third
book)

Jackson, E.A.: Perspectives of Nonlinear Dynamics, 2 vols., Cambridge Univ. Press
1990 (very comprehensive and detailed, not difficult}

Abraham, R.A. and C.D. Shaw: Dynamics: The Geometry of Behavior, 2nd ed,
Addison-Wesley 1992 (without mathematics, only drawings, very profound and
simple, a masterpiece)

Gleick, J.: Chaos - Making a New Science, New York, 1987 (very readable and
informative, a classic, no formulas)

Lorenz, E.N.: The Fssence of Chaos, Univ. of Washington Press, Secattle 1993 (an

unusual and wonderful book by a pioneer)
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Mandelbrdt B.B.: The Fractal Geometry of Nature, Freeman, New York 1982 (a classic,
without formulas, highly stimulating, subjective, not easy)

Special Topics:

Hertmann, D.: Algorithmen fir Chaos und Fraktale, Addison-Wesley 1994 (the best
programs in Basic, Pascal and C)

Peitgen, H. and D. Saupe (eds.): The Science of Fractal Images, Springer Verlag 1998
(fractal terrain models)

Peitgen, H., H. Jiirgens and D. Saupe: Chaos and Fractals: New Frontiers of Science,
Springer Verlag 1992 (a didactic masterpiece)

Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics, Cambridge Univ. Press
1992 (basic text for geophysical applications, treats also work of the Keilis-Borok
school)

Keilis-Borok, V.I. (ed.): Intermediate-Term Earthquakes Prediction Models: Algo-
rithms, Worldwide Tests, Physics of the Earth and Planetary Interiors, vol. 51
(1990)

Programs in  Basic: * bas
C: *c
C+: *.cpp
Mathematica: *.nb



Part 1
Fractals

1 Deterministic Fractals, Self~Similarity, and Frac-
tal Dimension

1.1 Cantor Set

Remove middle third

Cantar-fenge

Figure 1: Cantor set

Cantor. bas
Cantquad.bas
Deuvil. bas

“PDevil’s staircase”

Basic throughout chaos theory.

1.2 Peano Curve, Hilbert Curve

Curves completely filling a square, Dimension D = 2 (1)
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Hilbert-Kurve als L-System

Figure 2: Hilbert curve

Hilbert.bas
Peano.bas

1.3 Koch Curve

Iractal Dimension D =1In4/in3 = 1.26 > 1!

Koch. bas
Koch2.4,5.bas
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Iigure 3: Koch curve
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1.4 Sierpinski Triangle

D =In3/In2 =158

Tierpineki-Drejack mittels Binkiraritheet 1k

A
& A4
A A
A4 4L
£ £

fa A

Figure 4: Sierpinski triangle

Sierpinski.bas (the simplest program possible, Peitgen et al., p. 135)

Sierpinski.c

1.5 Menger Carpet

Square instead of triangle, D = 1In8/In3 = 1.89
Menger. bas



Figure 5: Menger carpet

1.6 Menger Sponge (Sierpinski Sponge)

Cube instead of square, fractal dimension D = 2.73

menger.nb

Iigure 6: Menger sponge
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2 Random Fractals

2.1 Random Walk

Brownian motion: Sum b in independent variables a
bl = a4
by = a1+ a;
bg = a + (1% + [#5:3

Mathematica~Command: FoldList

vecA ... white noise (completely independent)
vech ... “brown noise” (random walk, dependent)
vec( ...double summation (strongly dependent)

vee = vector .. .discrete variable

continuous variables A(t), B(t), C(t)

A(t) ... white noise, discontinuous

B(t) = [ A(t)dt .. .brown noise, continuous but not differentiable
C(t) = [ B(t)dt = [ A(t)dtdt ... differentiable

A(t) — B(i) — €'(1) increases smoothness

A() ... Dimension D = 2 (hills an area)
B()y...D=13 (fractal)
C(t)... D=1 (ordinary curve)

2.2 Spectral Methods

function F(t)
spectrum S(f) f .. frequency

Fourier transformation:

S(f) = fFU)e"m“dt (FT)
0
i) = / S{pye IS (inverse T = 1I"T)
L |
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white noise A(t) = X(t) spectrum =
(all frequencies occur equally)

“colored noise™: Y(t), spectrum f=e

“brown” noise (Brownian movement) f-2

0< 3 <4

4 =10 white noise

=1 1/f noise or “pink noise”

# =2 “brown noise” (~ Brownian motion)
J =3 “black noise”

# =41 smooth curve {~ double surmmation)

0 < 3 < 4 fractal noise

Copy {rom Peitgen/Saupe p. 40

9
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f A
= white noise
17,
g 0
1/f
log f
A
fro .
5 ﬂk 1/f noise
g
1/f
log f
A Brownian motion or 1/f2 noise
& wf‘\
on
©
N _
1/f2 W \'/ w time

log t

Samples of typical “neises”, V' (t), the random variations of a quantity in time.
a. White noise, the most random.

b. li—noise, an intermediate but very commonly found type of fluctuation in nature, its origin is,
as yet, a mystery.

¢. Brownian motion or a random walk.

To the left of each sample is a graphical representation of the spectral density, Sy ( f), @ measure-
ment characterizing the time correlations in the noise.

N =
I'igure 7:
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spectrum of white noise ... S,(f)

spectrum of colored noise ... S5.(f) = S,.(f)f7*

colored noise ... F (1) = }O (Sw(f)ffﬁ) e~ miltgf

principle extremely easy:

1. Compute spectrum of white noise by FT
2. Multiply this spectrum by f=7
3. Compute colored noise by [FT
Practically: replace integrals by sums
Fast Fourier Transform = FFT

Brownian noise: § =2
FFT instead of summation (sec. 1.2)

spectral dimension | D =2 — 3/4

(Other definitions of spectral dimensions are also possible.)

white noise 8=0 D=2
brown noise =2 D=15
ordinarv curve F=4 D=1

pink noise (1/f) 3=1 1D =273
ColoredProfiles.nb

3 Fractal Terrain Models

Spectral coefficients 7 as before

0<g<4
3 =10 ... two-dimensional whitc noise [) =3
0< 3<4 ... 2ifractal surface 2 < <3
g3 =2 ... 2/ Brownian surface D =725
3 =1 ... smooth surface D=2

dimension { I =3 — 3/4] (3 instead of 2)

Same procedure:

0. Generate 207 white noise

1. Compute spectrum by 20--FFT

11
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2. Multiply spectrum by 1/ f°

3. Compute F by inverse FI'T

Result: fractal surface of dimension 3 — 3/4

TerrainModelsI.nb
TerrainModels2.nb

Part 11

Nonlinear Dynamics

4 Lorenz Attractor

Butterfly with 2 somewhat “thick” wings.
From meteorology, describes turbulence in weather.

Equations (derivation in Turcotte, chapter 12)

Y= —ag(z—y) T z(t) etc.

Y = (r—zlz—y ' = dx/dt etc.

' = rxy - bz o = 3, r=206.0, b=1 Mathematica.
o 10, r =28, 6=8/3 C

Nonlinearitics zz and zy essential.
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Iigure 8: Lorenz Attractor

Lorenz.nb
Lorenz.c
Lorenzl bas

Prediction soon becomes impossibie (“butterfly effect™). limpossibility of weathoer fore-
cast beyvond 35 days.

Lorenz2. bas
“Chaos” or “turbulence”:
l. Intermittency: quasiperiodicity with irregular bursts

2. Positive Lyapunov exponents A

to

IFigure 9:

e = 3t exponential divergence of two neighboring trajectories

A > 0 instability, divergence
A < 0 stability. convergence
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Intermat.c
Lyapunov.c
Lyapunol.c

Computation of Lyapunov dimension (Kaplan-Yorke)

e Program Lyapunol.c gives A = 0.882

e ), = 0 for every dissipative system without fixed point (Herrmann, pp. 86-88)

o Ay =-1_0882=-145

3

Kaplan-Yorke Conjecture (Peitgen et al., pp. 709-743, Lorenz, p. 196)

fractal dimension 1) = 2 — % = 2.06

Dimension of Lorenz Attractor is 2.06 > 2!

“Strange attractor”

“Thick surface”, cross—section = Cantor set (sec. 1.1).
Only for mathematicians:

Strange attractor = topological product of i D-interval (fime) and Canior set!

4.1 Geomagnetism

The Lorenz attractor occurs also in geomagnetism: model for the “core dynamo™.

Magnetization of ocean floor:

A
|

N
“

. ) N N L
\ S \\\ h . !
o | ~ Nt \ N ~ 1
‘-———"V~/
~~ 30 /<m

Figure 10:



Geomagnetic reversals about every 108 years.
Velocity of continental plates about

30 x 10°m

10 years = 3cmn/vear

Diffcrential equations from Turcotte, p. 165

Geodynamo.nb

4.2 Roessler Attractor

A second “strange attractor” with similar nonlinearities and {ractal dimension

Roessler.c

5 Standard Map

Standard Map ' Poincaré-Birkhoff-Kolmogorov-Arnold-Boris Shirikov: Perturbation
(k > 0) of a simple system (k = ). Idcalized Poincaré section of a continuous dy.
namic system. By using a Poincaré section, differential equations mayv be discretized:

(JT.I' = Lyniy — n =
dt = 1 = >
dr . . . i
dr T Fagl Iy =

15
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Poincaré map P, — P,y — Poys — ...

equations:
Tng1 = Tp+ys + ksinz,
Yntl = UYn + ksinz,
k=0 unperturbed
k>1 perturbed
“nicest” & = 1 k > | — more and more chaotic

Shirtkov.c (many randomly distributed trajectories)

...... "0__'__"-‘_‘- - - - -
o — LET
=
k = O k = 7

Figure 12:

k =0 “trajectory” consists of Poincaré points of 3D trajectory. Poincar¢ points (orm a
lne.
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Figure 13:

[1gure 14:
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KAM Theorem (Kolmogorov — Arnold -~ Moser). For sufficiently small &, “most” tra-
Jectories remain intact; only a “minority” breaks up into insular structures (to & = 13

With increasing k, more and more trajectories break up and become chaotic (e.g. k > .
1.5).

Programs for 1 trajectory only

Shiriko0.c k= u
Shirikol.c k=05
Shirtko2.¢c k=1
Shiriko3.c k=15

Play with different £ until £ = 4 (only one number must be changed in program!)

6 Map of Mira

figura mirabilis: wonderful picture (but Mira is the name of a scientist!).

Change of parameters a and b produce completely different pictures

Tny1 = by, + Flz,)
Yny1 = —Ip + F(In.+l)
with

22

| 4+ 2%

fFlz) = ar —(1—a)
Mura.cpp
Miral-7.cpp
Play with different values of @ and b.

7 Arnold’s Cat Map and Sinai’s Perturbation
Cat Map

Sinat.c

as perturbation of the cat map

More EXAMPLES for KAM Theory

DBilliard. exe (Birkhoff)
3-Disk.exe Scattering on 3 disks

19
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Figure 15: Cat Map
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Part II1

Stick—Slip Models for Earthquakes
and Their Mathematical
Environment

8 Slider—Block Models

Figure 16:
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Block B {representing a continental plate) is pulled with constant velocity vy, with
spring S between; there is friction between B and the floor. At first it sticks to the
floor; the velocity v, is absorbed by the spring S. Only if the pull of the spring reaches
a certain value F, (static friction)

Fs = kl'ma.r = kUUtmuz (Cl" = ‘Ugi) (})

(k ...spring constant, Tp,, ... maximum elongation) will the friction be overcome, and
we shall have an earthquake. Ideally, B then moves without friction, performing an
elastic “harmonic” motion (earthquake wave)

ma” + kx = F; = const. (2" = d*x/dt?) (2
where F,; ts the dynamic friction. With suitable values for the constants, we have
r = vl (constant plate motion) (3)
"+ =1 (harmonic earthquake wave) (4)
The appropriate solution of (3) is
r = 1+4cost (5)
' = —sint | (6]

21
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Figure 17:

Starting from point A with = 2 and v = 0, after time 7 = 3.14 ... the point B with
=0, v =0 is reached. At rest: vg = 0, zp = 0, the static friction F; takes hold again
and moves the block with constant velocity,

z = vt — ) (7)

if time starts at 4 and reaches B at £ = m. At . the maximum elorgation 2 st
reached again, slip (“earthquake™) starts again with the harmonic motion {(3). Thus the
combined motion (earthquake release AB and plate motion 2C7) 1s periodic: T = AC"
Very simplified indeed! Since vo and hence mvg = 3.14wg 1s very small (A8 << B,
(7) is practically identical to (3).

3

It will be useful to consider the corresponding “phase diagram™ in a re-“phase plane™.
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PHASE PLANE

[igure 18:

Since vy << 1. A" and 13 can practically be identified with - and 3. respectively,

The motion starts at A (or rather A') with the sinusoidal release of the carthaualke,
reaching maximum (or rather minimum) velocity at 2. 1t slows down. reachine » = ()
t . Then we have again uniform plate motion (7). In this phase plane. the periodicity

15 evident: we have a cycle AADB' BA.

The uniform plate motion (7) satisfies the differential equation
2" =) (plate motion)
Together with (1), we thus have
T [ = [t

with the discontinuous *Heaviside function”

flty=1 , 0<i<7w (earthquake wave)
fity=0 , 7=<t<T (plate motion)

()

(10)

Thus the innocent differential equation (9) is heavily discontinuous and thus stronsly

nonlinear! But remember the cvele ADBA.

23
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9 Analogy with Violin Strings etc.

The problem is mathematically identical to producing a harmonic sound of a violin
string by producing a uniform movement of the bow. The plate motion corresponds to
the uniform stroke of the bow, and the earthquake to its harmonic sound ... See Fig. (a).
Similar is the situation in Fig. (b) and in electromagnetic oscillations. Cf. Jackson vol. 1,
pp- 290-291. Even the firing of neurons may be described by a similar equation.

Figure 19:



We copy p. 95 and 100-102 from Abraham and Shaw.

The violinist sustains the vibra-

tion by putting energy into the string
with the bow. The friction of the bow

on the string depends on the rate of
bowing. We introduce a new symbol,
b, to denote the rate of drawing the
bow across the string.

The spring model may be
simply modified to include the action
of the bow. Replace the tabletop on
which the spring slides by a conveyor
belt. This represents the bow. The
weight, s before, represents the violin
string.

[
ja ]
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1. STUCK. The friction and
spring forces are balanced and the
weight is stuck to the belt. The weight
is a little to the the right of zero (equil-
ibrium of the spring) but not as far as
the critical point.

2. BEGINNING TO SLIP. The
friction and spring forces are balanced,
but larger, as the displacement in-
creases. At the critical force for friction,
slipping begins.

3. SLIPPING. When the velocity
begins decreasing, while x is still increas-
ing, then the sudden drop in the friction
yields the tug of war to the spring. The
acceleration is negative. Rightward
motion slows to a halt, and the weight
begins to move back to the left.

AU A

4. GRABBING. When the leftwand
motion has decreased the spring force
to a value smaller than the stipping fric-
tion, the tug of the belt wins once more.
Motion to the left slows, and the weight
turns and begins once again to move to
the right. When the velocity reaches the
critical value (the red dot on the glitch)
in the [riction function, slippage is
going to happen again (return to 1),

26




5 Here are the four stages in the
x cycie, located in the phase portrait. The
) i rest of the limit cycle has been inter-

& polated. The flat part at the top cor-

responds to the stuck phase. The repell-

|

ing critical point is inside the cycle: In-
itial states near this repelior will spiral
outward, clockwise, approaching the

A R A S self-sustaining oscillation.

Returning (o normil scale, heee is the complete phase porirait for the dynantic
model for the bowed violin string.

Figure 20:
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By the way, if you don’t have a violin, use a thin wine glass and rub the rim uniformly
with your finger. A surprisingly pure sound will arise.

The program
ViolinO.nb

ends with a failure: the appropriate differential equation cannot be integrated even with
the powerful Mathematica function NDSolve[ |. The reason is the discontinuity.

We therefore simplify the differential equation in

Violin.nb

to get a beautiful cycle (drawn in blue) corresponding to the cycle ADDBA in an earlier
figure. This problem is similar to Rayleigh’s equation.

10 Rayleigh Oscillator

The original Rayleigh equations are
" Faz+ a3zt ez’ =0 (z" = dz/dt)
or
=y

y' = —r+ay - by’

For special values of the constants we have

r =y
Y= —a4y-—y*/3

Rayleigh.nb

Very similar to Violin.nb but simpler. Beautiful cycle.

11 Duffing—Ueda Attractor

The similar equation (Duffing)
" +azx' +cz + dz® = beoswt (z' = dz/dt)
or

o=y
y = —(ex 4+ 1 4 ay) + beoswt

28



fora=01,c=0b6=12,w=1
have a chaotic attractor (Duffing attractor, Ueda attractor, Japanese attractor)

occurs in electromagnetic oscillators.

Ueda.c
Ueda.nb

12 Tkeda Attractor

Similar form but completely different mathermatical structure.

Discrete difference equations (much faster!)

Tnp1 = a+ b(z,cost-+y,sinl)
Yns1 = b(xznsint + y,cost)
b= c—df (1+22+y2)

a=0856=09¢c=04,d=09.0
Occurs in laser optics ...

Tkeda.c

Remark: relation between differential and difference equations

dr = Lnel — In
dt = 1 =
iz "
TEE Tasl T In

1. sec. .
13 A Ringshaped Laser Attractor

Zngr — @+ anCXp(‘&l‘L’nkz;‘

z=xtiy, a=5, k=102

14 More Nonlinear Equations
(ieneral simple mathematical background for earthquake theory.

29



14.1 Birkhoff-Shaw

Interesting because chaotic “cycle” attractor

!

' = 0.7y +10z(0.1 —~ y*) (z' = dz/dt as usual)

!

y = —z+0.25sin(1.57t)

Also called “Birkhoff’s bagel” (Abraham and Shaw, pp. 275-282).
BirkhoffShaw.nb

A simple chaotic model for earthquake generation??

14.2 Duffing and Van der Pol

Only for theoretical interest as classical nonlinear differential equations
Duffing.nb

r o=y

y = x—2° ey + v cos{wt)
Van-der-Pol.nb

2" — el - 22 + x = kcos(wt)

or

o=y
y' = ol — 2By -z + kcos(wt)
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