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Abstract

The lecture is devoted to the problem of numerical simulation of dynamics of a
system of global tectonic plates, which are considered on sphere. The approach under
consideration exploits the block models and assumes that the block structure is a part of
spherical layer between two con-centric spheres, one of them (outer sphere) representing
Earth’s surface. The system of blocks moves as a consequence of prescribed motion
of the boundaries and the underlying medium. Displacements of the blocks are
determined so that the system is in quasistatic equilibrium state. Block interaction
along the faults is viscous-elastic while the ratio of the stress to the pressure is below a
certain strength level. When the level is exceeded for a part of some fault a stress-drop
(a failure) occurs in accordance with the dry friction model. The failures represent
earthquakes. As a result of numerical simulation a synthetic earthquake catalog is
produced, Some preliminary results of simulation of a simple enough system of tectonic
plates are presented. In particular, directions of blocks movement are indicated and
character of their interaction are studied. Some features of obtained synthetic catalog

inherent in real ones are noted.

1 Introduction

Mathematical models of lithosphere dynamics are important tools for study of the earthquake
preparation process. An adequate model should reproduce premonitory patterns determined
empirically before large events and can be used to suggest and to investigate new patterns
that might exist in real catalogs. It should also be noted that studying seismicity by means
of statistic analysis of real catalogs is quite difficult since available data cover relatively
short time interval. In contrast, a synthetic catalog resulting from numerical simulation may
contain information on a seismic flow for a pretty long time interval. This allows to hope
for obtaining more precise estimates of characteristics of the seismic flow.

This work deals with modelling of lithosphere dynamics by means of block models, main
principles of which were formulated in [1, 2], detailed description being given, for instance,
in [3). In existing block models, a seismically active region is represented as a system of
absolutely rigid blocks forming a layer with a fixed thickness between two horizontal planes.
Lateral boundaries of blocks consist of segments of tectonic faults intersecting the layer with

arbitrary dip angles. The system of blocks moves as a consequence of action of outside forces
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applied to it. The motion may be described by three parameters (so called two-dimensional
model) as well as by six ones (three-dimensional model). The system is supposed to be
in quasistatic equilibrium state. As the blocks are absolutely rigid, all deformations take
place in the fault zones and at the block bottoms. The interaction between the blocks
is viscous-elastic (“normal state”) while the ratio of the stress to the pressure is below a
certain strength level. When this level is exceeded in some part of a fault plane a stress-
drop (“a failure”) occurs in accordance with the dry friction model. The failures represent
earthquakes. Immediately after the earthquake and for some time, the corresponding parts
of the faults are in "creep state”. This state differs from the normal one because of the faster
growing of inelastic displacements and lasts until the stress falls below a given level. As a
result of the numerical modelling a synthetic earthquake catalog may be produced.

It should be noted that the two-dimensional model is developed in details. Models
approximating dynamics of lithosphere blocks of real seismoactive regions were built on its
basis [3, 4]. It was used for studying dependence of properties of seismic flow on geometry of
faults and given motions [5, 6]. Three-dimensional model [7, 8, 9] is a generalization of two-
dimensional model, which admits displacements of blocks only along the plane between them,
and it is intended for accounting vertical component of displacements. Three additional
degrees of freedom were introduced for this purpose. Therewith, the three-dimensional
model being at the moment under development keeps a number of constraints inherent in
the two-dimensional one. Particularly, in both models, a block structure is located between
two horizontal planes. Besides, while trying to simulate motion of a system of global plates
with flat block models, it turned out that significant distortions take place, which evidences
advisability of consideration of the block structure on a sphere. It obviously makes sense
to introduce the spherical model for modeling motion of a system of namely global tectonic
plates, while the impact of sphericity is negligible in case of a separate seismoactive region
due to its relative smallness.

~ In this work, some first results of simulation of dynamics of a small subsystem of tectonic

plates are represented.



2 Brief model description

Let us describe basic constructions and ideas of the approach used for creating the spherical

modification of the block model.

2.1 Block structure geometry, block movement

A spherical layer of a depth H bounded by two concentric spheres is considered. The outer
sphere is treated as the Earth’s surface and the inner one is treated as the boundary between
the lithosphere and the mantle. A block structure is a limited and simply connected part of
this layer. Partition of the structure into blocks is defined by faults intersecting the layer.
Each fault is a conic surface characterized by the following two properties. First, the line
of the fault on Earth’s surface is an oriented arc of a big circle. And second, the plane
tangent to fault surface in a point of this line has a dip angle of a with Earth’s surface. In
case of such a definition of a fault, angle o (measured to the left of fault line) has the same
value in all points of the fault on Earth’s surface. Then geometry of a block structure is
described by a system of lines of intersection of faults with outer sphere embounding the
layer, and by the dip angles. Common points of faults on outer and inner spheres are called
vertices. Fragments of faults limited by corresponding pairs of adjacent vertices are called
segments. Intersections of blocks with limiting spheres are spherical rectangles, those on
the inner sphere are called bottoms. It is supposed that the block structure is bordered by
boundary blocks which are adjacent to boundary segments.

The blocks are assumed to be absolutely rigid. All block displacements are supposed to
be infinitely small, compared with block sizes. Therefore, the geometry of the block structure
does not change during the simulation, and the structure does not move as a whole. The
gravitation forces are not essentially changed because of the blocks displacements and, since
the block structure is in quasi-static equilibrium state at the initial time moment, it is correct
to assume that the gravity does not cause movements of the blocks.

All vertices on the outer sphere are defined by geographic coordinates (latitude ¢, and
longitude ¢) in a spherical coordinate system linked to Earth’s center (we will call it “System-
07). In spherical modification based on the 3D model, all blocks (including boundary blocks)

have six degrees of freedom.
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The displacement of each block consists of the translation and the rotation components.
The progressive component is determined by translation vector (z, y, z). The rotation
component is described by means of three special angles v, 8, A to immovable rectangular
coordinate system, (X, Y, Z), with origin at the mass center of the block, point C', which
has coordinates {p¢c, ¥c, Rc). The X axis is directed along the parallel of latitude; the YV
axis is directed along meridian, the Z axis is directed along Earth’s radius outwards. Denote
this system “System-C”. Let us assume that the coordinate system with axes Xj, Y1, 2,
is strictly connected with the mass center of the block (it coincides under the absence of
block displacements with the immovable system with axes X, Y, Z, in which we consider all
movements of the block). The scheme of rotation of the block and of corresponding system
(X1, Y1, Z;) with respect to system (X, Y, Z) is presented in Fig. 1. The first angle v is
defined as the angle of rotation of axes ¥ and Z around axis X providing fulfillment of the
following condition: if axis Z, is the intersection of planes XO0Z; and YOZ, then axis Z
should be mapped into axis Z, at that Y — Y;. The second angle 3 is defined as the angle
of rotation of axes X and Z; around axis Y providing transformation of axis Z, into axis Z;
(it is possible since Z; belongs to X(0Z,), at that X — X,. And the third angle A is defined
as the angle of such rotation of axes X; and ¥, around axis Z; that X; — X, Y7 — Yj.

According to the definition of the rotation angles, the components A;, A, and A, of
displacement at a block’s point on the sphere with geographic coordinates (¢,1) have the

following form in System-C:

Ay=y+X/\—27, (1)

where (z, y, z) is the block’s shift; (X, Y, Z) are coordinates in System-C of the vector,
which is directed from the mass center of the block to point (¢, ¥); angles (v, 3, @) are
supposed to be small.

Note that in this modification, blocks can leave the spherical surface (as they have six
degrees of freedom).

The model uses non-dimensional time. When interpreting the results, a chosen realistic

value (e.g., 1 year) is given to one unit of non-dimensional time.



2.2  Viscose-elastic interaction between blocks.

Quasi-static equilibrium equations

All the values of the components of translation vector and the angles of rotation are found
from the condition that the sum of all forces acting on the block and of total moment of
these forces have to be zero (at every moment of time the structure is supposed to be in a
quasistatic equilibrium state). The interaction of the blocks with the underlying medium
takes place on the inner sphere. The movements of the boundaries of the block structure
(the boundary blocks) and of the underlying medium are assumed to be an external action
on the structure. The rates of these movements are considered to be known. Motion is
described as a rotation on the sphere, i.e. position of axis of rotation and angle velocity are
giver.

Since the depth of spherical layer is significantly less than block structure dimensions,
we will consider only points belonging to a fault line on Earth’s surface, while computing
numerical characteristics of block interaction. So, it is assumed that all characteristics are
described only by coordinates (i, ) and do not depend on R.

Let us consider a point with coordinates (¢, ¢) belonging to some fault separating blocks
with numbers 2 and j, block ¢ being leftward, and block j being rightward. Denote &, unit
vector tangent to the fault line at this point and directed along the fault. Let it have
coordinates €, = (e, e2,0) in rectangular coordinate system with origin at point (¢, ) and
axes introduced analogously to those of system-C (we call this system “system-P7). Let us
define vector € = (—e; cos v, €1 cos v, — sin @), which lies on the plane tangent to the fault’s
surface at the given point and is perpendicular to vector & (here « is the dip angle of the
fault). Introduce also vector €, = (—ezsina,e;sina, — cos ), which is perpendicular to
the mentioned plane. Let right triple (€, €/, €,,) define a rectangular coordinate system with
origin at point (¢, ¥), “system-T”. Let (A., A,, A.) be the vector of relative displacement
of blocks at point (i, 1) in system-P. Components of the displacement on the plane tangent
to the fault’s surface at this point in system-T are correlated with A., A, and A, by the

following:
Ar=Aze; + Ayey, Aj= —Ajegcosa+ Ayeycosa — A, sina,
A, =—Azersina+ Ayeysina + A, cos a.

6
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The elastic force per unit area (fi, fi, f») applied to the point of the fault is defined by
ft = Kt(At - 5:), fl = KI(AI - 51), fn = Kn(An - ‘Sn)- (2)

Here, 6,, 6;, 6, are corresponding inelastic displacements, evolution of which is described by
the equations
dé dé; dé

- = Wb =Wih, = W, fo. 3)

The coefficients K;, Ki, K, Wi, Wi, and W,, in (2) and (3) may be different for different
faults.
Now, let us calculate components of relative displacement, Az, Ay 1 A; by use of formulas
(1). We obtain
Ay =AL - A

I A=A - AT A=A - A (4)
where (AL, A, AL) and (A7, A3, A1) are vectors of displacement (in system-P) of point (¢,
1) as a point of blocks ¢ and j respectively. Now, in order to obtain components of these
vectors, one should multiply the displacements in system-C {defined by (4)) by matrix of
transformation from system-C, corresponding to the block, to system-P. Due to unwieldiness
of these computations, they are omitted here. Let us note only that in such a way, one can
find displacements both for points on any fault and on the block bottom.

In system-P connected with point (i, 1) of the block bottom, the elastic force per unit

area, (f, fi, fi), has the form:

r

where 8%, 6% are corresponding inelastic displacements, evolution of which is described by
the equations:
dé® déy

o =W g =W ©

It is assumed that there is no inelastic displacement in vertical direction (along z-axis). The
coefficients K,, K and W, in (5) and (6) may be different for different blocks. Vector
(A%, Ay, AY) of relative displacement of the block and the underlying medium at point
(v, 1) considered in system-P is defined by (1) and (4) analogously to the case of finding
displacement of a fault point.

As mentioned above, components of translation vectors of the blocks and angles of their

rotation around the mass centers of the blocks are found from the condition that the total

7



force and the total moment of forces acting on each block (written in system-C corresponding
to the block) are equal to zero. This is the condition of quasistatic equilibrium of the system
and at the same time the condition of minimum energy.

It is important that dependence of forces and moments on displacement and rotation
of blocks is linear. Therefore, the system of equations for determination of these values is

linear. It can be obtained in accordance with the formulas for forces:
Aw = b. (7)

Here, components of unknown vector w = (wy,w,,...,we,) are the components of
translation vectors of blocks and the angles of their rotation (n is the number of blocks),
. € Wemes = Tmy, Wom—4 = Ymy Worm—3 = Zm, Wem-2 = Ym, Wemi = Bm, Wem = Am
(m = 1,2,...,n). The elements of matrix A (6n x 6n) and vector b (6n) are determined
from rather complicated formulas, which are deduced from (1)-(6) with transformation of

forces and moments to system-C. For brevity sake, these formulas are omitted in this paper.

2.3 Discretization

In computational purposes, time discretization is performed by introducing a time step At
(by full analogy with 2D model). The state of the block structure under consideration is
determined at discrete time moments t; = {, + iA? (i = 1,2,...), where to is the initial
time. The transformation from the state at #; to the state at t;, is made as follows: (a)
new values of inelastic displacements 8%, 6%, &, &, 6, are calculated from equations (3) and
(6); (b) translation vectors and the rotation angles at ¢;,, are calculated for the boundary
blocks and the underlying medium; (c) components of b in system (7) are found, and this
system is used to determine the translation vectors and the rotation angles for the blocks.
Since the elements of 4 in (7) do not depend on time, this matrix can be calculated only
once, at the beginning of the process.

For calculation of various curvilinear integrals, one should discretize (split to cells)
spherical surfaces of block bottoms and fault segment arcs. Therewith, values of forces and
inelastic displacements are supposed to be equal in all points of a cell. Note that according

to the assumption, segments are not subject to discretization by depth; we assume that in
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calculations for faults, one can use characteristics of cells belonging to fault lines on the

Earth’s surface.

2.4 Earthquake and creep
At every time t;, we calculate (as well as in 2D model) the value of the quantity « by the
2 + 2
R+ ©

P—f

where P is the parameter which may be interpreted as the difference between the lithostatic

following formula

and the hydrostatic pressure (P has the same value for all faults).

For each fault the three levels of & are fixed
B>H § =z H,.

Tt is assumed that the initial conditions for numerical simulation of block structure dynamics
satisfy the inequality & < B for all cells of the fault segments. If, at some time t;, the value
of k in some cell of a fault segment reaches the level B, a failure (“earthquake”) occurs.
By failure we mean slippage during which the inelastic displacements 6:, &1, 8, in the cell
change abruptly to reduce the value of % to the level Hy. Note that this procedure for 3D
models essentially differs from the analogous procedure for 2D model. The new values of the

inelastic displacements in the cell are calculated from
6 =6, + &S, S5 =6+~fi, & =but1tntn, (9)

where &, &, 6x, fi, fi, fn are the inelastic displacements and the components of elastic force
vector per unit area just before the failure. The coefficients {; = Ki/K; (& =01if K, = 0)
and &, = K)/K, (& = 0if K, = 0) account for inhomogeniety of displacements along the
fault plane (in different directions} and normal to 1t (they reflect the assumption that the
same value of the elastic force per unit area results in different values of rates of changing

different inelastic displacements). The coefficient +¢ is given by

yE = foz_l_ffszf(P_fn) (10)
Kg\/m+ Kangnfn.




It follows from (2), (8)-(10) that after calculation of the new values of the inelastic
displacements and the elastic forces the value of & in the cell is equal to H;. Here, the
following facts should be noted. After the calculation according to (2), (9), the signs of
the elastic forces should be the same as just before the failure. Therefore, the case when
(1 — Knénve) <0 (and the sign of f, changes) s to be considered in its own right as well as
the case when (1 — K7.) < 0 {and the signs of f; and f; change). It may be proved that the

second situation is possible only if f, < 0. In the both cases we assume

5o A, ot VIt R - HyP
" ’ Kin/12 + 7

After calculations described above for all the failed cells, the new components of vector b

are computed, and from the system of equations (7) the translation vectors and the angles of
rotation for the blocks are found. If for some cell(s) of the fault segments, x > B, the whole
procedure is repeated. When for ali cells of faults it becomes x < B, calculation is continued
by usual scheme. Immediately after the earthquake, it is assumed that the failured cells
are in the creep state. It means that, for these cells, in equations (3), which describe the
evolution of inelastic displacements, the parameters W} (Wy > W), Wp (Wp > W), and
W: (W2 > W,) are used instead of W,, W, and W,,. They may be different for different.
faults. The failured cells are in the creep state as long as k > H,, while when « < H,, the
cells return to the normal state and hereinafter W,, W;, and W, are used in (3).

The cells of the same fault plane in which failure occurs at the same time form a single
earthquake. The parameters of the earthquake are defined as follows: (a) the origin time
is t;; (b) the epicentral coordinates and the source depth are the weighted sums of the
coordinates and depths of the cells involved in the earthquake (the weight of each cell is
given by its square divided by the sum of squares of all cells involved in the earthquake); (c)

the magnitude is calculated by the formula [10]:
M =0.98 log,, S + 3.93, (11)

where S is the sum of squares of cells included in the earthquake. Depth of earthquake in

the considered modification is not defined.

10
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3 Some numerical results

Let us consider program realization of spherical modification of 3D model of lithosphere
dynamics. Taking into account that spherical geometry is reasonable to introduce for
studying dynamics of a system of global plates (see, Fig. 2), one can define the following
goals of modeling:

_ creation of a global image of instant cinematics of the largest tectonic plates in the known
system of “hot spots” [11];

— modeling of subduction and spreading belts, study of character of interaction between
plates at their boundaries;

— analysis of vertical component of plate motions;

_ estimation of spatial distribution of epicenters of strong earthquakes in the world scale;

_ simulation of spatial and time migration of earthquakes;

- ascertainment of mechanisms of plate motion (for instance, plate’s abilities to transmit
stress through long distances or necessity of additional sources).

It should be noted that the tasks listed above are formulated “as a prospect”.

The block models of lithosphere dynamics (especially 31 modifications) are quite time
and memory consuming on sequential computers that does not allow to model dynamics of
complex structures with large number of blocks and small enough step of space discretization.
Considering a structure on a sphere complexifies significantly computations. However,
the approach described above admits a natural parallelization of computations on multi-
processor machines. Parallelization was engaged in computational procedures. Service
procedures [12] give to a user possibilities of specification of a block structure by graphic or
numeric way, visualization of obtained sequence of earthquakes, creation and processing of
synthetic catalogs of earthquakes in standard 20 byte format etc.

At the first stage, modeling of a small subsystem of plates was begun. The structure
includes South America, Caribbean, Cocos, and Nazca plates (Fig. 2). Other, surrounding,
plates (North America, Africa, Antarctica, and Pacific) are treated as boundary blocks
moving by known laws [11]. This region is chosen because it includes various types of
plate boundaries with quite contrast motions and high seismic activity. The structure under

consideration has 4 blocks, 33 vertices, 36 faults (and segments), and 4 boundary blocks.

11



Dip angles of faults at boundary South America/Nazca equal 50°, other faults having dip
angles of 90°.

Discretization was defined by the following values of steps: by time— 0.01, by space—
3 km. for segments and 1/3° for block bottoms. The largest block’s bottom was split into
40000 cells.

As far as parallelization is concerned, a parallel computational program was created
for multiprocessor computer consisting of 1860 (64 MHz) processors. For the parameters
listed above, the highest rate was reached on 28 processors. Simulation of 20 units of non-
dimensional time took 11.1 secs., which is 22.5 times as faster as that for one processor. The
coefficient of efficiency in this case equals 0.8.

As results of computation, the program returns quantitative characteristics of block
displacements, which may be treated as velocities (in cm/yr.), and relative displacements
of points belonging to fault segments separating blocks (these displacements give notion on
qualitative character of interaction between tectonic plates). Obtained data were compared
with real ones, and behavior of boundary points showed that model zones of subduction and
spreading correspond to observed ones (Fig. 2). This may be treated as a promising result.
However, it seems to be early to discuss any quantitative characteristics of such processes.

A synthetic catalog of earthquakes was also obtained as a result of the experiment. The
following its characteristics were studied: frequency-magnitude graphs, spatial distribution
of epicenters, clustering phenomenon, and some other features.

The catalog covers a period of 20 units of non-dimensional time and contains 13744
events with magnitude of 6.3 trough 8.9, calculated by formula (11). Let us briefly mention
some features inherit in the synthetic catalog. Clustering (grouping) of events may be
seen both for separate segments and for the whole structure (Fig. 3). foreshocks, main
shocks, and aftershocks may be indicated in the graphs. The pattern of seismicity repeats
qualitatively in a certain interval of non-dimensional time (which depends on fault), periods
of post-seismic relaxation and stress accumulation being also seen [13]. One can observe
the phenomenon of earthquake migration along faults. Spatial distribution of events shows
that, although model earthquakes occur at nearly all segments of the structure, there are
some faults where a significant part of all synthetic seismicity is concentrated (these spots

are marked on Fig. 2). These faults correspond to main seismoactive zones (Nazca/South

12



=

S ¥t

i &

America and Nazca/Pacific boundaries). Frequency-magnitude dependence graphs for the
synthetic catalog are shown on Fig. 4. They have a bit smaller inclination than analogous
curves built for the observed data.

An experiment was performed in order to answer the question: which external stress
source {motion of which boundary blocks) has the strongest influence on synthetic seismicity
occurring in the considered subsystems of plates? The following three variants were
considered: 1) African plate is motionless; 2) both Africa and Pacific have non-zero velocities
(taken from [11]); 3) Pacific is motionless. Three corresponding synthetic catalogs obtained
for a time period of 20 units of non-dimensional time were compared. It is found that under
motionless Pacific plate, seismic activity of the structure is Jower than under motionless
Africa plate, influence of which being relatively small. In case (1), number of events is 13567,
magnitude varying from 6.3 up to 9.06: in case (2), number of events is 13744, magnitude
varying from 6.3 up to 8.9; in case (3), number of events is 12084, magnitude varying from
6.3 up to 9.06.

The table below reflects levels of activity of different seismic boundaries of the plate
system under study. The following notations of the plates are used: sam, South America;
ant, Antarctica; afr, Africa; car, Caribbean; nam, North America; coc, Cocos; pac, Pacific.
Length of a boundary is measured in kms., (N1, Na, N3) and (Dh, Da, D) are number of
events and seismic moment per unit Jength of boundary (measured in 10'° N) for the three
variants of motion of boundary blocks respectively. Total seismic moment for a boundary
‘s the sum of moments of all earthquakes occurred on the boundary. The following formula
was used for calculations [14]:

lg Mo = 1.5M + 9.14,

where M, is seismic moment of the earthquake; M is the magnitude.

13



Boundary || Length Ny N, Ny D, D, Dy
sam-ant 6267 403 481 483 316 340 329
afr-sam 12827 1320 1288 1294 1174 851 841
car-nam 3818 462 457 443 323 335 319
car-coc 1750 1768 1794 1805 28 27 28
car-sam 2975 145 144 138 205 956 483
car-naz 850 483 490 523 2990 2772 1451
coc-pac 2821 2526 2537 1411 199 197 13
COC-naz 2700 1427 1423 1470 521 514 457
naz-sam 6083 3042 3160 3173 15023 13125 12024
naz-pac 7627 1975 1952 1326 9602 9476 o768

The characteristic under consideration (seismic moment density) is maximum (up to
15.023 x 10" N) on the boundary South America/Nazca (in reality: an active subduction
zone). Boundaries Pacific/Nazca and Caribbean/Nazca (spreading zones) are of a smaller,
but quite significant, values of the ratio: up to 9.062 x 10'* N and 2.99 x 10'3 N respectively.
Among all cases, maximum density of seismic energy per unit length of boundary is observed
under motionless Africa plate. It is slightly less under motion of both plates and minimal
under motionless Pacific plate. Let us try to explain this fact on the example of considering
boundary South America/Nazca by means of the following qualitative speculations.

1) Due to sphericity of the structure (see, Fig. 5), motion of Africa plate causes occurrence
of force Fy, which is nearly parallel to the section of the fault on boundary Nazca/South
America. This force acts upon South America plate and has such components on n- and
[-axes of boundary Nazca/South America (System-T) that decrease the subduction motion
and increase compression on the fault, i. e. it decreases the value of (8).

2) Motion of Pacific plate causes occurrence of force Fp, which is nearly perpendicular
to the section of the fault on boundary Nazca/South America. Hence, this force has almost
no impact on the subduction motion, but it increases extension on the fault along n-axis,
1. e. increases value of x (8).

Therefore, seismic activity is higher in the second variant. Let us emphasize that

abovementioned explanations may be true only thanks to spherical shape of the structure.

14



|3 3

-

ter

N

i ]

4 Conclusion

Some preliminary results of modeling a system of large-scale blocks with spherical geometry
are presented. Some qualitative characteristics of plate motion and of character of their

interaction are obtained. A synthetic catalog, which has some “real” features, was created.
The spherical modification of block model shows some phenomena, which may occur only

due to sphericity of a structure. This allows to hope to discover new factors causing seismic

activity of a region.
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Fig. 2. Results of simulation of plate motion and spatial distribution of strong earthquakes.

(Vertical component of relative motion at the boundary South America/Nazca is shown.)

18



| 39 s

iFl

L B

)

|

-

i

"

wwwan |

BB g

Magnitude

itk
il

10.0 10.6 11.2 11.8 12.4 13.0

Fig. 3. Moments of earthquakes occurrence (vertical lines) for the segment (marked with

4" on Fig. 2) for a period of 3 units of non-dimensional time.
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Fig. 4. Frequency-magnitude graphs for the synthetic catalog obtained under motion of

Africa and Pacific plates. (N is number of cells, M is the magnitude.)
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Fig. 5. Scheme of the impact of motion of Pacific and Africa plates on seismicity at the
fault Nazca/South America. The section by the horizontal plane, which is marked with the

dashed line on Fig. 2, is shown.
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