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INTRODUCTION

Let a set of objects, phenomena or processes is considered. Certain information
(for example results of measurements) is available about each element of the set, and
there is some feature, possessed only by a part of the elements. If possessing this feature
by an element does not present evidently in the information available, then a problem
arises to distinguish elements that possess this feature. This problem could be solved by
construction a model on the basis of mechanical, physical, chemical or other scientific
laws which could explain the connection between the available information and the
feature under consideration. But in many cases the construction of such model is difficult

or practically impossible. In this case it is natural to apply pattern recognition methods.

Examples of Problems to Apply Pattern Recognition Methods

Recognition of earthquake-prone areas (for example Gelfand et al., 1976). A
seismic region is considered. The problem is to determine in the region the areas where
strong (with magnitude M > M, where M, is a threshold specified) earthquake are
possible. The objects are the selected geomorphological structures (intersections of
lineaments, morphostructural knots, etc.}) of the region. The possibility for a strong
earthquake to occur near the object is the feature under consideration. The available
information is the topographical, geological, geomorphological and geophysical data on
the objects.

The problem as the pattern recognition one is to divide the selected structures into
two classes:

= structures where earthquakes with M 2 My may occur;

» structures where only earthquakes with M < My may occur.

Intermediate-terin prediction of earthquakes (for example Keilis-Borok and
Rotwain, 1990). A seismic region is considered. The problem is to determine for any time
¢ will a strong (with magnitude M = M, where M, is a threshold specified) earthquake

occur in the region within the period (2, ¢ + 1). Here T is a given constant. The objects are



moments of time. The occurrence of a strong earthquake is the feature under
consideration. The available information is the values of functions on seismic flow
calculated for the moment ¢.

The problem as the pattern recognition one is to divide the moments of time into
two classes:

* moments for which there is (or will be) a strong earthquake in the region

within the period (¢, £ + 1);
= moments for which there are not {or will not be) strong earthquakes in the
region within the period (¢, f + 7).

Recognition of strata filled with oil. The strata encountered by a borehole are
considered. The problem is to determine what do the strata contain: oil or water. The
objects are the strata. The filling of the strata with oil is the feature under consideration.
The geological and geophysical data on the strata are the available information.

The problem as the pattern recognition one is to divide the strata into two classes:

* strata which contain oil;

* strata which contain water.

Medical diagnostics. A specific disease is considered. The problem is to diagnose
the disease by using results of medical tests. The objects are examined people. The
disease is the feature under consideration. The available information is the data obtained
through medical tests.

The problem as the pattern recognition one is to divide examined people into two
classes:

= people who have the disease;

® people who do not have it.



General Formulation of the Pattern Recognition Problem

Generalizing the above examples one may formulate the problem of pattern
recognition abstractly as follows.

The set W= { w } is considered, where objects w = (wli, wzi, s wmi), i=1,2,..
are vectors with real (integer, binary) components. Below these components will be called
functions.

The problem is to divide the set W into two or more subsets, which differ in
certain feature or according to clustering themselves.

There are two kinds of pattern recognition problems and methods:

» classification without learning;

= classification with learning.
Classification without Learning (Cluster Analysis)

The set W is divided into groups (clusters, see Fig. 1) on the basis of some

measure in the m-dimensional space wi, wz, ..., Wn.
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FIGURE 1 Clustering of objects in two-dimensional space.



Denote p(w, v) a distance between two m-dimensional vectors w = (w1, wa,..., wy)
and v = (v}, va,..., V).

To define classification and to estimate at the same time its quality the special
function is introduced. The best classification gives the extremum of this function.

Examples of the functions.

Let Wis a finite set. The following two functions can be used.

K
(K-DD.p,
Jy=—gr%—=min
23, 2Py
k=1 j=k+]
1 K 2 K-t K .
P _E(gpk - K—lgfj;:okj]:} min

Here K is the number of groups,

2 =1 m,

=y 2 2 p(ww),

m, (mk - 1) i=1 s=isl

my, my are the number of objects in the group numbered k and in the group numbered j

respectively; w',w?,...,w™ are the objects of the group numbered k; v',v?,....v" are

the objects of the group numbered j.

After the groups are determined the next problem can be formulated: to find

common feature of objects which belong to the same group.



Classification with Learning

If it is a priori known about some objects to what groups (classes) they belong,
then this information can be used to determine classification for other objects.

As a rule the set Wis divided into two classes, say D and N.

The a priori examples of objects of each class are given. They are called the
learning set Wy:

WoC W,

Wo = Do U Np.

Here Dy is the learning set (the a priori examples) of objects belonging to class D,
Ny is the learning set of objects belonging to class N.

The result of the pattern recognition is twofold:

= the rule of recognition,; it allows to recognize which class an object belongs to

knowing the vector w' describing this object;

= the actual division of objects into separate classes according to this rule:

W=DUN.,

In some cases there are objects with undefined classification, so

W=(DuUN)yu U

Analysis of the obtained rule of recognition may give information for
understanding the connection between the feature which differs the classes D and N on

one hand and description of objects (components of vectors w') on another.



EXAMPLES OF ALGORITHMS
Statistical Algorithms

These algorithms are based on the assumption that distribution laws are different
for vectors from classes D and N (see Fig. 2). The samples Dy and N are used to define
the parameters of these laws.

The recognition rule includes calculating an estimation of conditional
probabilities for each object W' to belong to class D (Pp)) and N (Py)). Classification of

the objects according to these probabilities is performed as follows:
w e D,if Pp'- Py 2¢,
w e N, if Pyl - Py < -,
w e U, if-e<Pp - Pyi<e,

where € 2 0 is a given constant.

FIGURE 2 Different distribution laws for classes D and N.



Bayes algorithm. This is an example of a statistical algorithm. According to
Bayes formula
Piw=wlwe D)P(we D)=P(we Dlw=w)P(w=w) ()
It follows from (1) that
P(w=w'|w e D)P(w e D)

Py=PweDw=w)= Pw =)

Similarly
P(w =w'lwe N)P(weN)
P(w = w‘)

Pi=PlweNw=w)=

Estimations of probabilities in the right side of these relations are given by

following approximate formulae in which the samples Dy and Ny are used:
P(w:wilwe D)::P(w=wi|we Dy),
P(w:wilwe N):P(w:wiiwe Ny),
Pw=w)=Pw=wlwe Dy) P(we D)+ P(w=wlwe Ny) P(we N).
Probability P(w € D) is a parameter of the algorithm and has to be given,
Plwe Ny=1-Pwe D).
NOTE: The sign of the difference Pp' - Py’ does not depend on the value of
P(w e D).

Geometrical Algorithms

In these algorithms surfaces in the space wi, wa,..., wyy are constructed to separate

classes D and N (see Fig. 3).



FIGURE 3 Separation of objects from classes D and N in two-dimensional space by the

straight line.

Algorithm Hyperplane. This is an example of a geometrical algorithm.

The hyperplane P(w) = ag + ayw; + aaws + ... +agwm = 0 is constructed in the
space wi, wa,..., Wr to separate the sets Dy and Ny by the best way. It means that some
function on the hyperpinane has to have extremum value.

The example of the function is
Hag.ay,..na, )=y P(w') - zP(vi) = max.
i=l i=l
Here w',w?,...,w™ are objects of Do, v',v*,...,v™ are objects of Np.

The recognition rule is formulated as follows:

w e D, if P((w) e,

w' e N, if P(w)) < -¢,

we U ife<Pw)<e,

where € 2 0 is a given constant.



Logical Algorithms

In these algorithms characteristic traits of classes D and N are searched using the
sets Do and Ny. Traits are boolean functions on wy, wa,..., Wn. The object w' has the trait,
if the value of the corresponding function, calculated for it, is true, and does not have the
trait, if it is false. A trait is a characteristic trait of the class D, if the objects of the set Dy
have this trait more often than the objects of the set No. A trait is a characteristic trait of
the class N, if the objects of the set N have this trait more often than objects of the set Dy.

Using the searched characteristic traits the recognition rule is formulated as
follows:

we D,ifnp -ny' 2 A+g,
we N, ifnp -ny <A-g,
weUifA-e<ny -ni'<A+e.
Here np and ny' are the numbers of characteristic traits of classes D and N which the
object w' has, A and € = 0 are given constants.

Logical algorithms are useful to apply in cases then the numbers of objects in sets
Dg and Ny are small.

As a rule logical algorithms are applied to vectors with binary components. An
example of logical algorithm is the algorithm CORA-3. It is applied to geophysical
problems in particular to the problems of recognition of earthquake-prone areas and
intermediate-term prediction of earthquakes. The detailed description of this algorithm

can be found in Gelfand et al. (1976) and will be given below.
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PRELIMINARY DATA PROCESSING
Discretization

As it was mentioned above some pattern recognition algorithms (for example
CORA-3) are applied only to vectors with binary components. In the case when the set W
initially consists of vectors with real components (functions) the discretization and coding
are necessary.

After discretization the data become robust. For example if a range of some
function is divided into three parts only three gradations for this function ("small",
"medium”, "large") are used after the discretization instead of its exact value. Do not
regret the loss of information. This makes results of recognition stable to variations of

data.

Let us consider some component (function) w; of vectors (objects) which form the

set W. Let the range of the function variation is limited with the numbers x{ and x]

(x{ < x}). The procedure of discretization for the function w; consists of dividing the
range of its variation into ; intervals by thresholds of discretization (Fig. 4):

xod o xl (R<af <xf << <)

Assume that the value w; of the function numbered J of the object numbered i
belongs to the interval numbered s, if x/, < wj' < x/, where xj w =x}. In a process of

discretization we substitute the exact value of the function by the interval which contains

this value.

FIGURE 4 Discretization of function W
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Usually we divide the range of function variation into two intervals ("small" and
"large” values) or into three intervals ("small”, "medium” and "large” values).

Thresholds of discretization can be introduce manually on the basis of various
considerations for the nature of the given function.

The other way to define the thresholds is to compute them so as to make the

numbers of objects within each interval (xil, xf ), s = 1, 2, ..., k, are roughly equal to
each other. In this case only the number of intervals k has to be defined. Then the
thresholds of discretization may be calculated by using a special algorithm. All objects
together or only objects of Dy and Ny can be considered. This type of discretization is
called here and below as objective or automatic.

Our purpose is to find such intervals where values of the function wj for objects
from one class occur more often than for objects from another class.

How informative is the function wj in a given discretization can be characterized
as follows.

I. Let us compute for each interval (x!,, x/) the numbers P and P" (s=1,2,

.., k) which give for the sets Dy and Ny respectively the percent of objects, for which the

value of the function w; falls within the interval numbered s.

PD_PN

Let us denote P = max

max
1<i<k;

In other words P” and P are empirical histograms of the value of the function

wj for the sets Do and Ny, and P, is the maximal difference of these histograms.
The larger is Ppax, the more informative is the function w;.
Functions for which Puax < 20% are usually excluded.
2. Let kj = 3. Let us denote:
e ls]pr —p
B - R

MD

b

[P = B[R - P
SR

M, =
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If PP changes monotonously with s, Mp = 1: the larger is Mp, more jerky is P”.

This is clear from Figure 5. Similar statements are true for My, P".

The smaller are Mp and My, the better is the discretization of the function w;.

Functions with both Mp, My = 3 usually are excluded.

3. Samples Dg and Ny are often marginally small, so that their observed difference

may be random. Therefore the relation between functions P° and P" after discretization

should be not absurd according to the problem under consideration, though they may be

unexpected indeed.

__________________ =g
? T ]PD - P°| PP D _
2 1T ! 3 zI B
RS A
|27 - P |pY - P?
l M =1,
_____________ pP__. °
2
T P: changes monctonously.
|P] - PV
Lo !
1
__________ PD_._____...____.__
+ 2 o~
22 - B - [P - P -
2 1 3 2
| P, - PY|
o 5 3 1!
E Y
b D 3 2
[P, - P| | Mo> 1,
______ pP-__Z_
3 ~
P’ does not change monotonously
'PD _ PD s
3
B pa

FIGURE 5 Monotonous and non-monotonous changing of P”.
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Coding

With discretization thresholds defined, a procedure of coding of vectors w' into
the form of binary vectors is undertaken. For coding only the functions selected on the
stage of discretization are considered. On the stage of coding /; components of binary
vectors are defined for the function wj. Number /; depends on the number of thresholds as
well as on the type of coding procedure applied to the function wj.

For coding the following two procedures are used. In the case of I ("impulse")
procedure [; = kj, i.e. the number of binary vector components allocated for the coding of
the function wj is equal to the number of intervals into which the range of its variation is
divided after discretization.

Let us denote as @y, , ..., @y the values of binary vector components which code
the function w;. If the value w;' of the function wj for the object numbered i falls within
the s-th interval of its discretization, i.e. x/, < Wji < x/, then we set

W=mm=...=20=00=1, 04 =0=...=0;=0.

In the case of S ("stair”) procedure [; = k; - 1, i.e. the number of binary vector
components, allocated for the coding of a function, is equal to the number of the
thresholds of discretization. If the value w;' for the object numbered i falls within the s-th
interval of its discretization, then we set

W==.=0=0, =0y =...=ay= 1.

Below the case when the codes of the function w; are constructed for &; = 3 is

considered.

If the value w;' belongs to the first interval (x{ <wj' < x/) I-coding has the form:
100. S-coding for the same value wji has the form: 11. For the second interval (x/ <w;' <
xJ) the codes are 010 (-method) and 01 (S-method). For the third interval (x] < wi <

x{ ) they are 001 and 00 respectively.

Discretization and coding procedures transform the set of vectors W= ( w' }, i =

t, 2, ..., n, which correspond to all objects into a set of vectors with [ binary components.

7
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Here ! = X', where summation is implemented only over the functions left after
discretization.

Thus, discretization and coding transform the initial problem in the form of the
classification within the finite set of I-dimensional vectors with binary components. These

vectors will be called objects of recognition,



ALGORITHEM CORA-3

Algorithm CORA-3 operates in two steps:
- selection of characteristic traits (learning);

- voting.

Learning

The sets of characteristic traits for classes D and N are constructed at this step on
the basis of sets Dy and Ng.

Traits. Matrix
i, Iy iy

8,6,0,

is called by a trait. Here iy, iy, {3 are the natural numbers suchas | S{j £ <i3</and 31,
2, 63 are equal to O or to 1.

We say that the object which is the binary vector o = (mli, co;i, veer co]i) has the trait
Aif

w, =8, 0, =8, ©, =3,

Characteristic traits. Let W < W. We shall denote by K(W’, A) the number of
objects @' € W which have the trait A.

The algorithm has four free parameters ,, ki, k,, k2 which can take integer non-
negative values. While the values of the free parameters are defined, the notion of
characteristic traits 1s introduced.

The trait A is a characteristic trait of class D if

K(Dy, A) = ki and K(No, A) € k1.

The trait A is a characteristic trait of class N if

K(Ny, A) > k> and K(Dq, A) < k.

16



Parameters k, and k; are called by selection thresholds for characteristic traits of
classes D and N respectively. Parameters k, and k. are called by the contradiction
thresholds for characteristic traits of classes D and N.

Equivalent, weaker, and stronger traits. The number of characteristic traits of
each class may be large enough. Among them groups of traits, which occur on the same
learning objects of their class, may be. There is no reason to include all traits from such
group in the final list.

Let QQ(A) be a subset of the set W consisting of the objects which have the trait A.
Let, also, A, and A, be two characteristic traits of class D. We say that the trait A, is
weaker than the trait A, (or A, is stronger than A;), if

Q(ANNDy < Q(A)NDy and (QUAINDNQANNDy) # .

In other words it means that all objects from Dy, having A|, possess also Aj. At
the same time there is at least one object from Dy, which, having the trait A,, does not
have A;.

A similar definition we introduce for characteristic traits of class N. Let A, and A,
be two characteristic traits of class N. Then the trait A, is weaker than the trait A, (or A,
is stronger than Ay), if

Q(ADNNo < Q(A2)MNp and (Q(A2)NgNE(A 1NNp) # .

If two characteristic traits A; and A, of class D are both found in the same objects
of the set Dy 1.e.

Q(ADNDy = C2(A2)MDy,
we call A} and A, as equivalent.

Similarly, characteristics traits A| and A, of class N are called equivalent if

QA1) N Ng = Q(A2) N Np. _

The lists of characteristic traits of classes being formed as a result of the learning
step by definition include no any trait which is weaker than any trait in the list of its class.
Only one trait (selected first) is included from each group of equivalent ones to the final

list.

17



Thus, the learning step resuits in the set of gp characteristic traits of class D and
the set of gy of ones of the class V. These sets containing no weaker or equivalent traits in

relation to any one from the same set.
Voting and Classification

The second step of the algorithm involves voting and classification. For each
object @' € W the number np' of the characteristic traits of class D, which the object has,
the number nNi of ones of class N, and the difference A; = nDi - nNi are calculated.

Classification is performed by the following way.

Class D (the set D) is formed from the objects @ for which A; > A. The objects,
for which A; < A, are included in class N (the set N).

Here A as k,, ki, k,, and k2 is a parameter of the algorithm.

This recognition rule corresponds to € = 0 in the description of logical algorithms

given above.
Algorithm CLUSTERS

Algorithm CLUSTERS is the modification of algorithm CORA-3 (Gelfand et al.,
1976). 1t is applied in the case when the set Dg consists of S nonintersecting subsets
{subclasses):

Do =D W D> U ... u D,
and it is known a priori that each subclass has at least one object of class D but some
objects of the set Dy may belong to class N.

At the learning step algorithm CLUSTERS differs from CORA-3 in the following.

First, by definition a subclass has a trait if at least one object among those, which
belong to this subclass, has this trait.

The trait A is a characteristic trait of class D if

K5(Do, A) = k; and K(No, A< k1.

Here KS(DO, A) is the number of subclasses which have the trait A.

18



Second, the definition of the weaker and equivalent traits for characteristic traits
of class D changes to the following.

A characteristic trait A; of class D is weaker than a characteristic trait A, of this
class if any subclass having the trait A; has also A,, and there is at least one subclass,
which has the trait A, but does not have the trait A,. Traits A, and A, are equivalent if
they are found in the same subclasses.

Algorithm CLUSTERS forms the sets of characteristic traits of classes D and N
like CORA-3.

The step of voting and classification is the same as in algorithm CORA-3.

19



ALGORITHM HAMMING

Another algorithm applied to geophysical problems is algorithm HAMMING
(Gvishiani and Kosobokov, 1981). There are also other possible applications of this
algorithm (for example Keilis- 3orok and Lichtman, 1981).

The application of this algorithm consists also in two steps.

Learning

At the first step (learning) for each component wy (k = 1, 2, ..., 1) of binary vectors
the following values are calculated:

gn(ki0) - the number of objects of the set Dy which have @y = 0,

go(kil) - the number of objects of the set Dy which have = 1,

gn(k10) - the number of objects of the set Ny which have ax =0,

gn(ki1) - the number of objects of the set Ny which have ax = 1.

Then the relative number of objects, which have this component equal to 1, is

determined for the set Dg:

o _ QD('I‘H)
oK) qp(kI0) + g, (1)
and for the set Ny:
_ CIN(kll)
O!N(kfl) - QN(kIO) t4qn (kll) .

Then the kernel of class D K = (x1, K3, ..., Ki) is determined as follows
. {1, if o, (K1) 2 o (K1),
Y0, e (K1) < oy (1),
Values of components of the kernel of class D are more "typical” for the objects of
the set Dy than for the objects of the set Ng. The calculation of the kernel K completes the

first step of applying the algorithm.

NOTE: It may be more reliable to eliminate the components for which

(k) - an(kIDl < e, where € is a small positive constant.

20



Voting and Classification

The voting and the actual classification are carried out at the second stage. The
voting consists of calculating for each object a Hamming's distance p; to the kernel of

class D. Tt is calculated by the formula:
!
Pi= Elwlk - Kkl'
k=l
Classification is performed by the following way.
Class D (the set D) is formed from the objects ® for which pi<R.

The objects for which p; > R are included in class N (the set N).

Here R is a parameter of the algorithm.

Hamming's distance can calculated with including of the weights of components
{
[ 2'0); - Kk“:k- -
k=1

Here & > 0 (k = 1, 2, ..., [) are the weights associated to the components of binary -
vectors. Weights can be assigned intuitively or computed by the formula: |

 lcalah)- (8)
¢ Inf[ztx‘ab(k|l)—a,v(k|l)|

where maximum is taken among the components used in the given run of the algorithm.

21



TESTS FOR ESTIMATION OF RELIABILITY OF RESULTS

These tests are necessary to be sure in the obtained results. It is especially
important in the case of small samples Dy and Ny. The tests illustrate - how reliable are
the results of the pattern recognition. However they do not provide a proof in the strict
statistical sense if the learning material is small.

The examples of some tests are listed below.

1. To save the part of objects from Wy for recognition only, not using it in
learning.

2. To check the conditions: Do c D, Ngo < N.

NOTE: Sometimes this conditions are not valid because the sets Dy and N are not

"clear" enough. For example in the case of recognition of earthquake-
prone areas objects of Dy are structures where epicenters of earthquakes
with M = M, are known and objects of Ny are structures where epicenters
of such earthquakes are not known. Objects of Ny may belong to the class
D, because in some areas earthquakes with M = My may be possible,
though yet unknown. Objects of Dy may belong to the class NV due to the

errors in the catalog (in epicenters and/or magnitude).
Numerical Tests

These tests include some variation of the objects, used components of vectors,
nurnerical parameters etc. The test is positive if the results of recognition are stable to
these variations.

3. Elimination of objccté from Dy and Ny - one at a time. Formal criteria of

stability - small value of the ratio My op Mp ¥ My
D] D]+ [N

Here mp and my show how many

objects of D and N respectively change classification after they were eliminated from
learning.

4. Learning on the subsets of the obtained sets D and V.

22
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5. Change the set of used components of binary vectors. In particular elimination

of each used component in turn.

Since the danger of selfdeception is not completely eliminated by these tests the

design and implementation of new tests should be pursued.

23



APPLICATION OF PATTERN RECOGNITION METHODS TO GEOPHYSICAL
PROBLEMS

Recognition of Earthquake-prone Areas

The problem of recognition of places in the Western Alps where earthquakes with
M 2 5.0 may occur (Cisternas et al., 1985) is briefly considered below.

The objects are the intersections of the morphostructural lineaments obtained as
the result of the morphostructural zoning of the Western Alps. The scheme of the
morphostructural zoning of the Western Alps and the objects are shown in Figure 6. The
total number of objects in the set W is 62. The problem is to classify these objects into
two classes: objects where earthquakes with M = 5.0 may occur (class D) and objects
where earthquakes with M 2 5.0 may not occur (class N).

Table 1 contains the list of functions, which describe the objects. The components
of vectors w' are the values of these functions.

The epicenters of earthquakes with M = 5.0 or 7 2 7 (I is maximum macroseismic
intensity) are shown in Figure 6 by dark circles with years of occur. The learning set Dy of
class D consists of 14 objects, near which instrumental epicenters of earthquakes with M
2 3.0, are known (earthquakes in the 1900-1980 period): 3, 12, 13, 14, 20, 30, 31, 35, 40,
41, 42, 44, 51, 57. The objects (1, 5, 6, 8, 53, 55, 56, 58, 60, 61), which have historic
earthquake epicenters (events prior to 1900) with 7 > 7, were not included both in Dy and
Ny leamning sets. These objects and objects 18, 19, which are located near the epicenter of
1905, were voted only. The remaining 36 objects constituted the learning set Ny of class
N.

The following functions (Table 1) ought to be considered as the most informative:
maximum altitude Hy,y, altitude gradient AH/I, the portion of the soft (quaternary)
deposits @, the highest rank of the lineament in the intersection Ry, distance to the nearest

second rank lineament p». For all these functions P, > 20%.
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FIGURE 6 The morphostructural scheme of the western Alps and the result of

recognition.
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TABLE 1 Functions of objects of the Western Alps

Functions Discretization
thresholds
first | second
Maximum altitude Hpy, m 2686 4807
Minimum altitude H i, m 325 -
Altitude in the lineament intersection point Ho, m 490 900
Distance between points where H,.x and Hpin are measured [, km 32 42
AH = Hupax - Huip, m 2500 -
Altitude gradient AH/I, m/km 51 91
Combinations of relief types (yes, no)
mountain slope/mountain slope (m/m)
mountain slope/plain (m/p)
mountain slope/piedmont/plain (m/pd/p)
mountain slope/piedmont (m/pd)
piedmont/plain (pd/p)
The portion of the soft (quaternary) deposits Q, % 10 -
The highest rank of the lineament in the intersection Ry, 1 2
Number of lineaments forming the intersection », 2 -
Number of lineaments in the circle of radius 25 km N, (3 thresholds) 2 3,4
Distance to the nearest intersection pin, km 20 31
Distance to the nearest first rank lineament py, kmn Q 32
Distance to the nearest second rank lineament p,, km 0 40
Maximum value of Bouguer anomaly B, mGal -82 -8
Minimum value of Bouguer anomaly B, mGal -145 -85
AB = Bax - Bmin, mGal 45 65
B = (Bumax + Brin)/2, mGal -110 -44
HB = 0.1 Hyax [m] + B [ImGal] 153 -
Number of Bouguer anomaly isolines Ny 4 7
Number of closed Bouguer anomaly isolines Ngc 1 -
Minimum distance between two Bouguer anomaly isolines with 2 3

values divided by 10 mGal (VB)"', km

Coding of all the functions, except the combinations of relief types (Table 1), was

performed by S-method with the thresholds given in Table 1. Their values have been

obtained by the method of objective discretization. Functions describing relief pattern

need no additional discretization and coding since they take values 1 (yes) or 0 (no).

Algorithm CORA-3 was applied with the following values of its parameters:

k =3,k =2k =11, k=1, and A = 0. The selected sets of characteristic traits of
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classes D and N (D- and N-traits) are given in Table 2. The traits are given in the table as
conjunctions of inequalities in the values of the object description characteristics.

The obtained classiﬁcation of the objects is shown in Figure 6. 34 objects are
attributed to class D, and 28 objects are attributed to class N. All the objects of the

learning set Dy are classified as objects of class D. The number of objects of N, classified

z

L

I B3

re:

as objects of class D, is roughly 30% of the their total number in No.

TABLE 4 Characteristic traits selected by algorithm CORA-3 for recognition of objects
of the Western Alps

4 0% | = N | pukm | prkm | AB mgl | (VBY' km
D-traits
1 <32 <65 <2
2 >0 <65 <2
3 <32 0 <65
4 >3 0 <65
5 >4 >45 <3
6 >0; <40 >45
7 2 >32 >45
8 2 >32 <3
9 >2 <3 <2
10 >10 >3 <40
N-traits
1 <45 >2
2 >0 <45
3 2 <45
4 >40 <45
5 >40 >2
6 2 >4
7 2 <3 >0
8 2 0
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Intermediate-term Prediction of Earthquakes

The pattern recognition methods were used to develop the intermediate-term
earthquake prediction algorithm CN (Keilis-Borok and Rotwain, 1990). This algorithm
was initially applied to California-Nevada region and is called algorithm CN.

Objects of recognition. The objects are moments of the time. These moments are
described by the functions defined in the lecture "Functions on Earthquake Flow"
(Rotwain and Novikova, 1999). The selection of the moments and the forming of the
learning sets Dy and Ny are described below.

If the earthquake catalog of some region covers the time from ¢y to 7} the three
types of time periods can be defined between £y and Ty:

= periods, which precede strong earthquakes, - periods D,

= periods, which follow strong earthquakes, - periods X

* periods, which are not connected with strong earthquakes, - periods N.

The formal definition can be formulated as follows.

Let £, ta, .., tm (fo < 11 < 12 < ... <t < Ti) be the moments of strong earthquakes
of the region under consideration. Here strong earthquakes are the main shocks with
magnitude M = My, where My is a given threshold.

Periods D are time intervals from ¢, - Afptof; (i= 1, 2, ..., m).

Periods X are time intervals from 7 to # + Arx out of periods D.

Periods NV are intervals from #y to 7y which remain after exclusion of all periods D
and X.

Here i =1, 2, ..., m; Atp and Atx are given constants.

Example of periods D, X, and N is shown in Figure 7. The moments &, fi.1, fi+2,
and f;,3 in this figure are the moments of four strong earthquakes.

Moments of time are considered as objects of recognition. For time period from #,
to Ty three types of moments are defined: Dy, Ny, and X.

Moments Dy (the set D) are the moments before strong earthquakes. For each

strong earthquake with origin time £ the interval from # - Afp to - 8¢ is divided into &
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FIGURE 7 Periods D, N, and X.

equal parts of the length Az, = At /k, where Azy = Afp - 6t. Here 8t 2 0 and k are selected so
to have the relationship 3t << Ats.

Moments Dy are the moments

£ =1t - Atp + jAn
where j =0, 1, 2, ..., k. The moments Dy which are earlier than the origin time f.; of the
preceding strong earthquake are eliminated (see Fig. 8B).

Moments N are selected within periods N with equal steps, unless there is not
specific reason to do otherwise.

Moments Ny (the set Np) are selected from moments N to be regularly distributed
among them. The number of moments Np is usually selected about the same as the
number of strong earthquakes in the region.

Moments X are selected from periods X with step Ar,.

Subclasses. Among the moments Dy subclasses are formed. One subclass includes
moments Dy which precede the same strong earthquake.

Let 1., and 1 are origin times of two consecutive strong earthquakes. If ¢ - £ >
Afp then the subclass connected with the strong earthquake numbered i consists of the
following moments Dq:

=1t -Ap+jAn
where j=0, 1, 2, ..., k. If - ti.y < Arp then only moments r-lj which are after 7, (tij > ti.1)

are included in the subclass.
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FIGURE 8 Moments Dy (k = 2, the moments Dy are marked by @ ).

In Figure 8A the subclass connected with the strong earthquake occurred at time
1., consists of three moments Dg: t;_lo, ri_lt, and r-l_lz. The subclass, connected with the
strong earthquake, occurred at time #;, consists also of three moments Dy: tio, ', and r;z.

In Figure 8B the subclass, connected with the strong earthquake, occurred at time
I;.1, consists also of three momenis Dy: ti_lo, ri.ll, and ri_lz, and the subclass, connected with
the strong earthquake, occurred at time #;, consists only of two moments Dy: t;l and tiz.

Algorithm CN. The earthquake catalog of the Southern California for the time
period 1938-1984 was used to determine the learning set. The threshold magnitude for the
strong earthquakes was My = 6.4. Table 5 contains the thresholds for discretization of the
functions on the earthquake flow, calculated for these moments. The coding was

performed by S-method with these thresholds.
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TABLE 5 Thresholds for discretization of functions on the earthquake flow
(Southern California)

Function Thresholds
N2 0 -
K -1 1
G 0.5 0.67
SIGMA 36 71
Smax 79 14.2
Zmax 4.1 4.6
N3 3 5
q 0 12
Bmax 12 24

The algorithm CLUSTERS was applied to obtain the characteristic traits of

classes D and N. These traits are listed in Table 6. The parameters had the following
values: k, =7, k=2, k, =10, k2 = 4. The moments defined for the Southern California
are classified by using these traits and A = 5. If a moment ¢ is attributed to class D then

this moment is considered to belong to a period of the time of increased probability (TIP)

of a strong earthquake. Formally if ¢ is attributed to class D then a TIP is diagnosed from ¢

to ¢t + T where 7 is a given constant. For the Southern California T= 1 year was used.
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TABLE 6 Characteristic traits of classes D and N obtained by algorithm CLUSTERS for
the moments of the Southern California
(traits of algorithm CN)

Traits D [ N2} K G | SIGMA { Smax | Zmax | N3 q | Bmax
1 0 0
2 0
3 0 0 0
4 0 0
5 0 1 0
6 1 0 0
7 0 1 0
8 0 0 0
9 0 0

10 1 0 0
i1 01 0
12 0 | 0

13 0 1

14 0 0

15 0 0

16 0 1

Traits N [N2 | K G | SIGMA | Smax | Zmax § N3 q | Bmax
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