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A model for complex aftershock sequences
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Abstract

The decay rate of aftershocks is commonly very well described by the modified Omori law,

n(t) o £, where n(t) is the number of aftershocks per unit time, ¢ is the time after the main
shock, and p is a constant in the range 0.9 <p < 1.5, and usually close to 1. But there are also
more complex aftershock sequences for which the Omori law can be considered only a first
approximation. One of this complex aftershock sequences took place in the Eastern Pyrences on
February 18, 1996, and was described in detail by Correig et al. [1997]. In this paper we propose
a dynamic fiber-bundle model to interpret this type of complex aftershock sequences with
sudden increases in the rate of aftershock production not directly related to the magnitude of the
aftershocks (as in the epidemic-type aftershock sequences). The model is a simple, discrete,
stochastic fracture model where the elements (asperities or barriers) break by static fatigue due
to subcritical crack growth, and transfer stress according to a local load-sharing rule. We find a
very good agreement between the model and the Eastern Pyrenees aftershock sequence and
propose that the key mechanism for explaining aftershocks, apart from a time-dependent rock
strength, is the presence of dynamic stress fluctuations which constantly reset the initial
conditions for the next aftershock in the sequence. These stress fluctuations arise from the highly
non-linear function that relates the instantaneous breaking strength with time in the static

fatigue law.
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1. Introduction

1.1. The Omori law

Omori discovered scaling in earthquakes in the fre-
quency distribution of aftershocks over one hundred
vears agn when he proposed a formula to represent
the decay of aftershock activity with time [Omori,
1894]. Now, hundred years later, it remains as one of
the few well established empirical laws in Seismology.
As noted by Utsu [1995], ‘any theory for the origin of
aftershocks must explain this law, which is unique for
its power law dependence on time'. The Omori law
(as modified by Utsu, 1961),

n(t) = Kt7P, (1)

says that the number of aftershocks n(t), measured
at time t after the time of the main shock, decays
following a power law with exponent p around one
(0.9 < p < 1.5, with a median of about 1.1, [Utsu,
1995]), and K being a proportionality constant. To
avoid divergence at ¢t = 0, the Omori law is usually
written in the form

n{) = K(t+¢)7?, (2)

where ¢ is an additional ‘small’ positive constant with
dimensions of time (between 0.01 and 1 days, with a
median of 0.3 days, [Utsu, 1995]) . The power law,
scale-free behavior is maintained for £ > ¢, with a
transition to n(t) = const for ¢ < ¢. The cumulative
number of aftershocks occurred until time ¢ after the
main shock, defined as fot n(s)ds is

_ | Kln{t/e+1) ifp=1
N = { K™ =496 571

When p > 1, N(t) tends to a constant K/{{p—1)c"~1}
ast—o00. Whenp <1, N{t) 2 c0ast— o0.

The Omori law has also been verified in laboratory-
scale experiments of brittle rock deformation by mea-
suring acoustic emission [Scholz, 1968a,b; Lockner
and Byerlee, 1977; Hirate, 1987; Sammonds et al.,
1992]. For a recent review on the role of acoustic
emission in Geophysics, see Lockner [1993), and ref-
erences therein. The fulfilment of the Omori law in
the scale range from the microscale to the macroscale
(more than 8 orders of magnitude in crack size) sug-
gests that a common process is behind the inelastic
strain responsible of acoustic emission in laboratory
experiments and aftershock sequences in active tec-
tonic faults. But which is this mechanism?

1.2. Physical basis

Benioff [1951] presented the first detailed theory
offering an explanation of the causes and character-
istics of aftershock sequences in terms of identifiable
mechanical properties. According to his theory, after-
shocks occur when there is a time-dependent recovery
of stress following the main shock. The stress recov-
ery was ascribed by Benioff to creep recovery of the
rocks in the immediate area of the fault.

Since this seminal paper, many laboratory and
numerical experiments have confirmed the hypothe-
sis that aftershocks are a process of relaxing stress
concentrations produced by the dynamic rupture of
the main shock, and that they are, therefore, an
intrinsic time-dependent rheological effect [Scholz,
1990]. There is, however, no general agreement as
for the actual mechanism of stress relaxation, and
various hypothesis have been advanced. These can
be broadly grouped into two competing schools: the
time-dependent strength hypothesis, and the time-
dependent friction hypothesis. The time-dependent
strength hypothesis started with the aforementioned
paper by Benioff [1951], and the time-dependent fric-
tion hypothesis has its origins in Brace and Byerlee’s
[1966] suggestion that earthquakes are a sort of stick-
slip phenomenon controlled by friction between the
two sides of a fault.

The first time-dependent friction model of after-
shocks was proposed by Dieterich [1972b] using a
modified 1-dimensional Burridge-Knopoff fault ana-
logue [Burridge and Knopoff, 1967], with a combina-
tion of viscoelastic response and time-dependent. fric-
tion. Because viscoelastic recovery can only partially
restore the stress drop that occur during an earth-
quake, it is necessary to employ a mechanism whereby
the fault will be weaker following an earthquake than
it was prior to the earthquake. A laboratory basis
for this weakening is provided by the time-dependent
friction observations of Dieterich [1972a) and subse-
quent generalizations of this concept that run un-
der the name of rate- and state-dependent friction
laws [Dieterich, 1979; Ruina, 1983; Rice and Ruina,
1983; Gu et al., 1984; Rice and Tse, 1986; Cochard
aend Madeariaga, 1996; Wennerberg and Sharp, 1997).
Recently, Dieterich [1994] formulated a continuous
model for the rate of earthquake production in terms
of a general non-linear friction law, assuming also that
the earthquake rate is due to the elastic stress change
associated to prior earthquakes. He derived two gen-
eral equations for the earthquake (aftershock) rate fol-
lowing a stress step, both compatible with the mod-



ified Omori law, Eq. (2), at least in some temporal
range.

On the other hand, Scholz {1968b] formulated the
first time-dependent strength model of aftershocks.
He suggested that a time-dependent strength of the
rocks in the area of the main shock could be the
cause of the aftershock sequences and invoked static
jatigue due to local overloads to stresses much higher

than their long-term strength as the main mecha-

nism of aftershocks. Based on Scholz's {1968a] lab-
oratory experiments on static fatigue of quartz, Das
and Scholz [1981] formulated a general model of af-
tershocks based on the theory of elastic fracture me-
chanics and the concept of subcritical crack growth
{Atkinson, 1984). They showed that this model is
consistent with the decay rate of aftershocks as ex-
pressed by the Omori law, and that is able to repro-
duce many other characteristics of real aftershock se-
quences. More recent works and papers that stress the
role of time-dependent strength in aftershock dynam-
ics are: Yamashita and Knopoff [1987], who assume
that stress corrosion is the physical mechanism for
the delaved fracture in aftershocks; Marcelling [1995,
1997], advocating static fatigue, together with stress
inhomogeneities, as the cause of Omori-law aftershock
sequences; and Lee [1999] and Lee and Sornette [1999],
who constructed a fuse network model of aftershocks
incorporating a time dependent strength compatible
with the mechanism of subcritical crack growth. All
these models of aftershocks also obey the Omori law.

Static fatigue, also known as stress-, creep-, OT

delayed fracture is the basic way of time-dependent

failure under comstant load of a broad variety of
materials, including textile fibers [Colernan, 1957],
fiber composites [Phoeniz, 1977, wood {Garcimartin
et al., 1997], microcrystals [Pauchard and Meunier,
- 1993, gels [Bonn et al., 1998], policrystalline ceramics
[Deuerler et al.,, 1985], metals [Williams, 1973}, sili-
cate glasses [Charles, 1958), minerals [Scholz, 1968a;
Barnett and Kerrich, 1980], and rocks [Atkinson,
1984]. In all these cases, the signature of static fa-
tigue is the observation of a failure strength that is a
function of the load history of the material. The phys-
ical mechanism of static fatigue depends both on the
material and the environmental conditions. For brittle
materials, and from the point of view of fracture me-
chanics, time-dependent strength is commonly associ-
ated with kinetic frecture, i.e., with the propagation
of cracks under a crack tip stress intensity factor be-
low the modulus of cohesion of the material {Kestrov
et al., 1969]. This propagation is stable and quasi-

static, and is referred to as subcritical crack growth,
where ‘quasi-static’ means at velocities much less than
the sonic velocity of the medium [Das and Scholz |
1991].

Material break down according to two different sce-
narios. In the first one, which is typical of pure crys-
tals, there is no or little damage up to the rupture,
which occurs suddenly. In the second scenario, typi-
cal of highly heterogeneous media, the system is pro-
gressively damage, first in an uncorrelated manner
and then, as strain increases, the damage becomes
more and more localized, with crack coalescence an-
nouncing the incipient macroscopic fracture. Rocks
under brittle conditions (i.e., in the seismogenic zone
of the earth crust, where earthquakes nucleate) be-
long to this second type of material, highly heteroge-
neous, which develop a pervasive population of micre-
cracks, termed Griffith flaws, that grow subcritically
and are responsible of the time-dependent strength of
the earth crust. The presence of a chemically active
fluid environment saturating the pore and crack space
enhances this subcritical crack growth, a mechanism
known as stress corrosion [Charles, 1958; Wiederhorn,
1967). There is ample evidence that geological materi-
als under brittle conditions own their time-dependent
strength to the mechanism of subcritical crack growth
assisted by stress corrosion [Atkinson, 1984; Atkinson
and Meredith, 1987].

In this paper we take the perspective of the time-
dependent strength school and propose a discrete
fracture model to describe complex aftershock se-
quences based on the concept of static fatigue by sub-
critical crack growth, and where stress fluctuations
among the elements in the system {to be identified
with barriers or asperities in the ‘dynamic’ sense of
Cochard and Madariaga [1996]) play a fundamental
role in explaining the production rate of aftershocks.

1.3. Deviations from the Omori law

As mentioned above, the Omori-law decay rate of
aftershocks following a main shock is an almost uni-
versal characteristic of seismicity (as compared to the
more irregular patterns of premonitory activity as

foreshocks or quiescence). But despite this universal-

ity, many real aftershock sequences display anomalies
in the decay rate that depart from the simple Omori-
law behavior. Among these anomalies we can cite
[Utsu, 1995]: (i) cases in which seismic activity fol-
lowing the main shock can not be represented by a
simple power law due to mixing of different series of
activity; and (ii) cases where aftershocks decay, as a



whole, according to the Omori law, but depart tem-
porarily from the formula due to abrupt changes in
activity (accelerations and/or quiescence).

In this paper we are interested in aftershocks se-
ries that do not follow rigorously the Omori law, and
in particular in this second type of anomalies where
sudden accelerations in the rate of aftershock activity
are not directly linked to aftershocks of bigger magni-
tude. This last case is the so-called epidemic-type af-
tershock sequence, ETAS, where each aftershock has
its own sequence of aftershocks [Ogata, 1988], and
can be thought of as a fractal version of the simple
Omori relaxation formula. There are, however, some
aftershock sequences where the changes in decay rate
are independent of the magnitude of the aftershocks
that provoke these changes in activity, and that can
not be ascribed to the ETAS model. One of this after-
shock sequences took place in the eastern Pyrenees on
February 18, 1996 [Correig et al., 1997] and in this pa-
per we propose a dynamic (static fatigue) fiber-bundle
numerical model as a framework to interpret this type
of aftershock sequences.

1.4. Fiber-bundle models

Fiber-bundle models (FBM) are simple discrete
stochastic fracture models amenable to either close
analytical or fast numerical solution, which arose in
intimate connection with the strength of bundles of
textile fibers [Daniels, 1945; Coleman, 1957). Since
Daniels’ and Coleman’s seminal works there has been
a long tradition in the use of these simple models to
analyze failure of heterogeneous materials ( Vazquez-
Prada et al., [1999] and references therein).

FBM come in two ‘flavors’, static and dynamic.
The static versions of FBM simulate the failure of ma-
terials by quasistatic loading, i.e., by a steady increase
in the load over the system up to its macroscopic
failure. Time plays no role in these models, load is
the independent variable, and the strength of each
element is considered to be an independent identi-
cally distributed random variable. On the other hand
the dynamic FBM simulate failure by stress-rupture,
creep-rupture, static-fatigue or delayed-rupture, i.e.,
a (usually) constant load is imposed over the system
and the elements break by fatigue after a period of
time, known as the lifetime or time-to-failure of the
element. Time acts as the independent variable, and
the lifetime of each element is an independent iden-
tically distributed random quantity. In this paper
we are only interested in the dynamic fiber-bundle
models, as aftershocks are an intrinsic time-dependent

phenomenon.

Three are the basic ingredients common to all
FBM: (i) a discrete set of N elements located on the
sites of a d-dimensional lattice; (i) a probability dis-
tribution for the failure of individual elements; and
(iii) a load-transfer rule which determines how the
load carried by a failed element is to be distributed
amoeng the surviving elements in the set. For the af-
tershock model we use a 2-dimensional square lattice
of L? elements, where L is the size of a side of the
square, a Weibull-type probability distribution, and
a local load transfer mechanism among the elements
in the lattice.

This paper is organized as follows: in Section 2
we briefly summarize the characteristics of the after-
shock sequence of the Eastern Pyrenees, described in
detail by Correig et al. [1997]; Section 3 is devoted to
the presentation of the particuldr dynamic FBM used
to simulate the aftershock sequence; it is a discrete,
two-dimensional, local version of the FBM where the
elements break by static fatigue. Finally, Section 4
presents the main results obtained from the model,
the comparison of these results with the real after-
shock sequence, and our conclusions.

2. The data

On February 18, 1996, a local magnitude My = 5.2
earthquake occurred in the Eastern Pyrenees, with
epicentral location N42°47.71', E2°32.30° and focal
depth of 8 km [Rigo et al., 1997).

The series of aftershocks that followed this event
was recorded at the three-component continuous broad-
band seismic station at the Tunel del Cadi, located at
about 80 km SW of the epicentral area. Altogether,
the series consists of 337 event (complete for a thresh-
old magnitude of 1.9}, spanning 1846 hours (77 days)
from the time of the main shock, and with magnitudes
ranging from 1.9 to 3.8. Figure la shows the cumu-
lative series of aftershocks, along with the magnitude
of the events. The sudden change in slope at about
300 hours is not due to incompleteness of the series,
and from the point of view of the magnitude of the
aftershocks, there is no specific characteristic, nor any
relevant event, that justifies this sudden change in the
event rate. Because of this different behavior, we will
restrict our attention to the series defined by the first
300 hours, with a total of 308 events, as displayed in
Figure 1b.

The most striking feature of this series is the
change in concavity of the cumulative curve not cor-



related with any significant event (as it would be the
case from the point of view of a ETAS model), sug-
gesting an increase in the rate of aftershocks produc-
tion apparently not related to any relaxation process.
If we try to fit Fig. 1b to Eq. (3), no unique set of
parameter is able to fit the entire range and, further-
more, the values of p so obtained are abnormally low
(0.56 for the 0-100 hours interval, and 0.64 for the
140-300 hours interval). The fit and the value of p do
not improve if the magnitude threshold is increased
{Correig et al., 1997].

The interpretation of the Omori law as a relax-
ation process suggests a way of separating the after-
shocks in the series into two classes: class A for the
events that follow a relaxation law and class B for
those events that do not. The criterion to assign the
events to classes A or B is the following: if the inter-
val of time At; between events 1 and ¢ — 1 is strictly
larger than the interval of time At;_; between events
i—1and i ~ 2, the event i belongs to class A; other-
wise it belongs to class B. Events belonging to class
A are termed leading aftershocks, and those belonging
to class B, cascades. Figure lc shows the aftershock
sequence classified as leading events (solid circles) and
cascades (dots). Note that a cascade is initiated by
a leading aftershock and that this leading aftershock
has no significative different magnitude.

The fit of Eq. (3) to the series formed by the lead-
ing aftershocks is shown in Fig. 2a. The fit has im-
proved notoriousty from the initial fit to the whole
sequence, and the value obtained for the exponent
is now p = 0.94, much more in agreement with the
standard values for worldwide aftershock sequences.
Figure 2b depicts the series of cascades, in which the
first term of each cascade is a leading aftershock. Two
important features are readily visible from the figure:
(i) the cascades are in general well approximated by
straight lines; and (i) their corresponding slopes de-
crease with time. A plot of the slope s of the cascades
against time ¢ (Figure 3) shows the remarkable fact
that there exists a power-law relationship of the form
s o t~¥ between them, with v = 0.71.

The properties summarized in Figs. 1 through 3 for
the aftershock sequence of the Eastern Pyrenees can
be described at first order with the modified Omori
law, Egs. (2) and (3). But at second order there
are important non-random fluctuations about this law
(represented by the cascades) that can not be fitted
in detail with, nor accounted for, the Omori law and
its relaxation origin. In the next Section we will con-
struct a model that is able to account for this sec-

ond order deviations from the Omori law, and for the
QOmori law itself, of course.

We want to stress here that the characteristics
of the series of aftershocks from the February 18,
1996, Pyrenees mainshock are by no means ‘cxcep-
tional’. On the contrary, they seem to be a rather
general feature of aftershock series. The authors
are currently analyzing various aftershock sequences
(Greece, Kobe, Landers, Northridge) and have found
a behavior very similar to that of the Pyrenees after-
shock sequence. Results will be reported elsewhere.

3. The model
3.1 Background

In engineering and geophysics, the failure of an het-
erogeneous material is generally modeled in terms of
a statistical distribution of lifetimes when subject to
an applied stress og. In a discrete model consisting
of a set of N elements (to be identified with asperi-
ties or barriers on a fault plane), the failure of each
element is sensitive to both the elapsed time and its
stress history (precisely, this dependence on the stress
history is what makes intractable the formulation and
resolution of fully-grown continuous deterministic dy-
namical models of fracture). In this context, we can
express the probability P(t;o(t)) of a single element
i failing at time t;o after suffering the load history
ai(t) as [Coleman, 1957

ti0
P(tio;0:(t)) =1 —exp {—fo CAG) dt} . (4

where x(o) is the hazard rate or breaking rule (num-
ber of failures per unit of time). The hazard rate is
commonly expressed in the form

k(o) = o (i) , )

G0

which has both experimental [Coleman, 1958] and
theoretical [Phoeniz and Tierney, 1983] support, and
is compatible with subcritical crack growth equations,
as will be discussed in Section 4 . Here, vp is the haz-
ard rate under the reference load oq, and p is a con-
stant, usually in the range 2 < p < 50, thus conferring
a highly nonlinear form to the equation.

For constant load, inserting Eq.(5) into Eq.(4)
gives

P(ti,0;0;) = 1 —exp { —vg (g;) ’ ti,g} . (6)



This equation has the form of a Weibull probabil-
ity distribution function, which is widely used in en-
gineering. The widespread use of Weibull statistics
stems from the experimental fact that real materi-
als follow very closely Weibull probability distribution
functions for both the strength and the time-to-failure
of the individual elements [Daniels, 1945; Coleman,
1957, 1958; Phoeniz and Tierney, 1983; Okoroafor
and Hill, 1995].

Once asperities in the fault plane begin to fail,
stresses are no longer homogeneous. Under these cir-
cumstances, the stress history of a particular asperity
could be extremely complicated, even more if healing
of previously broken asperities is allowed. In order to
accommodate the increase in stress caused by local
stress redistribution from failed asperities, a reduced
time to failure T} 4 is introduced [Newman et al., 1995;
Fdmez et al., 1998]:

tio = fom v (J;—(:))pdt. (7)

In the case of independent elements {i.e., no stress
transfer), o(t) = og and t;0 = T; ¢ for all elements
i=1,...,N. When stress redistribution between ele-
ments is permitted, the actual time to failure of ele-
ment i, namely T , is reduced below t; o if stress is
transferred to that element. The time T; ¢ is obtained
by requiring that Eq. (7) is satisfied. In this way we
are able to take into account, at the same time, the
intrinsic time-dependent strength of asperities, Eq.
(6), and the additional reduction in its lifetime due to
stress transfer between failed and unfailed elements,
as given by Eq. (7). Notice that this stress transfer
is dynamic, and is equivalent to a resetting of initial
conditions for continuous models of earthquakes.

The stress history for a particular element k is
made of steps. Let asperity & be supporting a stress
of at time #,. It will continue to support ¢ until
a stress transfer from one of the nearest neighbors
occurs. In this moment, say ¢, asperity k instanta-
neously changes its load to ar}c = 0'2 + Onn, where onp,
is the stress transferred by the neighboring element.
Then, in a later time t3, asperity k could receive again
load from another neighbor, suffering a second step-
like increase in stress. Put into symbols, the stress
history of elemet & can we written as

O'g forfg <t <ty
O’k(t)= 0',1: for t; <t <is (8)
of fort >ty

This step-like stress history continues until asperity &
fails by static fatigue at the time T 5, Eq. (7).

3.2 Probabilistic approach

These models can be solved by a Monte Carlo tech-
nique as explained in detail in Newman et al. [1995].
In Vazquez-Prada et al. [1999], however, we have de-
vised an alternative approach to dynamic fiber-bundle
models; it is particularly clarifying and intuitive. We
call it the probabilistic epproach and will be applied
to this model of aftershocks.

From a probabilistic point of view, for a given dis-
tribution of stress ¢;, 1 < i < N, the time interval §
for one asperity to break is

1
R — )
Tida wlo: (1)
where k(o) is given by Eq. (5). For the sake of sim-
plicity, we will assume from now on that vy = g9 =1,
so that we can rewrite Eq. (9) as

1
==
Zi=l ai
and the probability that precisely asperity k is the
affected one is

(10)

Pr = 0k(oe) = dof. (11)

The initial values of ¢; will be taken from a uniform
probability distribution (0 < ¢; < 1;1 € ¢ < N). This
would represent the dynamical state of the fault just
after the main shock. Besides, we will introduce dissi-
pation in the model. This is quantified by a constant
factor 0 < w £ 1. When an element breaks, n times
its stress is distributed among the elements occupy-
ing the nearest neighboring positions, and {1 — =)o
is lost. The introduction of dissipation is necessary
to describe a global progressive relaxation process in
the system. We will suppose open borders, so that
stress is also lost through the boundaries. Note that,
in the model, once an element breaks it remains in-
active until it receives load again, being a possible
mechanism for this process a healing phase [Heaton,
1990; Cochard and Madariaga, 1994].

Due to the dissipation, the total stress in the sys-
tem, S, systematically decreases. If the value p =1
were considered, then from Eq. (10), the successive
&s would necessarily be longer and longer. But p is
bigger that one, and this is the reason why one can
have a step down in S and find a shorter value of 4.



This is the key point to understand our model. In the
general trend of S reduction and hence temporal de-
celeration, the stress transfers in the system provoke
local inhomogeneities in o, and due to the high val-
ues of p, this leads to temporal accelerations. These
accelerations are embedded in the general trend of
power-law relaxation. This model leads to the fulfil-
ment of Omori’s law, as can be checked in the next
Section, because it is analogous to a mechanism of
stress corrosion in which aftershock events are trig-
gered each time the strength threshold decays below
the local stresses [Lee and Sornette, 1999).

To reinforce the appearance of the sudden acceler-
ations, we will implement the following three rules:

(i) when, due to stress fluctuations, ¢ in a site i
surpasses the value of 1, then the element that breaks
is necessarily that one. The & for that breaking is
obtained by applying Eq. (10), but, in this case that
is equivalent to stating that p; = 1, pjz; = 0. I p s
big enough, Eq. (11) leads to the same result because
p; would be considerably bigger than the others.

(i) when o; becomes bigger than 1, we say that
an avalanche has started. The avalanche ends when
all the sites in the system have o values lower than
1. During an avalanche, which will involve several és,
all the elements that have surpassed, at any step of
the avalanche, the condition o > 1 remain inactive
with o = 0 until the end of the avalanche. This is
introduced in order to increase the local stress accu-
mulations, which lead to shorten the corresponding
value of 8. This assumption is reasonable because in
very short § there would not be time for healing. And

(##i) If during an avalanche step, there are several
clements with ¢ > 1, the § will be calculated, as ever,
using Eq. {10}, but all the elements with stress sur-
passing the threshold decay simultaneously in that
step.

As a resume, we observe that in the process of re-
laxation of the system there are normal events and
avalanche events. The former refers to the failure of
one element when no element in the system has o > 1.
The latter corresponds to the failure of one element
(or several) with o > 1. Eq. (10) is always used for the
calculation of the time intervals. Typically the ds in
the avalanches are shorter because of the large stress
concentrations induced by rule #i), and the magnitude
of the exponent p. With these rules, it is obvious that
the avalanches become extinct with time because as
S declines, it is more difficult to locally accumulate
load as to surpass the unity.

The running of the model proceeds as follows.
First, we load each element in the square lattice with
a random initial stress oy, § = 1,..., IV, taken from a
uniform probability distribution 0 < o; < 1. Then,
we calculate the & or time interval until the next fail-
ure by using Eq. (10). Now, we check if all the el-
ements have their o-value lower than one. I this is
the case, the rupture corresponds to a normal event,
so we apply Eq. (11) to find out which element is go-
ing to break. This is done by generating a random
number between 0 and 1, and comparing it with py.
This points to a specific element that fails and trans-
fers the load it bears to its nearest neighbors. During
the transference which we consider as instantaneous
(i.e., step-like), there is dissipation, i.e., the fraction
(1 —nx)o is removed from the system. The second case
corresponds to the situation in which an element (or
several elements) supports a load bigger than one. In
these cases, those elements break following rules (i),
(ii) and (i) and the load is transferred as before.
The simulation is carried out until a minimum value
for the total load in the system is reached (here, we
have imposed that the load accumulated in the whole
system must be larger than 107*). This is a kind of
alternative to mimic the real threshold detection mag-
nitude of seismograms or the background seismicity.

One ending comment is in order. We have started
from a randomly distributed load configuration in the
system; our two main results, i.e., the general trend of
relaxation, fulfilling Omori’s law, and the observation
of sudden accelerations produced by the load dynam-
ical fluctuations, are not affected by this assumption.

4. Results and Conclusions

We have carried out numerical simulations which
show the fulfilment of Omori’s law and which repro-
duce the features already commented, that is, a cu-
mulative plot with sudden variations in the number
of events (accelerations). We show here the results
for a two-dimensional system of 50 x 50 elements lo-
cated on a square lattice, with p equal to 30 and a
conservation level of w = 0.7. Other simulations have
also been performed varying the size of the system,
the value of p and the conservation level, =. We have
found that the results are indeed very close to those
exposed here with equal qualitative behaviour. Nev-
ertheless, it should be noted that although the results
are robust over a large range of parameters, different
characteristics arise for extreme values of p and 7.

Figure 4 shows the rate of aftershocks dN/dt as a



function of time. Time is represented in dimension-
less units and it is the sum of the successive ds. The
straight line has a slope of —1.01 £ 0.02. Thus, the
1/t decay is confirmed and is in full agreement with
Omori’s law for real aftershock sequences. The power
law depicted is very robust over a wide range of the
parameters that characterize the model. The most
critical parameter is the conservation level since for
values of # close to unity, the system does not dissi-
pate enough as to avoid its complete failure. Besides,
for large dissipation m « 1, the power law extends
only to a few decades, and the number of decades
decreases as m decreases. Nevertheless, in all cases
the exponent of the power law decay is very close to
unity. The major vertical spikes of Fig. 4 correspond
to avalanche-type events that disappear as time goes.
The smaller fluctuations for large times reflect the in-
trinsic probabilistic nature of the model and is not
related at all to the appearance of avalanches. This
is clearly seen in Fig. 5 where we have plotted the cu-
mulative number of aftershocks versus time instead of
the differential plot of Fig. 4. As can be observed in
Fig. 5, sudden accelerations appear in the first stages
of rupture. This behavior resembles very well that
previously reported in Sec. 2 for the eastern Pyre-
nees aftershock sequence (see Fig. 1).

In our model, the changes in aftershock rate are
related to the readjustments of local stresses when
events take place. During the first stages of failure,
the elements (asperities) are broken, in general, one
by one, and no local accumulations of load are likely
to occur, As time goes, local concentrations of stress
appear in the system and there is a high probability
of finding a fault region in which the load supported
by the elements is close to the threshold value ¢ = 1.
That is, there is a large heterogeneous stress state in
which one failure will trigger an avalanche. During
the evolution of the avalanche the local accumula-
tion of load increases. This fact together with the
high value of p, provokes that the d#s corresponding
to this stage of rupture are considerably reduced. As
a result, we observe the step-like change in the cu-
mulative number of events. Finally, the avalanches
disappear for large times since we are dealing with a
non-conservative model and then it would be unlikely
to accurnulate stress in local regions as to surpass the
value o = 1, since the total load in the system sys-
tematically decreases.

It is of interest the further investigation of the ac-
celeration events in order to get additicnal insight
about the observed aftershock sequences. One sim-

ple way for doing that was already explained in Sec.
2. It consists of decomposing the original series of
aftershocks in leading events and cascades depending
on whether a relaxation law is accomplished or not.
We have followed the same procedure with the syn-
thetic data. The series of cascades obtained in such a
way is shown in Fig. 6. Part (a) shows the series after
removing all the cascades, i.e., leaving only leading
aftershocks, and in Fig. 6b we plot the cascades, in
which the first event of each cascade is a leading after-
shock. The decomposition obtained from the model
is indeed indistinguishable of that corresponding to
the real series of events (Fig. 2). Two characteris-
tics of the series of cascades are again relevant: one,
the elapsed time between successive leading events is
larger than the preceding one in complete agreement
with the supposition of a relaxation process, and sec-
ond, the series of cascades can be well approximated
by straight lines whose slopes decrease as time passes.
This later characteristic could be used to quantify the
observed jumps in the cumulative plot of aftershocks
and to explain why they are present mainly in the
first stages of rupture. The larger jumps are related
with the occurrence of avalanches, which are caused
by local accumulations of stress; so it is expected
that when avalanches disappear due to dissipation,
the changes in the rate of occurrence are more spaced
in time as well as that the cascades consists of fewer
events. Of course, there will be fluctuations about the
power law trend even in case that avalanches have de-
ceased. Thus, we expect slope values gradually closer
to zero as time tends to infinity. This is clearly ap-
preciated in Fig. 7, where we have represented in a
log-log plot, the slopes of the cascades versus the oc-
currence time of the leading event that initiate each
cascade. As for the observed series of aftershocks, the
slopes fit very well a power law with an exponent of
about 1.08. Thus, the gualitative behaviour is again
captured. The discrepancy between the slopes is not
surprising since the simplicity of the model as com-
pared with the inherent complexity of the real phe-
nomenon we want to resemble. The reason of this
particular behavior, that is, why the slopes follow a
power law and no other law, is unclear for us up to
now.,

As we advanced in Sec. 3, the power law hazard
rate, Eq. (5), has been used to fit experimental re-
sults of time-to-failure on various materials [ Coleman,
1957; Phoenix, 1977 ). Besides, Phoeniz and Tier-
ney [1983] derived it from a kinetic theory of ther-
maly activated atomic bond rupture {Zhurkov, 1965],



and showed that in many circumstances it is a bet-
ter approximation than the exponential breaking rule,
k(o) = aexp(fo), also used in modeling time depen-
dent fracture [Coleman, 1957).

Equation (5) has the same form as Charles power-
law to describe stress corrosion induced subcritical
crack growth in geological materials [Atkinson, 1984]:

v =vyexp{—-H/RT)K}, (12)

where v is the crack velocity, H is the activation en-
ergy, R is the gas constant, T' is the absolute tem-
perature, K is the stress intensity factor for mode I
fracture, and vy and n are constants. Sometimes, n
is known as the stress corrosion index. Nominal val-
ues at room temperature and in wet rock are [Atkin-
son and Meredith, 1987]: 15-40 for quartz and quartz
rocks; 10-30 for calcite rocks; 30-70 for granitic rocks;
and 25-50 for gabbro and basalt. If we assume con-
stant temperature, Eq. (12) can be simplified to

v = AK}, (13)

which is identical to Eq. (5) if we substitute o by
K and identify the breaking rate expressed by Eq.
(5) with the crack opening velocity expressed by Eq.
{13).

Summarizing, we have proposed a discrete, dissi-
pating, stochastic model to explain the appearance
of sudden accelerations in an anomalous series of af-
tershocks. The approach presented here models the
complex series of aftershocks as a sequence of fail-
ure of asperities on a fault plane. The stressing his-
tory and the existence of a stress threshold determine
the timing of events in the series. The changes in
the rate of occurrence can be explained in terms of
the heterogeneities generated by the probabilistic dy-
namical rules of the model. The asperities break at
a time given by their stress history and transfer their
load to their neighborhood. This yields a state where
regions of relative large stress concentrations appear
through the fault. Then, when a failure occurs in one
of those regions several asperities are stressed enough
as to surpass the unity triggering an avalanche, and
then the subsequent increase of local activity is trans-
lated intc an increase in the event rate. In this way,
the model captures the fundamental role of the stress
history which result in that relative modest transfers
of stress provoke very large perturbations in the after-
shocks activity which cease when the excess of stress
is completely released.

We have found a very good agreement between the
model and the observed aftershocks sequence. The

rate of aftershocks decay follows a power law with ex-
ponent very close to unity decorated by fluctuations
produced by sudden accelerations. The further study
of the changes in the occurrence of aftershocks led us
to decompose the series into two type of events: lead-
ing aftershocks, accounting for the events that follow
a relaxation law, and cascades for those events that do
not. Finally, the series of cascades was characterized
by noting that they can be fitted with straight lines
whose slopes obey another power law with an expo-
nent of about 1.08. Actually, the exponent v range
between 1.00 and 1.08 depending on the conservation
level = and the value of p.This appears to be a smooth
dependence. Varying the value of p at constant dis-
sipation, the exponent increases from 1.00 to 1.08 as
p increases, whereas for fixed values of p the expo-
nent decreases as the dissipation level increases. As a
consequence, future efforts will be devoted to under-
standing the dynamical characteristics of the model
and their particular dependence on p and 7 by study-
ing another complex series of aftershocks.
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Figure 1. Aftershock sequence of February 18, 1996, eastern Pyrenees. (a) Complete series of aftershocks, shown
as the accumulated number of events (left axis), together with their magnitude (rigth axis, in relative units). (b)
First 300 hours of the aftershock sequence, as used in the comparison with the model results. (¢) Separation of the
aftershock sequence into leading aftershocks (filled circles) and cascade events (dots). See the text for details.

Figure 2. (a) Series formed by the leading aftershocks, after removing from the original sequence the cascades. The
fit to the Omori law is much better than the original, and the p value (0.94) is also closer to worldwide aftershock
p-values. (b) Cascades retrieved from the original first 300 hours of the aftershock sequence. Each cascade can be
approximated by a straight line.

Figure 3. Slope of the cascades versus time. It can be clearly seen that that they follow a power law s oc 7,
with v = 0.7

Figure 4. Rate of aftershocks dN/dt as a function of dimensionless time for a dissipation of 7 = 0.7 and a Weibull
index of p = 30. The spikes that decorate the general t~1 trend correspond to sudden accelerations in event rate

{avalanches). The diagonal straight line has a slope of 1.

Figure 5. Accumulated number of aftershocks IV as a function of dimensionless time for a dissipation of # = 0.7
and a Weibull index of p = 30. Note the sudden increases in event rate (step-like jumps) superimposed to the
general Omori-law trend.

Figure 6. (a) Leading aftershock sequence for a simulation with r = 0.7 and p = 30. (b)Model cascades. The first
event in each cascade is a leading aftershock. Note that the cascades can be also approximated by straight lines,
as was the case with the cascades in the actual aftershock sequence, Fig. 2.

Figure 7. (a) Slopes of the model cascades versus dimensionless time of the leading event that initiate each
cascade. Only the first part of the model cascades is shown in this plot to facilitate comparison with Fig. 3. (k)
Log-log representation of the slopes versus time for the long-time tail of the simulation. As for the eastern Pyrenees
series of aftershocks, the slopes fit very well a power law, in this case with an exponent of about 1.08.
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