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Abstract. An aftershock interevent timme series, initiated on February 18, 1996,
in the eastern Pyrenees was analyzed. The threshold detection magnitude was set
at 1.9, and the series was assumed to be complete for an interval of 77 days. The
original time series does not fit Omori’s law, probably because of sudden changes in
the rate of occurrence, interpreted as an increase in the production rate. When the
recorded interevent time series is classified in terms of leading aftershocks (those
that satisfly a relaxation process) and cascades (those occurred at a nearly constant
rate}, the new time series of the leading aftershocks fits Ompri’s law quite well, with
» = 0.94. Interpreted in terms of Dietrich’s model, the series of leading aftershoc]\s‘
correctly predicts a return time for the main ~.hoch of the order of 50 years. To
interpret the series of cascades, a minimalist, self-organized critical model was used.
Althoup,'h it is very simpln the model correctly reproduces the two-level structure
in the observed time serjes, that is, the sequence of leading aftershocks and a
cascade sequence emerging [rom Pa,(h aftershock. This model may be given physical

justification in terms of the Cocland and Madariage [1996] nucleation model.

1. Introduction

Large earthquakes are in general followed by a se-
ries of events of lower magnitude, localized at the saine
place and with similar focal mechanisims. These events
are called aftershocks. In their recent book on global
seisinology, Lay and Wallace {1995, p. 385) refer to af-
tershocks as follows:

Nearly all large carthynakes are followed
by a sequence of smaller earthquakes,
known as aftershocks, which are appar-
ently reluted to the faull plane that
slipped during the nain event. The large
cartliquake, known as the main shock, -
troduces a major stress adjustment to a
complex system by its sudden slip. Re-
gions between the ruplure zone, or ad-
jacent to it, may require adjustinent lo
the new stress state in the source vol-
wue, Lhus generating aftershocks.  Af
tersliocks ty pically begin inunediately af-
ter @ snain shock and are distributed
throughout the source volhtme. Typically,
the flu ‘quency of occurrence of aftershocks
decays rapidly following Omori's Taw,

1 Also at Laboratori d’Estudis Geofisics "Eduard Fontser:”,
Institut d’Estudis Calalans, Barcelona,

Copyright 1997 by the Asmerican Geophysical Union.
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according to which the rate decay of aftershock se-
quences is proportional to {71, where ¢ is the lapse tine
from the wain shock. With respect to the origin of
aftershocks, Lay and Wallace [1995, p. 385] state "Afl-
tershocks are clearly a process of relaxing stress concen-
tration introduced by the rupture of the main shock.”
In other words, we can conternplate the series of al-
tershocks as a nonstationary (relaxation) point process
that presents some kind of clustering. Since the end of
the last century it has been known that the decay of
aftershock activity is well represented by Omori's law,
one of the few firily established empirical laws in seis-
mology. For a historical review on Omori's law and
its application, see Utsu ol al. [1995, and references
therein]. As noted by the above mentioned authers,
Omori’s law is unique in the sense thal it displays a
power law dependence on time with no presence of any
characteristic timescale as a relaxation time,

However, the fit of observed aftershock series to Omo-
ri’s law is only approximate, since the observed series
does not show a smooth relaxation, that is, a grad-
ual decrease of the event rate. A sudden increase in
the event rate can be explaiyed in termis of the occur-
rence of a new series of aftershocks, beginning with an
event of larger magnitude than the preceding events and
thus initiating a branching process. 'Then, the ohserved
series can be siimulated as a superpaosition of several
Omiori’s series shifted in time. This : uperposition of af-
tershock series, known as epidemic type aftershock se-
quence (ETAS), was studied in detail by Opata [1988].

On the other hand, observed aftershock series have
also been fitted by several authors to other relaxation
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laws, exponentinl laws for instance le.g., Hisslinger,
1993; Marcellini, 1995], but no physical models have
been developed to justify the alternative relaxation laws,
as in the case of Omori’s law.

The present paper has been written under the as-
swinption of the validily of Omori’s law, considered a
wniversal feature of the aftershocks occurrence. Quce
accepting the validity of Omori’s law, the results pre-
sented in this paper shonld be understood as the fine
stricture of the process of nuclealion.

The purpose of the present paper is to look for an
explanation of the interevent time series of Lthe after-
shocks that followed the event of February 18, 1996, in
the eastern Pyrenees. Apparently, the series of after-
shiocks under study do not follow Omeori’s law, due to
the presence of sudden changes in the cecurrence rate
and to a lack of large events that would justify the use
of an ETAS model. In order to explain these diserep-
ancies, a different point of view has been adopled, The
observed series has been separated into two classes of
events, the first including those that strictly follow a
relaxation process, the leading aftershocks, and the sec-
ond containing the rest. The latter are terted cascades
and can be deseribed as gerics of events taking place at
a higher rate. Because of the diflictilties ol applying two
different friction laws in order Lo explain the observed
complex time hehavior, we have tried Lo give an alter-
native explanation in terms of sell-organized criticality
(SO0, which, as will he shown, correctly predicts the
observed time series of occurrence of aftershocks.

Tlhe plan of the paper is as follows, In seclion 2 we
briefly swinarize the physical hasis underlying the uni-
versality of Omori’s law. Section 3 is devoled 1o the
analysis of the observed series of aflershocks and its
usual interpretation in tenns of directly fitling Omori's
law to the raw data. ln section 4 a new approach to the
study of aftershocks is suggested, hased on the separa-
tion between leading aftershocks and caseades. i sec-
tion b we introduce a mwinimalist model based on 5OC
behavior, explain eur new approach, and sumarize the
inain numerical results. Finally, section 6 is devoted to
the discussion of the methods we have applied and the
results.

2. Physical Basis of Omori’s Law
The modified Omori’s Jaw [Utsu, 1961}, cited by Utsu
cf al. [1995), is expressed as
K
)= e, 1
u(!l) Tt (1}

where n{t} is the occurrence rate of aftershocks, 1 is
tie, and K, ¢ and p are constants. The cunmla-
tive number of aftershocks N(f), defined as N() =

f(: n{x)ds is
IN [._-(I—P) —(c+ ;)U—M]
=1

The physical basis for the power law decay of after-
shocks with time have heen established through twa dif-

(2)

N(t) =

ferent points of view: the continuous models developed
by Yaomashita and Kuapofl [1987), Shaw [1993], and D
etrich [1994] and the discrete models developed by Bur-
ridge and Kuopoff [1967) and Ito and Maisuzaki [1990],
among others (for a review see Shaw [1993]).

Yamashita and Knopoff [L987] assuined, first, that
tlie stress corrosion cracking is the physical mechanism
for the delayed fracture in aftershocks and took into
account the geometrical complexity of eartliguake friac-
ture zones, that is, aftershocks cannot oceur without
the presence of stress inhomogeneities, which cause the
highly irregular slip during rupture. As a gecond as-
sumption, they introduce beforehand a power law dis-
tribution of crack sizes with a power law for the rate
of growth of the cracks. Under hoth Lypotheses, the
probability density of occurrence tine of aftershocks is
found to obey Omori’s law.

Shaw [1993) and Dietrich [1994] describe the occur-
rence of an event by means of deterministic dynai nics for
the nucleation. The term earthquake nucleation is used
to describe the process that leads to the initiation of an
earthquake instability at some specific place and time.
Shaw [1993] attribntes the distribution of time delays
of aftershocks to the acceleration of stress during nucle-
ation and to the fast redistribution of stresses during an
event and asswnes a nucleation velocity propoertional to
a power Jaw. On the other hand, Diclrich (1994], mo-
tivated by laboratory friction experiments, formulates
the nucleation of an event in terms of a general nonlin-
ear friction law and assumes that the earthquake rate
is due to the elastic stress change associaled to prior
earthyuakes.

Dicirich [1994], in deriving his nodel for the rate of
earthquake occurrence, presents a specific prediction of
the model: the mean earthquake recurrence time, This
paramneter can forecast the average tirne between large
events in the zone under study. The setsmicity rate as
o function of titne after the stress step is expressed as

_ ri/% .
fe= [;“Texp(--f.—})-—l]exp [-—%]+l: )

where It is the seismicity rate, r the reference seisimicity
rate, 7 and 7 the stressing rate prior to and following
the stress step, AT the-earthquike stress change, A a
fault constitutive parameter, & the normal stress, £ time
and £, the characteristic relaxation time for seismicity
to return to the steady state, that is, the aftershock
duration. Equation {3) gives Omori’s law for i, < 1.
Dictrich [1994] shows that the mean earthquake recur-
rence time ¢y can be approximated as

-A
te =t A;. (4)

If we define
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then (3) can be integrated to ohtain the cumulative
function

exp(t/CY+ B
1+ B

which can be fitted to data to obtain f, and ¢,.

A different approach for the study of earthquake oc-
currence was devised by Burridge and KnopofJ [1967],
who used a one-dimensional (1-D) block-spring tnodel
lo shudate stick-slip rupture and showed that afler-
shocks occur if linear viscous [riction is introduced: even
in this 1-D case, the decay of altershock activity is ap-
proximated better by Qmori’s formula than by a simple
exponential decay. The decay law of aftershiock activity,
as predicted by the Burridge and Knopoff model, criti-
cally relies on the friction law, This model was further
extended to 2-D) by several authors. Nakanishi [1992)
was able to obtain in a natural way the series of after-
shocks following a main shock and obeying Owori's law,
wherecas the series of miain events obey the Gutenberg-
Richter law; this model consists of a two-dimensional
Earth’s crust whicl is assumed to be driven by a viscous
fluid flow under the crust. In all these models, Qmiori’s
power law is obtained under the hypolhesis of power
Law distribution of fields or in terins of & nonlinear {ric-
tion Law, both assuiaptions supported hy observational
evidence.

From another point of view, Buk and Tang [1989)
maodeled the seismicity as a eritical phenomenon and
demonstrated thal slowly driven dynamieal systems
witlt miany degrees of freecddown (such as the block-gpring
models) may naturally sell-organize close to a critical
state of the system [Bak of al, 1988]. In the present
case, we would consider the crust as a dvuanical sys-
teiy Lhat slowly accunmlates stress. This stress will
later be dissipated in the form of avalanches withaut
i characteristic size. Each sudden avalanclie is assimi-
lated to an earthguake, and the lack of a characteristic
scale accounts for the Guttenherg-Richter law,

The behavior of such systems, known as sell~organized
critical models, is usnally siinulated by means of a cel-
hilar autoiaton. The simplest physical model for self-
organized criticality is the paradigmatic pile of sand:
grains of sand are randomly dropped on ithe top of
the pile until the slope attains the critical angle of re-
pose. At this point, the critical state has been reached
and any additional sand grain will trigger sand slides
(avalanches) of various sizes. The frequency-size dis-
tribution of sund slides has heen found to obey the
Gultenberg-Richter law. In a recent paper, Bak ol
al. [1994] showed that SOC models and block-spring
models can be directly related. As in the case of the
Burridge and Knopofl model, early SOC models were
not able to spontaneously generate aftershocks unless
some modifications are introduced into the model, as,
for example, that of fto and Malsuzaki [1990); these au-
thors assimilate the occurrence of aftershocks to what
they called a model of entropy relaxation, according to
which the main shock will disturb the strain distribu-
tion, instead of the stress distribution, as considered in

F(t) = T(.'lu[ ] ~1<B<O0 (5

27,409

the other models. Barriere and Turcotic [1994]) con-
sidered a 2-D cellular-automaton wmodel with a frac-
tal distribution of sizes for the grid of boxes; their
model triggered aftershocks that did not obey, how-
ever, obey Omori's law. Y. Huang et al.  (Precur-
sors, aftershocks, criticallity and self-organized critical-
ity, http://xxx.lanl.gov/abs/cond-mat /9612065, 1996},
modified Barriere and Turcotte’s model by adding the
characteristics of the sand pile model of Bak and Tung
(1989]; in this model the big earthquakes are Tallowed
by aftershocks that do obey Omort’s law.

3. Data

On February 18, 1996, a local magnitude Ay = 5.2
earthquake occurred in the eastern Pyrenees. Accord-
ing to Rigo ¢l al. [1997), the focal parameters are as
follows: origin time = 0145:45 UT, epicentral location
=30 N42°47 517 - E2°32.30, with a focal depth of 8 kin,
In the following two mouths, more than 500 aftershocks
were recorded by the French permanent Pyrenean seis-
wological network. An exhauslive report of the main
shock and the largest aftershacks is given by Rige of al.
[1997].

Tle series of afltershocks that followed Lhis event was
recorded al the three-coinponent. coutinuous broadband
scismic station of the Tunel del Cadi {Vife, 1997), lo-
cated at about 80 ki S\ of the epicentral area. Fig
ure | shows the location of the wain shock and the
Cadi seisinic station (CAD). After a carelul visual in-
spection of 3 months of records (miore than 20 Gh of
data), a series of aftershocks (that we strongly helieve
to be complete for a threshold ningnitude of 1.9) was
retrieved. The series consisted of 337 events, spanning
alapse titte of 1846 hours (77 days, frot February 18
to May 5, 1996) and with inagnitudes ranging from 1.9
te 3.8. To assign magnitude to the _venls for which
agency information is not available, wé derived a par-
ticular magnitude law, obtained through a nonlinear fit
of the amplitudes of our records to the ATy values given
by the Laboratoire de Detection et Geophysiyue French
Agency.

‘The cumulative series of aftershocks (xolid circlex) is
shown in Figure 2, along with the amplitudes of the
events, arbitrarily norinalized to 300, to be compati-
ble with the scale of the cunutlative number of events,
The sudden change in slope of the cumulative curve
at 300 hours is striking (see Figure 2a); this change is
not due to incompleteness of the sertes, oud from the
point of view of the amplitude of the events, there is
no specific characteristic, nor any relevant event, that
justifies this sudden change in the event rate. Because
of this different beliavior, froin now on we will restrict
our attention to the series defined by the first 300 hours
{correspondiug to 13 days, from February 18 to March
2} with a total of 308 events, as displayed in Figure 2D,
A surprising feature of this series is the change in cou-
cavity of the cumulative curve, not correlated with any
significant evenl, suggesting an increase in the rate of
occurrence not justified by any relaxation process. Fig-
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Figure 1.  Overall view of the Pyrenees:

I. Paloozoic outerops; 2, Mesozois and Eocene

materials; 3, Neogene sediments; 4, Faults and thrusts. The location of the seismic station is
shown by a triangle, and the large asterisk indicates the epicentral area.

ure 2¢ displays a detailed view of two series of events
with negative concavity, once defined the positive cou-
cavity as that corresponding to a decreasing rate of
occurrence, as predicted by Omori’s law. Data from
Figure 3b have been fitted to the cumulative number
of aftershocks equation (2). The best fit has been ob-
tained by splitting the aflershock series into two, the
first for a time interval of 0 — 100 hours and the second
for 140 — 300 hours; no fit can be obtained for the inter-
val 100 - 140 hours. Resulls are displayed in Figure 3a
and Table 1. The values of p are abnormally low [U/isu
ct al., 1995] and, as already stated, there is no apparent
reason for Lhe change of activity from 100 to 140 hours.

With the aim of obtaining a better fit, an attempt lhias
been made to fit Omori’s law Lo a new series of alter-
shocks, constructed with a higher magnitude threshold.
Figure 3b shows the fit of the cumulative number of
aftershocks for a magnitude threshold of 2.6; the total
numnber of events has now been reduced to 33, and the
p value has been increased to 0.75, still too low, The fit
is good at the beginning and ab the end of the series,
but between 20 and 100 hours we can still observe an
increase in the occurrence rate. '

Following Dictrich [1994), the recurrence time ¢ has
been computed through the fit of (5) to the two time
intervals presented in Table 1, obtaining 1, = 0.5 years
for the first interval and t, = 7.9 years for the second
interval. A comparison with a seismic catalog of the
zone under study [Suriiach and Roca, 1982] reveals that
both recurrence times are 1 order of magnitude too low
with respect to that deduced from the seismic catalog,
of the order of 50 years.

4. New Approach to the Study of
Aftershocks

In the previous section we have seen a lack of fit of
our recorded aftershock series to Omiori’s law and that
the changes in concavity of the curve defined by the ac-
cumulated number of events cannot be correlated with
the presence of any large afltershock able to generate
a secondary series of aftershocks. On the other Land,
Omort's law has a physical justilication in Leris of a
relaxation process, iplying that the time interval be-
{ween successive events is a monotonically increasing
function.

The interpretation of Omori’s law as a relaxation pro-
cess suggests a way to separate the observed series of af-
tershocks into two classes: class A, for those events that
follow a relaxation law and class B for those events that
do not. The criterion to assign the events to classes A
or B is the following: if the interval of time &t betwern
events i and i — 1 is strictly larger than the interval of
time Alj_; between events i—1 and i — 2, then event i
belongs to class A, otherwise it belongs to class B.

Events belonging to class A are termed leading after-
shocks, whereas those belonging -to class B are teried
cascades. Figure 4a shows the series of aftershocks
classified as leading events (solid circles) and cascades
(points); note that a cascade is initiated by a leading af-
tershock. Figure 4b displays the fit of the series of lead-
ing aftershocks to Omori's Jaw: the fit is now very good,
and the value obtained for the exponent is p = 0.94.
Figure 5a shows the series of cascades, in which the first
term of each cascade is a leading aftershock. Two char-



CORREIG ET AL.: AFTERSHOQCK SERIES AND SELF-ORGANIZED CRITICALITY

400

& Amplitude (rel. units)
» Cumulative Events

()

. PR L . voen e ¢

a4

A
&
[
&
LS S IO .. A
1000.0 1500.0

Time (hours)

2000.0

400
& Amplitude (rel. units) (b)
+ Cumulative Events
300 & P PO LT L
e sen -
P -"‘J
a a / -
200 ¢ o~
"-l *
- v
‘ g
100 [ },r’ ;
&
. a 4 N & a
0.0 1000 200.0 300.0
Time (hours)
280 ' .
2 Amplitude (rel. units) i (c)
« Cumulative Events 'l
260 . 4 1
. )
240 | 7 1
',." .
K Iy
3
g
220 ot
I"
’
200 B opanasnd nadit P 4% B st sas B oths A
120.0 140.0 160.0 180.0 200.0

Figure 2.

Time (hours)

Camulative series of aftershocks (solid circles) and amplitudes (triangles, in arbitrary
relative units). (a) displays the Cumulative series of events for an interval of 1900 hours. Note
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Figure 3. Fit of the first 300 hours of activity to
Omori’s law. (1) We can see that no single curve can
correctly fit the observalions. {h) Detection threshold
Lias been raised to a magnitude of 2.6, The fit has -
proved, but there is still considerahle scatter.

acleristics arc shown in this figure: (1) the cascades are
in general well approximated by straight lines and (2)
their corresponding slopes decrease with tine. Since the
first term of eacl cascade s a leading aftershock, we can
ohserve an increment in the time elapsed hetween suc-
cossive cascades, in good agreement with a relaxation
process. Figure 5b displays the slope of the cascades
versus the occurrence tine of the leading aftershocks;
the slopes fit a power law, defined as y = 234 x =971,
Up to now, no interpretation has heen found for this
power law behavior.

In terms of the Dictrich [1994] model, aftershocks are
caused by the steplike change of stress that occurs at
the time of the main shock. When the mean earthyuake
recurrence titne £, has been cotiputed as predicted by
Dietrich’s mod.] for the series of leading aftershocks,
the value obtained is f, = 47 years, in good agreement
with the observed seismicily of this zone [Surtiach and
Roca, 1982; ¢\, Olivera, personal communication, 1997).

The occurrence of the series of aftershocks could be
qualitatively explained in terms of an asperity model:
a leading aftershock would initiate the breaking of an
asperity that would proceed discontinuously, at steps,
each one originating an event or a cascade. If we take

into account ouly the series of leading aftershocks, a
good fit to Omori’s law is obtained. Hence they can
be interpreted in Lerms of Dietrich’s mnodel, thus obey-
ing a state-dependent friction law. However, il Qmori's
Jaw iz not able to explain the occurrence of cascades, a
different friction law should be derived to explain their
occurrence, that is, the appearauce ofe.‘vgni.s al a nearly
constant time, in other words, the occurrence of peri-
odic events which imiply a constant rate friction Jaw.
Thix could indeed be the case inside an asperity of [i-
nite dimenstons, imiplying two different friction laws,
one responsible for the initiation of the rupture of an
asperity and the other describing its rupture. The titne
elapsed for the breaking of an asperity, which depends
on how heterogeneous this asperity is, is relatively short.
For exmuple, for the longest cascade, initiated at 125.7
hours after the main shock and consisting of 33 events
(see Figure 5a), the rupture time is 1.7 hours. The de-
crease in the slope of the cascades, a measure of the
slip velocity of the asperity, could be explained by tak-
ing into account that the slip velocity is a function of
the stress drop, and the average stress accumulated in
the source volume decreases in tine, in the form of ra-
diated seisinic waves or lost as irreversible processes.
The lack of previous observations of cascades is proh-
ably due to the magnitude threshold currently used,
normally higher than 3, compared to the actual thresh-
old of 1.9. It is worth to point out that the magnitude
of the events that define the cascade is less than 2.5,
From the point of view of a continuous model, it is
a huge task to quantitatively model the generation of a
relaxation process able to reproduce the characteristics
displayed by the observations. Tence a different point

_of view has been adopted, that of systems at the critical

point, and a simple explanation of the geometry of the
time series, considered as a point process, can be given
in terins of SOC.

5. Minimalist Model

In this section we will provide an explanation of the
geormetry of the interevent titne serics of aftershock oc-
currence (leading aftershocks and cascades) under the
hypothesis that this time series can be counsidered as
a nonstationary point process. The geotnetrical char-
acteristics of the observed tiine series, as displayed in
Figure 2b, consist of successive changes in concavity. As
already stated, the series of events defining a region of
negative concavity has been termed cascade, and the
first event of each cascade is the leading aftershock.
The series of leading aftershocks follows a relaxation
process that obeys Omori's law, whereas the series of

Table 1. Fit of the Aftershock Series to Omori’s Law

Time Interval K ¢ [
0—100 8602 0.2 %107 0.56+0.Mm
140 — 300 132402 02x107* 0.64 = 0.01
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Figure 4. (a) Separation of leading aftershocks and (h) excellent fit of the series of the leading

aftershocks to Omori’s law,

evenls that define a cascade can be fitted, in general, to
a straight line, thus implying that these events occur at
constant velocity.

We liave considered a simple approach in order to get
some insight into the process of generation of leading
aftershocks and cascades, based on the assuinption that
the rupture of a fault may be thought of as the result

of a critical self-organized system (for a recent review
of SOC models applied to seismology, see Main [1996]).

Chen and Bak [1989] devised a simple toy model to
represent the evolution of a dynamical system which
evolves to a scale free structure, i.¢., to a self-organized
critical state. Quoting Chen and Bak [1989, p. 299],
"we helieve that elthough the model ts notl a realistic
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general seenario for the emergence of scaling behavior,
stemalically explor-
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fure.” We will show

of phenomena in na
that this model can be
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inodel of nu-
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tem from time £ to time ¢ + 1 are the following: (1)
Cells that are active at £ burn out and become passive
at the ¢ + 1, (2) Passive cells are annililated (i.e., be-
coie empty) when tlhey have one, and only one, active
neighbor. (3) Empty cells become active when they
have one, and only one, active neighbor, which must
have a passive cell at the opposile position.

Figure 6 displays the rules of the cellular antomala,
which can also be summarized in the following way: lot
us define the possible state of the automata as 0, empty
cell; 1, passive cell; and 2, active cell. Then the rules
are (1) 2 — | (independently of the nearest neighbors)
(2) 210 — 100 (where step (1) has been used), and (3)
0120 — 0012 (that represents the propagation of the
activity in Lhe direction pointed out by the pair 12,
having used step (1) in the third position and step (2)
in the second).

Following hen and Bak [1989), open boundary con-
ditions have been considered in all cases, so that active
cells vanish when passing beyvond the edges into the en-
virominent. As initial conditions, « random distribution
of active and passive cells s used. The system evolves
until no active cells retain, and at this point a eell is
randomly activated. Figure 7 displays a snapshot. of the
propagation of Lhe active cells.

The propagation of the active cells through the lat-
tice is similar Lo a forest fire model, and we will see thal
this propagation alse reproduces quite well the double
sequence of leading aftershocks and cascades. Moreover,
this mintmalist model shares somie resemblance with
Cochard and Madariaga’s [1994, 1996] model. Cochard
and Madariaga model the dynamics of the faulting
through a rate-dependent friction law. For a highly
rate-dependent friction, the nneleation of the fault can
hecoime very complex, displaying, ainong others, the fol-

v DD v
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: 0 :
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lowing features of interest for our purposes: (1) prema-
ture locking of the fault occurs, so that the <lip duration
at any point of the fault is independent of the total size
of the fault, (2} premature healing is associated with
partial stress drop, so that stress-heterogencity may be
stinply due Lo the extreme sensilivity of the fault stress
to very small changes in the slip distribution, and (3)
prewature healing is also associated with thé generation
of self-healing pulses proposed by Heaton [1990). Those
properties are quite similar to those of the evolution of
the active cells,

With Cechard and Madariaga’s [1994, 1996] miodel
in mind, let us define the fault plane as a regular lat-
tice, with each cell representing ‘a small portion of the
fault. A cell is an asperitly, or a piece of an asperity,
for which the stress is higher than q_tlireshold stress,
and less than a critical one. When the stress reaches its
critical value, the cell becomes active (slip begins with
a corresponding stress release, the stress drop), burns
out and becomes passive,

Depending on the value of the stress at the neighbor-
ing asperities, annililated cells became active and pas-
sive cells may or may not be annihilated, being a possi-
ble mechanisim for this process a healing phase [//caton,
1990; Cechard and Madariaga, 1994]. Hence an anni-
hilated cell can be identified with a cell with a lealed
slip. Again depending on the neighboring cells, a pas-
sive cell jnay or tnay not becotue an annihilated cell at
later times,

In short, the equivalence can be stated as follows:

passive cell  ——  broken asperity
active cell  ——  asperity ready to break
anuihilated eell  «——  healed cell

|
[
[

® (c)

Example of the application in a 2-D model of the rules of the minimalist model,

Solid squares refer to an active cell, open squares refer to a passive cell, and the rest to empty
cells. The evolution follows from (a) to (¢). The empty cell located at {3,5) in Figure Ga, hy
rule 3 evolves to an active cell in Figure Gb and to a passive cell in Figure ¢ due to rule |. The
cell (4,5) is active in Figure Ga, evolves to a passive cell in figure Gb due Lo rule 1 and remaing
passive in Figure Gc due to rule 2 {because it has more than one active neighbor). Empty cell
{4,3) in Figure 6a remains empty in Figure Gh as well as in Figure 6¢ due to rule 3 (because it

has more than one active neighbor),



| B3

[ 8

- |

'y

27416 CORREIG ET AL.: AFTERSHOCK SERIES AND SELF-ORGANIZED CRITICALITY

DCDQBB EBDDDGDDDDDEBD ju} [n]
o ® o9 £  BRA
5 °385°sa958='m0u _oPB° o g
=] (» =] & DED =3
° =) DDDDG E ™ ° D: nCil Bj DBDD
I % g
BD EJDDD an B o oago
EH oo [»] E . £ o
C!SD GDD o poo 0O nn o BD
DUEDIE o oo DD D& =] o
o Q o =]
=T o WB.D Hewo o
°2"8000 Eaﬁa Ha o -
“‘ﬂn"nMEUE E?; Foa _ ooa 0
[ I ] (] EDI:D
DE%DE ﬁannu EEDEBDEDE@Q.B oun
B 7 8 ™8P °BH g8 B . &
| o B8 [ B
=] gugm e UBS Bo o un
UDD DD DD DDD BDD%U UB B

Figure 7. Snapshot of a 50 x 50 grid. Symbols are the
same as in Figure 6. The activity can only be propa-
gated to empty cells. Passive cells display spatial clus-

tering.

In the classical studies of SOC models, usually the
number of active cells in the system is used as a di-
rect, measure of the degree of activity. As dynamics
proceeds, the number of active cells decreases, and the
system reaches a stable, inactive state. When this hap-
pens, a single cell is selected at random and activated.
Between two conseculive activations, avalanclies may
take place instantly, and each avalanche is cousidered

as the sum of the active cells, separated from the next
avalanche by a period without activity. The temporal
scale is thus defined in terms of activations.

In the present study, we have followed a differeut ap-
proach: we have been looking at the behavior of the
system in the sense of recording the number of active
cells at each simulation step during the whole period
of activity, that is, timescale refers to each step of the
simulation, so that the avalanches are extended in time.
Figure B shows a seismic catalog consisting of H00 ac-
tivations, once discarded the first 10000, for a 50 x 50
Jattice grid. We define a quake as the period between
two different activations, and its correspondling inten-
sity is characterized by the total number of activated
cells during the whole period of the quake. The units
of the abscissa, named seismic series, are the steps of
the simulation. Figure 9a displays the temporal evoli-
tion of a quake of Figure 8, that of order number 38%;
the abscissa now refers to simulation (time) steps. This
quake starts at about {, = 176,000 and continues for
aboul 3300 timesteps and displays wide fiuctuations in
the number of active cells.

When dealing with real seismograms, there is always
a minimum level of activity required in order Lo detect
the earthquake (for the analyzed series of aftershocks,
the threshold detection magnitude was 1.9). We have
taken arbitrarily as a detection threshold 25 simulta-
neously active cells; il the level of activity is less than
this figure, the intensity will not be "detected” (i.e.,
recorded) and will be considered as 0. An event is
then defined by the upper curve of active cells deliinited
by two successive cTossing the threshold, as, for exam-
ple, that defined from approximately 181,500 to 181,900
timesteps. Viewed in this way, the size of the event is

8c+05 T i L l 1 A I 1
6e+05 - / =
o .
=t
-
B 4e+05 | -
[&]
< _ _
2e405 | 1o ' \ -
I 1 A ‘ \ 1 ll‘ N 1 . ] ] | ‘

0
1e+05 1.2e+05 1.4e+05

1.6e+05 1.8e+05 2e+05

Seismic Series

Figure 8. Example of 2 seismic catalog generated from the minimalist model. Each spike has
the meaning of a quake (for more details see the text). The catalog consists of 500 quakes. Read

le+ 05 as 1 x 10°.
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Figure 9. (a) Zoorned view of quake 383 of Figure 8. An event is defined as the upper curve
deliinited by two zeroes, as, for example, between 181,500 and 181,900 time steps. 1f a deteclion
threshold is added, the quake is composed of several events, this number depending on the height
ol the threshold. (b) Cumulative curve of a quake {composed of several events). By comparing
with Figure 4a, we can see that this curve is comnposed of leading aftershocks and cascades.

strongly dependent on the threshold level, but as we will
see, the geometrical structure of the cumulative cnrve
(the object of the present study) is preserved.

Let us now analyze a quake (a set of events) in detail,
just in the same way as we have analyzed the aflershock
series, that is, through the time elapsed between succes-
sive events. Figure 9b shows the ctmulative number of
the successive terms (the number of active cells of an
event for each tiine step) of an event of Figure Ja: Fig-
ure 9b displays the samne geomietric characleristics as

Figure 2b, that is, similar changes of concavity. In the
present case, the changes of concavity can be explained
in terms of the inhomogeneities generated by the dy-
nantical rules of the minimalist model. I fact, passive
cells (broken asperities} tend to he spatially clustered,
as seen in Figure 7. Then, when a propagating pair sus-
ceptible of activation reaches one of those accumulation
of asperities, an "aftershock™ is triggered, and the iu-
crease of local activity translates into an increase in the
event rate. A total of 100 simulations have heen car-
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Figure 10.  (a) Cumulative curve of the leading af-
terehocks retrieved from the quake shown in Figure 9h.
Note the excellent fit. to Owori’s Taw. (b) Cascades n-
duced by each of the previous leading aftershocks, Conir
pare this figure with Figures 4h and 5a.

ried out, with different initial conditions, different grid
size (ranging from 25 x 25 to 100 x 100) and different
threshold level (ranging from 10 to 50). We have always
found the saine geowmetrical characteristics, that is, the
changes of concavities, as shown in Figure 9b; the only
ditference, as expected, is the nuher of points of the
concavities,

The cummtlative serics, such as shown in Figure b,
lave been decomposed into leading aflershocks and cas-
cades, in the same way as for the observed aftershocks.
Figure 10 shows one of auch decompositions: leading af-
tershocks (Figure 10a) and cascailes (Figure 10b); they
are indistinguishable of the decomposition of the ob-
served series: see Figures 4b and 5a. A fit of the dis-
Linct curves of leading aftershocks to the cumnlative
curve (2) reveals the following values: k= 0.39,¢=0.0
and p = 0.72. We computed the slopes of the cascades
for each event, and at the contrary of the series of ob-
served aftershocks, the slope does not fita potential law,
but rather look random. This can be explained because
the minimalist model is too simple to take into account
the energy propagated as seismic waves, and the loss
of encrgy due to irreversible processes. The cumulative
curve (2) has been fitted to the 100 numerical sinula-

tions, obtaining for the exponent p the following mean
value: p=0.7x0.1.

A characteristic feature of the numerical siimulations
is that the events that define the quakes are all of simnilar
amplitude; see Figure Ya. This is also the case for the
observed aftershock series, for lapse times greater than
60 lours, see Figure 2b. While this similarity in ampli-
tudes appears to be intrinsic to the minimalist model,
we do not know whether it is a general feature of the
process of rupture, so that the similarity in both dis-
tribution of amplitudes may be fortnitous. The present
paper has been concerned only with the geometrical fea-
tures of the interevent time, so that no effarts have been
devoted to the analysis of amplitudes, which will be the
subject of a future paper.

6. Discussion and Conclusions

In this paper we have attempted to explain an appar-
ently anomalous aftershock geries.  Assuming that an
aftershock series is a relaxation process, the anomaly
cousists of sudden increases in the rate of occurrence,
not allowed in a strictly relaxing process, without Lhe
presence of a large event thal would Have triggered sec-
ondary series. The detailed view of this increase was
possible because of the low detection threshold of the
CAD broadband seismic station, allowing the detection
of events of magnitude 1.9 for an epicentral area 80 km
aport. After a classification of the events into leading
altershocks and cascades, it has heen found that the
Jeading aftershocks obey a power law relaxalion, that
is, Omori’s law, whereas cascades oecur at a nearly con-
stant rate. This process could be interpreted in terms of
4 nucleation characterized by two different friction laws:
rate dependent and constant rate, the former account-
ing for the initiation of the nucleation of an asperity
and the latter for the rupture of the asperity itself.

Evidence in favor of this interpretation is the cor-
rect prediction of the return pime of the main shock
from the observed time series of leading aftershocks.
On the other hand, this result would inply that Di-
ctrich’s [1994] model is able to take into account the
rate of rupture of asperilies but not the rupture inech-
anisin of the asperity itsell. Because of the,errors in
epicentral location, the evolution of the rupture in the
fault plane cannot be measured. Thus we have to rely
on theoretical models, as, for example, that of Cochard
and Madariaga {1994]. In that model the time evolulion
of the rupture is closely related to the evolution of the
(inhomogeneous) accumulation of stress in the source
region.

We propose that some features of the dynamical be-
havior of Cochard and Madariaga's model, such as the
evolution of the stress concentration and evolution of
rupture, can be retrieved from the SOC models so {re-
quently used for the simulation of seismic catalogs. In
SOC, an open system evolves to a stationary state,
called critical state. A possible explanation for reaching
this state could Le the accumulation of stress from an
external source. If at some point of the systemn the
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accumulated stress is higher than a given threshold,
Lhe stress is released in terins of avalanches of all sizes.
When trying to explain the observed aftershock series,
we are interested not in the global beha ior of the sys-
tem but in the internal structure of a single event., which
we have terimmed a quake. The occurrence of the quake
can be thought of as a certain number of superposi-
tions of relaxation processes, each one corresponding to
an avalanche. Once the systemn is activated, il evolves
unli] the excess of stress is campletely released.

We have studied the temparal evolution of an after-
shock series through a minimalist model that qualita-
tively reseibles Cochard and Madariaga’s [1994, 1996)
model of nucleation il instead of passive, active and
einpty cells, we translate to unbroken asperities, asper-
ities ready to break and healed cells. This simple SOC
miodel correetly predicts the behavior of the interevent
occurrence tune of the ohservations, but more evidence
is needed to claim that we are indeed in the presence of
a SOC phenotnenon. Further evidence in favor of 80
is provided by Cochard and Madariaga [1996) in their
content about rupture propagation governed by a non-
linear rate-dependent. friction law. They state that the
rupture “adjusts itsel™ in order to satisly a scaling law,
which suggests the presence of an internal Teedback in
Lhe systet, very often responsible far the appearance
of self-arganized critical states [Sornctfc, 1992).

Another aspect thal deserves sote comment is that of
the amplitudes. Up to now we have discussed the series
of abserved altershocks as a point series in time axis, but.
nothing has been said about their amplitude. We have
found that the leading aftershocks do not have larger
magnitudes than the rest of events. This implies that
sinadl events cun trigger cascades of similar ainplitudes.
This observation is of interest hecause it implies that
stuall events may precede large events, as in the case of
foreshocks. Hence in this kind of relaxation process the
size of the events decreases on the average but might be
strongly atlected from fluctuations. However, although
the miniialist model reproduces niany of the ohserved
features in fiekd measures, we have lo be well aware
that the minimalist model Is a toy model, that is, not
a detailed representation of the pliysical process, bul
anyway, a model that captures a general scenario for the
emergence of scaling behavior {Bak and Tang, 1989).

The present work can be sununarized as follows:

1. We have analyzed an anomilous beliavior in the
time occurrence of aftershocks. This behavior had not
been previously detected due to the fact that it is nec-
essary to combine a very low level of detectahility of
the seismic stations, along with the proximity of the
epicentral area.

2. We have interpreted the relaxation process implicit
in the observations in teris of a continuous model, and
we Lave recovered a realistic return time for the main
shock.

3. A similar relaxation process has been found in a
sitnple 5QC system.

4, The 50! model we have used has a physical ba-
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sis in the nucleation nwodel developed by Cochard and
Madariaga [1994].

As a consequence, more efforts will be devoted to
study the dynamical characteristics of the model {ie.,
the tetiporal evolution of the amplitudes), the influence
of some dissipation on the model, and Lhe possible spa-
tial clustering properties (5. (.. Manrubia, R. V. Solé,
M. Urquizii, and A. M. Correig, Fractality and After-
shocks in a SOC Model for Earthquakes, manuscript. in
preparation, 1997). It is our feeling that the minimalist
model, if able to explain the dynamic characteristics,
may be a useful tool in studies of probabilistic predic-
tion,
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