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Earthquake Prediction as a Decision-making Problem

G. M. MOLCHAN'

Abstract—1In this review we consider an interdisciplinary problem of earthquake prediction
involving economics. This joint research aids in understanding the prediction problem as a whole and
reveals additional requirements for seismostatistics. We formulate the problem as an optimal control
problem: Possessing the possibility to declare several types of alerts, it is necessary to find an optimal
strategy minimizing the total expected losses. Losses include costs both for maintaining alerts and for
changing alert types; each successful prediction prevents a certain amount of losses: total expected losses
arc integrated over the semi-infinite time interval. The discount factor is included in the model.
Algorithmic and exact solutions are indicated.

This paper is based on the recent results by MoLCHAN (1990, 1991, 1992),

Key words: Earthquake prediction, prediction objective, prediction error diagram, hazard function,
Bellman equation.

1. Introduction

Earthquake prediction is usually understood as a physical prediction, that is,
deterministic localization of future strong events in time and space. At the same
time, practical applications in intermediate-term and short-term predictions are
based on stochastic features. This is reflected in statistical characteristics of predic-
tion as well as in methods of interpretation of alarms (KEILIS-BOROK and RoOT-
WAIN, 1990; KEILIS-BOROK and K0SsoBOKOV, 1990; NISHENKO, 1989). Therefore
practical use of prediction constitutes an important part of the general problem.

In Axr’s (1989) opinion, the general problem of prediction, including decisions
and practical actions, must be considered separately by geophysicists and users (for
example, economists). Similarly, these two parts of the problem were separated by
KANTOROVICH and KEILIS-BOROK (1977; see also for short version in SADOVSKY,
1986). Unfortunately, we deal in practice with a number of prediction methods
(algorithms) that are not of a very high quality. The number of such algorithms
grows with time, complicating the situation. In fact, these algorithms are decision
functions calling (or not calling) an alarm at a given point or in a region. In this

" International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian
Academy of Sciences, Warshavskoye sh. 79 k. 2, Moscow 113556, Russia.
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situation, two nonequivalent methods can lead (and do lead) to contradictory
results. It is impossible to avoid this difficulty by choosing “the best” method in the
frame of prediction physics (see below). Moreover, it is important to understand
objective principles in prediction algorithms. These principles are vague because
they are not clearly realized by the authors themselves or are based on artificial
efficiency criteria (see below). Thus an expert is compelled to work with a system of
ready (perhaps contradictory) decisions in no way associated with applications.
Finally, in splitting the prediction problem, geophysicists do not know whether
their results are sufficient for applications.

Here we make an attempt to develop a qualitative analysis of the prediction
problem as a whole, The principle notion in this analysis is the prediction objective.
The multiplicity of predictions turns from an obstacle to a favorable base to choose
the best decision. Below we investigate two models of loss functions. The first model
is important for most practical prediction algorithms; it is useful in the research
stage of prediction (we are now just in this stage). The second model roughly
simulates prediction economics. In both cases we find the structure of predictions
that optimizes loss functions under conditions of prediction information #(f) of a
very general nature. We found that in complicated cases optimal prediction is based
on two entities: first, the conditional (relative to #(¢)) earthquake flow rate and
second, the matrix of transition probabilities for the states of information J(f) in
consecutive time intervals. Most recent investigations involve evaluation of the first
entity, using combinations of predictors. As far as we know, the second entity has
not yet been studied, though numerous descriptions of preparatory processes before
strong earthquakes can constitute a base for their study.

This paper reviews recent results by the author (MoLcHAN, 1990, 1991, 1992).
In the first section we consider the academic prediction type with two alert states,
yes/no. The second section presents the analysis with an arbitrary number of alert
states. Optimizing mean (discounted) losses associated with prediction, we obtain a
Bellman-type equation. This part of the paper helps to clarify which statistical
parameters are useful in the problem of prediction as a whole.

2. The Simplest Prediction Problem

2.1. Prediction Errors Diagram

Recently the author (MOLCHAN, 1990, 1991) presented the problem of compar-
ing prediction methods for stationary point processes (that is, a sequence of strong
earthquakes in a region). The problem was solved using two prediction parameters:
#, the rate of failures-to-predict (the number of missed events divided by the total
number of events in the time interval T > 1), and %, the rate of time alarms (the
total time of alarms divided by 7 when >1).
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J = b5
z ' 7
Figure 1

Error set (4, 7) for prediction strategies based on the same information. (A) Optimist strategy. (B)
Pessimist strategy. (AB) Results of a random guess. (C) The center of symmetry; m and n ~ are a forecast
and its antipodal forecast. I" is the diagram of optimal prediction errors. Arrows indicate a better
forecast relative to the strategy n,. Dashed lines are contours of the loss function y = max{#, t). 0* are
errors of the minimax strategy, # = {. Dash-dotted lines are contours of losses v = #/(1 — A).

Let us agree on the type of information #(¢) available at the moment ¢ for the
prediction of events in the point process. In practice #(f) can include catalogs of
events of various magnitudes in the region under study, data on physical fields, and
data on predictors in some time intervals (t — 1, t — z,), where 1, is the delay of the
ith data type. In the simplest case the observer uses information #(¢) and makes the
decision n(z): to declare or not to declare an alarm in the time interval (f, t + A)
where A can equal the period of information renewal. The set of decisions
{n(£)} = = is called the prediction strategy. In practice the strategy is defined by the
method or by the prediction algorithm. It is useful to consider class 7 of strategies
where decisions can be made with some probabilities, that is, after an additional test
of coin-tossing type with outcome probabilities (p, 1 — p) depending on .#(z). In
practice deterministic solutions are usually preferred, where p =0 or p = 1.

Any two strategies n; and =, of the type considered can be combined into a new
strategy that independently uses 7, or 7, with probabilities g and 1 — ¢ in each time
interval A. This leads to a mixture of parameters (4, ), of initial strategies with the
same weights ¢ and 1 —g. Hence the set G = {(#, 7),} of errors corresponding to
various strategies is convex if these strategies are based on the same information
F(t) (Figure 1).
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By definition, the set G belongs to the unit square (0<a, 1 <1). It contains
points (1,0) and (0, 1) and, by convexity of G, the diagonal A+17=1. The first
point stands for the widespread optimist strategy in which an alarm is never
declared. The second point corresponds to the total pessimist strategy in which the
continuous alarm is kept. Points on the diagonal 7 + ¢ =1 correspond to the
strategy of a random guess in which an alarm is declared with probability p
independent of #(1).

The set G has the center of symmetry (1/2,1/2), because every prediction
corresponds to the antipodal predition =~ where an alarm and not-an-alarm change
places and errors (4, ©) are replaced by (1 —#, 1 —1). Therefore all points of G
above the diagonal # + % = 1 correspond to strategies constructed by negation of
nontrivial strategies with # 4+ ¢ < 1. However, only nontrivial strategies at the lower
boundary T of the set G are important. The boundary I" connects the points (1, 0)
and (0, 1). It is monotonic and convex downward due to the properties of G.

The points of I' are incomparable, that is, if ¢, < ©,, then A, > #,. For any point
(%, ©) € G there exists another point (A, %) € " where A, <#, ¥, <1, which corre-
sponds to a better prediction. Therefore, there exists a minimum set of best and
incomparable strategies among their total set. The number of these strategies is
infinite, they are described by the error curve I

The curve T is sufficient for the choice of the best strategy in the following
problem. Suppose that the long-term losses associated with prediction can be
expressed in terms of / and %, that is, as a function y = y(#, ©) increasing in its
arguments. If sets {(#, ©): y <u} are convex for any level u then the point O* where
the contour line y = y* is touching I" corresponds to the strategy minimizing y
(Figure 1).

Thus the general prediction problem (minimization of losses 7) in a class of loss
functions y = (A, ?) is split into two independent problems. The first problem is the
construction of the loss function y, which falls in the area of economics or other
studies. The second problem is the derivation of the curve I' using the information
#(1); here the physics of the seismic process is applied. In the latter case a union of
points (4, ) should be analyzed; this union is generated by a variation of parame-
ters in an algorithm and by applying various algorithms based on identical
information to predict events of a certain magnitude. The boundary of the convex
hull of these points serves as an estimate of the diagram I’

Efficiency of prediction is often measured by two parameters, e, = (1 — Mt
(GUSEV, 1976) and e, =1 —# — t (FENG et al., 1985). Clearly, the most effective
strategy is obtained with the minimum loss function y, = 1/e, in the first case with
v, = l/e in the second case. Therefore the optimist strategy with errors (1, 0) is the
most effective in the first case. Indeed, y, contour lines form a bundle of straight
segments with the center Q* = (1, 0). The same strategy is the least effective in the
second case because ¢, = 0. Thus the functions y, cannot be used to measure the
efficiency. Moreover, an attempt to choose a universal strategy from a continuum
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of incomprable strategies is unsuccessful by itself. The loss function v, is certainly
useful for research purposes; however, the choice of y falls, in general, out of
prediction physics.

2.2. The Optimal Prediction Sirategy

Consider the hazard function r(r) that is, in other words, the conditional
(relative to the information .#(¢)) rate of predicted events

r(1) = P{there exists an event in (1, f + A) | F() =u}jA =r,.

We denote by 4 the unconditional rate, that is, the number of strong events per unit
time. Let us discretize time with the step A and denote by n(?) the event indicator
in the interval (1, # + A); if the interval A contains at least one event then n(ty=1,
otherwise n(f) = 0.

Statement 1. If the flow (n(1), #(1)) is stationary and ergodic then there exists
such threshold r* depending on the loss function y that the optimal prediction strategy
is declaring an alarm every time when r(f) > r*. In rare cases in which the relation
r(t) = r* has a nonzero probability, an alarm is selected with some probability p*.

If O* is the point where the contour line y = y* touches the error curve T, then the
threshold r* is expressed in terms of the common derivative of T and y =y* at that
point

* dﬁ *

r*=—2 T (O%).

If one of the curves is not differentiable at Q*, then the derivative is changed for the
slope of any common line of support for I' and y = y* at Q*. In the important casc
of linear loss function y = wl# + 7 the threshold is r* = f#/u, because the contour
y =y* is a straight line; therefore it is a line of support with the slope — #/1x. This
case was studied by LINDGREN (1985) and Ellis (1985). We can interpret o as
prevented losses when the prediction is successful and f as the cost of maintaining
an alarm per unit time; then y stands for total losses per unit time.

2.3. Minimax Strategy

Another important case of the prediction strategy involves the loss function
Yo = max(#, t). The optimization of prediction leads in this case to the minimax
strategy with 7 = ¢ = min. This strategy is useful when the loss ratio 8/« in the
linear function is unknown, so that an observer prefers the worst case /1« in the
following sense:
ain + Bt .

max min ————— = min .
a8 n all + ﬁ n (’PO)
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This leads to a certain stability of the minimax strategy (MOLCHAN, 1990, 1991).
Therefore it is no wonder that the minimax prediction principle is employed in
practice, though inadvertently. For example, the algorithm CN (KEILIS-BOROK
and ROTWAIN, 1990) yields # ~f =25-30%, on average, for all the regions
considered in the prediction of events with M > 6.4. Similarly, /i ~ ¢ = 33% for
the M8 algorithm (KEILis-Borok and KossoBokov, 1990) in the prediction of
events with M > 7.5 in the Circum-Pacific belt (private discussions with I. Rot-
wain and A. Khokhlov). Some simple precursors have a similar arithmetic mean
of prediction errors, (/i +1)/2 (see, for example, the energy precursor by
NARKUNSKAYA and SHNIRMAN, 1993). That means that the modern intermedi-
ate-term collective precursors (CN, M8, etc.) extend the geography of applica-
tions rather than leading to a higher quality of prediction. This hypothesis
requires careful review.

The seismic gap hypothesis has recently been used in long-term forecasting
(WORKING GROUP ON CALIFORNIA EARTHQUAKE PROBABILITIES, 1988). In this
case the information used #(f) is the elapsed time since the last large event on a
certain fault or plate boundary. Therefore the optimal strategy is defined by the
rule:

a(F(0) =u) =alert if r, =F)/(1 —F@w)=r» (1)

where F is interevent time distribution.

If F has mean m and variance ¢2, and belongs to the Weibull, Gamma,
Log-Normal type with a reasonable ratio o/m €(0.25,0.6), then the optimal
minimax rule takes a simple explicit form:

(S =u) =alert if u>k-m, k=~075.

In addition, the errors #,7 are similar to the M8 algorithm errors 1ie.
#i~ 17 <0.35 (MOLCHAN, 1991).

The rule (1) is not used by the Working Group (WGCP, 1988), therefore its
forecasting becomes more vulnerable to criticism. The recent discussion of the
seismic gap hypothesis by KAGAN and JACKSON (1991) actually raises the issue
of the distribution of F. Considering that earthquake times show clustering, it is
necessary to use those distributions for which r, is U-shaped or

Fu)=1- exp( — J. U(7) dt)

0

where U(t) >0, U(r) » o0 with 7 —0 and 7 —o00. Then the optimal alert times
within an interevent period form two intervals: (0, u;) and (u,, c0). The first alert
interval is a reaction on the clustering while the second one is in agreement with
the gap hypothesis.
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3. Prediction with Multiphase Alerts

The prediction model considered above is sufficiently general and yields a simple
optimnal strategy. It clearly divides the domain of activity into two parts: one is the
province of geophysics (estimation of the hazard function); the other is related to
economics (for example, estimation of the loss ratio f/a.) In the case of the linear
loss function, the process (n(7), #(1)) can even be nonstationary. The rejection of
stationarity leads to a dependence of the threshold r* on time. Indeed, the obtained
prediction 1s optimal under linear losses per unit time both on the interval A (local
optimality) and on the entire time axis (global optimality).

The simplest model considered is suitable for many types of practical forecasts
that involve only two alert states: that is, where an alarm is declared or called off.
However, a real alert must be multiphase, as a rule, because different degrees of
hazard require different systems of protective measures (SADOVSKY, 1986). Hence
we modify the prediction model by introducing multiphase alerts and generalized
linear losses.

Let us assume that an observer can declare any alert from a given set of alerts
(Ao, Ay, ..., A,) using the information #(r). The cancellation of an alert is
included in the set; it is 4,. We also assume that cvery alert A4, requires cost 8, per
unit time and that o, is the prevented loss per one successful prediction. In
particular, ay = fi, =0 for 4,.

We assume that any change of alerts leads to loss ¢;;, 0 <c; < co. The case
¢; = oo means that the change 4; — 4, is forbidden. For example, the population
can be evacuated only after solving transportation problems. Whereas some of the
protective measures require an ordering of corresponding alert types, other protec-
tive measures can be carried out in parallel. A block of such parallel measures is
considered as a single measure in our model.

Nonzero ¢;; values result in stability of alert sequences because they prevent fast
alternating of alerts. However, the introduction of ¢; complicates the problem;
locally, optimal decisions are not globally optimal in this case. Examples of this
kind were discussed by MOLCHAN and KAGAN (1992).

Denote by z, the losses associated with the decision 7(f); prevented losses enter
there with the minus sign. Let us consider the total losses associated with the
prediction strategy on the semiaxis 7 > 0 relative to the initial moment ¢ =0 with
time factor p

Z, = Z Zia €Xp(—p - kA) = Z Zea 0%

k=0 k=0
0 =exp(—pA). (2)
Z, 1s called discounted losses in the theory of optimal control (HowARrD, 1960;

Ross, 1970). In practical problems the factor p can stand for the efficiency of
capital investments. Mathematically, the introduction of p allows us to consider the
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problem on a finite interval of order 1/p, escaping difficulties due to boundary
effects when stationary prediction methods are studied.

The loss function now as the mean total discounted losses, that is, the prediction
goal is the minimization of

S = EZ, —min. (3)

Consider the case in which the change of alert types does not lead to additional
losses, that is, ¢; =0 over all { and j. ‘

Statement 2. Let ¢; =0, i,j=1,2,...,m, and let n(t) depend only on the
stationary information sequence F(t). Then the optimal strategy is such that

n(t) = Apq (4)
where the subscript j* realizes the minimum

min () — ar(1)) = S[r(0) (5

for the current value of the hazard function r(t).

Remark 1. The function S[r] in equation (5) is the convex polygonal envelope
of the system of straight lines y =p§ —ar (Figure 2a). Let FPy(0,0),
Piri,v1), ..., Pulre, vo) be the vertices of the polygon S(r) that are ordered in
r,0<r < <r.<r.,,=o, and let j(n) be the number of the straight line
y = B; — oyr with the pair of vertices P, and P,,,. The prediction strategy (4), (5)
means that there exist k& < m hazard levels r(¢):{r;} such that the alert with j* = j(n)
is always declared in the interval r(¢) € (r,, r,, ;) (see Figure 2b). A number of alerts
{A;} can be cost ineffective; such is the alert A5 in Figure 2a.

2. The quantity (5) defines minimum conditional mean losses per unit time in
the interval (¢, 1 + A) under the given information #(¢). Hence the strategy (4), (5)
is simultaneously global and local. It does not depend on time factor p and is the
generalization of the prediction strategy for two-phase alerts with the linear loss
function discussed above.

To study the general case we introduce the following notion. We say that the
process (n(t), (1)) has M property if the information sequence i1s a Markov process,
that 1s,

P{S(t + A) =‘u|f(t) =u; H(s), Vs <t} =P{F( + A) = u|f(t) =u}="P, (6)
and that
E{n(D]F(s), s <t} = E{n(D)|#()} = r() A. (7)

Conditions (6) and (7) hold when the information #(¢) contains all past data on
predictors up to the moment ¢ and all prehistory of the process n(-). In other
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3/

Figure 2
Optimal multiphase alert with zero losses for the change of phases. (a) Optimal mean losses per unit time
s(r) as a function of hazard level r; s(r} is the envelope of straight lines §;, — a;r indexed by alerts 4,; P,
are vertices of the envelope; r, are hazard levels for the change of alerts A;; the alert A, is not cost
effective. (b} Hazard function r(#} and optimal alert A4, as a time function under conditions of Figure
2a.

words, the past {#(f), n(s), s <t} is measurable relative to #(7). If the sequence n(r)
and a physical process x(r) used to predict n(¢) has a finite memory, that is, a finite
correlation interval J, then (6) and (7) are true for the information sequence
F(1) = {n(s), x(s), t —J < s < t}; its dimensionality is less as compared with the case
of infinite memory.

Adding new requirements to the description of the process (n(t), #(f)) we can
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extend the class of decisions; n(f) can depend on #(1) and past decisions n(s), s < &.
This dependence can be stochastic.

Statement 3. Assume that (n(1), #(1)) is stationary and has M property and that
decisions n(t) depend on F(t) and {n(s), s <t}. Then

a) The optimal multiphase alert with parameters [«;, B;, c;] in problem (3) exists
and can be chosen stationary, that is, decisions n(t) depend on t only in terms of the
current information J(t) = u and current alert n(t — A) = A,.

b) Minimal mean losses (3), S*(u,i), under initial conditions J(0) =u and
n( —A) =i, are defined by the equation

S(u, i) =min [c;, + p,A —r, A% + 3 P,,S(, /)] (8)

We assume for simplicity that the set of states #(t) is countable.
¢) If 0 €(0, 1) or p > 0 then equation (8) has a unique solution. This solution can
be found by an iterative procedure

SO, iy =0; S"+D=T,S" 9)

where T, is the operator defined by the right-hand side ‘of (8) with the domain of
Sfunctions S(u, i). The error of the nth iteration is

|S"‘) - S*[ <0 (1-0)"'L
where

L= max |c; + A+
ffiep< o0

d) Under conditions #(t) = u and n(t — A) = A; the optimal solution is n(t) = A
where the subscript j* = j(u, i) minimizes the right-hand side of (8).

Remarks. 1) Equation (8) is of Bellman type in the theory of optimal control
(HOowARD, 1960; Ross, 1970). In our case the control parameter j enters the loss
function rather than transition matrix [P, ]. 2) The recurrence (9) leads to the set
of functions S, = SW¥ =%, k =0, ..., n, which are optimal mean discounted losses
in the intervals (kA, NA), £k =0,1,..., N — 1. The sequence of subscripts j¥(u, i)
minimizing (8) with § = S defines the sequence of optimal decisions in intervals
(kA, (k + 1)A) under information states (F(2), a(t — A)), t =kA.

The described algorithm is also suitable for optimization of total losses in the
interval (0, NA) when 8 = 1, that is, without the time factor p. Unfortunately, the
optimal prediction strategy for a finite time interval is nonstationary in the case
[Cij] # 0.

Let us consider two examples.

Renewal process. NISHENKO (1989) used the following model to predict charac-
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teristic earthquakes. Interevent intervals are independent and have distribution f(x);
the information is the time #(f) = u elapsed from the last event. This model satisfies
conditions (6) and (7). The hazard function is

L _Fut8)—Fu _ F(u)
“TOALl=—Fw) 11— F)

and the transition matrix P,, is such that only two transitions from the state u are
possible, one to u + A with the probability 1 —r, A (no events) and the other two
0 with the probability r,A (an earthquake occurred). Therefore equation (8) takes
the form

S, i) = min [c; + fiA —oa;r, A+ 0(S(u + A, jY(1 —r,8) + 50, )r, A)].
J

Cyclic Poisson process. To describe a sequence of catastrophic events VERE-
JONES (1978) used a model of Poisson process with periodic rate, A(f) = Az + 7).
Clearly, the information takes the form #(f) = t(mod T'). Therefore conditions (6)
and (7) are true. Though this model is nonstationary, Statement 3 still holds.
Equation (8) takes the form

Su, i) = m_in le,; + B A — o, 2)A + 08 + A, f)].
J

We also add the obvious condition of periodicity S(u, /) = S(u + T, i) and T = NA.

Despite the simplicity of these examples, the optimal prediction cannot be
obtained in an explicit form if [c;] #0, even in the case of two-phase alerts. The
case {c;] #0 involves the hazard function r, as well as the matrix of transition
probabilities for information states .#(r) in constitutive time intervals. The practical
estimation of this matrix P,, is complicated and has not yet been stated. Difficulties
in estimation of the matrix [P,,] depend on the type of information sequence .#(7)
and on detailing of the phase of its states. Above we concluded that the increase in
the number of predictors leads to new application areas rather than two predictions
of higher quality. In other words, it is sufficient to use the information phase space
of a small number of dimensions,

Optimization of mean loss rate. The limit case of problem (3) when p -0 (0 — 1)
stands for the situation in which the loss function takes the form of total expected
losses per unit time, that is,

7, = lim infEﬁj—:n-A.—amﬂin. (10)

Problem (10) is interesting for its theory, rather than its applications. Its loss
function is associated with the prediction strategy on the entire time semi-axis,
whereas the prediction interval in (3) is of order 1/r. Furthermore, problem (3) is
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difficult for numerical analysis as is partly. For results in this area see (MOLCHAN,
1992, MOLCHAN and KAGAN, 1992).

4. Problems

4.1. Performance of Prediction Algorithhs

Intermediate-term prediction methods that have been recently developed solve,
in fact, the theoretical problem: Is the prediction at all possible? Therefore these
methods mostly reduce to the simplest two-phase alert and are characterized by
errors (7, ©). As noted before, it is not sufficient to know these errors to compare
various algorithms at the research stage or when economical data are unrefined.
The situation improves if any algorithm A is characterized by an error curve similar
to error diagram I' (Section 2). The problem arising is that any algorithm is a
complex of prediction methods that yields only one method after specifying the
vector ® of internal parameters of the algorithm. Varying the essential parameters
we obtain the error set (#, 7)g. The lower bound of its convex hull is the error curve
I, representing the capability of the algorithm for prediction with the information
chosen.

Curves I'; are important because they are estimates for the diagram I" describ-
ing the limit prediction capability of the information. Curves I', are also useful in
the qualitative comparison of algorithms. For example, curves I', for two al-
gorithms (see Figure 3) intersect at an intermediate point (end points are always the
same). When 7 is small, the curve I',, is under I',, . Hence algorithm 4, is
preferable in applications with great values of /A where f is the cost rate of alert
and a4 is the loss rate from failures-to-predict (f# and a4 are defined in Section 2).

Note that the calculation of the I', curve is a time-consuming procedure,
estimates of I', being affected as they are by the amount of available data and
nonuniqueness of t-definition in a case of time-space prediction (MOLCHAN, 1991).

4.2. Estimation of the Hazard Function

The present study indicates that statistical estimation is necessary for the hazard
function r, and the probability transition matrix P, for information states on
consecutive time intervals. Note that the hazard function depends on information
states J(f) = u rather than on time. At present the corresponding statistics are
coliected for separate, simplest predictors. Estimates of r, using any predictor
combinations (SOBOLOV et al., 1991} are still very rough, because they ignore the
conditional dependence of predictors on future events.

The real use of the hazard function r, and matrix [P,,] requires the strict
selection of the most informative predictors and economic discretization of their
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Figure 3
Comparison of algorithms by error diagrams I',. Solid line and dash-dotted line are error diagrams for
two algorithms. The line (n*, t*) is the common line of support for curves 'y, and T';,. If y = Aot + Bt
is the loss function and fi/ad > n*/r* then algorithm A, is preferable because it yields lesser losses.

phase space. This is probably a real problem in intermediate-term prediction which
1s effectively based on a narrow range of predictors, that is, those with energy
parameters (Zhurkov’s criterion, & value, and others) and phenomena of quiescence
and activation. On the other hand, some simple precursors have the same prediction
errors as the more universal (in space) collective precursors like CN and MS.

An important example of the estimation of r, is statistical modeling of earth-
quake catalogs dating back to HAWKES (197]1) and KAGAN (1973). The models
involve clustering and for this reason were successfully adapted for intermediate-
term prediction by incorporating precursor S like activation and quiescence
(OGATA, 1988; KHOKHLOV and KossoBokov, 1992). Modeling a sequence of
earthquakes in the space X = {time 7, magnitude M, location g} is equivalent to
assigning a conditional probability density of event x, given a prehistory of the
sequence, S(f), that is, the point process {t,, M;, g;} is determined by the hazard
function r,(x) with v = #(r). The most popular model of r,(x) has the form

rx) =2o(x) + 3 ®(x]|x;) (11)
x;€H(0)
where 4,(x) is the main-shock rate and O(x |x,») the rate of aftershocks of the first
generation (primary aftershocks) due to event x,. The function ®(x |x,) is fre-
quently factorizable:
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O(1, M, g | 15, My, 80) = c(Mp)o; (t — to)o(M)los((g — go) Ir(M))r ~4(M,)]

where ¢,, i =1, 2, 3 are normalized distribution laws of primary aftershocks over
time, magnitude and space, respectively, that is, { ¢, =1 and d is the dimension of
the spatial coordinate g. The statistical properties of the primary aftershocks are
not known, therefore the parameterization of ¢, rests on known statistical proper-
ties of aftershocks: ¢, is Omori’s law, ¢, is the Gutenberg relation, ¢, is a Gaussian
distribution with linear scale parameter r(M,) oc 1072 (OGATA, 1988; KAGAN,
1991).

A simple transfer of these laws to primary aftershocks is not entirely justified.
Attention should therefore be directed to the recent work by KHOKHLOV and
KossoBokov, 1992), where ¢, has a Gaussian shape and the spatial scale
r(M,) oc 10M", The work specifically aims at prediction and shows significantly
better prediction than the M8 algorithm.

One paradox of the model (11) is that it is successfully used in prediction in an
unusual form: an alarm is declared for very large values of r, (as response to
activation) and even for very low values (as response to quiescence).

We conclude by noting that making the seismicity-responsive model more
complicated puts greater demands on the accuracy of r, and [P,,]. When dealing
with prediction involving two kinds of alarm it was necessary to be able to estimate
the hazard function with good precision in the vicinity of a single threshold value.
With n types of alarm and [C,] =0, there appear “n” threshold values r,. Lastly,
when [C;;] #0, the complete structure of the hazard function needs to be known.
However, practice calls for simple and reliable solutions. For this reason an active
dialogue is needed between seismologists and economists to discuss realistic typical
prediction problems.
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Appendix : PEPI-1990
3. The renewal process
3.1. Examples of strategies

Let us consider the simplest stochastically peri-
odic point process which has independent and
equally distributed time intervals 7, i.e. the re-
newal process with distribution function fi(x)=
Pr{r <x}. It includes both an absolutely random
Poisson sequence Fi(x)=2A exp{—Ax), and a
predictable periodic sequence F'(x) = 8{x — x,).
These extremities present a range of possibilities
in prediction of the renewal processes.

A random renewal process seems to be an
appropriate model for rare events in some local
catalog (a typical object for a practically interest-
ing prediction), or to reflect the main elements of
the ‘seismic cycle’ for a large tectonic region. At
the same tirme, the well-known mathematical re-
sults on superimposition of the renewal processes
show (see, for example, Daley and Vere-Jones
(1988)) that the total catalog of rare local events
can have all the properties of Poisson flow in time.
In such a case, events from different places should
be in weak dependence.

The spread index is a useful parameter of the
process

T Var »(1) Varr
= lim =
1= Ev(1) (E'r)2

where »(1) is the number of events in the interval
(0, 1) and Var is the dispersion. Deviations of J
from unity reflect on average the tendency of a
point process of ‘clustering’ (J > 1), and to peri-
odicity (J < 1, ‘scattering’), as relaled to the Pois-
son chaos.

The y-optimal strategies for renewal processes
are defined by sets

A={x:r(x)=F'(x)/[1-F(x)] > u)}

A is the interval for the unimodal hazard function
r(x). It is unbounded, A =(x, o0), if r{(x) is an
increasing function (the so-called property of
‘positive ageing’; this term is used in the descrip-
tion of endurance failures in materials). As is
known {Cox and Lewis, 1966), in this case J <1,

(13)

TABLE 1

Parameters of minimax strategy for y-distribution
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so when events tend to scatiering, announcement
of an alarm should be delayed. For decreasing
function r{x) (‘negative ageing"), B ope = (0. x),
Le. it is preferable to give alarm at the beginning
of a prediction cycle if events in the process tend
to clustering,

In earthquake prediction there is a tendency 1o
reduce the duration of the alarm. However, there
are some exceptions: prediction in Kamchatka,
based on seismic gaps (Fedotov et al., 1977}, and
the method of long-range aftershocks (Prozorov
and Rantsman, 1972). Thus, if density F'{x) is
unimodal, with a well-expressed peak, its short
vicinity seems a natural cheice for an alarm set.
Generally, such a decision is not correct, as an
alarm after the modal point F'(x) will be quickly
cancelled if F’(x) decreases sufficiently rapidly.
Otherwise, the announcement of unbounded alarm
is not always to the detriment of a prediction
strategy. Some examples of optimal alarm sets are
given below.

3.1.1. Example |
£ 15 a uniform distribution on [0, 2m]. Then

r(x)=02m-x)7' J=1/3

The minimax interval, i.e. the yoptimal strategy
is the set A, = (km, oc), where km is the point
of ‘golden section’ of [0, 2m}: k=3—V 5=0.76
(an unexpected optimal property of the ‘golden
section’!). The errors are /i = 7 = 38%.

3.1.2. Example 2
F is a y-distribution with average m and index
J:

F'(x)=cx'" exp(—x/im), x2 0

Strategy

A={xix<km}

A= {x:x>km)

Spread index

J=a%/m?" 2 1 0.4 0.2 0.1 0.05 0.02
k 0.71 0.69 0.72 0.73 0.74 0.77 0.81 0.87
Prediction errors

A=1(%) 40 50 39 3 25 21 19

* m, average; o°, dispersion.
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This distribution is unimodal, and is almost Gaus-
sian with J << 1, The hazard function r(r) is
monotenic, thus the y-optimal alarm sets are A =
(0, x) for J>1and A=(x, o) for J<1. x=1
corresponds to the unpredictable Poisson process;
here condition B is incorrect; r(x)=m~, x= 0.
Thus the optimal open sets A could take any form
and contain any point.

Table 1 demonstrates prediction possibilities by
means of y,optimal (minimax) strategy for y-dis-
tribution. The minimax strategy has the following
form:

A= {x:sgn(1-J)[x—k(J)m] >0}
Dimensionless parameter k(J) turned out to be
unexpectedly stable: over a wide range of index
J €[0.05,2], the value of K(J)=3/4 4 0.06.

An example can demonstrate stability not only
of the strategy but also of the prediction results.
We approximate a y-distribution by a uniform
distribution with the same average and value of J.
It is possible for J =1/3. We use the y,optimal
strategy A = (0.76m, o0} in this approximation (see
exarnple 1) for prediction in the true model F. The
pseudo-optimal strategy leads to errors #, = 40%
and 7, = 34.6%. The average error is (A, + 74)/2
= 37%, against true minimax errors A = 7+ = 36%.
The agreement is very good for such a crude
approximation of true distribution.

3.2, Prediction on the San Andreas fault

Nishenko and Buland (1987) analysed 53 inter-
vals 7, in 14 regions with high seismicity. Out of

TABLE 2

G.M. MOLCHAN

three types of distributions F;(x), Normal,
Weibuil and Lognormal, preference was given to
the third type. The following model is accepted for
inter-event intervals for tectonic regions {G}

T=myg exp(ucé - 02/2) (14)

where ¢ is a standard normal random value
N(O, 1). mg= E1; and vZ is the variation of In 7.
The spread index for this model is

J=exp(v) -1

The WGCEP (1988) applied model (14) for pre-
diction of the strongest earthquakes on the San
Andreas fault. Table 2 contains data on eight of
the fault segments. Prediction is determined by
conditional probabilities

Rsy=P{wp(r_,7_+8) zllr271_}
= [Flr_+8) = F(= )] /[1 - F(x.)]

of occurrence of an event on segments G for
forthcoming (after 1988) & = 30 yr; = is the time
since the last event in G. According to the WGCEP
calculations the most dangerous of the denoted
eight segments is now the Parkfield (P) region,
where R;>0.9 against Rg<04 for the other
segments (see Table 2).

Using this method of comparing the fault seg-
ments almost always Parkfield is diagnosed as the
most dangerous. Actually, for any segment except
P, R>0.9 for 0<7<800 yr. Moreover, the R
value in Parkfield can reach the level of 0.5 only in
the impossible case of quiescence for 4000 yr.

Conditional probability R of major earthquakes along segments of the San Andreas fault, 1988—2018

Fault 1 2 3 4 S 6 7 k k*® 10
segment

San Francisco Peninsula 90 7 1906 196 0.38 0.176 2032 0.75 8.8 0.30
Santa Cruz Mountains 35 6.5 1906 136 0.44 0.185 2007 0.74 8.4 0.30
Parkfield 30 6 1966 21 0.9 0.056 1983 0.81 37 019
Cholame 55 7 1857 159 0.3 0.281 1972 0.72 4.3 0.34
Carrizo 145 8 1857 296 0.1 0.137 2082 0.76 13 0.28
Mojave . 160 7.5 1857 162 0.3 0.168 1979 0.75 9 0.29
San Bernardino Mountains 100 15 1812 198 0.2 0.36 1951 0.7 3.4 0.36
Coachella Valley 100 7.5 1680 256 0.4 0.09 1880 0.78 19 0.25

1, length (km); 2, expected magnitude; 3, date of most recent event; 4, expected recurrence time (yr); 5, Ry 6, spread index, J: 7,

start of alarm; 8, 9, k and & ® are time alarm thresholds; 10, Errors A = 7.
- Except for the last four columns, the data are from WGCEP, (1988).
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Otherwise, the R-test causes a steady alarm in P,
but no alarms in other segments.

Let us consider the prediction in model (14)
from this viewpoint. The hazard function r(x) of
the lognormal distribution is unimodal, with +(0)
=r(x)=0. Thus optimal alarm sets form {inite
intervals A= {x:hkm;<x<k,ms;}. For mini-
max strategies, normalized thresholds A, & and
i* are presented in Table 2. Upper thresholds & *
are determined by the choice of the model F(x)
and are practically unlimited. They change within
the range 700-5000 yr. That is no longer im-
portant because if upper thresholds are sub-
stituted for oo, then prediction errors differ by
0.001 for observed values of J £ 0.4. k threshold
values and prediction errors € = # =+ proved to
be stable in the sense of the model choice. Func-
tions k(.J) and ¢(J) stay almost unchanged when
a lognormal distribution was replaced by Weibull
or v distribution, with A= {x: x> k(F)} (com-
pare Tables 1 and 2),

The above circumstances justify the choice of a
minimax strategy according to which five out of
eight fault segments should be in a state of alarm
by 1988, in particular, the region P—since 1983 —
and the Coacella Valley (CV)-—since 1880 (!)—al-
though according to R, alarm is impossible in
CV. However, as related to the minimax strategy,
the concentration of U.S. scientific efforts in re-
gion P is justified. According to the minimax
strategy, a maximum of successes 8mg (1 — /) for
the considered period 8 is expected in region P.

The analysis becomes more complicated if we
take into account absolute losses for the whole
region G, i.e., losses of the type

-1 .
Y, = OcMg R+ BeT

Concretization of a;, B; is not unambiguous. We
can suppose that

ag=ay(1); ag=&mg(II), Bs=Bu |G}

where subscript M shows the dependence of
parameters on the magnitude of predicted events,

Losses from one failure-to-predict of magni-
tude M are proportional to area Q(M) of the
destruction zone if the destruction objects are

homogeneous and uniformly distributed in space.
If we account for recurrence frequency p(M) then

ey [ Q(M)p(a) dM
AM

Usually Q(M) & 10"M p(M) 10" and by =
b. Thus a,, & |AM].

Evidently, maodel a;— 11 can occur in in-
surance. Let the insurance rates be independent of
location on the fault. Then insurance paymernts
are proportional to time. However, the period
between failures-to-predict is proportional to mg.
Thus we can assume that compensation for an
object’s destruction is also proportional to mg.
Consequently, a; @ m.. However, these argu-
ments do not account for the efficiency of invest-
ments.

For methodical purposes we assume @y ==
&‘.M, B = B; k = B/e. The minimum of loss func-
tron vy, is determined by the value

Yx =C¥Gm51{1 —-/(;w[ru(u) - kaiG|] .

x[1- Fo(u)]} du

where x_ = (x+ |x|)/2, F, is the distribution of
7 with Er=1, ie.

Fy(x)=2[in(x/v) + (v/2)]

®(x) is a standard Gaussian distribution, and
fo(x} 1s a hazard function for Fy(x). Value v, is
an increasing function of parameter k:

d—d,gn=a|G|¥;0 (15)
Moreover,
EIGI[1+0(1)] k=B/a<1
Yo = ag{ 1/mg k=g/azn"
/(mgiGl)

(16)
where
ro* = max ry(x)

Hence we can obtain a qualitative conclusion of
optimal losses, if we use real data on the segments’
dimensions and periods m, (see Table 2). We

summarize our conclusions as follows. Under con-
dition ag; =@, in the Parkfield region expected
losses are minimal if 8/a <k, and maximal if
B/a > k,(ky < k;). Under other conditions a, =
amg, losses in Parkfield are not greater than in
other regions with any a/p.

For both models, when a;=«a the simplest
‘optimistic’ strategy (no alarm) is y,-optimal if
B/az max rt*/|G|mg However, the simplest
pessimistic strategy (endless alarm) cannot be v, -
optimal in any segment if 8> 0.

9N
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4. Tail behavior for recurrence time distribution

There are practically no data on the tail of
distribution of 7 for strong events. Some attempts
have been made to overcome difficulties by means
of models. Kagan and Knopoff (1987b) consid-
ered an earthquake as an event of ‘dumping’ of
the accumulated stress g, in a seismic region when
o, reaches the critical state o. The r-distribution is
simulated by a random walk

o(r+A)y=0(1)+AL(t), 0(0)=x, o(t) <o
(20)

where £, is the Wiener process with average cf
and dispersion d%. The non-zero average stress
rate ¢> o can be related to plate tectonics; the
diffusion part of Ae can be associated with ran-
dom events of ‘loading’ or *dumping’ which are
realized by creep and by weak seismicity
inside /outside the region. When the critical state
o is achieved at a random moment 7, the stress
drops to the initial level ¢(0) and the system starts
to function anew.

As is already known {Skorohod, 1964), the de-
scribed renewal model has the recurrence time
distribution

F'(¢]¢)
=[lo~xi/ad/ (2m)] 137
xexp{—4[1o = x|/ (1) = o/ (1)] /a?),
t>0 (21)

The function distribution F(¢|0) has a self-similar
character of attenuation with ¢> 1, i.e. F'(1)«
=32, Among distributions of 7 with fixed aver-
age value Et= (o — x)/c the distribution F{( | €)
is the nearest to F(¢|0) in the entropy distance:
dist(F, F) = f(log dF/dF,) dF. Self-similarity F
with exponent — 3 /2 or proximity to this self-sim-
ilarity are the main arguments in favour of model
(20). It turns out that this property disappears
when natural limits are set; the accumulated
stresses in the region cannot drop below a certain
zero threshold. The modified model is described
by the relation

o(t+ A) = max[0, o(1) + AE(r)], (22)
s(0)=x,a(t) <o

Models of type (22) occur in the theory of stochas-
tic storage processes. However, the author could

not find the r-distribution for the described case
in the literature. The r-distribution can be derived

as follows, Let
V(t|x)=P{o(s) <o forall s& (0, t);
o(0)=x})=P(r>1)

94

Standard methods of the Markov process.
(Skorohod, 1964) show that V(¢, x) satisfies i}
parabolic equation

2 _ 2 ipal =0
5% a3 YV Fye: V=0,1>0,x€(0, 0

with boundary conditions

d

I V{r,0)=0; ¥(0, x) =1,
x€(0,0); ¥{t,0)=0

By means of the Laplace transform

Z,(x) =[0°°e-*'v(z, x)dr=(1-Ee ) /A

the problem is reduced to an ordinary differentia -

equation

AZy(x}-1= (cD+ —‘iipz)zx(x), D=

2 dx
Z\(e)=0=2,(0)

Hence
A (—A_x) _ (=A%)
®(N) = F e = + exp _ A_exp
A, exp!TH — X exptThe)
(23)
where

d-A,=c/dt |[2a+ (c/d)]]

Equation (23) defines all 7-moments. It can be

inversed according to Jordan’s lemma, ie. the .

T-distribution density can be expressed by poles of
@ (A) in the semi-plan Re A < 0. As a result we
have the following,

Statement 4

{1) In model (22), with ¢ = 0, the distribution
density 7 has an exponential asymptotic, F’(t) =0
[exp' "] To be more precise

F'(1)= X a, exp(—p,¢) (24)

nzl

where

. 1/2c/d)[(x,/k) +1], >0

1/2(d/e)’7*(n—1/2)%, ¢=0
(25)

Pn=p,(o

Here k= k(0)=co/d? and x, = x,(k) are posi-
tive roots of the equation

ksinx/x=—-cos x, k=0
ie,
x,=a(n—=1/2)+k-0(1/n)
Coefficients

a,= Res ®.(A)

n Ao

e
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In particular, if ¢ =0 then

4% =(=1)""(d/o) n(n-1/2)

xXcos[w{n— 1/2)x /0]
Series (24) converges fast because a,=0(n) and
Pa=0(n?), n > oo,

. (2) In model (22) there is a useful representa-
tion for the recurrence time

=3, (26)
where {e | T,} are Jjointly independent random

variables,

P{'rn:-t} =exp(—pn1)

and €,=0 or 1 with probability pn or 1—p,
where

Po=p,(0)/p,(x)

(p,(=); see (25)). If x =0 then €, =1. (Represen-
tation (26) corresponds to infinite factorization of
the characteristic function r, based on zeroes and
poles @,(A)). In models (20) and (22), where
x =0, the distribution of 7 is asymptotically nor-
mal with & =co/d* - oo, i.c.

P{V (k)(rc/a—1) < 1}

- (2-::-)'1/2f exp' ™"/ dy

— oD
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(3) In model (22), where x =0, the average
recurrence time is

Er=o/c[1~(1-e¢ %) /2k]
and the spread index

_22(k—1)2+1—(2k+3) e

J=1 :
(2k ~1+e )"
.__ﬂ;, k= oo
(2k+1)

decreases as the function & from J(0) = 2/3100
with k& — oo, i.e. J<2/3. (In model (20), x =0,
Er=qg/cand J=k"130).

(4) In model (22), where x =0, the hazard
function

Pd;

[~(py—p )]
ex , i1
0,2, (Pz P1) exp

r(e)=p -

i.e. the y-optimal alarm sets A={t:r(1)y>u},
and u < p, is vnbounded. This is not true for
model (20).
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We consider a special case of prediction in
which the current information £(¢) consists of
quiescence duration 7_ alone, i.e. of the time that

has elapsed since the last strong event. A predict-
ion of this kind arose in Nishenko (1989) for the
Circum-Pacific belt.

Let F(x) be the distribution of time r between
strong events. The hazard function for the infor-
mation £(t)=7_ is then:

r(t)=F(t)/[1=-F(1)], t=0" (13)

if the time of last event {7, <1} is taken as the
origin. The right-hand side is well known as a
hazard function in the analysis of survival data
(Cox and Oakes, 1984).

In engineering research the Weibull distribu-
tion is usually employed for F:

F(x)=1-exp[-(Ax)a], a«>0 (14)
ph=T(1+1/a}/m

It also is the basic one for seismic risk analysis
in the engineering literature (Cornell, 1986), al-
though a possible alternative is the gamma distri-
bution:

J"(x)=cf:uf""1 exp{ —au/m) du (15)

It is not however considered physically natural.
Prediction of characteristic earthquakes is treated
in Nishenko (1989) by using the lognormal model
F:

F(x)=0(a ' In(x/m) + a/2) (16)

where @ is the standard Gaussian distribution and
a® = Var({In 7). The symbol m in the above distri-
butions denotes the mean of r. According to
Nishenko {1989), typical values of the coefficient
of variation p=o/m (o? is the variance of 1)
belong to the interval 0.25-0.6. These estimates
are based on historical earthquakes and paleo-data.
For this reason we will keep in mind the values
p < 1 mentioned above.

Function (13) is extremely sensitive to the
choice of F. However, when treated within the
framework of the loss function approach the pre-
diction is much more stable. This is borne out by
the following calculations.

The Weibull and gamma distributions behave
similarly, having a single mode when o/m <1.
The hazard functions (13) are increasing; for this
reason y-optimal strategies for any loss function
reduce to declaration of alarm when the *“quies-
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cence”7_ exceeds the threshold k,m. The density
F'(x) decreases when o/m>1. So does r{x),
consequently a y-optimal strategy is to declare an
alarm at once after a large event and to persist
with it until the threshold value 7=k m, unless
the alarm is removed by a next event. The mono-
tony of F’(x) makes models (14, 15) of little
practical interest for a/m > 1.

The lognormal density and its hazard function
have a single mode for all a/m > 0. For this
reason a y-optimal alarm is declared only in the
finite interval: k, <7_/m < k..

The thresholds k., of minimax strategy for
models (14-16) are shown in Fig. 2. They practi-
cally coincide for distributions (14, 15) when o/m
< 1, differing by 0.01 or 1.5% at most. Practically
coincident with these is the lower threshold &, for
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a lognormal distribution for o/m < 0.6, the devia-
tion being [Ak. |<0.03. The upper threshold IT
in the same range o/m < 0.6 is large, 7‘7> 33,
and makes little contribution to the prediction
errors. The threshold }Y is entirely dependent on
the problematical behaviour of model F at infin-
ity. For this reason it is natural in the lognormal
model to consider a slightly simpler y-optimal
strategy involving only a lower alarm threshold
l:,(. (The value of ET is again found from the
condition A = 7.) The threshold is consistent with
k, for (14, 15) in the entire interval o/m <1:
| Ak, | <0.03,

For the practically interesting interval o/m =
0.25-0.6 the thresholds &, and fc? are generally
very stable: 0.75 £ 0.05 (k, = 0.76 for a uniform
distribution). These results point to a stable struc-
ture of the minimax prediction strategy.

The second type of stability is relevant for
prediction results, i.e., for the values of the loss
vy =max(#, 7); see Fig. 2. The values of y for
optimal strategies involving a single alarm
threshold differ within 0.02 or 3% for o/m < 0.6.

Figure 3 presents error curves I' for three F
models (14-16) with the coefficients of variation
o/m=1025, 0.5, and 0.75. The curves are con-
sistent for models (14, 16) in the range 27 > %
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Fig. 3. Frror curves I'= (A, 7) for three models of F(x):

Wetbull (squares); Gamma (asterisks); Lognormal (solid line =

two thresholds, dashed line = single threshold); and the three
values of a/m: 1 =015, 2=0.5, 3=0.75.
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This indicates that the prediction, its structure and
the results are similar for models (14, 15) and a
broad class of loss functions.

Discussion

(1) Statement 4 gives an idea of the optimal
structure of predictions that are local in space.
Locally optimal predictions for natural loss func-
tions form an optimal prediction in the whole
space.

There is a fundamental difference between the
Kolmogorov-Wiener prediction concept and the
one constdered above. In the first case prediction
deals with the best extrapolation of time series
values (e.g. earthquake energy), whereas in the
second case it refers to the best temporal localiza-
tion of certain singularities of this series (e.g. large
peaks). In other words we have a *“ vertical predic-
tion” in the classical case and a “horizontal pre-
diction” in the second case. The hazard function
r(r) is well known as an instantaneous optimal
predictor of a point process in the classical sense:
r{t) gives the unbiased estimate of the number of
events on the interval d¢ with minimal variation.
Statement 2 shows that r(/) is also the main
component of the optimal prediction of the sec-
ond type. As it turned out, the latter is related to
the theory of testing statistical hypotheses. This
explains some analogies of the present paper with
the mentioned theory.

(2) The results of the present work are not only
pure theoretical because hazard function estima-
tion does not seem to be hopeless today. This is
confirmed by attempts of seismologists to estimate
probability gain, PG(£), for a set of precursors
§=(A,,..., A,). If {4} were monitored within
the intervals (1 ~ 7;, 1), then the value PG(£) just
corresponds to the normalized hazard estimator
for the current moment r;

PG(£)=P(N(t+8) - N(t)>0]e,...,¢,)/P;
=r{i)/A
Pe=[P(N(T+8)—N(1)>0)]

where ¢; are precursor indicators in the interval
(-7, 1}, ie, ¢, =1 1if A, occurred, and ¢, =0
otherwise, The following assumption is often used
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to calculate PG(£). Let ¢,,..., ¢, be conditionally
independent, given N(8t), then:

[PG(£)™" = Pe] /(1 - Pe)

= qI1[(PG,(1)™" - Pe) /(1 - Pe)| (17)
where multiplicators:
PG.(1) = P[N(81)>0)e,=1], i=1,....m

are related to those precursors which have oc-
curred in (T, ¢). The factor:

g=T[(PG'(0) ~ Pe)/(1 - Pe)].
i=m+1,...,n
is related to non-occurred precursors in (-7, 1),
where:
PG(0)=(1-PG,(1)p)/(1~p.)
and p, unconditional probability of precursor A4;:
Pr(e=1)=p,. For true precursors PG (0)<1.
Thus computations with ¢ =1 (Aki, 1981;
Granderi and Grandori, 1983) lead to overestima-
tion of the value PG(¢). Conditionally dependent
values {¢;} result in a similar effect. Hence, pre-
diction methods based on formula (17) (Sobolev et
al., 1989), are sensitive to quantity and quality of
precursors { 4, }. The paper of Zhuang et al. (1989)
contains an attempt of expert estimation of r{¢),
taking into account correlations between pre-
Cursors.

N EARTHQUAKE PREDICTION

(5) What is the analogy of Ty, for a collection
of point objects {g} =G. The answer is not
unique. Take the example of total linear loss:

v= [alg)M(2)i(g) dg+ [#(g)B(2) dg

=aAA(G) + B|G|#(G)
where f(g) is the loss for an alarm per unit
space~time, {G| is the area of G, and n(G), 7(G)
is analogous to the errors A, £. Putting a{g) = a,
B{g) = B, we have the ordinary mean characters-
tics A,

#(G) =fGA(g)a(g) dg/A

#G) = [ #(g) dg/IG]
<
where A = fA(g) dg.

The model 2(g)= 4 is acceptable at the re-
search stage, if strong events are a priori permissi-
ble everywhere in G. Otherwise, #(G) can be made
infinitely small by adding aseismic areas. Hence,
when characterizing the method, the choice of G
must be well grounded. One sometimes uses a
different way, putting B{g) = cf\(g), where R(g)
is well smoothed epicentre density for strong
earthquakes. Then we derive for () an alterna-
tive version:

#(G) =f6f(g)i(g> dg/fcr“«(g) dg

which makes sense on the research stage of predic-
tion, until there is no special agreement on the
boundaries of G.
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SUMMARY

The problem of aftershock identification in earthquake catalogues is studied. Some
empirical methods are considered and quantitavely analysed.

Game theory approach is applied to formulate the problem allowing a whole class
of optimal methods of aftershock identification. Each method is optimal depending
on the goals and gives the best trade-off between the number of missed aftershocks
and the number of incorrectly identified ones. Some illustrations of the new
approach to the aftershock identification problem are presented.

Key words: aftershock identification, cluster methods, loss function.

1 INTRODUCTION

Seismic events tend to cluster in space and time. Fore- and
aftershocks represent the most important type of such
clustering. By various estimates the aftershocks contribute
about 30-40 per cent to the total number of earthquakes in
world catalogues and contain significant information on
rupture processes.

Catalogues are usually separated into aftershocks and
mainshocks in order to study aftershock properties or the
fine structure interaction. The more easily identifiable
aftershocks are earlier aftershocks of large earthquakes in
the near zone, i.e., where the rate of aftershock occurrence
per unit time and space significantly exceeds the backgrcund
rate. Otherwise the identification of aftershocks is hampered
by background seismicity and by overlapping aftershock
sequences. The absence of a physical concept of later
aftershocks is the main difficulty for aftershock separation.
Under these circumstances a great number of aftershock
identification techniques exists. However, it is not always
clear how the utilization of a particular method affects
geophysical conclusions drawn from the data.

Below we shall see that even the ideal model of a single
cluster superpesed upon the background seismicity permits
an infinite number of ‘optimal’ methods to identify the
cluster. The choice of a particutar method should depend on
the specific goals of the declustering, but in fact this is
almost never explicitly discussed.

Therefore it is essential to discuss existing aftershock
identification methods together with their goails. As a result,
a goal-oriented approach to the problem will be proposed.
Our main results are the following: a guantitative analysis of
Prozorov's *dynamic algorithm’ of aftershock identification,
a mathematical formulation of the problem of cluster
identification and its solution, both theoretical and practical.

2 AFTERSHOCK IDENTIFICATION
METHODS

Without pretending to give a comprehensive review of
aftershock identification methods, we shall consider the
most popular techniques.

The hand procedure is a visual identification of earlier
aftershocks. It is usually applied for the analysis of large
well-studied earthquakes. The method can use auxiliary
information on fault-plane solutions and fault geometry.
The method becomes speculatory for later and distant
aftershocks, and evidently the procedure needs to be
formalized for data processing.

The window method is the simplest formalization of the
hand procedure. Aftershocks of a mainshock (t, gy, M)
are identified within space—time windows:
fh<t<ty+T, g —gol < D, M<M,, (1)
where , g, M are time, epicentre coordinates and
magnitude, respectively. Sometimes the number of after-
shocks within a window is required to be significantly
greater than the expected number of background events
with M < M,,.

The catalogue can be analysed either in chronological
order or in decreasing order of magnitude. By definition the
initial event is considered to be a mainshock. Elimination of
each mainshock together with its fore- and aftershocks from
the catalogue leads us to the recurrent rule of mainshock
identification. If fore- and aftershock events are identified
simultaneously, then some uncertainty in mainshock
identification arises depending on the choice of mainshock
ordering, namely, by time or by magnitude,

Window method thresholds D and T depend on the
mainshock magnitude, This dependence is iHlustrated by Fig.
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Figure 1. (a) Space and (b) time windows for aftershock
identification according to: 1—Gardner & Knopoff (1974);
2—Keilis—-Borok et al. (1980); 3—Knopoff et al (1982);
4—Prozorov {1986); 5—Molchan & Dmitrieva (by LIR proccdure,
NOAA catalogue, see text); 6—Utsu & Seki (1954). The triangle
marks 1964 Alaska earthquake according to Kanamori (1977).

1 for results from various problems (Gardner & Knopoff
1974; Keilis-Borok, Knopoff & Rotwain 1980; Knopoff,
Kagan & Knopoff 1982; Prozorov 1986). On the whole, the
spatial window sizes are rather similar. For M, =6 they are
of the order of the accuracy of epicentre location in the
world earthquake catalogues. For M,>6, the spatial
windows are in agreement with our determinations of
aftershock zone maximum semi-axis (see below). However,
all the thresholds are substantially higher than the estimates
by Utsu & Seki (1954} made for the areas of early
aftershocks:

logS=M—4, Mz=6 2)

(in Fig. 1 this relation is reduced to the largest semi-axis of
aftershock zone under the assumption of its ellipticity with
aspect ratio 2:1).

Authors’ intentions and the choice of window sizes are to
some extent interrelated. Gardner & Knopoff (1974)
examined whether the mainshock flow is Poissonian. To do
this, they used the largest thresholds D and 7. That allows

interconnections between events to loosen as much as
possible. The next simple operation such as elimination of
spatial coordinates (time projection) leads us to a
well-known mathematical model: summation of weakly
dependent (here thinned) flows of events. Under very
general conditions the resulting flow ought to be Poissonian
(see, for example, Daley & Vere-Jones 1988).

In earthquake prediction Keilis-Borok et al. (1980) used
lower time thresholds. This is natural, because for
forecasting purposes we need to keep the prediction
properties of the catalogue. In turn the influence of
remaining aftershocks on prediction requires careful
analysis, especially when dealing with the prediction of
double earthquakes.

Knopoff er al. (1982) tested the hypothesis of equality of
slopes of foreshock and aftershock frequency-magnitude
curves. Their results show that this hypothesis becomes
more acceptable as the size of the time-space windows
increases. This may be due to the increased share of
background events in samples with larger windows.

The window method is very simple and suitable for data
processing, but does not incorporate specific aftershock
location features, €.g., offset of the aftershock zone centre
with respect to the mainshock epicentre. As can be seen
from Fig. 2, the offset for M,=6.5 is of the order of
3-30km, while D =50km is recommended for the spatial
window size in Keilis-Borok et al. (1980). The result may be
that using moderate spatial windows can lose a lot of
aftershocks, thereby producing false alarms in prediction.

Cluster methods define the notion of nearness of events
(metric d) and nearness of clusters of events in space and
time. In such a way the whole earthquake catalogue can be
divided into non-overlapping clusters. The largest event in
each cluster is a mainshock by definition and the other
events in the same cluster are its fore- and aftershocks.
There is a wide variety of near-event definitions, as well as
of methods for utilizing physical information.

Formal methods examine earthquakes as homogeneous
space-time objects x = (g, r} which should be divided into
well-separated groups with high inner concentrations of
elements. It is a typical problem of cluster analysis {(see for
example Granadesikan & Kettenring 1989). One of the
oldest methods, Single-Link Cluster analysis (SLC), is now
used in seismostatistics (Frohlich & Davis 1985; Davis &
Frolich 1991a, b}, The SLC procedure connects elements of
the original set by a chain of minimum length (length is
measured in the metric ) and then removes all the edges
longer than d,. The result is to split the chain into isolated
points and clusters. There are some optimal properties of
such clustering, e.g., the shortest distance between any two
points of different clusters (intercluster distance) is longer
than the intracluster distance:
d(K}= max min d(x,, x;)

x el xjek
Davis & Frohlich (1991a,b) used the following form of
metric d for earthquakes:

d*=|g, —gl*+ 1t — 1%, (3

where ¢ is a parameter. The metric does not deperd on
magnitude and is invariant under shifts in space and time,
which does not seem natural in view of strong spatial
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Figure 2. The offset of mainshock epicentre relative to the centre of
the aftershock zone as a function of mainshock magnitude M, = 6:
(a) distance r* (km) and (b) the minimum angle ¢* with the longer
axis of the aftershock zone. Catalogue NOAA (1964-1980) is used;
aftershock zones with aspect ratio =2 and with aumber of
aftershocks =20 are shown.

inhomogeneity of seismicity. This circumstance should be
taken into account when cluster elements are interpreted as
foreshocks and aftershocks. Davis & Frohlich (1991a)
showed that the SLC method can be equivalent to window
methods in an integral sense, i.e. the methods can give the
same ‘score’ S when tested on model examples: S =the
fraction of afterevents which are linked to their parent
primary event + the fraction of primary events which are
correctly identified as such (i.e. not misidentified as
aftershocks). Unfortunately the integral index § does not
characterize aftershock identification quatity for large and
small earthquakes separately. The authors did not manage
to fit the parameters (c, d,) so that the SLC method could
work for different ranges of mainshock magnitude equally
well. This can be seen from the example of the 1964,
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M, = 8.4, Alaska earthquake. The SLC method divides later
aftershocks of this earthquake into several clusters, two of
which are rather large, If the parameters (c, d,,) in the SLC
method are fixed and the cut-off magnitude in the catalogue
is diminishing then all the events of the region may be
identified as a single cluster. This is dissonant to the practice
of using low-magnitude aftershocks when determining the
aftershock zone. So if the cut-off magnitude diminishes, the
SLC method faces two problems: increasing of computer
calculations and forced redefining of the notion of cvent
‘nearness’ (see Davis & Frolich 1991b).

Non-formal methods attempt to start with a model and
then to identify aftershocks in the context of that model.
Usually fore- and aftershocks are considered as chains or
branching trees of causally connected events with given
statistical properties. Let us consider Reasenberg's (1985)
method which developed from the work of Savage (1972).
Here the window method is used to define a local nearncss
of events, the spatial threshold 4 depending on magnitude
according to the formula

log d(km) = 0.4M, — 1.943 + k.

This relation follows from a simple circular fault mode! (of
radius d) in which the seismic moment for static cracks is
defined by Keilis-Borok's formula: 16/7 Aod® (see
Kanamori & Anderson 1975), where Ao is the stress drop.
Using the empirical estimate Ao=30bar and the
moment-magnitude relation, we get the above dependence
with k£ =0,

To link each next event (¢, g, M) with an existing cluster
we have to evaluate its spatial and temporal proximity to the
cluster. Spatial proximity to a cluster is defined by proximity
either to the largest event (with magnitude M,) or to the
last event of the cluster (with moment 1*). The values of the
spatial proximity parameter 'k’ for these two cases are
different (k = 1 for proximity to the largest event and &k = 0
for proximity to the last one). Time proximity is defined as
follows:

t—1* <min(r,, 10 days).

The threshold t, taken from Omori's relation depends on
time as foliows. Let A(u|M,) be Omori’s law for a
mainshock of magnitude M, where u denotes the lime
elapsed since the mainshock. For a Poissonian aftershock
flow the time of the next event follows the distribution

Plt>t*+ 1ty =exp [— J:A(u +tr =1, | M,) du]

where £, is the time of the largest event in the cluster. Using
the condition p(t>¢*+1)<r the value of 17, can be
obtained:

f Mu+t*—t |M)Ydu=~Ing,  £=0.05.
0

According to this principle each subsequent event is linked
with the largest event or with the last one in each cluster
which has formed until the current time. Overlapping
clusters are joined.

Reasenberg (1985} and Reasenberg & Jones (1989)
considered aftershock intensity to be independent of the
point in space, i.e., Omori law and the average number of
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aftershocks A (M,) are the same for main events of a given
magnitude M,. In particular, the time—magnitude distribu-
tion of aftershocks for California is

A.(.t, M l MO) = 10a+b(Mn—M)(r + ‘0)—P' M < Mu (4)

whers a = —1.76, b =0.91, t,= 0.05 (days) and p = 1.07.

The cluster procedures are free from a priori assumptions
on the spatial aftershock distribution structure, so they are
able to reveal aftershock migration provided the background
seismicity is low. On the whole, the advantages and
disadvantages of any method depend on the final goals of
research. It can be surmised that in Reasenberg’s method
and declustered catalogue has to look like an uncorrelated
homogeneous Poissonian random field. Unfortunately such
goals do not limit the number of false aftershocks.

Modelling and statistical estimation. We mean here
statistical methods which do not use subjective declustering
for studying fore- and aftershocks (Vere-Jones & Davies
1966; Kagan & Knopoff 1976, 1981; Ogata 1988). In this
case the seismic process is described by a model and the
parameters involved are estimated by statistical methods,
for instance, by means of maximum likelihood. This
approach seems to be the most natural, though its
possibilities are limited by studying general cluster
properties only. Trying to describe the process in detail we
are confronted with an estimation problem involving many
parameters. As a result, the domain of the maximum
likelihood becomes very wide and the problem becomes
unstable (Kagan & Knopoff 1976).

3 PROZOROV’'S ITERATIVE METHOD

Consider one more method (Prozorov & Dziewonski 1982,
Prozorov 1986; Prozorov & Schreider 1986) which plays a
significant role in further generalizations. This method is
largely a formalization of the hand procedure. It
automatically finds the spatial scatter zone for aftershocks
and events are identified until their intensity becomes
comparable with the local background seismicity.

In Prozorov's method mainshocks are considered in
decreasing order of magnitude, obeying time chronology
when the magnitudes are equal. For the fixed mainshock
(to» 8o» My), the first thing any method does is to find
a portion of statistically significant aftershocks. This is done
by using a spatial window § of size D(M,) (see Fig. 1). An
event (1, g, M), t =1, g € § is identified as an aftershock if

n(SA) = RA(S) A ()

where n(SA,) is the number of events within the 5S4,
volume, |A,| is the length of the time interval A, =
[to + alt —t5), 1], A,(S) is the expected number of
background events within § per unit time, and R is a
threshold varied by the author in the range 3 to 100. The
quantity R —1 is a kind of the ‘signal/noise’ ratio, since
n(SA,) includes both aftershocks and background events,
while A, |A,| estimates background seismicity in SA,; @ is a
parameter within the range [0,1]. The choice a#0 is
preferable. Identification of an event should depend on the
intensity at the current moment. Clearly the quantity
n(SANAL = A, estimates the current intensity better when
0< & < 1. The bias for a =0 and the variance for o =1 are
large.

Preliminary aftershock identification is terminated as soon
as condition (5) fails or when the identification time exceeds
the threshold T:

M, 4 5 6 65 8
T(years) 1 2 3 4 5

If the number of preliminary aftershocks is greater than 10,
then the aftershock zone § is updated. The new zome § is
given by the aftershock concentration ellipse:

Se={g:p*=(g —£)B (g —8.) =K%}

where {g) are epicentres, §,=Yg/n is the centre of
previously identified aftershocks; B=Y(g.—8.) (g —8.)/n
is the empirical covariance matrix for the sample {g;}, and k&
is the dimensionless size of the ellipse. Aftershock
identification goes on in several elliptic zones of different
sizes k;. Owing to this, the aftershocks ultimately belong to
the pyramid V = {5, At} where a smaller base is generaily
combined with a longer time interval At;. Practically Vis a
cylinder because the time interval A, grows slowly with
decreasing zone size k.

If aftershock epicentres are distributed according to a
Giaussian distribution, then the size & can be derived from
the prescribed confidence level ¢, = P{g & 5.} of zone §,.
When g, and B are known, the statistic p” obeys a X
distribution, and so k2=2In1/e. Under the Gaussian
hypothesis we can also take into account the variation in §
and B (see Molchan & Dmitrieva 1990). Let n be the
number of observations on which g and B are based, then
2p%(n — 1)/(n — 2) obeys Fisher’s distribution with (2, n —1}
degrees of freedom. Therefore we get

e (n—17

- 2(n-1) _ 1y —1
ki=(e 1) —

The values of k typically used (2, 3 and 4) approximately
correspond to (0.1, 0.01 and 0.001) confidence levels for
n >40. The relation between k and & is useful in choosing
the maximum base of pyramid V. The smaller values of & in
Prozorov's method are not substantiated.

Prozorov's procedure takes into account spatial aftershock
localization and allows us to assess a posteriori (but not to
control) the number of false aftershocks. Unfortunately the
method is very sensitive to the value of R (Prozorov 1986).
High values might lead either to the division of an
aftershock sequence into separate clusters of earlier and
later events, or many aftershocks might be lost,

The precise distribution of the number of aftershocks (v)
identified by Prozorov’s method is given in Appendix A for
model examples. Relations between the distribution of v
and the distribution of population in a special Galton—
Watson branching process, came to light unexpectedly. On
the other hand, this result allows the following practical
conclusion: let A.{¢} and A, be the intensity of aftershock
flow and background seismicity in the vicinity of mainshock
epicentre at a moment t. Then Prozorou’s procedure of
aftershock identification is soon terminated when Ry(f) =
[Aa(t) + A,)/ Ay has reached R/2.

The empirical results by Prozorov (1986) corroborate this
statement: the decrease of threshold R by a factor of 5
(R, = 100, R, = 20) caused the aftershock identification time
(t) to increase by a factor of 5 or 6 (t;,=1-3yr,



t=10-12yr). In fact, according to the statement,
Ro(t)):Ry(62) =(R,/2):(R,/2). Under the Omori law
assumptions, A ,(¢} and R,(f) are proportional to ¢~!. Hence
Ry:Ry=t;:1,, in agreement with Prozorov's experience.
The same arguments leads us to a useful estimate of R:

R =2R,(t)10/1,

where Ry(t,) is the empirical signal-to-noise ratio for some
time t,, and t, is a rough estimate of aftershock duration.
For instance, when t,=10 days, we derive from our data
Ry(to) = 10>-10° for M,=6 mainshocks. Hence R = 20,
when t, = 10°-10 days. If the number of background events
is proportional to the area of the zone, while the number of
aftershocks and the aftershock area are proportional to
10°* [see below and (4)], then R,(z,) should be weakly
dependent on mainshock magnitude. For low M, the last
conclusion is complicated by the problem of epicentre
location accuracy.

4 NEW APPROACHES TO THE
AFTERSHOCK IDENTIFICATION PROBLEM

QOur basic assumption is that aftershock sequences are finite,
the aftershocks concentrate in space and time and are mixed
with background seismicity. For this reason an error-free
aftershock identification is an impossibility. Larger space—
time aftershock windows will capture false events (both
background seismicity and aftershocks of different main-
shocks n.), while smaller ones will lose true aftershocks
(ra). A trade-off between the two kinds of errors
(AZ=En}) could be a natural basis for rigorous
formulation of the aftershock identification problem.

The total number of aftershock events with M > M_, for
all mainshocks of magnitude M, seems to be weakly
dependent on M, for M,>M,.. +2. [To see this, recall
that, according to (4), the number of aftershocks for a
mainshock M, is proportional to 10°% -1, A=M,~ M,
while the number of magnitude M, events is proportional to
107" Their product is therefore weakly dependent on
M, provided b= f and M,+ M, is large.] However, the
aftershock sequence of a larger earthquake is more
numerous and is more easily identifiable, and hence has
higher priority in aftershock studies.

We consider the aftershock identification problem locally.
In particular, let us consider an ideal situation where some
space-time volume GT contains a mixture of independent
background events and the aftershock sequence of a known
mainshock (M, g, fp). Usually such a priori localization is
assumed, either explicitly or implicitly, in many informal
methods. How is one to identify the aftershocks in this case?

To solve the problem we have to introduce a measure for
evaluating the quality of aftershock identification, e.g. a
‘loss function’ y which depends on errors of the two kinds
and increases in each argument y =f(A}, AZ). Then the
identification problem is reduced to finding the rule that
minimizes y. This localized problem is solved below. Our
solution is the most complete in the case of Poissonian
background seismicity and aftershock flow.

Two loss functions seem to be reasonable: y = aA} +
BAL and y = max (eA}, BAZ).

The respective oplimal principles of aftershock identifica-

Aftershock identification 505
tion will be called the game theory principle:
aAj + BAL = min (6)

where a and § are losses for a missed aftershock and for an
event identified incorrectly as an aftershock; and the
minimax principle:

max (A}, BAZ) > min. (7)

When a =g the minimax principle is free of parameters
(@, B) and leads to compensation of two kinds of errors:
AX=AZ, that is, the mean number of identified events
equals the true value. When a s 8 the condition (7) controls
the error ratio: AJ/A, = a/f. If a=0 (B = 0) all the events
of the region are identified as aftershocks {tnainshocks).

Statement 1. Poissonian case

If the background and the aftershock flows are Poissonian
with intensities An(g, ¢) and A (g, 1), respectively, then the
y optimal decision rule of aftershock identification *r loss
functions {6) and (7) takes the form

aftershock, ifLg t)>c,

background event, if L(g, 1) <c, ®)

(g, 1) = {

where L =A,(g, 1)/Ay(g.1). For the pame principle,
¢ =f/ea; in the minimax principle ¢ is given by the equation

aAy = BAL.
In particular, let T = (0, =), G is 2-D plane and
Aulg ) =An,  Aale, )=ALpR)(1) (9)

where A, = A (M) is the average number of events in the
aftershock sequence of a mainshock of magnitude M, f)
is the Omori law in normalized form, ¢ >t

1O=6h) P2 s, (10)

{

and p(g) is a 2-D Gaussian distribution of aftershock
epicentres

p(g) =2 det B) 'exp[-r(g —g,)/2] (11)

where r*(g) = g'B~'g is a quadratic form, g, is the centre of
aftershock dispersion, and B is the covariance matrix of the
aftershock sample.

Then the y-optimal method identifies an even as an
aftershock if

I/Zrz(g—g*)+pln!/!0<c, £, (12)
In the case of (6),
ap—1A,
c=¢ =ln(———ﬂ),
o 3 2 A (13)

where A, =1, |5,} A, is the average number of background
events within the dispersion zone §,={g:r(g—g,)<1}
during time period ¢,. In the minimax case ¢ is found from
the equation

ST/ S VR
c+ln(1 exp(c/p)—l) co—Inp. (14)
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General case

Let background seismicity and an aftershock sequence be
represented by a general mixture of two flows with
intensities described by (9), where f(1) =0, [ fdr=1, and

plg) = (2n det B 'ylr(g — g.)),

where y(x)=0 is a decreasing function normalized by
I5w(x)xdx=1. We restrict ourselves to the class of
aftershock identification rules ¥ which classify as after-
shocks the events from the domain

{(g: r):3"(8'_3:‘:)(]‘:(:)} (15)
where u is an arbitrary non-negative function. Then rule (8)
belongs to %, and is y optimal in this class with respect to
Joss functions (6) and (7). In particular, for ¥ = exp (=x°/2)
and f in the form (10) this rule leads to criteria (12-14).
Note that:

(i) The algorithim by Reasenberg (1985) is based un the
Poissonian distribution of events in space and time. But the
first part of the statement and its proof show that under
these conditions it is impossible to improve an aftershock
identification method by means of dynamical improvements
(sequential analysis).

(i) Procedure (8) corresponds to a broad class of
identification rules depending on the goals and a priori
assumptions for aftershock distributions. The simplest
assumptions are given by the intensity parameterization (9).
It involves marginal distributions of aftershocks in space
(elliptic dispersion) and in time (Omori law}. Naturally, the
closer model A, (g, £} is to reality, the more effective is the
procedure. In particular, this model can easily incorporate
aftershock migration, diffusion or a more complicated shape
of Omori law, provided those phenomena are typical or
important for the study of aftershocks in general. (For a
proof of statement 1 sce Appendix B}.

5 PRACTICAL ASPECTS OF THE METHOD

The new approach proposed above is based on the
modelling of aftershock and background intensities and on
their ratio. We shall call it the local intensity ratio (LIR)
method. To use the LIR method, the following parameters
of seismicity should be estimated: the background rate
around the mainshock A,, the average number of
aftershocks A, the aftershock centre g, and covariance
matrix B, and the parameter p in the Omori law. Prozorov’s
procedure has encountered these problems, so it would be
natural to rely on the experience gained. This consists in
iterative refinement of the parameters.

The determination of mainshocks is based on the
magnitude ordering: the largest event in the catalogue is
always considered as a mainshock. After this mainshock is
eliminated from the catalogue together with its fore- and
aftershocks then the next mainshock is defined to be the
largest event. The background intensity is determined
preliminarily from the entire catalogue and then refined
using the mainshock catalogue by averaging over temporal
and spatial cells depending on the region. The first iteration
for cach mainshock identifies aftershocks in a preliminary
way by any simple method, for example, by means of

moderate windows or by the LIR method itself with a priori
parameter values. For example, the a priori parameters
could be taken as follows: (1) circular scattering
[B=D(M)I, where I is the unit matrix] around the
mainshock (g =g,); (2) the average number of aftershocks
taken from

As= AA(Mp) = 10 Mo~ Mumin)b

[see (4)] where b is the slope parameter for the
frequency-magnitude law, and M., is the cut-off
magnitude; and (3) fixed Omori parameter p =p,, say
po=1.1, until there are enough aftershocks for its
estimation,.

Preliminary aftershocks should be significant [the test of
significance is standard for the Poissonian distribution of the
number of events in the area (e.g., see Molchan &
Dmitrieva 1990)]. If there is a sufficient number of
preliminary aftershocks (n,>10) then g, and B are
estimated, A, being set equal to n,. All the parameters of
the aftershock identification procedure (12) are revised after
each iteration. Therefore the matrix B is recalculated and
the aftershock dispersion centre g, is found to be displaced
relative to the mainshock epicentre. A great number of
aftershocks maintains statistical stability of paramcters g,
and B. Therefore, diminishing of cut-off magnitude M,
ensures stability of the LIR procedure and enlarges scope
for its application.

This procedure requires five to seven iterations to become
stable when dealing with mainshocks of M >7.5, but for
lower magnitudes three or four iterations are sufficient.

One should be careful at the first step when applying
centred windows, as this can cause mistakes in determining
the aftershock centre. The elliptic zone of aftershocks
corresponding to £ = 0.001 is used to isolate the hypothetical
aftershocks from different clusters.

For each mainshsock the LIR procedure identifies
significant foreshocks within the aftershock zone as
described by Molchan & Dmitrieva (1990). Because of scant
foreshock sequences it is impossible to construct a
symmetric procedure for their identification.

6 PRELIMINARY ANALYSIS OF THE LIR
METHOD

Below we are interested in LIR stability and in how far the
properties of minimax aftershocks are consistent with actual
experience. Aftershocks are identified by minimax LIR
procedure with a=f$. Recall that in this case LIR
procedure does not depend on the weights (@, B} and leads
to unbiased estimation of Ny = Na(Min)-

We applied the minimax LIR method to the NOAA
world catagloue (1964-1980, M =4, depth < 100 km) and to
the regional catalogue (Earthquake Hypocentre Data,
California NEIC, File, West US, USGS-NEIC, 1963~
3.10.1990, 22°-56°N, 140°-100°W, the total number of
earthquakes is 16380). The LIR method is used when the
number of evident aftershocks is not less than 10. In the
NOAA catalogue, mainshocks of M,=6 fulfil this
requirement while in the regional catalogue it is true for
M,=35. The results for these mainshocks are presented in
Figs 1-5, 8 and 9. We shall summarize the following
conclusions.



103 (a)
-
- 107 .
1l 3
a N -
S i .
'.
zq: 102 . 1."
3 -,
- » ’
- -
—‘
P
10 T T TT7TTT T T T TTTTIT T T TTTrTTTm
10 10° 10? 10
NA for p=1.5

Aftershock identification 507
103 (b)
'
»
. .‘0 F

10 e R

— » . " e " -
. » M . :. o
'|-|- * " . = /
o . >
. 1o ”
o L d
= £
i ' /
L]
10
‘-
-
1 T T T¥FIny T T T 1T T T ¥ TITT TP
1 10 0 10° 10

T, for p=1.5

Figure 3. (a) The number N, and (b) time duration T, of aftershock sequences identified by the LIR method with the Omori paramcter

p = 1.1 and 1.5 Catalogue NOAA (1964-1980), M, = 6.

(i) Diminishing the Omori parameter p from 1.5 to 1.1
naturally leads to longer aftershock sequences. As follows
from Fig. 3(a), the number of events in aftershock
sequences does not increase significantly, but much later
events appear to be identified as aftershocks. This
conclusion is of interest, as it throws light on the stability of
the errors AL

{ti) The aftershock zones obtained by the minimax LIR
procedure are in good agreement with the hand techniques.
For example, Fig. 4 presents aftershocks zones for three
large (M, ~7.5) South Kuril earthquakes as determined by

Balakina (1989) using the ISC data. The zones are in good
agreement with 95 per cent clliptic zones, given by the
minimax LIR method for the NOAA data.

Fig. 5 presents an aftershock sequence, identified for the
1964 Alaska earthquake (M, = 8.4). In contrast to the SLC
method which divided the aftershock process into several
clusters (see above), the LIR procedure automatically
identified the entire aftershock sequence. The sequence
includes 801 earthquakes with M =4 (according to NOAA
data); the last aftershock time delay is equal to 942 days; the
95 per cent ellipse bounds the aftershock arca =

Shikotan, 1969 Tturup swarm, 1978
45
a5
aa as
= qq
=
D
3 43 - }/ ag
< a3 ///
- v
-
42 \\"“-.__.—P"'/ /
a2 a3
a1
146 147 148 149 1s5p 145 146 147 148 148 143 159
LORGITUDE
a b ¢

Figure 4, Comparison of the hand procedure (dashed line) with the LIR procedure for South Kuril earihquakes: (a) Shikotan carthquake,
1969 August 11, My =7.9; (b) 1973 June 17 earthquake, M, =7.7; (c) Iturup swarm, 1978, M, = 7.5. Mainshocks and aftershocks are mapped
by asterisks and dots, respectively. Aftershock zones of 60, 90, 95 and 99 per cent confidence level are shown by solid lines. LIR and hand
procedures (Balakina 1989) are based on NOAA and ISC catalogue respectively,
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137 000 km? (log Q = 5.14). Kanamori (1977) gave a similar
empiricat estimate (log Q = 5.15). These examples show that
the LIR method is flexible and readily adaptable to local
seismicity features and to mainshock magnitude.

The similarity of aftershock zones identified by the LIR
procedure to those outlined with hand techniques becomes
understandable from Fig. 6 which presents aftershock areas
estimated by whole aftershock sequences and by aftershocks
taken during 10 days after mainshocks moments. The
accordance is unexpectedly good, though in 1/3 of the cases
10 days aftershocks contribute less than 60 per cent to the
total volume of minimax aftershock sequence. As they are
easily visualized, initial aftershocks are fixed by hand
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Figure 6. Arcas of 95 per cent aftershock zones: for whole
aftershock sequences, Q, and for aftershocks of the initial 10 days,
0 (10 days) (NOAA catalogue).

techniques. In fact we see that 10 days aftershocks are
sufficient to estimate the future aftershock area.

(iii) The regional catalogue of the western US (see
above) allows to analyse the influence of the cut-off
magnitude M, on the results of aftershock identification.
We selected 22 aftershock sequences with mainshocks
M,=5.3 by two versions of the catalogue (M, =3 and
M...=4). Two contrasting examples, the 1983 (M,=6.7)
Coalinga earthquake and the 1983 (m,=6.2, M,=7.3)
Borah Peak (Idaho) earthquake, are shown in Figs 7 and 8.
When diminishing M,,,;, from 4 to 3 the Coalinga 93 per cent
aftershock zone changes its orientation and becomes two
times greater in linear size. Such instability of the zone is
due to the fact that weak aftershocks here are not in good
accordance with the elliptic dispersion model. Conversely,
the 95 per cent aftershock zone for the Borah Peak
earthquake preserves the orientation and becomes less for
M., =3 due to the increasing of the statistics volume.

These examples illustrate a general situation for the 22
considered aftershock sequences. When changing M, from
4 to 3, the linear sizes of aftershock zones (K=VrQ3/Q4,
where O, is the zone area for M, = M) increase/decrease
by not more than a factor of 2.2. The values of x as a
function of mainshock magnitude are presented in Fig. 9.
The value of x depends on completeness of registration:
cases with deficiency in low magnitudes are specified in Fig,
9. Remark that the shapes of the frequency—magnitude law
for aftershock sequences are similar to those for mainshocks
within the same areas.

(iv} As has been mentioned, the aftershock concentration
ellipse centre is offset relative to the mainshock epicentre
(Fig. 2a). The offset increases with mainshock magnitude
and is comparable with the source dimension. However, the
offset direction relative to the onger aftershock zone axis,
g*, is complete random (Fig. 2b). Fig. 2(b) presents
representative aftershock samples with N, =20 (NOAA
catalogue) which form zones with aspect ratio =2:1.
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low magnitudes. C and BP mark the Coalinga and Borah Peak
earthquakes respectively.

Following Das & Scholz (1981) one might expect that the
distribution of ¢* is concentrated near zero, i.e., the
mainshock epicentre is predominantly in line with the longer
axis of the aftershock zone. Our results obtained by the
minimax LIR method are in contradiction with this
assumption,

(v} It is a common belief that the number of
aftershocks NA(M) and aftershock zone area Q A(M) grows
exponentially with mainshock magnitude. This is confirmed
by Fig. 10 (NOAA catalogue, M =4). Figs 10{a) and (b)
show the relationship between respective exponent values
By and B, for the two quantities. The number of
aftershocks per unit aftershock area for the 95 per cent level
(see Fig. 11) shows a slight negative trend with magnitude,
Bn — Bo =0.19. We estimated S, — B, under a Poissonian
distribution of N, taking into account the scatter in
magnitude (o, =0.2) and in log (Na/Q4) (see Appendix
C). The scatter in log (N./Q,) is large and should be
analysed in detail for each region separately in order to test
the interesting hypothesis By = B of the self-similarity of
the seimic process. So far, we can say that our data for
M = 6-7 and M > 7 are fairly uniformly distributed over the
globe, making the decisive effect of any one region on the
trend (Fig. 11) unlikely.

7 CONCLUSIONS

The definition of aftershock events, especially of later ones,
is fuzzy and often governed by the problem under
consideration. Consequently, before comparing different
aftershock identification methods we should fix both the
goals and the definitions. In the present work we give
preference to hand techniques and the well-known relations
for aftershock distribution in space and time,

Aftershock identification is formulated as a problem of
minimization of a loss function y associated with the number
of missed aftershocks and the number of background events
erroneously identified as aftershocks. The loss-function
approach produces a set of aftershock identification methods
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Figure 10, (a) The number of minimax aftershocks Na {=20) and
(b) aftershock zone area 0, {ellipse of 95 per cent confidence level)
as a function of mainshock magnitude (NOAA catalogue,
1964-1980).

(LIR methods) depending both on the loss function and on
the aftershock distribution model assumed. LIR methods
are very simple and well adapted to local seismicity. The
methods could be of value for idenification of large
aftershock sequences localized in space and time. In these
cases it is natural to identify fore- and aftershock events
simultaneously.

Sequences with high ‘signal-to-noise’ ratios usually follow
larger carthquakes. For this reason, applications of any
aftershock identification method are restricted by the
mainshock magnitude range. Unfortunately this cir-
cumstance is not discussed in the literature. As a resuit,
different phenomena can be confused, say, real aftershock
events and earthquakes corresponding to local interaction at
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the stage of carthquake preparation. But different
phenomena require different methods of investigation.

Finally we would like to emphasize unexpected parallels
in two totally different problems: aftershock identification
and earthquake prediction (see Molchan 1991). In both
cases only the loss-function approach permits one to
compare different algorithms. The solutions of the two
problems appear to have much in common and are derived
by means of hypothesis testing theory,
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APPENDIX A: A QUANTITATIVE ANALYSIS OF PROZOROV'S METHOD

Let {1,} be a sequence of events in the area § after the mainshock t, = 0. Prozorov's method with parameters (&, R) identifics

{t; -+ -1,} as aftershocks if

A(t) = RA,,

l=i=yv,

(16)
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and the inequality is broken for i =v + 1. Here
Iy=#{a=y=0}/t-a), O=ea<l],

is an empirical estimate of the intensity of the point process {;} for moment ¢ and Ay, is the rate of background seismicity in the
area S. The intensity of aftershocks is changed weakly after a short time period. Therefore it is natural to analyse the method
in the simplest situation when the intensity of {t,} is constant.

Statement 2

Assumne that 2 mixture of two Poissonian flows with intensities A, and 1, is observed in the area §. Then Prozorov’s procedure
with parameters (a, R} will classify a random number of events v with the distribution P(v=n)=p,(u), n=0, to be given
below. Here p = Ry/R, Ry=1(AA + A,)/A, and A,/A, is an actual ‘signal-to-noise’ ratio.

In the case & =0, the random quantity v has the following distribution:

_[p(n +D]" ”"HM_el_u (ne!H)" 3
P 1y MY, e L an

When u > 1 the probability p.# 0 is given as a root of
pu+in(l=-p)=0, 0<p<l. (18)

In the case o = 1/2, the probabilities p,, and p, are given by (17). p, and p, are

p2=0.5u exp (~2u)[1+ 4 — exp (=2u)),

19
pa=0.5uexp (~2u)[(1 + p)/2 + 1?3 — (1 + 2u ~ 4p?) exp (—2u)/2]. (49

Note that:

(i) It is interesting that (17) is also the distribution of the Poissonian population with parameter p. By definition this
population starts from one element and consists of offspring generated at all steps of reproducing: each element independently
generates a random number of elements which obey the Poisson distribution with parameter u. Each element generates its
offspring only once.

(i) Asymptotics of the type (17) for p =1: p, «n~% & =3/2, are universal for critical Galton—Watson branching processes.
It was used by Vere-Jones (1976) to estimate the b-value (b = 0.75} in the freqeuncy-magnitude relation for rock fracture. An
element was associated with a microcrack and the population with a crack, the population size being proportional to the total
fracture energy.

(i) It is convenient to analyse distributions (17, 19) by means of cumulative probabilities P(v = n) shown in Table Al for
a=0 and 0.5. To derive practical recommendations from this table we should keep in mind that in reality the aftershock
intensity A, signal-to-noise ratio Ry(r) = Aa/A, + 1, 4 = Ry/R constantly decreases and that Prozorov’s procedure with & =1/2
constantly neglects aftershocks from the earlier half of the current time interval. Therefore, the distributions of v can
characterize the increment of the number of aftershock events under varying conditions.

As follows from Table Al, the distributions of v with & =0 and 1/2 are close when R/Ry> 5. For a =1/2,

P(v >3) =35 per cent, R/R,>2.

Table Al. The distribution P{v =a}. One hundred per cent of the number of aftershocks for
Prozorov's method with various values of threshold R (columns a and b correspond to
parameter a =0 and a = 0.5 respectively).

Normaldized t hreshold R /Rao*
n 1 2 5 i0 15 20

1 63 63 39 39 18 18 9.5 9.5 6.4 6.4 4.9 4.9

2 50 50 21 21 4.7 4.7 1.3 1.3 .6 .6 L35 .35
3 42 37 13 10 1.4 1.2 .22 .18 .07 .C6 .03 .02
4 37 28 8 5 .3 .3 .04 .02 .008 .005 .003 .Q02

* Ry — 1 is actual ‘signal-to-noise’ ratio.
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Proof: the case a = 0, equation (17)

Let 1y, 4;, 1, . . . be the realization of a Poissonian process with intensity A=A, + A,. According to (16) the number of events
v which were identified after the moment t; =0 is equal to n, if

-y <C1, ‘ 12<(_‘2, e i'tn<cm a1 >'f"r:+1

where

€, = nfAR=pn
>
and
Plvza)=F,=Pr{. t<c,,...,.1,<c,}.

Suppose for the moment that {c,} are arbitrary, ¢, <¢; 4. Then

Fn=f A" ex (—l x,-)d" :
op(-13x)a (20)
where

A,,-—»{x,->0:.rl<cl..l,...,.rl+---+xn<cn‘ }.

Integrating over x,, leads to

Fo=F_ —e*n= (1)
I, = A"d"x. (22)
From (21),
Pur=F,_ = F =e =17y (23)
then
Fo=l—e™™ - memtoy L
From (20),
limF, /A" =7, A=, (24)
Then from (24) forall 1=p =n
g, - (Cip!)lfp—n . (sz—!,)sz_2 ————— (_1)1’(;_‘!);)10 =0, (25)
where J,= 1. )

Now consider ¢, = un and J, =J, when g = A, From (22) it follows that
Jo=uliyd,

We now verify that J;D= (p + 1y /(p + 1)] Substitute J, in (25). Multiplying by (p + 1)! we have

p+1

,:S Cholp+1—ky(-1) =0
=0
ar
& k 1 k
CkP~ -1y =0.
,Z:’o £ ( )

The last sum is (d/dx)’ "1 - €*Y’|, o It is equal to zero, since (1 — e’y = 0(x"), x> 0.

Probability p* = P(v =)
From the random walk theory (Feller 1966) it follows that p* =0, when u<1. Tndeged - .- , We have

p‘=p{max (ty+---+ r,,)<0]
vandom varcables .
where 1, are indcpchnden'ﬂ@ilh density e™¢*#, x = —p and mean 1 — > 0. Hence (Feller (966} p¥=0 i.¢
2 p.(w)=1, p<l (26)
n=0

When u # 1 the elements of the series decrease faster than the geometrical progression. Thus (26) is true for u = 1 (because of
the continuity of the series), i.e. p* =0 when u =1,



| 33

i N

514 G. M. Molchan and O. E. Dmitrieva

The function y = ge™* is unimodal with mode g =1, i.e., two values of y correspond to a value of y (4 <1 and p*>1). By
virtue of (26}, when u <1

U=, p(wp= E [y 'a, = Z " a, = Z Palu"Iu*.

n=0

Hence

S p ) =pht, w1 o7
Values u and u* are related by |

pe P =pure

If p* = p(v = ), then 1—p* = u/pu* and (27) leads to

1
1-p*=exp(—p*u*) or p’=1/p"ln1_ p

Cumulant function of v

w(@) =lnEe = 2( o)"

K
k=l k! !

where x, are cumulants of v. Let 4 <1. From (26) we have

e*= 3 (ue™)a,, a,=(n+1)"/(n+1)!

n=0
and
eVi®rve z (.uc—(w*ﬂ))nan = gFl8)
nz=0
if

Y(O)y=ig-p y(8) _ B
ln.ﬁ/.u=ﬂ—.u—9‘ﬁm( p +1)= 9@~

or

1 ~8{v+1)

;w(6)+l=Ec . (28)
This relation allows one to obtain cumulants of v:

p k= E(v + 15

or
On the other hand (28) is equivalent to the equaliti @(8)=Ee™"";
q9(9) exp {pl@(B)e° - 1]} = 2 e"‘(Ee"""“’)" . (29)

i.e., v has the same distribution function as for the size of Poissonian population with parameter g, because
vyt v+l

where 7 is the number of elements in the first generation, and v; are population sizes for each branch, generated by the first
generation elements. Equation (29) expresses this. Thus the correspondence of (17) to the Galton-Watson branching process is
established.

The case a =1/2

In this case probabilities p,, are obtained by a straightforward and rather tiresome calculation. The case n = 0 is trivial:

po=plr,>u)=e"% where ;= At —4_y).
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For n =1 we have

Py=PAty < p, Apf2<ty, Ay[252u) + P(Mty <, 1, < 1,/2, A=) =P(T,<p, 1+ 7, > 2u) = pe "M,

Similarly

P2 = P[Q(A, UA; U A,

where

Q={r, <y, 1, +71,<2}, A ={0/2<t,M/2>3u), A,={1,< G/2<1ty, Ayf2>2u),  Ay={6/2>1, A2 ul,
or

Pa=Plti+1,<p, 1,220 — (1, + 1))+ P(1,<p, p< A1, < 2p, T3> Aty).

Subsequential manipulations are based on the independence of 73, Tz and 13, and can be easily carried out by using conditional
probabilities.

APPENDIX B: PROOF OF STATEMENT 1

Let (g;, ;) be a realization of a mixture of two independent Poissonian flows within GT with intensities Ay(g, 1) and A, (g, 1).
The realization could be obtained as follows. The number of points v = n within GT is sampled according to the probability
P-=A"¢""/n!, where A=A, + A, is the average number of events in GT. Each point is sampled independently according to
one of the two probabilities: either P(g, £) = A, (g, DA, or Pa(g, 1) = A,(g, /AL, the choice of the distribution being
specified by random guess £ with probabilities p,, = AulA and g, =AL/A for the outcomes b and A. In other words, given
v =n, we perform n independent Bayesian trials realizing one of the two distributions for the point (g, 1): B, (hypothesis H,)} or
P, (hypothesis H,). Hence we should construct a decision rule for each trial in favour of one of the hypotheses. As the trials
are conditionally independent it is sufficient to consider conditionally independent decision rules.

Let z(g, 1) be the identification rule for a single point, It refers a point either to ‘b’ or to ‘A’ in accordance with some
distribution. If & and B are the losses, then the loss for a decision in the game principle is

aP{E=A, =B} +PP{E=B, n=A}=au P(n =B |H\)+ Pu,P(r=A | Hy).

Thus we derive a linear loss function in the problem of testing hypotheses H, and H,. The optimal decision rule for this
function is described by the critical acceptance zone for Hau:

Palg, 0} Ffg, ) > Bup/ auia
(Borovkov 1986). In our notation we get

L=AA(g )/Au(g, 1) = Ble

The optimal loss is independent of n. Therefore the optimal rule obtained holds in the unconditional case too, i.e. for
arbitrary v. The minimax loss function can be reduced to the optimal testing of hypotheses H, and H,, with respect to the
losses
max [ap, P(m =B |H,), Bu,P(n=A I H)].

The problem is traditional for o = g (Borovkov 1986}. For the case of arbitrary loss function v, see, for example, Molchan
(1991). The case of minimax losses leads to the equation aA} = BA . = min. The solution is given in Statement 1.

Consider the general case of non-Poissonian structure. When choosing the critical zone as given by (135) (events within the
zone are identified as aftershocks) the average number of missed aftershocks can be written as

20

v=fl ] avwdalioa-adf [ soralroan

r(@—ga)>k(n) ¢ ke
On the other hand, assuming a uniform distribution for background seismicity, the average number of erroneously identified
aftershocks is

Ax= Ay, IS;JI K3y dt,
«
Thus the problems (6) and (7) are reduced to simple variation problems with respect to k(r):
oAl +BAL=min andincase (7) AL =min giving aAl=BA}.
k(r) k(r)

It is easy to see that the solution is equivalent to (8).
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APPENDIX C: ORTHOGONAL REGRESSION WITH INHOMOGENEOUS ERRORS
The regressions presented by Figs 10(a), (b) and 11 fit the following model:
y,=a+bx; + oM+ 0,62, =X+ 0,6,

where (¥, 2,), i=1,..., N are observations, (£{", £@, &) are uncorrelated errors with the average (0,0,0) and unit
covariance matrix. The quantity o, reflects regional scattering of a, the o; are associated with the accuracy of y; estimation, and
g, is the accuracy of the x, measurement. 0, and g, are supposed to be known. Parameters (a, b, 02) should be estimated under
nuisance parameters {x,}. Under the Gaussian hypothesis for (g}, €2, €}) the maximum likelihood method leads to the
following procedure. Parameters (b, o02) are estimated by minimization of the functional

S ()’i_'&"bzf)z
2 _ i—a—0b2)
¥ _UN;ZI[a?+oﬁ+b20i+m(o?+oi)]+mai’

where @ =5 p,y,— b L% z,p, is a function of b and o2
IR CAT AL ARDY CRL AL A

The guantity of 4 at optimal values of (b, 0°) determines the estimation of a.
The regression log @ on magnitude (Fig. 10b): in this case y,=log Q;, z;=M,, o, ={,2 is the magnitude error. If the
aftershock zone area (J; was based on n points, then the variance of log 0, is

_(log e)’n
T -1

and the bias is —log e/(n — 1) (see Molchan & Dmitrieva 1990). Note the relation of unit aftershock zone area @, with the area
of (1~ £) confidence level

=1

log QU= =log O, +log [(’8_2'("_” -1) Y

When ¢ = 5 per cent, the second term is approximately equal to 0.7775+ 1.8 (n — n-

In the regression of N, on magnitude we have y; = logN;, z;=M,, 0,=0.2 and o7 = (log e)*/N..

At least, if y; = log (Q:/N), z; = M;, then g, = 0.2 and o7 = 2(log e)*/N;.

In Molchan & Dmitrieva (1990} we did not take into account regional variation of parameter a (o, =0), so the average
regression line obtained there for (log O,, M) was formal. The correct regression line is the following: log 4~ (km?*) =
—1.05+0.69 M, where £=>5 per cent (see also Fig. 1). It is obtained from data presented in Fig. 10(b) taking into account
regional variation of a. Hox:'vever, one should also be careful in using this regression because of its regional averaging.

¥
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Abstract

We compare b-values in the frequency-magnitude law for the foreshocks and long-term seismicity. Foreshocks are
considered in two non-overlapping time intervals, preceding a main shock: (i) last hours; (ii) last days. Statistical analysis of
the regional and global earthquake catalogs shows, that in either of these intervals b-value drops by a half, compared to
long-term seismicity. This extends the previous results by Molchan and Dmitrieva [Molchan, G., Dmitrieva, (., 199(.
Dynamics of the magnitude-frequency relation for foreshocks. Phys. Earth Planet. Inter. 61, 99—112], who have found such
a drop a few hours before a mainshock. Our results concern a statistical regularity, not necessarily seen for each individual
sequence of foreshocks. © 1999 Elsevier Science B.V. All rights reserved,

Keywords: Frequency—magnitude relation; Foreshocks: Aftershocks; Statistical analysis

1. Introduction

Molchan and Dmitrieva (1990) have studied tem-
poral variations of the magnitude—frequency relation
for foreshocks during some hours—days before the
mainshock. The events we mean are those which
precede the mainshock in the future aftershock area,
For simplicity, we shall call them immediate fore-
shocks. The essence of the difficulty of the study of
foreshocks consists of the available quality world-
wide catalogs which report all events with magnitude
M = 4-5. Complete foreshock sequences are rare

" Corresponding author. Fax: -+7-095-310-70-32; E-mail:
moichan @mitp.ru
' In memoriam A.G. Peozorov.

with these cutoff magnitudes, and most of them
consist of few events, so that a straightforward esti-
mate of the b-value is out of the question. Neverthe-
less, if earthquake preparation processes are similar
for the places where fore- and aftershocks are possi-
ble, then the problem as formulated is meaningful
from the statistical point of view (see Section 2).
Molchan and Dmitrieva (1990) showed that the b-
value for foreshocks (57) decreases during 10 days
preceding the mainshock and is 50% of the station-
ary b-value (b,) during the last hours. This can be of
interest for modeling the little known final phase in
the preparation of a large earthquake. Recently, Ogata
et al. (1995) studied short-term earthquake prediction
to confirm, for Japanese data, that a large foreshock
of M>M_, — 045 has an increased probability of
occurrence during the last few hours before a magni-

0031-9201 /99 /% - see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII: $0031-9201(98}00163-0
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tude M_, mainshock. This qualitative conclusion is a
weaker form of the result as to a decreasing b~ /b,
ratio.

Quantitative conclusions as to temporal variations
of b~ /b, may be affected by the raw data used and
by the particular technique used for identification of
clustered events. It is for this reason that we present
an additional analysis for temporal variations of
b~ /b, in the 10-day interval. To do this, we supple-
ment the 1964—1980 NOAA catalog used previously
with 17 years of more data. In addition, we also
make use of regional catalogs for southern Califor-
nia, Japan, and a standardized catalog of North Eura-
sia. Lastly, we use a more accurate technique for
identification of clustered events.

Identification of clusters is of obvious importance
for our problem. In the previous analysis, we used
the mainshock catalog produced by the procedure of
aftershock identification of Prozorov (1986) (see also
Molchan and Dmitrieva, 1992). This method identi-
fied only aftershock events, hence, foreshock se-
quences found in the reduced catalog could be either
contaminated by events of different clusters or, v.v.,
some of the foreshocks could be lost as false after-
shocks. In the present work, fore- and aftershocks of
a mainshock are identified simultaneously. To iden-
tify aftershocks, we use the minimax procedure due
to Molchan and Dmitrieva (1992). This method
maintains a trade-off between the expected number
of missed aftershocks and the expected number of
erronecusly identified ones in an aftershock se-
quence. The aftershocks zones are used for identifi-
cation of immediate foreshocks (see Section 3). The
data and calculations of b~ /b, are discussed in
Sections 4 and 5, respectively.

As a whole, the conclusion by Molchan and
Dmitrieva (1990) can be refined as follows: the
b~ /b, ratio decreases to the value 0.5 a day before
the mainshock.

For convenience, some results and elements of the
previous analysis by Molchan and Dmitrieva (1990,
1992) are recalled below.

2. The problem and methodology

To analyze immediate foreshocks, we have to
make the best use of earthquake catalog data, i.e., to

take into consideration all the magnitudes M, and
not only those which had been completely reported.
Thus, we shall describe a normalized frequency—
magnitude law in region G by the function

M_<M<M,
(1

(M) = po(M)10™"e"Z5,

where (M_, M,) is a range of magnitudes, Z; is a
normalizing constant such that [AM)dM =1, b is
the slope, the function p(M) <1 measures the in-
completeness of smaller events: p(M) =1 for the
range of completely reported magnitudes M = M.
For the present analysis, the following assumptions
are important: (a) the function p(M) does not de-
pend on the type of event being recorded in the
magnitude range (M_, M ): it may be either a main
event, a foreshock, or an aftershock.

The requirement assumes symmetry in the record-
ing of foreshocks and aftershocks. This is evidently
violated when a catalog incorporates data supplied
by a local network deployed after a large earthquake.

Under condition (a), it is natural to assume that:
(b) the distribution of type (1) is correct for immedi-
ate foreshocks within. In other words, the function
p{M) remains the same for foreshocks; M, is the
mainshock magnitude M, and only the parameter
b;=b;(r) is a function of time (r is the time
before mainshock).

Our goal is to analyze temporal variations of
8=b; /b; within some hours—days before main-
shocks. To be more exact, we consider here temporal
variations of @ within three logarithmically equal
time intervals preceding a mainshock:

(=10, —1) days, (—1,—0.1) days,
{—0.1,0.01) days. (2)

The choice of the ranges is determined by Omori’s
law: aftershock occurrence is approximately constant
over time on the log scale; the same may be pre-
sumed for foreshock rate as well (see for example,
Ogata et al., 1995).

For a practical analysis of the f-value, it is neces-
sary to make one more assumption: (c) 6-values do
not depend upon the location of foreshock sequence,
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i.e., #= 6, 1s a function of the A7 time interval and,
probably, of the mainshock magnitude only.

The bg-value describes the relation between
smaller and larger events in the region, while 8
reflects relative changes in this relation during the
rearrangement of crustal stress before the mainshock.
Thus, assumption (c) expresses a certain similarity
pattern of such processes in the media where fore-
and aftershocks occur; it is a similarity, since 6 does
not depend upon local seismicity p: -ameters.

Thus, assumption (c) imposes certain limitations
on the medium. Taking into account the data selected
for the analysis, we actually limit ourselves to media
in which mainshocks are accompanied by a suffi-
ciently big number of aftershocks (n, = 10} and are
preceded by foreshocks. According to Mogi {1963),
earthquakes of the foreshock—mainshock~aftershock
type can occur only in ‘weakly homogeneous’ me-
dia.

Now we recall the statistical procedure employed
to estimate 6.

The function p;{M) and the b -value are long-
term local characteristics. They can be easily esti-
mated from the whole earthquake catalog in region
G. Thus, when estimating 8, we may suppose that
p{M) and b, are given, i.e., the foreshock b-value
in a region Gj is bj‘z Bbj, where 8= 6, and bj=
bGJ.

Suppose we have m foreshock sequences with
magnitudes

[er‘,..-M,ff_}, i=1,---mn >1

in a fixed time range Ar before the mainshocks.
According to our assumptions, the elements of each
sample obey the distribution with the density

pi( M)101"MZ71(8,), M_<M<M,
where M is the mainshock magnitude for the ith
foreshock sequence and b, is identical with b, if the
ith sequence belongs to the region G. The estimate
for 0, is found from the moment-type equation

Hi

2 l’l;‘(ﬁ;f—i(g) - M,) =0,

i=j

where M, is the arithmetic mean of M k=
1,...,n},

M—.’(B) = fAjfr Ap'.(_x)]O*b‘.(J,\'dei_|(9)

is the theoretical average magnitude for the same
sample, and

m

,&,’=”:‘bf/N, N= Z”f

i=1

are weights proportional to sample size.

Molchan and Dmitrieva (1990) found that for
short foreshock samples, the standard deviation of (5_\
takes the form

7= 6Nk (3)

where « depends on 6b and M* — M _. Here b and
M* are the arithmetic means of b, and M/, respec-
tively. In particular, if #b,=0.5 and Mt~ =2
then k = 2.

3. Foreshock identification

We are interested in immediate foreshocks, i.e.,
events that precede a large earthquake later than 10
days before and occur in the future aftershock area.
In the context of the present study, it is not necessary
to identify all such events. It is enough to have
reliable sequences with the total number of events
sufficient for estimating the parameter  (see Eq.
(3)). The above considerations determine the follow-
ing method for foreshock identification.

Suppose we know the aftershock zone O (see
below). The criterion that there are foreshocks in a
space—time volume v == X A7 is based on the fact
that the expected average number of events (fore-
shocks plus background) in the volume v must be
significantly greater than the long-term average 7.
If mainshocks and foreshocks are considered to be
Poissonian, the solution to the problem is well-known
(see ¢.g., Bolshev and Smirnov, 1983). Specifically,
suppose the long-term average n, has been well-
estimated. Then we say that foreshocks occur with
confidence level (1 — &), if n, <n(e). Here n{s) is
a function of the observed number of events . in v.
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For the significance level &= 5% applied here and
n. < 10, the values of n(e) are as follows:

", 1 2 3 4 5 6 7 8 9
n(£) 0.05 035 082 .37 197 261 3.2% 3198 4.90

When n, > 10, the quantity n(e) is well approxi-
mated by the expression:

n(e) = (\fn,. +d — 0-54’5)2 —d, |

where ¢, = 1.6448 is (1 — &) = 95%-quantile of the
Gaussian distribution and d = 0.25 or d =0.375 for
n <20 and n = 20, respectively.

Aftershock zone Q is fitted by an ellipse. That
zone is easily found from statistical considerations
by assuming a Gaussian scatter of the aftershock
epicentres. Let (g,,R) be the centre and dispersion
matrix, respectively, for the aftershocks, while the
quadratic form

rz(g,go)=(g—g0)R_'(g—g(,)

defines the elliptic metric. Then, a region of the form

S, ={g:r(g.2,) <k

is assumed to be the aftershock zone with the confi-
dence coefficient

a(k)=Prob( £€S,).

Here, £ is a 2D Gaussian vector with parameters
(gg.R). If (g,,R) are known exactly, then k*=
—2In(1 — a). If, on the other hand, they are based
on N, independent observations, then

k2= (!Va_ 1)((1 _a)72/(Nu—l)__ 1)
X(1+(N,-2)7")

{see Molchan and Dmitrieva, 1992). In practice, we
determined aftershock zones with N, > 10 and a =
95%. In that case k=3.1, 2.7, 2.6, and 2.4, if
N, = 10, 20, 30, and o, respectively.

Aftershock identification is based on the minimax
principle, which equalizes the expected number of
missed events in an aftershock sequence and the
expected number of background events that have

been erroneously identified as aftershocks. For more
details, see Appendix A.

4, Data

The main source of foreshock sequences for the
present study is the PDE catalog of NEIC/USGS,
which is freely available in the Internet. We used the
period 1964-1997 and the depth range H < 100 km.
The cutoff magnitude for this catalog was generally
M_=4.0. However, M_= 2.5-3.5 for some space—
time volumes. This concerns, in particular, the
Caribbean and Hellenic arcs and the part of Europe
from Gibraltar to Italy. By definition, the quantity
M = max(m,,Mg) was used as the working magni-
tude. When these two magnitudes m, and Mg were
not given, the first of those available in the series
{M, .M} was taken for M. The notations m,, Mg
and M, are the standard ones; Mp means that the
earthquake size was based on individual stations or
on data of a regional network.

Additional aftershocks were taken from regional
catalogs: catalog SCSN for southern California
(available in the Internet at SCEC-DC), 1935-1994,
M=M,, M_=3 and for Japan 1983-1994, M =
Mg, M_=28-3.% For oceanic regions the last
catalog is less representative than PDE. For this
reason, the JMA catalog was used for the onshore
part of the region only. Generally however, when a
main event occurred in several catalogs, we preferred
the foreshocks in the regional catalog. Also, we used
the Standardized Catalog of North Eurasia for the
area of the former Soviet Union (UNIC), 1957-1997,
M = M,,, (Kondorskaya et al., 1997).

It should be emphasized that the nonuniformity of
the working magnitude M is not a serious drawback
for a worldwide analysis of the time behaviour of .
This is so because the ratio 8 = b; /b is essentially
a spatially local characteristic that is invariant under
linear transformations of the magnitude scale. For
checking purposes, we use the work of Gusev (1991)
to show in Fig. 1 the regression curves of M, , M
and My, vs. max(my, Mg). From these curves, it is

2 JMA Catalogue, Global Hypocenter Data Base CD ROM,
Version 3.0, USGS /NEIC, Denver, CO, USA.



G.M. Molchan et al. / Physics of the Earth and Planetary Interiors 111 (1999) 229-240 233

9 Frmrmo o o T T T T T O T T T T T T T T T T

g Min /3

. : ]

8 - P TRRE-

: / M jniad

@ C - ]
e o ]
2 7E E
< C J
cn ~ .
1] o ]
= - 3
5 : : : : =
AT

4 Cluig llllIJIIllIIIlIIIlllIIIJIllilll\]llll‘rlllll

4 S 6 7 8 9
max {mp, Mg}

Fig. 1. Magnitude relations (modified from Gusev, 1991): M,
My and M,y vs. max(m,, M),

apparent that some distortions in # are possible for
foreshock sequences measured on the M, M,
scale, when a sequence includes events of M > 6.
There are a few such foreshock sequences in the
regional catalogs: two in SCSN and four in UNIC.
We have excluded them from our analysis.

5. Estimation of local p(M), b, parameters

The fu iction p;(M) and the b -value are consid-
ered as long-terrn characteristics of the site G where
the mainshock occurred. Therefore, they are esti-
mated from the catalog for the longest period possi-
ble. The period is determined by requiring stable
seismicity rates for different magnitudes at a given
location. Based on these considerations, we used our
seismotectonic global regionalization with elements
given by region G (Fig. 2). The time period T was
divided into two or three segments, depending on the
region G and the particular catalog used, assuming
ps(M) and b, to be constant in such segments
(Table 1).

The incompleteness parameter for p (M), M &€
(M _,M,) was estimated for each magnitude at a step
of A=0.1, with at least 50 events to be used for the

estimate. That requirement defines the cutoff magni-
tude M_ uniquely. The other cutoff magnitude gives
the beginning of log linearity in the frequency—mag-
nitude relation. The values of M_ and M, for each
region are shown in Fig. 3,

Our estimate of the b-value, b, is based on
maximum likelihood estimates of the parameter & in
the exponential distribution 107° /f, 107"*dx,
MeAM=(M,M,) for grouped data at a constant
spacing & (6= 0.1 or 0.2). The upper limits M, for
all regions are also shown in Fig. 3. The estimate for
pe(M) is po(M)=N,(M)/NAM), where N(M)
is the observed number of events with magnitude
M+ A/2 and N (M)=&10"" a5 its estimated
value. The weight functions p, were estimated in
two wvays, with and without aftershocks. The esti-
males of b are shown in Fig. 4 with Fig. 5 display-
ing some examples of estimates of p.. In these
examples both estimates of p are practically identi-
cal. However, the overall preference should be given
to that based on mainshocks, since some of the
earlier aftershocks may be missed when occurring in
rapid succession. As a result, assumption {a) in
Section 2 may sometimes be violated.

The estimates of ( p,,(M),b,) for the Hellenic arc
should be viewed with some caution, for two rea-
sons. First, the seismicity involves many foreshock
sequences (see Fig. 2) and, secondly, the PDE cata-
log 1s inhomogeneous in magnitude for that region,
the events with missing m, and M. being 50% of
the total number.

6. Results

We intend to study the dynamics of the b-value
for foreshocks occurring within 10 days of the main-
shock. The dynamics of 57 is characterized by the
variation of & within three logarithmically equal
time intervals (2): 4, =(=10,—1), 4,=(—1,—
0.1), and 4, =(-0.1,- 0.01) days. The worldwide
and the three regional catalogs contain 216 small
sequences identified for this purpose with the num-
ber of foreshocks equal to N, <20 in the 10-day
interval and 19 Jarge sequences, i.c., ones with
N, = 20. Fig. 2 shows the mainshocks preceded by
these sequences; 95% of the mainshocks with N, <



G.M. Molchan et al. / Physics of the Earth and Planetary Interiors 111 (1998) 229-240

234

; 07 2N yum Yooysutew (amenbs) 07 > 7 Yim yooysurew (ss010) (] Jlqel
995 SWEU [N} 10)) JUDWIAD uonezifeuoidal B JO XIpUL (£5) UONERION ‘g JO SISA[RUE ) UI Pasn S19)SN[D dyenbyimes 1) Jo $YD0USUMUI pUE UONLZI[EUOITl MULINOWSIS 7 "Tig

3,061 3,001 3,05 : 0 M.0S M.00L M08
. e b ! L

... - amx -5 - 10T Ty ini 1T ili Ti



G.M. Molchan et al. / Physics of the Earth and Planetary Interiors 111 (1999) 229-240 233

Table 1
Space—time partition of seismic catalogs for estimation of

{ p;(M).b;) (see main text)

Index Time period and Region
catalogue
Al Alaska
A2 Western Aleutians
A3 Eastern Aleutians
Bl UNIC Kamchatka
B2 1991-1997
Cl UNIC Karil arc
c2 1991-1997
c3 UNIC Sakhalin

jal IJMA, 1982-1987  Japan Islands

ja2 IMA, 1988-1990

ja3 19641980 Japan

jud 1981-1997

di 1964-1994 Taiwan

d2 1995-1997

cl 19641979 Philippines and Guinea
€2 1980-1994

e3 1995-1997

f1 1964-1979 Java to Band Sea

2 1980-19%4

13 1995-1997

el 1964-1982 Sumatra

hi 19641994 Sotomon and New Hebrides arcs
h2 §995-1997

11 1964-1994 Indo-Birman ridges

12 1995-1997

jl Law islands

32 Tonga and Kermadec
i3 19811997 New Zealand

k1 UNIC Altai and Sayany

k2 UNIC, 1957-1977 Middle Asia (former SU)
k3 UNIC, 1978-1990

LI 1964-1973 Central Asia

L2 1974-1994

L3 1995-1997

ml 1981-1997 Zagros

m?2 19641980

nl 1966-1997 Red Sea to Owen fault
n2 19661997 S. Africa rifts

ca SCSN S. California

ol 1981-1997 Central American arc

02 196419580
pl 1981-1997
p2 19641980
p3 1986-1997 Caribbean arc
ql 1964-1991 Andes

q2 1992-1994

g3 1995-1997

‘Bolivian Andes and Caribbean arc

r S. Sandwich arc

51 19811997 N. Atlantic (Lat. > 35°)
52 1964-1980

s3 N. Atlantic (Lat. < 35%)

Table 1| (continued)

Index  Time period and  Region

catalogue
s4 Central Indian ridge
§5 Triple junction in Indian Occun
s6 Cocos plate
s7 ‘Nazca plate
tl 1964-1980 Greece and Hellenic arc
t2 19811988 Hellenic arc
13 1989--1997
t4 1981-1988 S. Continental Greece
t5 1989-1997
ul 19641975 Europe
ul 1976-1981
u3 19821987

First column: index of the partition clement mapped in Fig. 2.
Second column: catalog (PDE implied if omitted} and respective
time interval (years).

Third column: name of seismotectonic region.

20 belonging to the magnitude range 4.9-7.8. The
Jarge sequences have mainshocks of M € (4.6-7.9).

We eliminated 68 clusters from the main calcula-
tion of 6; in these, the largest foreshock (22 cases)
or the largest aftershock occurring within 10 days
(50 cases) was different from the mainshock magni-
tude by 0.1. Foreshocks are difficult to identify in
such clusters due to magnitude uncertainties. Be-
sides, many such clusters can be treated as swarms,
which are defined as containing several strong events
of roughly the same size. In Section 4, we have
rejected another set of six regional clusters.

One important conclusion made by Molchan and
Dmitrieva (1990) is that 8 = b~ /b = 0.5 within 4,
and ¢ < 0.9 within the two other intervals. Our new
analysis updates this result primarily for the A4,
interval.

We begin by considering small foreshock se-
guences (N; < 20) with all the exceptions mentioned
above. Small sequences are the most typical among
all foreshocks, hence, provide a more faithful repre-
sentation of the statistical patterns proper to immedi-
ate foreshocks, since they involve all of the earth-
quake-generating area (see Fig. 2). It is also a well-
known fact that foreshocks are followed by after-
shocks of their own {(Molchan and Dmitrieva, 1990).
For this reason, the dynamics of & for large fore-
shock sequences bears the imprint, not only of the
particular location involved, but also of patterns
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Fig. 3. Magnitude cutoff values M_, M,, M, (see the text) used for regional frequency-magnitude relations (regions arc as in Fig. 2).

peculiar to a mixture of immediate foreshocks and
aftershocks.

To sum up, if N; < 20, then the estimates of & for
A,, 4,, 4, are as follows:

g: 0.794+0.08 049+0.09 0.51+0.09
n_.: 96 65 85

ms

e 288 164 165
(4)

Here n.(A) is the number of mainshocks with

ms

statistically significant foreshocks, and g, = g, (4)

h-value
N
1
[ 8]
[ a)

[ sl
o+
€«

0
-0
&

o

is the total number of foreshocks in the A-interval.
The scatter in € is consistent with the rough estimate
of standard deviation for the estimate of & as given
by Molchan and Dmitrieva (1990).

The @-estimates (4) are stable enough under
changes in the definition of a small foreshock se-
quence, rejection of data and under errors resulting
from the choice of b; and weights p;. Below we
examine these variations in more detail.

The requirement N, <20 does not rule out 19
events in a foreshock sequence occurring in one of
the intervals 4, i=1,2,3. We require that these
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Fig. 4. b-value with standard deviation for the regions given in Fig.
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2; (filled circle) b-value for mainshocks; (square) b-value for all events.
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numbers N,(A.) be smaller than 10. In that case the
estimates of 8(4,) will vary within 0.01.

Let us narrow the foreshock magnitude range in
order to use only completely reported events, M <M,
In that case p(M) =1, the foreshock data are re-
duced by a half, but this does not significantly affect
the estimates of 6:

g:0.64 039 045
(compare with (4)).

Let us lift the prescription to reject doubtful fore-
shock sequences. Namely, we add to the main vari-
ant the 50 clusters in which the largest aftershock is
0.1 below the mainshock, and include Greece and six
events from the regional catalogs that had been
eliminated on account of nonlinearities in the M, ,
M, scales. In this case, the variations of @ do not
exceed 0.02:

0:  081+006 0.50+0.08 0.49+0.08
eyt 463 273 241

(5)

Replace the regional estimates of the b-value (b;)
by local ones obtained for a mainshock of magnitude
M in a ci le of radius R = max(10*°*~1,100) km.

Then the #-estimates (4) will be modified within the
original errors:

§:  074+009 052+0.12 0.53+0.12
R, 199 112 115

This variant uses those areas of mainshocks where
the b-values are reliable enough (o, < 0.1).

6.1. Large foreshock sequences (N, > 10)

We have no actually observed samples of large
foreshock sequences such as to provide a reliable
time behaviour of @ in intervals (2). For this reason,
we are forced to treat the 18 selected sequences with
N; = 20 (see Fig. 2) as a statistical population. The
population has turned out to be inhomogeneous as to
the time behaviour of @, involving as it does four
foreshock sequences localized in the Izu Peninsula,
Japan. That area is known to exhibit some peculiari-
ties, because it is a junction of three global tectonic
plates: the Euwrasian, the North American, and the
Philippine plate (Yoshioka et al., 1993). The esti-
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mate of 8(4,) is 2.5 times that for small foreshock
sequences:

6(4,)= 098+024, n, =68, M>M,
8(4,)= 126+031, ng =57, M>M,
0(4,)= 1294007, ny =560, M>M_

Here and below, we quote estimates of 6 for
n,(4,)> 20 alone, those of 6(4;) for the entire
range M > M_ being only given when they are
consistent with the estimates of 6 based on the
events of completely reported magnitudes, M > M.
The bulk of the large foreshock sequences (14) is
much closer to the set of small sequences with
respect to the estimate of 6:

8(A) =075+0.10, ng =244, M>M,
6(4,)=071+£0.19, ng, =62, M>M,
6(4,)=078+0.12, n, =128, M>M_

The relative increase in 6{A4,) for large foreshock
sequences compared with the smaller ones was 10 be
expected because of the presence of foreshock-in-
duced aftershocks. However, these changes are ab-
normally high for the Izu Peninsula.

Molchan and Dmitrieva (1990} quote seven exam-
ples of well-studied large foreshock sequences taken
from Papazachos et al. (1967), Suyehiro and Seiya
(1972), Gettrust et al. {1981), Jones et al. (1982) and
Comte et al. (1986). The estimates for these se-
quences are = 53 £ 0.08 in time intervals of 1 to 3
days before the mainshock and 6= 083 +0.18
within A = (-~ 10,0) days. This is in good agreement
with the estimates of @ based on the short foreshock
sequences.

As a whole, the values of 6(A4;) and 8(4,) for
large foreshock sequences are below 1; the rare
exceptions localized in the Izu Peninsula constitute
an object of special interest for further study.

6.2. 0 as a function of magnitude

Fixed time intervals At were used to examine the
time behaviour of . Assuming a time similarity for
the preparation of earthquakes for different magni-
tudes, it follows that one and the same interval will
correspond to different phases in the preparation of
the mainshock, depending on the mainshock magni-

Table 2
§ as a function of mainshock magnitude (see the text for the
notation)

AM A7 {days) s M for 6+ oy
5.0-6.0 0.1-0.01 37 73 0.35+£0.18
1-0.1 31 104 0.47+0.16
10~-1.0 56 150 0.81+0.13
5.6-6.6 0.1-0.01 53 101 041+£0.13
1-0.1 37 99 0.52+0.14
10-1.0 55 156 0.821+0.11
6.2-7.2 0.1-0.01 46 98 0.4940.12
1-0.1 41 100 0.47+0.11
10-1.0 46 124 0.78£0.11

tude. To obviate this difficulty, we list in Table 2
estimates of # in the same intervals A,, but for
different narrow magnitude ranges, namely, 5.0-6.0,
5.6-6.6, and 6.2-7.2. These ranges are made to
overlap to provide enough data for estimation; the
estimate of # was derived from all foreshock se-
quences, i.e., from the same used sample as that to
get (5).

Table 2 demonstrates that the time behaviour of ¢
for small foreshock sequences is practically indepen-
dent of the magnitude range and is similar to the
main variant (4).

The above conclusion is at variance with the Berg
(1968) result that the parameter 5~ for immediate
foreshocks increases with mainshock magnitude,
M_.. In addition, for the case M, <6.5, the fore-
shock magnitudes automatically belong to the linear
j art in the relations of M|, My and My, Vs
max(m,, M). Therefore, one is free to use any
magnitude scale in the estimation of 6. Now since
the time behaviour of ¢ remains stable under changes
in M__, this provides an extra corroboration that the
diversity of magnitudes only affects a little the prob-
lem considered here.

7. Conclusions

We have studied temporal variations of nor-
malised b-value for the foreshocks, 8=056"/b, dur-
ing the last 10 days before a mainshock. Our main
result is that 8 = 0.5 during the periods 0.1 day and
0.1-1 day prior to a mainshock. This precisely
worded result is based on the hypothesis that ¢ does
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not depend on location, so that we pooled together
more than 200 small foreshock sequences world-
wide. The result is rather robust. It is slightly af-
fected by diversity of the mainshock magnitudes (in
the range 5-7); neither is it affected by diversity of
earthquake catalogs and magnitude scales. Generally
speaking, a decreasing b-value before a mainshock
is no surprise for seismologists, though their attitude
to this phenomenon is not unambiguous. The prob-
lem is not so transparent, because different re-
scarchers consider different time-space magnitude
ranges. Therefore, the effect is not always observed.
It is noted that an earthquake may be attended by
increasing background seismicity that does not affect
b~ (Asada, 1982). The result may depend on the
catalog and on the estimation method. To take an
example, according to Comte et al. (1986), b~ = 0.88
for 1985, Chile, M = 7.8, earthquake, while accord-
ing to our estimation b =123 for 10-day fore-
shocks of this earthquake. Methods of fore- and
aftershock identification may also affect the esti-
mates. Most of decreasing b~ examples concern
‘preshocks’, l.e., events occurring some years or
months before a mainshock. Sometimes it is possible
to estimate the several-days b~ -value using local
network data (see above). Our result is substantially
different. It is statistical (i.e., it is true in general),
and reflects temporal variations of the b -value for
foreshocks with high magnitudes (M = 3-4) and
within extremely restricted time intervals (days—
hours).
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Appendix A. Aftershock identification
Molchan and DPmitrieva (1992) noticed the uncer-

tainty of aftershock identification problem: a re-
searcher can arbitrarily regulate the trade-off be-

tween the two kinds of errors. Error of the first kind
defines the average number of background events
erroneously identified as aftershocks, Ny, while the
error of the second kind accounts for the average
number of lost aftershocks, N, . For this reason, the
declustering problem should be supplemented by
formulating the goals set up by the researcher. For
example, the minimax method minimizes the quan-
tity max(N,,Ny), or equalizes and minimizes the
two errors N, and Ng.

This method is based on the following assump-
tions.

(1) The aftershock intensity in space and time has
the form A, (g,r}= A, p(g)f(1) where (1) is a
normalized Omori law:

f(r)xmin(l,(t/t(,)"l(l-—1/p)/t(,), t>0,

with p= 1.1 and ¢, = 1 day, and p(g) is the Gauss-
ian distribution of aftershocks in space:

p(g) =(2mdetR) ‘exp(—r’(g—g.)/2)

Here, r*(g)=g'R™'g is a quadratic form with co-
variance matrix R, g, is the centre of scattering.
Values of g, and R are dependent on the sequence.

(2) The intensity of mainshocks (background seis-
micity) is constant in the vicinity of g,: A,(g.1) =
Apg-

The minimax method identifies an event (g,7) as
an aftershock if the ratio A, /Ay is greater than a
threshold, 1.c.,

1/2r’(g—g.) +p(max{0,In(z/1,)) <c¢, >0

where ¢ = —Inx and x is defined as the root of the
equation:
x=p(l—x""), D<x<l,

with p=2p(m detRr A,)/A,. Obviously, ¢ =In
(1+1/p) when p~1.

The procedure realizing the minimax method con-
sists of the following steps.

(i} Sampling a mainshock. At the initial step the
largest event in the catalog is declared as a main-
shock. Eliminating the largest event together with its
fore- and aftershocks from the catalog gets us back
to the initial situation.

(i) Iterative aftershock identification. At the first
iteration, aftershocks are found roughly, for instance,
by a window method. If the number of aftershocks
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found at the first stage is not small, n, > 10, then we
estimate the dispersion parameters g, and R. On the
basis of the estimated parameters, the minimax pro-
cedure performs the next iteration of the aftershock
sequence. The minimax procedure is repeated itera-
tively until the parameters £, and R become stable.

References

Asada, T. (Ed.), 1982, Earthquake Prediction Techniques. Their
Application in Japan, University of Tokyo Press, 250 pp.
Bolshev, L.N., Smimov, N.V., 1983, Tables for Mathematical

Statistics. Nauka, Moscow, 415 pp. (in Russian).

Berg, E., 1968. Relation between earthquake foreshocks, stress
and mainshocks. Nature 219, 1141-1143,

Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L,
Saragoni, R., Singh, $.K., Suarez, G., 1986, The 1985 Central
Chile earthquake: a repeat of previous great earthquakes in the
region?. Science 233, 449-452,

Gettrust, ] F., Hsu, V., Helsley, C.E., 1981. Pattern of seismicity
preceding the Petatlan earthquake of 14 March 1979, Bull,
Seismol. Soc. Am. 71, 767-770.

Gusev, A.A., 1991. Imtermagnitude relationships and asperity
statistics. PAGEOPH 136 (4), 515-527.

Jones, L.M., Wang, D., Xu, S., Fitch, T.J., 1982, The foreshock

sequence of the February 4, 1975 Haicheng earthquake (M=
7.3). J. Geophys. Res. 87 (B6), 4575-4584.

Kondorskaya, N.V., Gorbunova, LV, Kireev, LA, Lagova, N.A.,
Storchak, D.A., Khrometskaya, E.A., 1997. Analysis of the
unified catalogue of earthquakes of northern Eurasia. J. Earth-
quake Prediction Res. 6 (1), 51-73.

Mogi, K., 1963, Some discussioqs on aftershocks, foreshocks and
earthquake swarms. Bull. Earthquake Res. Inst. Tokyo Univ.
41, 615-658.

Molchan, G., Dmitrieva, O., 1990. Dynamics of the magnitude-
frequency relation for foreshocks. Phys. Earth Planet. Inter.
61, 99-112.

Molchan, G., Dmitrieva, O., 1992. Afiershock identification:
methods and new approaches. Geophys. J. Int. 109, 501-516.

Ogata, Y., Utsu, T., Katsura, K., 1995, Statistical features of
foreshocks in comparison with other earthquake clusters. Geo-
phys. J. Int. 121, 233-254.

Papazachos, B., Delibasis, N., Liapis, N., 1967. The time distribu-
tion for foreshocks. G. Annali di Geofizica 20, 22-29.

Prozorov, A.G., 1986, Dynamic algorithm for removing after-
shocks from the world earthquake catalog. In: Keilis-Borok.
V. {(Ed.), Computational Seismology. Nauka, Moscow, Vol. 19
pPp. 58-62.

Suyehire, S., Seiya, H., 1972. Foreshocks and earthquake predic-
tion. Tectonophysics 14, 219-225,

Yoshioka, S., Yabuki, T., Sagiya, T., Tada, T., Matsu'ura, M.,
1993, Interplate coupling and relative plate motion in the
Tokai district, central Japan, deduced from geodetic data
inversion using ABIC. Geophys. 1. Int. 113, 607-621.



Bulletin of the Seismological Society of America, Voi. 87, No. 5, pp. 1220-1229, October 1997

Multi-Scale Seismicity Model for Seismic Risk

by George Molchan, Tatiana Kronrod, and Giuliano F. Panza

Abstract For a general use of the frequency-magnitude (FM) relation in seismic
risk assessment, we formulate a multi-scale approach that relies on the hypothesis
that only the ensemble of events that are geometrically small, compared with the
elements of the seismotectonic regionalization, can be described by a log-linear EM
relation. It follows that the seismic zonation must be performed at several scales,
depending upon the self-similarity conditions of the seismic events and the linearity
of the log FM relation, in the magnitude range of interest. The analysis of worldwide
seismicity, using the Harvard catalog, where the seismic moment is recorded as the
carthquake size, corroborates the idea that a single FM relation is not universally
applicable. The multi-scale model of the FM relation is tested in the Italian region.

Introduction

In the last decades, increasing attention has been paid
to seismic hazard {Cornell, 1968; Working Group, 1995) and
seismic risk assessment (Molchan et al., 1970; Caputo er al.,
1974; Keilis-Borok et al, 1984). The generally accepted
methodology for risk assessment includes the following in-
terrelated steps: (1) seismic zoning, that is, the identification
of potential earthquake source zones; (2) construction of a
seismicity model;, (3) construction of a spattal model of
strong-motion effects as a function of event location and
size; (4) risk assessment based on models (1) through (3),
that is, estimation of the probability for a given effect (peak
ground acceleration at a site, total economic losses, or the
number of injured people in an area), to exceed a fixed
threshold during a time interval T.

We will deal with the second step, that is, with the con-
struction of a model for the sequence of main events {not
aftershocks). The usual description of long-term seismicity
(T = 50 to 100 yr) is based on the assumption that, in a
given region, the earthquakes follow a random distribution
(Poisson hypothesis) and the Gutenberg—-Richter (GR) law,
More specifically, it is assumed that the numbers N(A) of
main events in the elementary cells A = dg dM dt (g is
spatial coordinate, M is magnitude, ¢ is time) are statistically
independent and follow the Poisson distribution with mean
(N(AY) = n(g,M)A, where

logn =a — M, MEM_,M,) (1)

and each of the parameters (a,b,M ,) has a different space
vartable dependence. The quantity M _ represents the thresh-
old for damaging earthquakes, while M, is treated as the
maximum magnitude.

This model is generally considered satisfactory for
small and moderate earthquakes, while for the largest events,
some authors actually suggest a formal smoothing of relation

(1), truncated in the high magnitudes range. For example,
the Kulbak principle of maximum entropy leads to the model
(Main and Burton, 1984; Kagan, 1991, 1994)

logn = a — bM — 10°¥-M0 g — %, (D)
with parameters a, b, and My. In (2), log n rapidly decreases
around M, so that it can be treated as the effective maximum
magnitude (an analog of M ).

In other approaches, the seismicity rate n = n(M)
around M . is transformed into one or several peaks that arc
supposed to describe the rate of characteristic earthquakes
(Schwartz and Coppersmith, 1984) or that of their ‘“‘cas-
cades,”” that is, multiple segment earthquakes {Working
Group, 1995), The time behavior of the characteristic events
is modeled as a nonpoissonian renewal process, and, very
importantly, the events are related to a whole fault rather
than to a point, as it is usvally assumed in application of (1).

The question of what model is preferable has been the
subject of lively debate; for example, see the discussion in
Wesnousky (1994, 1996) and Kagan (1994, 1996). The de-
bate seems to us to reflect the contradiction between two
paradigms that recently appeared in seismology, One para-
digm, formulated by Bak and Tang (1989), is related to a
new insight into the dynamics of the Earth’s crust. They treat
the seismic process as a dissipative dynamic system that fol-
lows the mechanism of Self-Organized Criticality (SOC),
and this implies that (1) is valid in a wide range of M, with
a possibly universal parameter b. The other paradigm is
based on observations and is related to the Characteristic
Earthquake (CE) concept (Schwartz and Coppersmith,
1984). The CE has, by definition, the largest possible mag-
nitude for the fault considered and a significantly higher rale
of occurrence than the one predicted by (1).

A compromise is adopted in the recent, conceptually
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important work on seismic hazard for southern California
{Working Group, 1995). Each zone is assumed to have ran-
domly distributed earthquakes with a universal b-value, b
=1, plus characteristic earthquakes on specific faults; ad-
ditionally, *‘cascades’ of characteristic events can happen
as well. Unfortunately, the time dependence of the large
earthquakes in this model is described by a large number of
parameters.

The leading idea of this article is that in a specific seis-
mogenic zone the SOC paradigm can be applied with some
limitations, depending upon the zone itself. Roughly speak-
ing, the (scaling) relation (1) holds for those events whose
linear size (/) is small compared with the *‘physical linear
size’" of the zone (L), that is, I,, < L. It follows that the
description of the recurrence of events, with size M & AM,
in a point g, based on the GR law, should be made by finding
a zone (containing the point} with the appropriate dimen-
sions and by relating the considered events to that zone
rather than to the point. Therefore, depending upon the
physical features of the area under study, several levels
(scales) of seismic zoning may be needed rather than a single
one. Each zoning scale must match the size range of the
considered seismic events, AM. This scale is due, not to
certain features in the spatial distribution of earthquakes of
different magnitudes (Woo, 1996), but to event self similar-
ity conditions within a unit (an elementary area) of the re-
gionalization and to the linear representation of log n{A) in
the range AM. This idea is illustrated schematically in Figure
I: on a small (detailed) scale (L)), the area is divided into
10 seismogenic parts where the GR law is satisfied in the
range [M_, M,], while on a larger scale (1,), there are three
macrozones where the GR law is satisfied in the range [M|,
M,]. The b-value depends on the zoning unit and on the
magnitude range only, while the differences in the b-value
in a point for different zoning scales must indicate a change
in the self-similarity conditions for events of different size.
This approach largely overcomes the contradictions between
the two paradigms, in fact, the earthquakes in the range [M|,
M,] may turn out to be characteristic events for zones of the
first level (L,), while following the GR law in zones of the
next larger level (L,). However, in the framework of the SOC
paradigm, we cannot usually predict the shape of the tail in
the magnitude distribution; therefore, the occurrence rate for
the largest magnitudes may remain unknown. The log n(M)
relation in Figure I, for the maximum scale, (L;} or (M >
M), can have an unknown nonlinear shape.

The condition /,, << L (possibly in the weaker form /,,
= L) is not new in seismology {(Caputo ef al., 1973), and it
appears in the recent articles by Pacheco ef al. (1992), Ro-
manowicz (1992), and Rundle (1993) who examine, for the
global seismicity, the departure of log n(M) from a straight
ling, in the range of large magnitudes. The departure from
linearity for spatially unbounded seismogenic zones has
been explained by the saturation effect of the transverse di-
mension of the fault, as a result of the finite thickness of the
brittle zone. If one recalls the usual difficulties with cata-
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Figure 1. Diagram of the multi-scale representa-
tion of the FM relation: log FM is linear in each zone
with scale Ly or L, in the range of M: [M_, M|} or
[M,, M,], respectively. a- and b-values depend on the
zone; at the same time, a depends on the position g
in the rone. Dotied lines indicate the possibility to
extend the zone. The zone identtfication is refated to
the lwalian region (see Figs, 2 and 3).

logs—small amount of homogeneous data and saturation of
all magnitude scales—a statistical substantiation of the
above effect is not easy and has been disputed by Kagan
(1997).

Here (1) we discuss the idea behind the multi-scule
model n(g, M); (2) we present statistical arguments against
the universality of the parameter b, using the Harvard giobal
centroid moment tensor catalog of earthquakes; and (3) we
illustrate our multi-scale model on Italy, where a unique
1000-yr historical catalog is available. A full multi-scale
analysis of Italian seismicity can be found in Molchan er al,
(1996).

Multi-Scale Representation of the Frequency-
Magnitude Relation

Seismic risk estimation requires that the seismicity
within a set of seismogenic zones is modeled in the best
possible way (strictly speaking, the term **best’’ cannot be
defined, since the risk problem has many targets and a model
shows an integral effect). So far, the commonty accepted
tool to deal with the problem is the GR law and the Poisson
hypothesis. The latter assumption permits to consider sepa-
rately individual seismogenic zones. The choice of a zone is
influenced by seismotectonic and geological considerations
that are used to provide evidence that the zone is homoge-
neous with respect to a number of parameters, in particular,
the b-value. Fixing a zone implicitly introduces a character-
istic scale (L) related to the spatial structure of the dominant
fault system in the zone and to the physical conditions there,
L may be determined by one of several guantities that ubti-
mately control the earthquake size in that zone: for example,
the fault length, the thickness of the brittle layer, and the
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typical distance between rare (compared to the timescale T)
events in the zone.

Crustal dynamics is frequently treated as a nonlinear
process close to a critical state [e.g., Turcotte (1995) and the
references therein]. The idea finds its theoretical support in
the Bak er al. (1988) medel in which, starting from any
initial state, a dynamic system with many degrees of freedom
will, by itself, attain a critical state—the SOC phenomenon.
Usually these processes involve phenomena such as fractal-
ity, self-similarity, and power-law relations with “‘univer-
sal’’ scaling exponents, The GR law belongs to these laws
when the size of the earthguakes is expressed in terms of the
seismic moment or of the energy. Therefore, in seismology,
the SOC paradigm is essentially based on the GR law. How-
ever, the appearance of a characteristic scale, L, and the con-
sideration of a limited and fixed zone can violate the self-
similarity and the universality of the scaling exponents, at
least for Iy = L.

Since a satisfactory mathematical modeling for the lith-
osphere dynamics is missing—we are still in the pre-equa-
tion era—we can support our previous considerations only
using some analogies, taken from other fields of science.

In a deterministic framework, narrowing the observa-
tion of a homogeneous fractal set to a restricted volume S,
we can merely get an accidental idea of the statistics of large
clusters, since the characteristic cluster (comparable in size
1o the volumes) can be found in- or outside of the observa-
tion volume.

In a probabilistic framework {fractal random set), there
is a difference between conditional and unconditional dis-
tributions (see Palm measures in the theory of point pro-
cesses). Namely, the conditional distribution of a cluster K,
under the condition that X belong to a fixed area or that the
convex hull of K contains a fixed point g,, and the uncon-
ditional one are different. For example, when the time in-
terval between two subsequent Poissonian events contains a
point fixed beforehand, the mean length of this interval is
twice the mean length of the unconditional case [a well-
known paradox for Poissonian processes (Feller, 1966)).

In physics, the Kolmogorov theory of well-developed
turbulence (Landau and Lifshitz, 1959) is based on the hy-
pothesis of self-similarity for turbulent pulsations and suc-
cessive transmission of energy from larger pulsations to
smaller ones, and it defines the so-called inertial range of
scales, r, in which turbulence scaling is assumed; namely,

Re " & vl < 1, 3)

where L is the external scale, Re = LV/v is the Reynolds
number (V is the characteristic velocity and v the molecular
viscosity).

Consequently, keeping to the standpoint of nonlinear
dynamics and treating an earthquake as a spatial object rather
than a point, one may assume that the GR law is valid for
the earthquakes with linear dimensions, /,, much smaller
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than the characteristic scale, L, of the seismic zone consid-
ered (hypothesis A).

Risk analysis is concerned: with damaging (M = 3.5}
and therefore relatively large earthquakes, thus hypothesis
A is the analog of the right-hand side of (3). On the other
end, a seismological analog of the left-hand side of (3) is of
theoretical interest, as described by Aki (1987), who shows
a significant departure of log n(M) from a straight line for
M < 1.5.

In a seismic zone, several characteristic scales can be
identified. Caputo er al. (1973) distinguish three critical
magnitudes (M, << M, < M,) that can be observed in the
statistical properties of earthquake occurrence:

s up to M, the source area of an event is small compared
with the geometrical dimensions of the main tectonic faults
in the zone;

* for M > M,, a rupture penetrates the entire crust, so that
the earthquake size can only be increased by increasing
the source length,  (the earthquake source has lost one
degree of freedom because of the saturation with depth);
and

« for M > M,, an earthquake can occur within a single iso-
lated zone only by simultanecus slippage on several faults.

Pacheco et al. (1992) and Okal and Romanowicz (1994)
give estimates for the saturation of the earthquake size with
depth: M, = 6.0 for mid-ocean ridges (MOR}) where the
down-dip width of the seismic source zone, w, varies from
10 to 15 km, and M, = 7.5 for shallow earthquakes in sub-
duction zones (S) where w is about 60 km.

The above-mentioned critical magnitudes indicale the
existence of different conditions for the self-similarity of
source zones. This may affect the scaling laws, that is, the
b-values, For this reason, if a zone has several characteristic
scales, one would expect the log frequency-magnitude (FM)
relation to be piecewise linear, and then the parameters M ..
in (1) control the size range of the events, AM, for which
the self-similarity conditions are fulfilled. For instance, if
{3 w, then two ranges of linearity of log FM are possible:
(M _, M) and (M,, M). In practice, the interval between the
two ranges may degenerate to a point, in order to fit the log
FM relation when few data are available. Starting from some
magnitude, say M,, the self-similarity conditions are no
longer valid for a single seismic zone, and then relation (1)}
can break down for large M because of the hypothesis A.

The idea of the characteristic earthquake (Schwartz and
Coppersmith, 1984) is an important attempt to forecast the
form of the FM relation for a fault segment when the linear
relation (1) is no longer applicable. This idea, as advocated
in its orthodox form (Wesnousky, 1994), runs into serious
difficulties (Working Group, 1995; Kagan, 1996). On the
other hand, the alternative solution (2), based on a formal
device, borrowed from information theory, rather than on
the physics of the phenomenon, involves an arbitrary choice
of a function  of the energy E, w(E), or of the magnitude
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M, w = w(10°) with 8 = 3/2. If we fix the mean value of
w, the principle of maximum entropy in combination with
the GR law leads to a new form of the FM relation:

logn(M) = a — bM — Jy(10%), (4)

where g, b, and A are parameters. If one takes into account
the relation of the earthquake energy with the size of the
rupture zone, the case w(E) = E (p = %) can be considered
as well, and since the statistical estimation of the exponent
p has a very weak resolution (Kagan, 1991), many other
models like (4) can be claimed to fit observed data.

As a rule, to predict the frequency of earthquakes using
a linear log FM relation, the larger the event, the greater must
be the geometrical dimension of the zone, so that it is of the
appropriate scale level for (1) to be valid in the AM of in-
terest. However, the zone-broadening process has a limit,
since physical factors will interfere with the self-similarity
conditions for large events (e.g., Caputo et af.,, 1973). A
hierarchical analysis is then reasonable in which the seis-
micity is described by several GR laws for several scales and
magnitude ranges AM (see Fig. T and the last s.ction). In
this hierarchical analysis, the smaller events may be less use-
ful for the prediction of the occurrence of the larger events.

There are serious obstacles to the use of conventional
statistical techniques in the estimation of the maximum mag-
nitude. The statistical technique (Pisarenko et al., 1996) is
based on the parametrization of r{M) = n(g, M) for large
M, but the SOC paradigm does not permit to predict the
recurrence of very large events in the same zone used to
predict the smaller events. The multi-scale representation of
the FM relation gives, in the best case, a piecewise linear
representation of log n(g, M), which is not universal and is
dependent on point g.

Using theoretical arguments, we can infer that the vari-
ability of the estimated b-value should not necessanly be
explained by appealing to criticisms of the magnitude scales
involved and to the poor quality of the data (Kagan, 1994).
There is merely a drawback in the current interpretation of
the b-value determined considering restricted areas. The pa-
rameter b is representative only for a definite scale range. It
is therefore necessary to show that the parameter b is not
universal also from a statistical point of view,

Variation of the b-value: Global Seismicity

Kagan (1994), from the study of global scismicity, as-
sumes that the b-value is universal: b = 1 for all events and
b = 0.75 for mainshocks (excluding aftershocks). Any vari-
ation of the b-value is treated by Kagan (1994) as an artifact
due to the small size of the samples considered and to the
fact that the magnitudes used in regional studies are inhom-
cgencous and have not a clear physical meaning. On the
other end, using the same data analyzed by Kagan (1997),
we provide here scveral examples of statistical comparison
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in major seismic provinces that indicate that the b-value is
not universal.

Data.  For the purposes of seismic risk determination, it is
natural to consider shallow earthquakes (with focal depth
less than 70 km), and a homogeneous catalog, reporting a
physically meaningful measurement of the earthquake size,
is needed. The available possibilities are rather limited.
There is a short global centroid moment tensor (CMT) cat-
alog (CMTS, 1995) that reports the scalar seismic moment
My (dyne-cm) or the moment magnitude M,, = % (log M,
— 16.1). As of 30 April 1995, the catalog contains 12,417
events, with depth # = 70 km, and is, in our estimate, com-
plete for M, = 5.75, =5.55, =545 starting from 1977,
1982, and 1987, respectively.

The absence of smaller events in this catalog does not
permit the use of refined techniques of aftershock identifi-
cation (Molchan and Dmitrieva, 1992); therefore, the after-
shocks have been identified by the window method. The
spatial radius, R, and the time duration of the aftershocks
sequence, T, are as follows (Molchan and Dmitrieva, 1992):

M, 55-65 6570 7015 75-80  ZHO

R (km) 50 60 70 100 200

T (years) i 2 2 2 2
Technigue. The elimination of aftershocks lends more cre-

dence to the Poisson hypothesis in the estimation and com-
parison of the parameters a and b in the GR law. The solution
of this problem for arbitrary grouping of the data, over mag-
nitude and time, is given in Molchan and Podgactskaya
(1973) and summarized in the Appendix, where the hypoth-
esis H, of equality of the b-value in several samples that
obey (1) is tested using the generalized Pearson test, n. The
probability £ of excedence of the observed value 7, under
the hypothesis H, gives the significance level of ff,. The
hypothesis H,, is doubtful, when ¢ is small (i.e., ¢ = 5%).

Examples. In the time-magnitude intervals in which it is
complete, the CMT catalog contains 6776 events, of which
4832 are mainshocks (71%). With this amount of data, we
can analyze credibly the b-value for the major seismotcc-
tonic features only. In this case, we have { = w, 50 that the
critical characteristic scale is the down-dip width of the fault
zone, ie., L = w for small events and L = [ for the farge
ones. We begin with a well-known example.

1. Subduction zones and mid-ocean ridges. According
to Okal and Romanowicz (1994), widely different values of
w characterize subduction (S) and MOR zones: 60 and 10
km, respectively. The earthquakes with M, between 5.8 and
6.5 are “‘small”” (there is no saturation along the down-dip
width of the zone) for the S zones, and *“large™ for the MOR
zones (there is saturation). The difterences in self-similarity
conditions for the two source zones do affect the b-value.
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Table 1 (row 1) contains the b-value estimates based on all
events (&, ) and on the mainshocks (b) for § and MOR zones.
The differences in the b-value are so large that neither any
estimation techniques nor various methods of aftershock
identification can remove the effect. The difference is ex-
pressed quantitatively by the significance, &, of the hypoth-
esis Hy.

2. Subduction zones: two magnitude ranges. Events
with M., = 7.5 are large for an S zone (Pacheco et al., 1992);
therefore, the equality of the b-value in the ranges M,, = 7.5
and M,, = 7.5 is doubtful. The conclusion is corroborated
statistically in Pacheco et al. {1992), who used a combined
worldwide catalog for the period 1900 to 1989, The CMT
data also indicate a significant change in b for M,, = 5.55
[see Table 1 (row 2)].

The significant difference in the b-value between the S
and MOR zones is not exceptional; in fact, we show that
both zones are internally inhomogeneous with respect to the
b-value. In the next two examples, we identify subzones by
employing strictly seismotectonic arguments without any
preliminary data analysis.

3. Mid-ocean ridges: two subzones. The MOR zones are
segments of rift zones that are cut by transform faults and
dominated by pure strike-slip movement. There are two seis-
mogenic transform faults in the Mid-Atlantic Ridge (MAR)
that are abnormal for their linear size (L = 2000 km in both
cases): the Azores-Gibraltar (AG) ridge and the Equatorial
(E) fault. We compare the b-value for the union () of the
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transform faults in AG and E and for its complement
{MAR\L) in the Mid-Atlantic Ridge zone. Table 1 (row 3)
shows that the b-values are different at the significance level
&=~ 5%:b =~ 1for AG and E and b ~ 1.3 for its complement
in the MAR zone. ¢ < 5% if we compare the X zone (b =
0.97) with its complement in the MOR zone (b = 1.25),
where the number of data is 547 instead of 107.

4. Island arcs: two subzones. Following Kronrod
(1985), we consider the island arcs in the Northwest Pacific,
from Alaska to Taiwan, divided into two sets by their tec-
tonic characteristics: volcanic arcs (V): Aleutians-Com-
mander Is., Kuril Is., Ryu-Kyu, Izu-Bonin, Marianas; geo-
synclinal arcs (GS): Alaska, Calgary coast, Kamchatka,
Japan, and Taiwan. The CMT catalog corroborates an earlier
inference by Kronrod (1985}, based on the pre-1975 world-
wide catalog data, about the existence of a significant dif-
ference in the b-value for these subduction zones [see Table
1 (row 4)].

3. Subduction zone: three ranges of depth. The distri-
bution of centroid depths, H,, in the CMT catalog has two
distinct peaks at 10 and 15 km, and a fuzzier one at 33 km.
Because of the difficulties inherent in the determination of
H,, the values H. = 10 kmor H. = 15 kim are just markers
{used during different time periods) of shallowness. For this
reason, we consider the following division of the H, scale:
up to 15 km, from 16 km to 33 km, and from 34 km to 70
km. This grouping divides all data into three roughly equal
parts. In view of the effect of saturation along the down-dip

Table 1
Global Seismicity: b-Value Comparison
All Events. Mainshocks
Zone Magnitude
Range, M,, N b, N h = Ab* &t

1 Subduction zone, S§ =588 1761 0.98 1233 0.88 = 0.05
<0.05%

Mid-ocean ridges, MOR$ =5.88 313 1.49 208 147 = 0.16

2 5.55-7.56 3012 0.95 1927 0.80 = 0.04
Subduction zone, St <4.9%

7.57-8.90 6 1.72 32 1.50 = 0.70

Mid-Atlantic

3 Ridge, Z=AG&E 5.45-8.00 71 1.0 61 097 = (.25
: <54%

MARY MAR\E 5.45-8.00 111 1.38 107 1.30 + 0.22

4 Istand v 5.45-8.90 5i9 1.08 350 097 + 0.10
<0.5%

arcs! GS 5.45-8.90 329 0.89 212 075 £ 0.10

5 Subduction H,. =15 =5.45 965 1.05 639 0,93 £ 0.10
6= H =33 =545 792 0.80 487 0.63 £ 0.10 <0.05%

zone! MEH=T70 z5.45 689 0.92 459 0.83 + 0.t

*b — Ab, b + Ab) is the 95% confidence interval for the b value. The estimate &, is not supplied with a confidence interval because the data are

correiated,
t8ignificance level of the hypothesis F: all b are equal.

1S and MOR zones, as in Kagan (1997), include the following Flinn-Eagdahl scismic regions (Young ef al., 1996). S (1, 5-8, 12-16, 18-24, 46); MOR

(4, 32, 33, 40, 43-45).
*MAR is zone 32 in Flinn-Engdah] seismic regions (Young et al., 1996).

IGeographical limits of the zones. AG = (35.6° N, 40.0° N) X (—60° W, —29.7° W), E = (2.1°N, —3.4°E) X (—12.0° W, —31.4° W),

USee text for the subzone symbols.
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width of the zone, we eliminate large (for an § zone) events,
that is, events with M,. > 6.5, and compare the b-values for
the three ranges of depth. Table 1 (row 5) shows that the
confidence level for the hypothesis of equal b-values in the
three ranges of H, is extremely fow, ¢ < 0.05%. The differ-
ence is mainly due to the lower b-value obtained for H, €
{16 1o 33] km. This fact is difficult to interpret from a physi-
cal point of view, because the depths of shallow earthquakes
in the CMT catalog are occasionally incorrect; however, the
assumption of a universal b-valoe permits any formal group-
ing of the data. Therefore, these results can be viewed as
another confirmation that in the § zone the b-value is not
constant.

These five examples show statistically significant vari-
ations in the b-value for M,. 2 5.55. The actual b-values can
depend on the magnitude type used; however, these varia-
tions are generally consistent with similar conclusions
reached using other magnitude scales. Qur results contradict
the statement by Kagan (1997) that **there is no statistically
stgnificant variation of the b-value for all seismic regions
except for the mid-ocean ridge systemns.”” The Kagan’s con-
clusion can be explained by the faci that the choice of the
CMT catalog dramatically lowers the resolution capability of
the tests. Therefore, we use here a technique of great flexi-
bility (see Appendix), and we consider an expanded data
set—the starting date of the catalog considered depends on
magnitude, and the final date is 8 months later than in Kagan
(1997).

FM Relation for ltaly

To illustrate the muiti-scale representation of the FM
relation, we chose ltaly as a test region, since there is avail-
able a unique historical mainshock catalog that covers a time
interval of about 1000 yr {Stucchi ef al., 1993} and that is
particularly suitable for the analysis of the recurrence of the
large events (M > 5). The other difficultics inherent with
regionul earthquake catalog remain; thus, while having a
gain in the time span and energy range, compared with the
CMT data, we lose in quality, since the earthquake size is
usually represented by different magnitudes of different ac-
curacy and representativity. This puts stringent requirements
on the data-processing technigues and may hamper the in-
terpretlation of any result.

For the period 1900 o 1995, we use a catalog that we
have labeled the Current Catalog of fraly (CCI, 1994), where
the dominant magnitudes are local, M,, duration, Mp, and
macroseismic, M, The magnitude used in the analysis is the
first available in the sequence: M, My, M, Magnitude M =
M, is grouped in intervals of 0.2 10 0.3, while magnitudes
M # M, are grouped in intervals of 0.5. The time boundaries
of complete reporting for M are adopted depending upon the
location, the value, and type of M. The aftershocks are iden-
tified using a flexible minimax approach developed by Mol-
chan and Dmitrieva (1992). We use aftershock areas (of con-
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fidence level 95%) to identify different, interacting
seismogenic zones, and the technique for the estimation and
compariscn of a and b in the GR law is described in the
Appendix. The comparison of the b-value determined in sev-
eral different areas is employed as an extra argument in favor
of zone broadening or narrowing,

The value M; = 7.3 defines the maximum magnitude
observed in Italy during the last 1000 yr. For this reason, the
representation of the FM relation for risk purposes is relevant
for shallow events with M & [3.5 10 7.5]. Therefore, a non-
trivial FM representation can invelve no more than two or
three scale levels, -and a possible multi-scale model of this
type is presented formally in Figure 1. In what follows, we
limit our attention to space scale /, rather than to physical
scale L, since the available data do not allow its definition.

The largest space scale {f4) is controfled by plate tee-
tonics and by the size of the area under study. According 10
Lort (1971), the Adriatic region is regarded as an African
promontory at the plate boundary between Eurasia and Af-
rica. The boundary 1s well marked in Figure 2b by the largest
carthquakes (M 2> 6.3), and it justifies to keep the region as
a whole, with /3 = 1500 km.

Since the data (M > 6.3) in Figure 2b span about 1000
yr, and moderate events are well dispersed over the entire
region (Fig. 2a), the alignment of epicenters (at least for
central and southern Haly) cannot be casual. Hence, the
kernel standardized technique recently suggested by Woo
{1996) to smooth maps of earthquake activity a(g, M) calls
for careful handling.

The intermediate space scale ([, = 400 to 500 km) is
in part controlled by the geometry of the plate boundary.
From a tectonic point of view, Italy is conventionally divided
into four zones (Boriani et al., 1989): (1) Alpine compression
zone, (II) Northern Apennine Arc, (I11) Calabrian arc, and
{IV) Sicily with a possible continuation toward Tunisia. The
b-zones of space scale level I, are represented in Figure 2b
where b-zones I and 1 are lumped in a single one, because
the b-values for the larger events are similar. From now on,
a-zone and b-zone will indicate zones with a postulated con-
stant value of a or b, respectively.

The lowest space scale (/; = 200 to 300 km) for zones
having constant b-vatues is determined by hypothesis A: {y;
< . We use the aftershock zone linear size (L) to estimate
ly. According to our analysis, for M € [4 to 6], the typical
values of L,q are 20 to 60 km, while for M € [5to 7], a few
observations give L., = 100 to 140 km; for M = 3.5, a
further splitting of the b-zones generally leads to a poorer
resolution of the b-value. Some seismotectonic and stalisti-
cal considerations have led us to define 10 b-zones of level
1 (Fig. 3), composed by elements of the seismotectonic re-
gionalization of Italy, recently developed by GNDT (1992).
Each element of the GNDT zoning includes seismogenic
structures of definite kinematics type (see Fig. 3) and has
typical dimensions of 40 to 130 km by 20 to 30 km, com-
parable with L. Most GNDT zones contain a small number
of instrumental data with M = 1.5; it is therefore impossible
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I>IX,M>863

- 46

- 44

- 42

i Figure 2. Space distribution of mainshocks
L -(solid circles) for the pericd 1000 to 1980 ac-
~ 40 cording to Stucchi et al. (1993) and seismo-
I genic zones after GNDT (1992). Right panel:
[ solid segments mark the boundaries between
L ag b-zones of scale I,; the indicated GNDT zones
L forms the hypothetical seismogenic arca for
5 events with M > 6.3; dashed line is the sketch

to subdivide them, when they are used as a-zones of scale
level 1.

Table 2 presents the estimated b-values for two levels:
level 1 is appropriate for M € [3.5 to 5], while level 2, for
M € [5 to 7). The historical data are used for the b-value
estimates of level 2 only. The data indicate that the magni-
tude range {5 to 6] can be considered as an intermediate one.
Although the events with M € [5 to 6] essentially control
the b-value in the entire range [5 to 7] (see Appendix), we
have statistically significant difference in the b-value for the
two scale levels. The physical and statistical nature of the
variation in the b-value, reported in Table 2, calls for a spe-
cial study.

Conclusion

This article is an attempt to derive from the SOC para-
digm corollaries relevant to seismic risk problems (e.g.,
Main, 1995; Woo, 1996). Qur conclusions are these:

» Given a seismic zone, the conventional description of seis-
micity puts conditions on the scale and the magnitude
range to be considered when representing the FM relation
in log linear form. Hypothesis A leads to a multi-scale
representation of the FM relation preserving the log linear
character. In this case, the query of Wesnousky (1994)
**The Gutenberg—Richter or characteristic earthquake dis-
tribution, which is it?"” could be answered: both. Large
events can themselves form a statistical population having
a GR law in a zone with the appropriate scale.

» The adoption of hypothesis A may reduce the number of
parameters needed to describe the recurrence of the larger
events, but, at the same time, hypothesis A reduces our
statistical ability to estimate M.,

of the plate boundary between Eurasia and
Africa in the Ttalian region (Lort, 1971); arrows
show the direction of motion relative to
Eurasia.

+ Using the CMT catalog, a significant worldwide variation
in the b-value has been found for M, > 5.5, and this fact
justifies the search for geometrical/physical factors that
cause the regional variations in b.

* The analysis of the seismicity in Jtaly shows that the multi-
scale approach can be used where the size range of dam-
aging earthquakes is large (AM > 4) and catalogs with a
large amount of historical data are available.

» The multi-scale approach calls for an understanding of
seismicity at different space—time scales.

Appendix

Seismic risk studies involve different groupings over
magnitude, depending on space and time. This considerably
complicates the statistical estimation and comparison of the
parameters in the GR law, for a set of nonintersecting vol-
umes in location-magnitude-time space. These problems are
considered in the nearly inaccessible article by Molchan and
Podgaetskaya (1973), which we summarize below, The tech-
nique is essential even for earthquake catalogs containing
the scalar seismic moment, given in the form of an exponent
and a two-digit prefactor, leading to nonuniform grouping
over M,,.

Estimation of (@, b). Let {N,} be the sample of mainshocks
in an area G in nonintersecting time-magnitude cells
AT,AM,. Taking into consideration the GR law, we assume
that N; are independent and that they follow the Poisson
distribution with parameter A; (mean value of N;); that is,

A, = AT, j 10"+ 240,
AM;



Multi-Scale Seismicity Model for Seismic Risk

Figure 3. Seismogenic zones (solid line) from
GNDT (1992), and b-zones of scale /| (bold line). No-
tation for GNDT zones: C. compressional areas; F, ar-
cas of fracture in the foreland zones; T, transition ar-
eas; TP, areas of transpression; V, volcanic areas.
Notation for b-zones of scale [,: Ia, southem branch
of Eastern Alps; Ib, Western Alps; lla, Nerthern Ap-
ennines; Ilb, Central Apennines and Ancona zone;
lic, Tuscany; Ild, Roma comagmatic zone; I, Cala-
brian arc {(a) northem branch and Gargane zone, (b)
Centre, {(c) Etna]; IV, Sicily.

The estimate of (a, b) is given by the point where the log
likelihood of the data, £(G), reaches the maximum. Here

k
LG = 2, NI A,

where l(n | A) = nlnA — A,
The conditional log likelihood for N; given the statistics
N = ZN,, namely, '

L(GINY = L(G) ~ KN 12, A),

is a function of b only. The statistics L(GIN) is approxi-
mately gaussian. This permits one to define a more exact
distribution of L(GIN) using the Edgeworth expansion and
six moments of L(GIN). Knowing the distribution of L(GIN),
one can find a confidence interval for b (Cox and Hinkley,
1974).

Explicit formulas for b exist only in the following theo-
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Table 2

FM Mutti-scale Model for Italy (the b-value of each zone
depends on space scale level and magnitude range)

T+ 1900-1993 T 1000-i993
Zones of Zones of
Scale Level 1 ASEM<50 Scale Level I S=M=7
(Fig. 3) N* b + Abt (Fig. 2b} N b x A5
Jab; lab.d® 1491 0.89 = 0.15
T1&1E 184 1.07 = 0.13
Ie 169 1.32 + 0.24
Ila 224 0.65 = 016
IHab 59 =0.65%
IITb 178 1.00 + 020
1IcY 18¢ 1.02 = 0.20 log FM is nol lincar
Iv 151 076 = 0.20 Ve data are not

complete

*T is the time period covered by the catulog; N is the total number of
used main eveats.

t(b — Ab, b + Ab)is 95% confidence interval for the b-value.

tAll five zones are uniform with respect to the b-value; therefore. we
show only the b-value estimate for one of them (la, N = 275) plus the total
number of events in their union.

%We pive a qualitative b-value estimate because of lack of data.

IEtna volcanic zone: observed M,,,, = 5.2. It is an interesting example
of a small b-zone (f = 45 km) that contains the 95%-aftershocks area
related to the mainshocks with M < M.

¥Sicily zone musi apparently be extended beyond the boundary of the
studied area, toward North Afnca,

retical situation: AT, =T, AM,; = A, M, = =. The formulas
are

i - A Ugll + NI 2 N{Gi— DL A >0 (Kulldorf, 1961)
T | Mge ! DM, - M), A=0 (Aki, 1954
(Al)

The distribution of Aki (1954) estimator is known exactly.
Namely, b/b = 2N/y3,, where the random variable 7 has
the y* distribution with f degrees of freedom. It follows that
b has the bias Ab = (b — b) = b/N and the standard de-
viation g, = b/\/—i\_’. The modified estimator b* = (1 —
1/N)b reduces the variance % and removes the bias.

The explicit formulas (Al) show that the contribution
of the statistics of M; in b estimates is proportional to ¥, M.
Since N, is proportional to 107 % the maximum likelihood
{MLH) estimate of b, based on uniformly sampled data, de-
pend rather weakly on the large events. Consequently, when
the zone size and the magnitude range involved in the sta-
tistical estimation of a b are mismatched, the MLH estimate
of b may represent the log FM relation correctly orly among
the smaller events of the range {events of different maygni-
tudes are here assumed to be completely reported for the
same time span).

Comparison of the {a, b) Parameters. Let us consider d
nonintersecting volumes V, = (G, T,M,) with their grouped
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data (G, is a spatial area, T, a time period, M, a magnitude
range). In order to compare b, or (a, b), for different areas
G, one usually has to test one of the following two hypoth-
eses: all the b-values for the volumes V, are equal, whercas
the a-values may be arbitrary (hypothesis H,: b, = ... =
b,), or all (a, b) pairs for volumes V, are identical (hypoth-
esis H.p: by = ... = by, a, = ... = ay). The general
alternative to the hypotheses H, and H,, is H: (a, b),, @ =
1,..., d are arbitrary; that is, there are no restrictions on a
and b, The hypothesis H, { = bori = (a, b), against H is
tested using the generalized Pearson statistics

no= =2 [max Ly — max LE],
H; H
d
where Ly = 2, £L(G,) and the maxjmum is taken over the
a=1

parameters {(a, b), with due account of the relevant hypoth-
esis H; and H. The values of (a, b), that provide max Ly
under the hypothesis H; are maximum likelihood estimates
in the general case.

The asymptotic theory of statistical hypothesis testing
asserts (Cox and Hinkley, 1974} that H; should be rejected
in favor of H, if m; > w(f;, y). Here u(f, y) is the quantile of
the x}-distribution oflevely, o =d — 1,f,, = 2(d — 1).
In this case, the probability of rejecting H; when it is in fact
true is approximately equal tog = 1 — .

When the Aki (1954) estimators are valid, a test of the
hypothesis H,, for the two regions G, and G, can be based
on the exact distribution of 51/52; namely,

by/b, = (by/by) - (NN - (o)

where the y? variables are independent and N, is the total
number of events in region G,. Therefore, if b, = by, the
ratio 5;[52 for the two regions follows the F-distribution
(Utsu, 1971).
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