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Introduction

The study of the absorption, emission, and scattering of electromag-
netic radiation as it passes through a medium with which it interacts is
a fascinating subject involving the close interconnection of many disci-
plines in mathematica and physics. This subject originated in the study
of the properties and fate of radiant energy as it traverses stellar inte-
riorg, and much of the terminology and many of the definitions reflect
the impetus given by the early researchers in the field. More recently,
a great body of this theory has been applied to the study of the pas-
sage of solar and terrestrial radiation through the Earth's atmosphere,
as well as to the study of radiation in the atmospheres of the other
planets. In particular, studies of climate and climate models, and the
detection and measurement of the distribution of water vapor, trace
gases, and aerosols in the atmosphere have given additional importance
to this topic, and literally hundreds of technical papers have been writ-
ten in the past 20 or so years in which applications of radiative transfer
{RT) theory have been made to these and other topics in atmospheric
physics.

The lack of standardization of symbols and terms in current radia-
tive transfer literature has caused some difficulty, especially for the neo-
phyte researcher, in comparing analyses and numerical results among
the published texts and papers in radiative transfer theory; this conse-
quently presents the new researcher with some difficulties in developing
an integrated picture of, or feel for, this most fascinating subject. The
present monograph is an attempt to alleviate this frustrating circum-
stance by developing some of the fundamental concepts in RT theory,
and by defining some of the more useful approximate solutions to the
radiative transfer equation (RTE) using as consistent a set of definitions
and symbols as is practical. This will hopefully make the newcomer’s
transition to the more formal technical literature somewhat less painful.

The radiative transfer equation appears in many forms in the
literature, depending on the discipline, the area of application, and the
whims of the writer. The various forms derived herein are those most
generally encountered in atmospheric applications. As in any scientific
discipline, the technical literature is generally written by experts Jor




Introduction to the Theory of Atmospheric Radiative Transfer

experts, and, as a consequence of long familiarity with the basic theory,
a great deal is generally omitted from their papers as being well known
or implied, causing still more confusion to the researcher new to the
field. Frequently, for example, one paper presents specialized forms
of the RTE which supposedly represent the same physical situation
as in another paper, and yet the physical forms of the corresponding
equations are dissimilar. The present book will hopefully aid the reader
in recognizing these differences and the reasons for them, and thus allow
the reader to construct a mental link between the seemingly different
results.

Some of the classical solutions to the various forms of the RTE
will be derived in detail. These will include the thin-atmosphere
approximation, the single-scattering solution, various forms of the two-
stream solutions, the Eddington solution, and the discrete ordinates
method of Chandrasekhar. In some cases, numerical examples will be
given so that the reader can develop a feel for the order of magnitude of
the numbers involved. Appropriate caveats will be rendered concerning
regions of applicability of the approximation metheds.

A working group of the Radiation Commission of the International
Association of Meteorology and Atmospheric Physics (IAMAP) headed
by Jacqueline Lenoble of the University of Lille, France, has edited
an extremely comprehensive but very compact two-volume set of notes
containing descriptions of all the presently used methods for comput-
ing the radiative transfer through scattering atmospheres. Because of
its scope, this document is difficult to use as a tutorial guide, but is
an excellent reference source for the experienced researcher. Its title
is “Standard Procedures to Compute Atmospheric Radiative Trans-
fer in a Scattering Atmosphere™; it is published by the IAMAF, and
is obtainable from NCAR, Boulder, Colorado. This document dis-
cusses all the current problems in radiative theory, all the methods
currently in fashion, and gives hundreds of references. It is highly rec-
ommended for source material once the fundamentals of the present
text are fully grasped. Prof. Lenoble has edited and revised a set of
these documents, which is available as Rediative Transfer in Scatter-
ing and Absorbing Atmospheres: Standard Computational Procedures,
A. Deepak Publishing, Hampton, Virginia, 1985 (ISBN 0-937194-05-0).

The present book is not intended to be a textbook on radiative
transfer theory, nor is it intended to be authoritative or complete—
the author has neither the inclination nor the expertise to attempt
such a monumental task. It is meant rather to be a set of notes,
mathematically more detailed than one usually finds in a textbook
or formal paper, presenting the derivations and soluticns to various
forms of the integro-differential equation which describes the transfer of
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radiant energy through an absorbing, scattering, and emitting medium.
The basic thrust of these notes is twofold: first, to provide the reader
with a firm physical foundation of the basics of radiative transfer which
will permit a ready transition to the more formal literature from which
this foundation can be expanded; second, to present some of the more
elementary, but perhaps more useful, solutions to the RTE in sufficient
detail for the reader to be able Lo concentrate on the physical principles
involved in these developments rather than being bogged down by a lot
of superfiuous mathematical detail, thercby helping the reader develop
a physical feel for the way the various components interact and for their
relative importance.

To give proper credit where it is due, it should be mentioned that
except for the specific papers referenced in the body of the text, most of
the material for this monograph was extracted from three texts: those
of Chandrasekhar (1960), Liou (1980}, and Ozisik {1973} - -in particular,
chapters 1 -5 of Chandrasekhar, chapters 1 and 6 of Lion, and chapters
1, 8, and 9 of Ozisik.
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Chapter 1
Introductory Concepts

All substances continucusly emit electromagnetic radiation as a
result of the thermal motions of the molecules and atoms of which
they are made. The thermal agitation of these particles increases
with temperature, and consequently, the emitted radiation frequencies
increase with temperature. The wavelengths of these radiations range
from several kilometers for very long wavelength radio transmissions
down to 10712 ¢m and less for cosmic rays and beyond. A very rough
and somewhat arbitrary division of the electromagnetic spectrum is
given below in table 1-1.

TABLE 1-1. THE ELECTROMAGNETIC SPECTRUM

Wavelength Type of radiation
107! to 10'0 oy Radio, radar, TV, etc.
1074 0 107! ¢m Infrared
1079 to 1074 em Visible
1078 to 107% ¢m Ultraviolet
10790 107% cm X-rays
1072 1o 107 om (Gamma rays
?t0 10712 ¢m Cosmic rays

The term thermal radiation is normally reserved for radiation that
can be detected as either heat or light, and so is generaily applied to
that region of the spectrum ranging from about 10° to 10™! cm; i.e.,
the visible and infrared portions of the spectrum. Since we shall be
primarily concerned with the infrared portion of the spectrum, a unit
called the micron, equal to 104 cm (or 10~5 m) will be used throughout
these notes. In these terms, the thermal radiation regime extends from
about 0.1 to 1000 microns.
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Introduction to the Theory of Altmospheric Radiative Transfer

Now, in addition to emitting their own radiation, most atmospheric
constituents, from molecutes to water vapor droplets and aerosols, also
affect radiation incident on them by the processes of absorption and
scattering. Scattering can be thought of as the process of changing
the direction of the incident radiation—in some cases, by changing
the frequency of the scattered radiation. The problem of scattering
radiation without changing its frequency is the main topic of these
notes,

The relative proportion of the incident radiation which is scattered
in various directions by the scattering particles is a function of basically
two parameters: the size of the particle relative to the wavelength of
the incident radiation, and the {complex) index of refraction of the
material of which the particle is made. The shape of the particle is also
quite important, but the theory developed thus far, the Mie theory, is
reasonably complete only for spherical particles, although particles of
cylindrical and Aat plate georpetries have recently heen addressed with
some success. The basic parameters resulting from these analyses are
the particle’s phase function, which describes the spatial distribution of
the scattered radiation, the scatter cross section, which determines the
fraction of the incident radiation which is scattered, and the absorption
cross section, which, for particles with a nonzero imaginary index of
refraction, defines the fraction of the incident radiation that is absorbed
by the particle.

The determination of these parameters is a subject of its own and
will not be addressed in these notes—here, these parameters will be
assumed to be known. The text by Liou, cited earlier, gives a good
introduction to this subject, and the classical texts of van de Hulst
(1957) and Deirmendjian (1969) should be consulted for more details.
The texts by Kerker (1969) and Stratton (1941) are also quite readable
and useful, and the excellent review paper by Hansen and Travis (1974)
covers the scattering problem very concisely, as well as many of the
other topics presented in the present text.

The theory of radiant energy propagation can generally be consid-
ered from two diffcrent viewpoints: classical electromagnetic wave the-
ory, and quantumn mechanics.

The classical theory begins with Maxwell’s equations and considers
the energy propagation characteristics of electromagnetic waves. pr-
ever, the classical theory generally ignores the microscopic interactions
of the radiation with matter, and treats only the macroscopic behav-
jor. Consequently, many of the parameters of interest in the study 'of
the propagation of radiation through absorbing, scattering, and emit-
ting media are defined quantities which must be determined through
experiment.
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The situation is quite similar to that found in classical thermody-
namics. Acceptance of the first and second laws of thermodynamics,
an introduction of the perfect gas law, and the concept of entropy al-
low a great many mathematical statements to be made which correctly
identify basic trends and gross features of thermodynamic systems in
equilibrium. These classical concepts by themselves, however, generally
do not. permit the detailed calculation of numerical results. Certain con-
cepts and groups of parameters are related to others through arbitrary
constants of proportionality which must be experimentally determined.
Such parameters as specific heats, heat transfer, diffusion coefficients,
thermal conductivity, and viscosity coefficients are merely “constants
of proportionality,” and classical thermodynamics offers no means of
directly computing their numerical magnitudes from first principles or
of predicting the way in which these parameters will vary with such
macroscopic thermodynamic properties as temperature, pressure, etc.

Classical statistical mechanics docs attack these problems within the
framework of classical physics by inaking some hypotheses concerning
the molecular structure of the material; i.e., it assumes a mathematical
“model” of the system. In this way, many of the above-mentioned
coefficients can be computed in terms of the modeled physical properties
of the molecules and the local properties of the system. These results,
which are to a greater or lesser extent constrained by the fidelity
of the assumed model, generally can predict the gross characteristics
of these coefficients adequately and, when applicd to systems which
are known to fall within the realm of “classical physics,” predict
numerical magnitudes reasonably well. However, ultimately, an appeal
to quantum staetistical mechenics must be made to account for behavior
which classical theory cannot handle. Unfortunately, the mathematical
structure of these equations is generally very complex, and much of the
insight offered by the classical theory is lost.

Initially, we shall adopt the quantum mechanical approach for the
analysis of the radiation field. That is, we shall consider the field
to be composed of photons rather than waves, and shall define the
basic properties of the field in these terins. However, frequently
an appeal to the classical approach will be made in the interest of
clarity or expediency. For example, while the basic property of the
radiation field, the spectral intensity, will be defined from the photon
model, the concepts of absorption and emission coeflicients wili be
introduced in classical terms as constants of proportionality in equations
which describe the changes in spectral intensity as the radiation passes
through and interacts with an optically active medium. The two
approaches will also be combined in the derivation of the basic radiative

7



Introduction to the Theory of Atmospheric Radiative Transfer

transfer equation, where the absorption and emission coefficients will
be related to the annihilation and production of photons.

The coucepts of absorption and emission coefficients can be devel-
oped by a formal quantum mechanical approach which relates the ab-
sorption and emission properties of the medium to the Einstein Transi-
tion Probability coefficients, which ultimately permit their calculation
in terms of thie microscopic properties of the medium.

Definitions

The initial concepts to be presented below are those which for the
writer were initially the most difficult to understand and to relate to
physically meaningful ideas. Consequently, extreme and frequently
painful notational rigor will be adhered to initially, and parenthetical
references 1o variable dependencies will be used in abundance. Both
of these cumbersome nuisances will be relaxed or dropped in subse-
quent sections, as familiarity with their concepts and implications will
hopefully have been attained by then.

Suppose one has an arbitrary volume, ¥, which contains N photons.
These photons all travel with the speed of light, ¢, but they have
definite distributions of energy and directions of motion. If the volume
is assumed to be in thermodynamic equilibrium, the energy distribution
is given by the well-known Planck function,

_ 2kt
T c[exp(hv/kT) — 1]

Bu(T)

in which his Planck’s constant, 6.626 x 10~ joule-sec, ¢ is the velocity
of light, 2.998 x 10® m/sec, k is Boltzmann's constant, 1.381 x 1023
joule/deg, v is the frequency in hertz, and T is the absolute temperature
in kelvins. Then, B, (T) has dimensions of watts/(m?-sec-st). We also
follow Planck in postulating that if a particular photon has a frequency
associated with it, then the energy of the photon is Aw.

Now consider the quantity n, where n = N/V is the total number of
photons per unit volume, with all permissible energies and traveling in
all directions. Of all these photons, let us single out all the ones whose
energies lic in the range hv to A(v + dv), and let n, symbolize these
selected photons. Obviously, then,

[+ o]
n =[ ny, dis (1-1)
]

Let us further restrict our selection of photons to all of the n,, photons
which are traveling in a specified direction defined by the unit vector 0,
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and which lie in a differential solid angle centered on 1. (See fig. 1-1.)
From this, we define a photon distribution function, f,., as the number of
photons per unit volume having the direction of propagation f1 within
the solid angle dfl, whose energies lie in the range of hv to h(v + dv),
and which are passing through a unit area in a unit time. Then,

n = [ 1) an (1-2)

4 g

s

dh

Figure 1-1. Solid angle and direction of travel of the selected f, photons.

Now, if we consider the area element dA whose normal fi makes
an angle § with the {I-vector, then dAcos® is the projected area of
dA normal to the direction of propagation {1. If the photons are
traveling with a velocity ¢ then in time di the total volume enclosing
all the photons which have passed through dA in the direction of 01
is (dAcos8) (c dt), and thus, the number of selected photons in this
volume is ¢f(f1) cosé dA dt dv dfl. Since each photon has an energy
kv, the total energy of all the selected photens is

dW, = hicf, (1) cos @ dA dt dv dQ {1-3)

From this basic expression we can extract all of the definitions we need
for our development, and hopefully for understanding other writers’
definitions.

First of all

aw,

I =
v(3) (dAcos8) dt dv d

= hucf, (1) (1-4)

is defined as the spectral intensity or radiance, and is, at least in
theoretical developments, perhaps the most fundamental and useful
property of a radiation field. It can be seen that the radiance is defined
as the total energy per unit time in the frequency interval dv crossing

9
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the unit projected surface area normal to the direction of propagation
and in the infinitesimal solid angle centered around the direction of
propagation.
Also from equation {1-3) we write
aw,,
dpy = ——————— =} 1) d0
P = (Theos)(c dydy — Mvelvlt)

and so
oy = [ hf,,(02) 402 (1-5)

is the total energy per unit volume of all the photons whose energy
range is hr to h{v + dv), but which are traveling in any direction. This
is called the spectral energy density, and can be related to the radiance,
1.(11), by the use of equation (1-4)

po=+ [ 1(11) d0 (1-6)

We now accept [,(f1) as our fundamental parameter, write equa-
tion (1-3} in terms of this parameter, and use

dW,, = I,(11) dAcos dt df} dv (1-7)

ag our basic equation. This equation is frequently presented as an
intuitive relation, relating the total energy functionally to the area
element, frequency, and the direction of propagation, in which case the
radiance is {frequently inserted as merely a constant of proportionality—
hardly an anspicious introduction for such an important parameter.
It can be seen from equation (1-4), however, that the radiance can
be defined from more fundamental principles, and has a real physical
identity of its own.
The quantity

_dW, N
T dAdt ddy

is called the spectral emissive power. This is the total energy per unit
time in the frequency interval dv cressing the fotal unit area into the
unit solid angle centered about the direction of propagation {1, and is
a function of 8, as distinct from the definition of 1,,(f1).

From equations (1-7) and (1-8) the quantity

e, (11) I,{f1)cosb (1-8)

dW,,

by = aido =

I.{)cos b di}
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or
F, = f 1., (§7) cos 8 dO) (1-9)

is called the spectral fluz or irradiance, and is probahly the second most
useful property describing the radiation field. This is the total energy
within the frequency range dv, passing through the unit area per unit
time, traveling in all possible directions.

Lastly, we define

dE = dd:V;t = 1,(1) cos @ dN1 dv
or
E= ff 1 () cos dD dv = f P, dv (1-10)

as the total emissive power. This is the total energy, or total flux per
unit volume at all frequencies and in all directions passing through the
unit area in unit time.

This completes the set of basic definitions. It is hoped that by
appealing to the corpuscular approach, rather than the classical concept
of waves with their associated energies and intensities, the above
definitions will be easier to grasp.

As somewhat of an important aside, let us now make the assumption
that all directions of motion of the photons are equally probable.
This defines the concept of isotropy of radiation, and is one of the
characteristics of blackbody radiation. All of the definitions given thus
far are perfectly general and apply to any radiation field. In an isotropic
field, some of these appear in a simpler algebraic formn which will
perhaps assist the reader to recall their physical significance.

From equation (1-2), n, = 4= f,, or

Ry
47

fv (1-11)
or, the number of photons per unit volume in the direction of any solid
angle is equal to the total number of photons per unit volume divided
by the area of the unit sphere; i.e., the directions of travel are uniformly
distributed over the unit sphere. From equation (1-6)

oo = Tl (1-12)

and using equations (1-4) and (1-11)
P = 4Awhy fi, (1) = hun, (1-13)
11



Introduction to the Theory of Atmospheric Radiative Transfer

The energy density of all photons in the frequency interval di traveling
in any direction is equal to the energy per photon, Av, times the number
of selected photons.

From equation (1-9)

2n rw/2
F.= / 1,(fl)cosd dNl = I,,/ [ cos@sind df d¢ (1-14)
0 0

F, =, (1-15)

and from eguation (1-10)
E=rxl (1-18)

where I = [7° I, dv is called the total intensity, so that the total
emissive power I bears the same relationship to the total intensity 7 as
the radiant flux F}, bears to the radiance 7. Note in equations (1-4) and
(1-14) that the upper limit in the € integral is 7/2 rather than 7. This is
because these quantities are usually defined in the literature relative to
an emitting surface, and hence ¢can only emit into a hemisphere centered
on the elemental area. Thus F,, is sometimes called the hemispherical
spectral radiant fluz—quite a mouthful— and E is sometimes called the
hemispherical total emissive power. Note, however, that the net flux is
found by integrating over the whole unit sphere.
Substituting equation (1-12) into equation (1-16)

E= %jp,, dv (1-17)
and using equation (1-13)
€
E= Z/hunu dus (1-18)
Finally, using equation (1-12} to eliminate I in equation (1-15)

Fy=py (1-19)
4
which relates the spectral radiant flux to the spectral energy density.
Up to this point, we have used a somewhat quantum mechanical
approach, in that we have considered the radiation field to be composed
of photons rather than waves, as in the classical approach. All of the
previous equations and their relationships to one another could have
heen derived from classical electromagnetic theory, naturally, and in
fact historically have been derived in just this manner,

12
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We will now shift temporarily to a more macroscopic approach in
the sense that we will define some quantities which are used to describe
the way radiation energy interacts with the medium through which it
is propagating in terms of experimentally derived characteristics rather
than formal analysis. We will find that certain observed properties of
the radiation field are related to certain properties of the medium, and
prescribe certain constants of proportionality to form useful mathemat-
ical relationships. Classically, these constants are found by experiment,
much the same way some of the classical thermodynamic coefficients
mentioned earlier are found. Quantum mechanically, they can, at least
in theory, be derived from considerations of the molecular structure
of the medium and the electromagnetic interactions between the field
produced by the medium and that produced by the radiation.

Absorption of Radiation

Consider a beam of monochromatic radiation of specific intensity
1,(r, 11'); note, we now include the spatial dependence r— confined to
an element of solid angle d{)' that is incident normal to the surface
dA of a slab of optically active matetial of thickness ds. (See fig. 1-
2.) As the radiation passes through the slab, some of the photons
will be absorbed by the material in the slab, some will be scattered
out of the beam by the material, and the rest will emerge from the
opposite face of the slab. We confine curselves for the present to the
photons which are absorbed. Define K, (r} as the spectral volumetric
absorption coefficient. This coefficient has units of m~!, and represents
the fraction of the incident radiation that is absorbed by the matter in
the slab per unit length along the path of the incident radiation. Then,
the total amount of radiation absorbed by the slab per unit time, per
unit frequency interval in the solid angle 40Y' is

Ko (2)1,(r, 1) dY' dA ds (1-20)

dA
dQ’

ds

Iu(r‘, Q')

Figure 1-2. Infinitesimal cone of radiation intensity impinging on a thin slab.

It can be shown (e.g., Sparrow and Cess, pp. 17-18) that 1/K, (r)
can be interpreted as the mean free path for photon absorption; i.e., 1/e

13
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Introduction to the Theory of Atmospheric Radiative Transfer

of the incident photons will be absorbed within a distance of 1/K,(r)
of the front surface.

The volumetric absorption coefficient can be related to the more
commenly used molecular absorption coefficient, K*(r), and the mass
absorption coefficient, K3(r), as follows: assume that the opticall
active material in the slab has a number density of n,(r) molecules/m®.
Each molecule has an absorption cross section of K™(r) m?/molecule
associated with it. Then the total absorption of the incident radiation
in the length ds will be

KMo L (r, @) d©Y np(r) dA ds {1-21)
Comparison of equation (1-20) with equation {1-21) reveals that
K, (r) = KJMrinm(r) (1-22)

Similarly, if the optically active material has a mass density of
pm kg/m?, then the analogue to equation (1-21) is

K3(r)L(r,0") dfY pp(r) dA ds (1-23)

and

Ky (r) = K{(r)pm(r) (1-24)

Note that the units for K™* are m? /molecule, and for K% are m?/kg.

Scattering of Radiation

In addition to the attenuation of the incident beam by absorption,
some of the photons of the incident beam are removed by the process
of scattering. Let o,(r} denote the spectral volumetric scattering
coeffictent. This coefficient has dimensions of m~!, and represents the
fraction of the incident radiation that is scattered by the optically active
matenal in the slab, in all directions, per unit length in the slab. Thus,
the quantity

o (0),(r, 1Y) dOY (1-25)

is the amount of incident radiation scattered in a unit length by the
matter in all directions, per unit time and per unit frequency centered
about v.

This relation does not supply any information about the directional
distribution of the scattered radiation. We therefore introduce the
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concept of the phase function, P, (£, 1), such that
l I
— P, 9) d (1-26)

describes the probability that the incident radiation, I,{r, '), will be
scattered from the solid angle df)’ centered about {2 into an element of
solid angle df} centered about the direction of {1. The factor 4m is the
total solid angle, and is intreduced for normalization

1 '

. =1 i-

pr,,(n,n)dn (1-27)
11

which says that all of the scattered radiation must go somewhere in the
unit sphere.

We should note that some authorities, notably Chandrasekhar,
define the integral in equation (1-27) as

i/ﬂ,m,n’) 40 = &,
4
]

where @, 1s the single-scattering albedo, a concept to be introduced
later, and thus represents the fraction of the total incident energy lost
from the beam due to scattering only. Many authorities currently follow
this practice; nonetheless, more and more experts seem to be adopting
equation {1-27), which is preferable, in this writer's opinion, as it allows
the parameter & to be injected into the formal Radiative Transfer
Equation (RTE) somewhat less artificially. Hence equation (1-27) is
the definition used in the next chapter when deriving the RTE.
Putting equations (1-25) and (1-26) together, then,

[0 (£) T {x, ') dSY') [ 2, (11, 1) r[(l]

1
47
is the amount of the incident radtation which is scattered by the slab

per unit time, volume, etc., into an element of solid angle df2 centered
about 1. Integrating this expression over all angles of incidence gives

Zl-—au(r) dn f 5 (r, €¥) P, (0, ) dfY (1-28)
nl

T
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IU(?, an rv[(F +dr), 33

dn' dp

Eeo

Figure 1-3. Geometry of the scattering process. The angle fg is the scatter angle.

N

which is the total radiation scattered into the element df? from all
directions of incidence per unit time, etc.

_Figure 1-3 shows the geometry of the scattering process. The angle
B is calted the scattering angle (what else?}. One usually assumes that

the phase function depends only on the scattering angle. In that case,
one usually writes

P, (£3,91'} = P, (cosby) (1-29)

and hence writes equation (1-28) as

! e/ ' -
- aule) dﬂ/@/ﬂ L(r, 0, ¢')P,(cosbo) 40’ d¢'  (1-30)

where the angles ¢ and ¢ are the usual colatitude and azimuthal polar
coordinates. (See fig. 1-4.) Letting # and ¢ represent the corresponding

quantitics for the scattered ray, we can write the expression for the unit
vectors £ and (¥,

sin fcos ¢ sin ' cos ¢
1= |sinfsing| €= |sin#sing’ (1-31)
cosf cos

Then, since cosfig = 11- {7,

cosfp = cosfcos 8’ + sin §sin 8’ cos(¢’ — ) (1-32)
16
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Figure 1-4. Spherical coordinate system used to define the scattering angle. The
z-axis is normal to the slab.

or, as it is usually written, with u = cos#

o = i+ (1) (1 ) "% conty - 9 (1-33)

It might be worthwhile to elaborate somewhat on the form of the
phase function as given by equation (1-29), even though some of the
ideas we use will not be formally introduced until a later section. We are
interested here in the form of the phase function when it is a function
of the scattering angle only, and not a function of azimuth. This is a
constraint that is almost universally applied in the literature.

For most atmospheric applications, the phase function has a shape
which generally resembles the sketch in figure 1-5—the figure is rota-
tionally symmetric. The scatter function generally has a small backscat-
ter component (a), one or more “side-lobes” of various angular arrange-
ments and magnitudes (b}, and generally a strongly forward-scattering
peak (¢). The ratio of forward to backward scattering may in many
cases exceed several hundreds.

L a/ﬂﬂ\?’—f TN
T

Figure 1-5. Sketch showing a typical scatter pattern. For most materials, the
figure is rotationally symmetric about the slab.
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Generally in radiative transfer work, one tries to expand the phase
function in a series of Legendre polynomials (see the expansion of

eq. (2-31)):

M

P(cosfly) = @; Pj(cosfp)

J @o=1)  (1:34)

0

J

with cosfliy given by equation (1-33). It is quite obvious that the more
forward scattering we have, the more terms in equation (1-34) may be
required to accurately describe the phase function; i.e., N may have to
be several hundred.

In all of what follows, we shall not be quite so ambitious in our
expansions. Practically all of the authorities from whose work most of
the remaining text is drawn content themselves with at most two or
three terms of equation (1-34). This makes the mathematics tenable
and makes the physics of the process much more transparent in the
resulting equations. Also, somewhat surprisingly, the numerical results
are not too bad, and are of acceptable accuracy for many applications—
for example, in climate modeling.

Start with the one-term expansion

Plcosfl) = 1 (1-35)

which is obviously the simplest possible case, and which describes the
very important case of isetropic scattering—i.e., scattering that is the
same in all directions. The reader should not dismiss this simple case as
being too elementary to be useful. Many radiative transfer processes are
in fact very nearly isotropic and can be adequately studied by means
of this analysis. Moreover, the comparatively simple solutions which
follow from this assumption can be extrapolated to more complex cases,
as the use of so-called “similarity” transformations frequently permits
a transformation of variables from a more complex anisotropic case to
an equivalent isotropic form. {Sec chap. 7.)
Chandrasekhar presents some interesting results for the two-term
expansion
Plcosfly} = 1 + @y cosfy {1-36)

The three-term expansion
FPlcosflg) = 1 + &y cos g + o Pa(cosby) (1-37)
is also of particular interest, as for the special case in which &y = 0 and
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g = 1/2; this reduces to the well-known Rayleigh phase function,
Plcosfy) = %(1 + cos? ) (1-38)

This phase function has equal forward and backward scatter peaks and
is used to describe scatter phenomena by particles which are very small
compared to the wavelength of the incident radiation. {See fig. 1-6.)

A

Figure 1-6. Sketch of the Rayleigh phase function. The figure is rotationally
gsymmetric about the long axis.

Finally, the Henyey-Greenstein phase function is frequently used
when a large forward-scattered peak is desired. This phase function is
given by

1——g2
(1+ g% — 2gcosfy)3/?

Pcosfy) = (-1<g<+1)  (1-39)

where ¢ is known as the asymmetry perameter, and controls the size of
the forward peak. Equation (1-39) is particularly useful in theoretical
studies involving asymmetric scattering because it is a generating
function for Legendre polynomials and has the simple expansion

o0

P(cosfig) = Y _ (2n + 1)g" Pn(cos p) (1-40)
n=0

Positive g gives a forward-scatlering peak, while negative g gives a
larger backward-scattered component. In order to achieve a better
approximation to a given phase function, two or more expressions of
the same type as equation (1-39) or equation (1-40), with different
values of g, could be combined. Note that g = 0 in equation (1-39) or
equation (1-40) gives the isotropic phase function.
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The ratio of the size of the forward peak to the backward peak can
be found from equation (1-39)

P8y = 0) _(1+g)3 (1.41)

Pllgg=m) " \l1-g

from which table 1-2 can be extracted. Many aerosols have ratios of
forward- to backward-scattering peaks of the order of several hundreds,
and can thus be adequately represented for many purposes by the
Henyey-Greenstein phase function with g of the order of 0.65 to 0.70.

TABLE 1-2. RATIO OF FORWARD- TO BACKWARD-SCATTERING
PEAKS FROM THE HENYEY-GREENSTEIN PHASE FUNCTION

g P(fo = 0)/P(8 = )
0.0 1.000
0.1 1.826
0.2 3.375
0.3 6.405
0.4 12.704
0.5 27.000
0.6 64.000
0.7 181.963
0.8 729.000
ng 6859.000
1.0 o0

The azimuthal integration of equation (1-34) gives some particularly
uscful results. From the complete expansion given later in equa-
tion (2-32), this results in

; 1 2m
Plp,u'y = 5;/0 P(cosfy) d¢ (1-42)

It can be seen from equation (2-32) that all terms except those for
m = 0 integrate to zero over the range of 0 to 2x, and we are left with

Pl u) =3 & Pi{u) Pi(y) (1-43)
J=0
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and this in the two-term expansion gives
Plp, ') = 1+ oy (1-44)
while the three-term Rayleigh expansion gives
Pl ') = 1+ (3% — ) (3w — 1) (1-45)

a particularly simple and useful form.
The w; in equation (i-44) is related to the asymmetry parameter,

1
(cos g} = % / P(cos o) cos fgd cos g (1-46)
) e |

for which, in the case of the Henyey-Greenstein phase function,
(cosfly) = ¢ (1-47)

For this case,
W) =3¢ _ (1-48)

It is important to grasp the conceptual differences between scatter-
ing and absorption. In the scattering process, the photon interacts with
a particle of the medium in such a way that, macroscopically speaking,
the direction of travel of the photon is altered, but (in all cases consid-
ered in these notes) its energy remains constant. It can be imagined
that the photon “bounces off” the particle in a particular direction,
with no exchange of energy with the scatterer. Thus, neither the inter-
nal nor the kinetic energy of the particle is changed, and consequently
the “temperature” of the medium is unaffected by pure scattering.

In the absorption process, on the other hand, the energy of the
photen is completely transferred to the particle, and the photon ceases
to exist in its original form. The kinetic energy of the particle is thereby
raised - -the “temperature” of the medium increases. Emission is the
opposite of absorption. The medium particle ejects a photon and the
particle loses energy—the “temperature” of the medium decreases.

In general, a medium can absorb and emit radiation, and can scatter
radiation, but only the absorbed or emitted portion of this energy,
gained or lost from a given beam of radiance, can contribute to the
energy change of the medium. In the present text, the term conservative
scatiering will refer to the process of pure scatter with no absorption
or emission.
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The Equation of Transfer

We now derive the integro-differential equation which describes the
total change in the spectral intensity, or radiance, as it traverses an
infinitesimal distance through an optically active medinm which can
absorb, emit, and scatter electromagnetic energy in the wavelength
interval dv centered about 1. The equation will be derived first in
a very general form, and then specialized to the various forms usually
seen in the applications literature.

Consider an absorbing, scattering, and emitting medium whose
optical properties are characterized by a spectral volumetric absorption
coefficient, K,(s), and a spectral volumetric scattering coefficient,
o,{8), where s is the distance along the absorbing path. A beam of
monochromatic radiation of spectral intensity I{s, {1, t) travels through
the medium in the direction {2 along the path ds, and is confined to
the solid angle d{? centered about the direction (1. (See fig. 2-1.) We
can write the outgoing intensity as

I.(s,80,8) + DIL.(s, (1, 1) (2-1)
Iv(‘s: g, t) $E Iv(s + di’ 8, t + dt)
— U=T g
dA ds

Figure 2-1. The change in intensity of a monochromatic beam of radiation as it
passes through an optically active medium of length ds.

where the total differential term represents the difference between the
intensity entering the left face of the slab and that lcaving the right
face.

Let W, denote the net gain or loss of radiation by the beam in this
volume element per unit volume, time, etc. Then quantity

W, dA ds d dv dt (2-2)
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represents the net gain of radiant energy by the volume element. But,
by definition of the radiance, I, this is precisely equal to

DI, (5,01,t) dA df) dv dt (2—3)
aned hence DI, (5,00 \
v 3‘ 1" _ _
s W 24)

We have taken here an Eulerian approach to equation (2-4); i.e., we
have assumed that we are stationary and are describing what goes on
inside a fixed volume element dA ds—hence, the use of the total or
substantive derivation in equation (2-4). Equation (2-4) can be written
m terms of the more common time and space derivatives by using the
usual transformation

Thi= ol eV

D 1D 1[6 ]
Ds c¢Dt ¢

where ¢ = c{2 is the velocity of light (the velocity of the photons). Thus
equation {2-4} becomes

181,(s, 0,
Eﬂ%—” +0-Vi,(s,0,8) =W, (2-5)

The second term is simply the directional derivative of I, in the
direction s, so we get

10L(s, 00 dl(s,11,1)

c Jt ds =W (2-6)

The net energy gain, W, can be broken down into four separate
pieces:

Wy, energy emitted by the volume element

W, energy absorbed by the element,

Wi energy scattered out of the volume element
W, energy scattered into the volume element from all
directions

For now, let us simply denote the total energy emitted by the volume
element into the direction 01 by

Wi, = iils, ) (2-7)
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The contribution W, is given by equation (1-20), written per unit
volume and solid angle

Wi, = — Ky (s} (5,90, 1) (2-8)

W,, is the loss of radiant energy scattered out of the incoming beam
by the scatterers in the medium (see eq. (1-25))

Wi = —a, ()], (s, €, 2) (2-9)

and W,,, the energy scattered into the beam, is given by equa-
tion (1-30}

Wy, = ﬁay(s)f P(COSGO)IV(“”Q'!” ing (2-10)
114

Substitute equations (2-7) through (2-10) into equation (2-6)

alv(;.tﬂgt) + alu(;,sr.r,t) = 35(8,8) — Ku(9)lu(0.8) = ou ()] (5. 0.1)

1
c

+ ﬁay(s)[ Plcostp) (s, 00,8} 0¥’ (2-11)

0

and equation {2-11} is the radiative transfer equation {RTE) in its most
general form for our purposes.

For practically all atmospheric propagation problems, the first term
on the left-hand side of equation {2-11) is many orders of magnitude
smaller than the other terms, and can safely be dropped from further
discussion.

The term jE(s,¢), which represents energy added to the emerging
beam by emission, and the integral scattering term, which represents
energy added to the emerging beam through scattering, are usually
combined to give what is usually referred to as the source term, 3.,
which represents the total energy added to the beam by emission and
in-scattering:

o = 355, 0) + ou (o) [ Plcoso) (s, ¥, 1) d¥  (2-12)
(9
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and hence, we can write equation (2-11) in the form

di(s,01)

dS jl/ - KU(S)II/(S) n) - JV(S)IU(S! n) (2_13)

in which the time-dependent term has been dropped. Note that we have
switched to a total derivative notation in equation (2-13). This is not
strictly correct, as J,, is a function of more than one variable. However,
this is a convention that has been adopted in the RTE literature, and
hence will be adopted here.

Finally, we divide through K (s) 4 0,,(s) and write equation (2-13)

as
1 dl,(s, )
K, (s)+o,(3) ds

+ I(3,00) = J,(5,Q) (2-14)

where .
=
Ku(3) + ou(s)
is referred to as the source function.
Equation (2-14) is very general. We now make a very important
assumption, namely, that the volume element, is in local thermodynamic
equilibrium (LTE) with the surrounding medium. This LTE assumption
is valid in most atmospheric problems, at least below 30 to 50 km. Then,
Kirchhoff's law allows us to define 7 in terms of the Planck function,

BU(T)v

Ju (2-15)

75 = Ku(8)By(T) (2-16)
where T is the absolute temperature of the medium in the volume
element dA ds. The source term then becomes

o = Ku()BT) + 2-au(s) [ Pleosto)ii(s, ) at  (217)
nf

Define the spectral volumetric extinction coefficient,

Bu(8) = K.(s) + 0,(s) (2-18)
and the ratio (5)
Wy = Bu(s) (219)

wy is called the single-scattering albedo, or the particle albedo, and
expresses the fraction of the attenuated beam which is lost to scattering
alone. In terms of @y,

Koo} _y 5, (2-20)
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=
Wz S
u)O
11"'0 u:O
< )
p=1

Figure 2-2. Geometry of plane-parallel atmosphere. The direction 2 is mea-
sured upward from the planet surface. Positive p denotes upward-traveling
radiation.

and hence, we can write equation (2-14) as

1 dl(s (1)
Bu(s) ds

where the source function is

+ I.(s,00) = Jo.(s, 1) (2-21)

Ju(s, Q):{l—&.,)B(T)+%~;/ PleosO) (s, 1) d(¥  (2-22)
ﬂ.’

The RTE in Plane-Parallel Atmospheres

We now further confine our attention to the passage of radiation
through a plane-parallel medium. This is a medium which is stratified
in planes perpendicular to a given direction 2, such that the optical
properties of the medium are functions of 2 and v ounly. Since the
thickness of a planetary atmosphere is generally small compared with its
radius, this assumption is almost universally made in applications of the
RTE to atmospheric radiation studies. Now, d( )/ds = cosfd( )/dz =
pd{ )/dz (see fig. 2-2}, so that we can rewrite equations (2-21) and
(2-22) in terms of z, i, and ¢:

i dlu(z‘#vq—l’) — ~
G d o thEmd=dme @B

S
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Here, in J,,,
dfY =sin8’ dt d¢' = —dy’ d¢’ (2-24)
so Lhat

Jolz,p,¢) = (1 — ) Bu[T(z)]
1

- 2 -
_ Y [ / Picosfp)iu(z,u', ¢') du' d¢’ {2-25)
4r o +1

It is also convenient at this time to introduce the concept of optical
depth, 7, defined to be

= /OO Bu{2') d2’ dr, = —f,(2) dz (2-26)

Note that the optical depth is defined to be zero at the top of the
atmosphere, and increases as one descends through the atmosphere,
in the opposite direction from that in which z is defined. This
convention is a carry-over from the astrophysical literature, where,
in studying the radiative properties of stellar atmospheres, distance
and optical parameters are measured positive from the surface of
the star inwards. Since much of radiative transfer theory has been
developed and published in connection with studies of stellar interjors,
this convention has, for the most part, been adhered to in applications
of radiative transfer theory to planetary atmospheres.

If the height variable z is replaced with the optical depth 7., in
equation (2-23) (see fig. 2-3), then

dlv Ly My
e @) 8 = Ty (s )

dry,
or
dly (m, 1,
”—U(-;‘/qu) =1, (Tu,p,,(t') = Ju{m, p, o} (2'27)
Tv
with
S (1o, d) =(1 = &) By |T (n)]
- 2r 1
+ %”3-[ f Pleosfo)fu (v, 1 8") du' dg’ (2-28)
o 0 -1
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v Z+®
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v
T, z
z
T, T IS z=

Figure 2-3. Sketch showing the relationship between the vertical coordinate z
and the optical depth, 7.

Further Specialized Forms

Two further specializations of equations (2-27) and (2-28) are fre-
quently encountered.

First is the case where the emission term, B, [T ()], is small and
can be neglected. In this case, only scattering and absorption are
included in the transfer process; this is the situation usually encountered
in studying radiation emitted directly by the Sun. This radiation is
absorbed and scattered by the Earth’s atmosphere, but the atmosphere
itgelf is cold compared to the Sun, and thus, at solar wavelengths its
radiation is small compared with that emitted by the Sun. Thus, when
the emission term is small, equations {2-27) and (2-28) are usually
written as the single equation

el (v, . 9)
H dru
- n 1
=Ty (e d) — %f f P {cosby) v (rv.p',¢') du’ d¢’ (2-29)
4] -1

Equation (2-29) and sundry of its equivalent forms will be the
starting equation in much of what follows in these notes.

The second specialized case for equations (2-27) and (2-28) occurs in
the IR spectral region, where it is the scattering which can be neglected
{except in clouds). In the case of measuring IR radiation from the
Earth’s atmosphere, the emission term is the only source of radiation,
and hence must be included. For this case, &, = 0, and equations {2-27)
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and {2-28) become

dly {1, 4,
4 {rv, th, )

d‘r,_, = [U (Tvlﬂ! qb) + BU IT (TU)] (2'30)

Expansion of the RTE into Legendre Polynomials

Equation (2-29) is still extremely difficult to solve. Part of this
difficulty is due to the azimuthal dependence of I, through the phase
function. By expanding the phase function in a Legendre polynomial
series, the azimuthally dependent terms in the function can he uncou-
pled. The form of the expansion will then suggest that the radiance
should be expanded as a Fourier cosine series. The result of substi-
tuting these expansions in equation (2-29) is a set of uncoupled linear
integro-differential equations for the various orders of expansion. From
this, we will show that only the azimuthally independent equation con-
tributes to the fluz calculations. Since this is the parameter of great-
est interest in most atmospheric applications, we can then confine our
future attention to the solution of only this azimuthally independent
equation.

First, we expand the phase function, equation (1-29), in a Legendre
palynomial series of order N

N

Plcosty) = z

{cos )

where cos fp is given by equation {1-33). Then by the addition theorem
for Legendre polynomials we can write equation (2-31) in terms of
po i, ¢, and ¢":

)= 3 5 e

Plu i 6,8 )PP (u')cos[m(e’ — ¢)]  (2-32)
m=0{=m
where
om - ey (£ —m)! 0<m<N
a :wf(2'_6°)(€+—m)_! (e=m,m+1,..‘.N)
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Substitute equation (2-32) into equation (2-29)

dfu(;n:.n,eﬁ) S — é)_ Wer Z Z“’t P (s
v m=0f=m

2
xf /P;"(u')f,,(r.,,u’,qs')cua{m(qﬁ'—ds}]da'rm’ {2-33)
0 -1

Note that the phase function has separated into the product of a
function of g and g’ only, times a function of {¢' — ¢) in each term.
This suggests that if we expand I.(r,,u, @) in a Fourier cosine series
in ¢, we ought to be able to separate the azimuthally dependent terms
from the azimuthally independent terms by equating like coeflicients
of cosm(¢’ — ¢). The direct sunlight, which is usunally taken to be the
source of the radiation in the atmosphere, is assumed to be directionally
defined by the angles {6y, ¢p} (see fig. 2-4). Since most of the radiation
will be along this direction, let us expand about this unit vector

N
AT ) = Z I, 1) cos[m(dg — ¢)] {2-34)
m=0

where the coefficient I/ is a function only of 7., and g but net of ¢.

Figure 2-4. Sketch showing the scattering of an incoming collimated heam of
solar radiation.
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Substitute equation (2-34) into equation (2-33)

N
Z: th cos[migg - ¢

e
m={)
N n
= Z fﬂ"(ru‘u)cm[m(ttu—é)k - Z ng P"‘(#)[ f P (')

m=0 m 0é=m
N

x Y Bir, s coslpldy — &) cosim(@’ ~ ¢)] due’ do’ (2-35)
=0

Examine the integral term of equation (2-35)

n rl N
[ f PP Y (') conlplon — ¢')] coslmie’ - 8)) du’ do!
0 - p=0

N 1 2
= E/ PP ) I {7, 6') du'[ coulp(eg — ¢")] cos[m(e’ - ¢)] dg’
-1 o
(2-36)

Now

27
/0 coslp(do — ¢')) cos[m(¢’ — ¢)] d¢’

=12r (p=m=20)
= meosm(dp — ¢) (p=m#0)
=0 (p#m)

Thus, we are able to write the right-hand side of equation (2-36) as

1
(1+ &) meosmio - 8) [ PPONIPu) it (2:8)

If we now substitute equation (2-37) into equation (2-35) and equate
coefficients of cos[m{do — ¢)] on both sides of the equation, we can write
for the IT component

N
dI (Tm ) _m JJIJ
T“l,, (rv.m) = = (L + & _Z
1
< [ PP GOE (2:38)
-1
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The definition of spectral flux, equation (1-14}, can be written as

em o
Fu(n) =/l; [0 1.(r,0,9)cos@sin @ df do

or

nm -1 2 1
Fu(r,) = - f f p i ') dy dg’ = [ f # (v, ¢") dp’ do'
1] 1 0 -1

(2-39)
Substitute equation {2-34} into equation (2-39)

2r rl N
Folr.) =[0 /._ i Z 17 (7, 1) cos|migy — )] dis dep

Z[ W) di [ cosm(do ~ )] do

m=0"

Bt this vanishes unless m = 0, in which case we get

1 |
Fyin,) = 2 [ IS, ds (2-40)

This demonstrates that the flux depends only on the m = 0 term—that
is, the azimuthally independent term of equation {2-38). So, we will
now restrict all future developments to eguation (2-38) with m = 0 and
drop all the superscripts:

dlu{ro, ) By !
v{Te, ) _ W - ' ' '
pELB) (s, - 2 ;_O:wtf’z(#)/_ll’z(# Mo (ro, ') du

or in a somewhat prettier form

dIU(TVr ) _ '
—“—dru =L(r,u / I, (Tua Hy i )dﬂ (2‘41)
where
N
1) =" e Pe(p) Pylp) (2-42)
£=0
33




Introduction to the Theory of Atmosphertc Radiative Transfer

Equations {2-41) and (2-42) are the forms most frequently seen in
the literature. Remember the restrictions, however:

1. No thermal emission,

2. plane-parallel atmosphere,

3. phase function expandable in Legendre polynomial series, and
4. azimuthal symmetry.

RTE for Diffuse Component Only

We now derive one other form frequently seen in the literature. In
the preceding development, the term [,, was considered to be the total
spectral intensity. In problems of atmospheric physics, the assumption
is usually made that the Sun's rays consist of a parallel, or collimated,
beam of radiation hitting the top of the atmosphere at some direction
specified by the angles 83 and ¢g. Some of this radiation is multiply
scattered and appears at various values of 7, in the form of diffuse
radiation; i.e., radiation which has been multiply scattered and is now
traveling in all directions. Another portion of the incoming solar beam
is absorbed by the intervening atmosphere between the entry point and
the current value of 7,. The remainder appears at 7, as attenuated
solar radiation. This component is referred to as the direct component,
traveling in the same direction as the incoming beam. In analysis,
it is frequently convenient to separate these two components in equa-
tion (2-29) so that the resulting equations describe the behavior of
the diffuse component only. This also simplifies in many ways the
application of the boundary conditions.

So, let us write

=12 +18 (diffuse + solar) (2-43)
As indicated above, the direct beam consists of photons which were
originally in the incoming solar beam. These represent what is left over
after all the scattering and absorption has taken place. It does not
include photons which have been scattered out of the incoming beam
and then scattered back into the original direction—these are part of
the diffuse component. It also does not include photons emitted by the
layers of the atmosphere above it--these are also part of the diffuse
beam when, rarely, the emission terms are included in the RTE. Thus,
the direct, or solar, beam satisfies its own differential equation, of the
form

ud]t{"(rv! Hy ¢')

_ 15
dr,, =17 (70, 1. &)

(2-44a)
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with the upper boundary condition prescribing the incident radiance to
be a beam collimated in the direction (8g, ¢p)

1500, —po, 6o} = mEoé{e — po) (¢ — o)

Solving and applying the boundary condition yields the intensity for
the direct beam in terms of the incoming solar flux, 7 Fy

I3 (0~ 8) = wFoe” ™ /408(u — o) (¢ ~ do) (2-44b)
where the § are Dirac delta functions. The factor = is [requently

introduced into the solar flux because of the way Chandrasekhar defines
the flux term. He defines the flux as

2n rl
aF,(n) = fn / l,u,],,(‘i',,,,(.',) dyt do

rather than our definition in equation {2-39). The reason for this is that
the factor = then cancels out of both sides of many of the flux equation
forms, thus eliminating the necessity of carrying the m-factor through
a lot of theoretical development.

Now, put equation (2-43} into equation (2-29)

D S
St ) | A e, )

p o = 1 (g, 6) 4 T (2, )
v [

- 2 1
Jﬂf j‘”M@ﬂWWWUMAM
4 0 1

{2-45)

+ lf{r.,,p"qﬁ']] dn' dg’

From the differential equation (2-44a), the second term on the right-
hand side and the second term on the left-hand side of equation (2-45}

are equal. Substitute equation {2-44b) into the I3 part of the integral
term of equation (2-45)

r 1
i f Pl oo’ ¢ )wFoe RS0 - ug)ble' - do) dp’ do’
0 —1

ir

= :—;ﬂFoefr”/""P(#‘ ¢ — 1o ¢0) (2-46)
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Use equation (2-46) to write equation (2-45) in the following form,
dropping the superscript D, where I, is now understood to be the
diffuse component only

“rﬂu(fu,,u., ¢)

~ 2 1
- _ W R Y : ¢
ey =Iu(r. 1, &) 47rf0 [lP(u.¢,#.¢)1u(fu.#.¢)du d¢

- h;—”ﬂ)cff"/“ol’(u.fﬁ; ~ 0, %) (2-47)

Note that for the special case of isotropic scattering, Py, ¢;u’,¢') = 1,

ALy (roo i, ¢ O e
II-T) ZIU(TU,#.@ - H/[; . Iv("’u,#’,fb’) d#’ d‘ﬁ’

s

- wTFoe“"’/””P(u,qi; —no, $o) (2-48)

and if in addition we assume azimuthal symmetry

dl,(r,, ay, [
p et gy - —'i/ L(r, ) di
dry 2 J_

- S Rpe /0 P, — o) (2-49)

The azimuthally symmetric form of equation (2-47) is

dly (7, 1) Gy f1
Pt =t = [ Pl L)

)
= Foe ™M Py, — o) (2-50)
Substituting equation (2-42) in equation (2-50) gives

. N 1
diy(ru, pt) w _
et = L ) - ;)weﬂm) P dy

N N
1oy —_ -
- —anﬂ /o (z: wePe ()} Pe{—p0)
=0

(2-51)

This equation is frequently used as the starting point for the devel-
opment of the diffuse components of the two-stream and Eddington
solutions Lo be derived in chapters 5 and 6.
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Notice the obvious differences between the forms for the azimuthally
independent equations, (2-41) and (2-50). The latter equation contains
the solar flux exponential term while the former does not. The presence
of this exponential term is a giveaway that the radiation term contains
the diffuse component only, whereas the form of equation (2-41) includes
both the direct and the diffuse components. This difference, while
obvious now, is not always pointed out by authors in the open literature
and, hence, a careless application of their equations may result in rather
strange-looking results, especially when applying boundary conditions.
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Chapter 3
Formal Solutions to the Intensity and Flux Equations

Return now to the form of the RTE in a plane-parallel atmosphere,
equation (2-27)

#dlu(fu,#: ¢')

oy = I (7T, it, ¢) - Ju(ﬁuﬂ: &) (3'1)

and derive the formal solution to this equation. It should be remarked
that this is not really a solution to equation (3-1} in the normal sense
of being used to derive very complex numerical results. It can, in fact,
be used in some very simple cases, as will be demonstrated later, but
in general the coupling between the intensity and the source function
precludes the formal extraction process of yielding I, as an explicit
function of 7, and g. The formal solution’s utility is that it forms the
starting point, either in the spectral intensity form or the flux form,
both for theoretical analyses and for some elementary methods.

It is convenient to break the solution into two parts, one for the
upward component

IJA(TUsqu{") (OS“S l)

and one for the downward component

I, 9) (-1<p<0)

with the solution subject to the boundary conditions

1,00, ~pt,¢) = 1L(0, — ) (3-2)
IV(T;l“|¢') = IJI(T;M’J‘) (3'3)
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Note now that

dlv(rv, 4. 8)

d -
dr, [‘ru('ry”u.,d;)e TU/#] = dr

- 1 -
poy emTein _ ;Iu(fy,.u,qﬂﬂ rufu
so if we divide equation (3-1) by g and multiply by e~ /B equa-
tion (3-1) becomes

% [e—‘ru/#lu(‘-"u,.u, é)] = (_e"Tu/#) JK_(LLZM;‘S)

Let us integrate this equation between the general limits ¢; and ty

2
E_EZ/“IU{I‘ZHL'-, ¢) - e_tl/“lv(tl‘f-‘i‘ﬁ) = _/

!
e T gl ) (3-4)

t H
Now, we want to find the upward component of radiaticn ab 7.
This radiation comes in part from the surface at 7, = 7,7, and also from
all of the infinitesimal layers of the atmosphere between 7, and 7,
all properly attenuated by the intervening layers of atmosphere. (See
fig. 3-1.) So, in equation (3-4) we let t; =7, and {3 = 7, and solve for

ILI’(TIMIU)¢)

I (r s @) = Ih(ro s, gle= 05T}

™ !
+f Yl u ) (35)

Tv p’

T\J
dr '

g L
lUU.LLLLfLLLLLLLLLU.zU.Lu v
T *
v

Figure 3-1. Upward radiation at 7, due to radiation from the surface at r* and
from intermediate layers of atmosphere at 1.

Similarly, the downward component of intensity at 7, is equal to the
downward intensity impinging on the upper boundary at 7, = 0 plus
all the source terins between the top layer and 7., also attenuated by
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the atmosphere. (See fig. 3-2.) Thus, in equation (3-4) we let t{ = 0
and to = 7, and solve for I,&(r,,, i 9)

I (r 1, 8) = 14(0, 4, §)e™ /¥
T ; /
_[ e—{fu—fv)/i“]y(r:”“|¢)£[;_” (3-6)
0

in which -1 < £ <0.

Figure 3-2. Downward radiation at 7. due to radiation impinging on the top
surface 7 = 0 and the intermediate layers of atmosphere at 7,,.

Equations (3-5) and (3-6} demonstrate the usual exponential nature
of the attenuation of monochromatic radiation with increasing optical
depth. This requires, of course, a negative argument in the exponential,
while equation (3-6} appears to produce a positive argument. However,
¢ is negative, thus giving the proper sign. So in order to make
the equation look right, most atmospheric physicists at this point
replace the y with —p and incorporate the minus sign explicitly in the
exponential term of equation (3-6). This convention tends to complicate
the interpretation of the ensuing equations to some degree, but as it is
a relatively minor nuisance, and is consistently done in the literature, it
will be followed here also, with appropriate caveats as the need arises.
Then equation (3-6) becomes

{7, —it, 8} = IL(0, —ps, @)™ /*
Ty : r
+f e_(Tu—Ty)/ouJu(T:,,_ﬂ,¢)% (3-7)
Q

Equation (3-7) is the desired equation for the downward component of
spectral intensity.
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To get the flux components, we proceed from equation (2-39)

20 1
Fuln) = jo [_ T, . 8) di (3-8)

which we break into componenta as

2 Q i
Fu(fu)'_—'/l] dé U_lul.f('ru,u,qb) du+[o oIl (r, 1, ¢) du| (3-9)

At this point we must be wary in the literature. If the convention
—1 < u < +1 for u is adhered to, then equation (3-9) can be continued
directly as

Fy{n) = Fli{n,) + FL(z,) (3-10)

with ) .
Fl(r) =[0 /0 pll(ry, 1, 0) du do (3-11)

and ) o
pg(n,)=f0 f_lprg(r,,,u,qﬁ) du do (3-12)

But if the convention 0 € u € +1 for u is followed, and we replace
4 with —u for the downward compenent, then we proceed from equa-
tion (3-9) as

2r rl 2r 0
Rt = [ [l ) dudo+ [ [ wtbin, ) du do

= /EF/IpIJ(TU,p,é) dp dg - [2”/‘1}113(%,#.(1’) dp d¢

[%f BIL g 0) d d - / fuf o, =, @) du d

= Fl(1,) - Fl(z,) (3-13)
where ) |
Fi(r) = [0 [ 1l 8) du ao (3-14)
and 5 |
Fbw) = [ [ urbi, - 0) ds a0 (3-15)
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Note the difference in signs and the difference in the integration limits
between equations (3-10) and (3-13). F;E(T,;) is evaluated in the same
way in both cases, but FJ(TU) is handled somewhat differently. So, we
will develop F,,I(T,,) first, and then develop both expressions for FJ(TU).

fal (m.) is given by either equation (3-11) or equation {3-14)}, using
L, i, @) from equation (3-5)

2m 1
R ) =/ / wIdrs o, d)e” o gy gy
o Jo

el T , pay
+f / ,u[ e_(rl’_f")/“.].,(r:.,,u,rﬁ}—" di dp (3-16)
o Jo T #

This is about as far as we can go analytically with equation (3-16)
without having any knowledge about either the directional distribution
of the radiance or the source function. We can proceed with this
development if we make the assumption that the phase function, and
hence the source function, are tsotropic. This is a rather limiting
restriction, and applies only to the case where the source function
can be replaced by the Planck function, as in equation (2-30). This
then becomes a problem of emission and not scattering. The resulting
equations are not applicable to general scattering problems, but are
applicable to studies of infrared radiation. These forms are frequently
seen in the literature, and it was thought not unrcasonable to present
them here, even though the main thrust of these notes is with the
scattering problem.

In any event, we make the above assuwuption and write equa-
tion (3-16) as

1 >
F,,[(T,,) == 271'1,1(7:)/0 e_(TV_T")/'“,u. dyt
M i i
'+‘2ﬂ'f JATl) drf,/ e el gy (3-17)
T 0

The y-integrals are exponential integrals of various orders, where

Enlz) Ef,m e (3-18)

AL
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Evaluation of the first integral:

Let

then

1 i)
[ e (ST g _[ 1t -meds
) o & §

had e‘(";_"u)f R
=[ —a— K=Bn-n)
1

Evaluation of the second integral:

Let , .
/ T g _/ e tri-m)edE
0 0o 62
oo e*("L""'v]f '
=[ ———df = E3(r, — 1)
1 £

so that we can write:
T‘
FJ(TU) = 2WIIIT;E3(T; -n)+ 21rf Y Ey(rl, ~ 1,)Ju(7]) dr], (3-19)
Tv

This equation could stand as it is, but it is more convenient to put it
into another form—f{rom equation (3-18)

o0 —zt o0 ,—xt
dBn(z) _ ] L [ T —dt = —Ep_(x)
1 tn 1

dz gn—l
Thus
dEj(1), —m) _ [dEa(TL - fu)] [d(ﬁi - Tu)] ~ ’
@, TdiE - a | = B -
s0 that we can write equation (3-19) as
FJ{TU) = 2WIJ(T;)E3(T; - 1)
Eo U
-2 f ’ J,,(—r{,)d—E%f—”)dr; (3-20)
T 174
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Integrate by parts and write equation (3-20) in the form

FJ(T,,) =2rEs(r) ~ 7,) [Iﬂ,(r;) - J,,(‘r,:)] + 2x (7}
dJy(ry)

/
dr?

dr’ (3-21)

v
+ E!Tr/ E3(1, - 1,)
T

The reason for bringing in the E3 in the second integral rather than
leaving the form as E3 is that, as we will see later in equation (4-26),
2E3(r,) is an angular integrated monochrematic transmission function,
f‘,(r,,), which, when integrated over frequency, can in some cases easily
be evaluated from band transmission models. Guided by this concept
then, we write equation (3-21) in final form as

F(r) =i (1 =) 1552} = Jule)] + 2mdu(n)

oo !
TT(T:) _ TU)dJU(TII)

+
]
T dTU

dr}, (3-22)
Note the physical difference between the two terms in the bracket:

xil(z2)

(7))

= flux from the surfece at 7, = 7,

= source flux from the atmosphere immediately
above the surface at 7, = 7}

Now we evaluate the downward flux components. This is done
nl

exactly as above for F;(7,), except that there are some mildly tricky
steps involved in the manipulation of the E-integrals that can easily
give wrong signs if one is not very careful.

First, we will evaluate equation (3-12). Then we must use the I,&(T,,)
defined by equation (3-6)

2n 0 T , dr!
Fi(r) =f f B [lﬁ(ﬂ.p. ¢)eTv/H ~[ e‘(’""”)/“-fu{ra',.u.é)?"] du de¢
o J-1 0

(3-23)
and if we make the isotropic assumption on I, and J, this reduces to

0

Te 0
F,f{n,) = 2#1,&(0} ,uer"/“ dp — 21?/ Jy('r.',) d‘rf,/ ef(f"’_f")/‘“ du
0 -1

(3-24)

-1
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Evaluate the first integral:

0
/ l,uer"/“ du

Let

1 dé
==  dpy=
H="e T @

0 oo
L :[ (_l) -Tvﬁﬁ -
[t an= [ (-g) e

Evaluate the pu-dependent part of the second integral:

o @0 ’ o0 ‘(Tu—T:,)E
/ e (b= rmzf F,m-ru)eg:/ b = Bt - o)
— ¥ 1 1

Again convert Ey to an Ej derivative:

_Eﬂ(TU)

dE3{ry — 1l,) diry, — rl)

dEylry = 1)) _

= T — 1)
drl, dre —hy a LAl =)
Hence, equation (3-24) becomes
T )
Fhin) = 2x1}(0)Ey(rn) - 20 / s e T gy (3.95)
O v
Integrate by parts and write equation (3-25) as
Fl(n) =~ 21} {n) E3(n,) - 2ndy(ny) + 2m0, (0) E3(n)
+2n / E3(r, — 1) de(T")dTL (3-26)
dr},
or, in terms of the transmission function
Fi{n) = = () [18(0) = Ju0)] - 27 ()
v . dJ.(7})
_ vl gt _
+ 7 A Trlr —7,) arl dr, {3-27)
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The net flux follows from equation (3-10), using equations {3-22)
and (3-27)

Fo{n) :"TTT(T; =) [ILI/(TI:] - Jv(":r)]

- L dJ
—Th(n) {I,{(O)-J,,(O)]Hfu H(ry — 1) ) ;(, Dt
" d (7,
tnf Ty (7, - ) (‘i’f(’/ )er

Now, Ty{r, — 7)) = Tr{7], — 7}, since these are transmission functions
between the optical depths 7, and 7/, and are assumed to be the same
numerical value when taken in cither direction. Thus, we get

Fu(n) = w3 (r = ) [1() = ()]
- TTTr(TI/) [ V( ) - JV(O)]

™. dJ (7!
+r f ol — 1) W) g (3-28)
0

dr,

This equation for the net flux forms the starting point for many studies
of the temperature structure of the Earth’s atmosphere, and is used to
describe the infrared cooling part of this structure. See, for example,
Rodgers and Walshaw (1966).

Now, we develop F,}(n,) from equation (3-15), where in this case we

—H, d’)

2w 1 Tv . ar!
F&(n,] = f [ u [I},(D)e—r"/'u du +/ e“(TV"T")/“Ju(TL. —u.dJ}‘(—‘u] du do
0 0 ]

1 T H
= 21rf,1,(0)/ ,uek"’/" du + 2#/ Julrl) dri, / e =Tl dp (3-29)
[} 0 R

must use equation (3-7) to define [i('r.,,

Evaluate the first integral:

n=-1/¢

1
/u pe” I dy = Ey(n)
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Evaluate the g-dependent part of the second integral:

1 '
[1 T dy = By (r, 7))

80 that equation (3-29) becomnes

dEg(T,, - T{,

F,,I(T,,}:27rlll,(0)E';;(T,,)+21r[ "Ju(r,',) o )df:, (3-30)
0 Ty

Integrate by parts and equation (3-30) becomes

Fl(n) = 2nEy(r,) [I,E(O) - Ju(o)] + 21 (7))

v dJ, (1]
- 27rf Es(r, — T:,)—Mdrj, (3-31)
1]

'
drl,

or

Fhn) =wT(n) [1(0) = 1 (0)] + 2 (s,)

Tv _ !
~ Jr[ Te(r, - T:,)d']y(r"}d‘r:, (3-32)
0

I
dr),

It can be seen that equation (3-32) is cxactly the negative of equa-
tion (3-27)-—which is extremely fortunate or we would have a serious
problem in computing the nei lux—and hence, the net flux, given now
by equation (3-13), also produces equation (3-28).

The message here is that, when reading the literature, one’s atten-
tion must be drawn to the way the author defines the downward flux;
f.e., whether with -1 < p < 0orwith 0 < # < +1, and, hence, whether
the net flux is defined by equation (3-10) or equation {3-13).
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Reflection and Transmission Coefficients, Surface Effects,
and Albedo

In many applications of radiative transfer theory, we are not partic-
ularly interested in what goes on in the interior of the atmosphere, or
inside a finite thickness of the atmosphere. For instance, we may be in-
terested only in what comes out of the top of the atmosphere at 7, = 0,
or what comes out of the bottom at 7, = 7. In order to simplify the
extraction of these data from the radiation field, a theoretical approach
known as the principle of inveriance was developed by Ambartsumyan
(1958), and further developed and clarified by Chandrasekhar (1960).

We mention this principle here in order to provide a springboard
for introducing the concepts of reflection and transmission functions,
to which this chapter is devoted. The principle of invariance will be
discussed in detail in chapter 8. For now, we merely state that if
the reflection and transmission properties of two thin slabs of optical
material are known, then the principle allows us to determine the overall
reflection and transmission properties of a composite slab made by
placing the two thin slabs face to face. The solution to the radiative
transfer equation for a thin slab is relatively simple (see chap. 5).
Thus, when working with atmospheric problems we could divide the
atmosphere into a number of thin layers, use the thin-layer solutions
for the RTE to determine the transmission and reflection properties
of the thin layers, and then use the principle of invariance to build
up the atmosphere layer by layer, and thus compute the reflection
and transmission properties for the finite-thickness atmosphere without
having to solve the complete form of the RTE. This is a particularly
useful concept in deriving numerical results for both homogeneous and
nonhomogeneous atmospheres.

We proceed now with the introduction of the transmission and
reflection functions.

Chandrasekhar defines the scattering function,

S(T‘ Ll Qb, B0, ¢0)
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and the transmission function

T(T* FH, ¢’:l-¢0, %)

by the following equations

r 1
1

IREF (0 4, 8) = m[ / Sir* cpe ' ¢ ng(, @) du' de’ (4-1)

o Jo

L 1

* i g W

FrRANS(F .~ 6) = ﬁ] / Tt st e o) i dg' (4:2)

o Jo

where Irgy is the reflected diffuse radiation, ITp Ang 18 the transmitted
diffuse radiation, and Ijyg is the incident radiation. Both § and T are
explicit functions of the total optical depth, 7). The factor 1/u was
introduced to secure the symmetry of § and T in the pairs of variables

{1, @) and {ug, ¢o); i.e.,

S(r* : p, b, pio, do) = S(7° : po, do, 1, §)
T(T‘ N ¢$ M, ¢0] = fj"(.r* + 1O, ¢0| i, ¢)
If the incident radiation is considered to be solar radiation, entering

the atmosphere in a parallel, or collimated, beam, then we can write
(see eqs. (2-44))

Ine(p', ') = mFob(y' — po)6(¢’ — ¢o) (4-3)

where #sFy is the solar flux, and the é are Dirac delta functions.
Substitution of equation (4-3) into equations (4-1) and (4-2) gives, for
a collimated incident beam,

Fi
IREr (O, ¢) = ﬁs(f* i, @, po, P0) (4-4)
* oz -
ITrans(t", ~,8) = ﬁT(T s, &, 10, o) (4-5)

Note that 7 defines the diffuse component of the transmission only.

The reduced direct component, m¥ge~"/#0, is not included in 7.
There is another set of definitions of reflection and transmission

coefficients which appears frequently in the literature (e.g., Liou, 1980},
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which is defined by the relations

i 2 1 ,
Inpr(0, p,¢) = ;/(; /(.] Rip, ¢ u',qﬁ')[mc( -l " dy! de
(4-6)

e gl

Irans(7", —p, 8) = % /u /0 T(p ¢ ¢ ¢ ) ine(—u', ¢ )’ dyt’ do’
(4-7)

Note that these differ from § and T in that they drop the /g in front of

the integrals, but include a p under the integral, Thus, the integrals in

equations (4-6) and (4-7} are closely related to flux integrals. This is the

reason for the 1/7 factor, changing the integral from flux to radiance,

as required by the left-hand side.

If we again use equation (4-3) for the incoming flux, we get

IREF(0, 11, @) = paloR{p. ¢ 1 po, do) (4-8)

ITRANs (7" =, @) = poFoT (i, ¢ : 1o, d0) (4-9)

Comparison of equations {4-4) and (4-5) with equations (4-8) and (4-9)
gives the correspondences between the two sets of coefficients

5
"= (4-10)
djrop
T
T 4-11)
4pop (

Frankly, it is not at all obvious which set, if either, is better to use--
Rand T, or § and T. There seem to be some small practical advantages
in using R and T, since they are defined in terms of Huxes rather than
radiances, and since the albedos are generally also defined in terms of
flux quantities. The set S and T seems to be used more frequently
in high-powered theoretical developments than does the set R and T,
but this may be due more to the impetus given these paramecters by
Chandrasekhar’s studies and influence than to any inherent advantage
of their own.

From the definitions of equations (4-6) and (4-7) we can immedi-
ately write expressions for the diffusely reflected flux and the diffusely
transmitted flux

2w 1
ﬁw&mW:A Lmeﬁmwmwwm%WMMW¢m
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Zn 1
F’rlmNs(T*,—u,é)=/0 /0T(#uﬁi#',¢')11NC(—#',¢')#' dy’ dg'

(4-13)

We define the planetary or local albedo as the ratio of the total

outgoing flux at the top of the atmosphere to the total Alux entering the
atmosphere at the angles 6y and ¢g. The total incoming flux is

2l
NG = /0 /(; Ine(—#, 8" d’ dg’
and for the collimated beam of equation (4-3)
Fine = mFopg {4-14)

The total outgoing flux is found by integrating equation (4-8} over all
angles u and ¢:

2r rl
FrEfF = #OFO/(; /0 ni(u, ¢ : po, do) dp dg (4-15})
and hence, the planetary albedo, r(pp), is given by

Frer(0, &, 1 r2r 1
rlu) = TSI L T g o gol dudo (e

Similarly, the diffuse transmission function, t(ug), is written

F, ™ =i,
) = I‘RAN;I(NC # ¢)

1 2r £l
= ;/ﬁ fo T(p, ¢ : po, doju du de (4-19)

(4-18)

Again, for emphasis, equation (4-19) describes the diffuse transmission
function only. The direct transmission function is given by e~7"/no.
However, the more fundamental definition in equation (4-18) may
include both transmission components.

For the special case of azimuthal symmetry, equations (4-17) and
(4-19) reduce to

1
r{m) = 2/0 Ry, po)p dp (4-20)
and
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1
t{pg) =2 j(; T{p, uo)p dpt (4-21)

respectively.

The spherical albedo is defined for a planetary atmosphere as the
ratio of the total flux reflected at all angles by the planet to the total
flux incident on the planet. If we let the radius of the planet be a, the
total flux incident on it is

(wFp) (ma?) (4-22)

We want to find the total flux reflected by the planet. Let dA be the
area of the elemental ring on the surface of the planet as shown in
figure 4-1.

dA = 2ma? sinfy dby

- nF

~—

Figure 4-1. Sketch of the geometry involved in computing the spherical albedo.

The elemental area rormal to the incoming rays is
dAcos by = 2ma? sin 6y cos fy dfy

or, with pg = coséy
po dA = —2a%pg dug

Thus, the total flux reflected by the element dA is
(-27”12!10 dﬂo) [ For{pa))
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and integrating over ug from 1 to 0
1
Frer = (2a?)n By [0 o) dutg (4-23)
The spherical albedo, 7, then becomes

(2ma®)n Ry o por(uo) dpo
ma? - Ty

F=12 /O ] por(io) duo (4-24)

F=

In a similar manner we can define a spherical transmission function

i
1=2 fo wot{o) dito (4-25)

The spherical transmission function for the direct component is

l -
Ip = 2/ uoe {1 dpg = 2E3(r") (4-26)
0

{Sce eq. (3-18).} We see that Ej is related to the direct transmission
and that this is the reason for changing from E; to Fj3 in the develop-
ment of the flux equations in the last chapter.

Inclusion of Surface Effects

The reflection functions and albedos we have derived so far are
for the atmosphere alone. If the atmosphere is bounded below by a
reflecting surface, as it obviously is, then the reflection function and the
albedo of the total system must be modified somehow by the presence
of the surface. We now consider this problem, and use the approach
of Tanré (1982). This approach permits us toc work the atmospheric
problem alone, without considering the surface effects, and then add
the surface effects separately. Thus, the optically thin atmosphere and
the single-scattering solutions introduced in the next chapter acquire
considerable importance.

Consider an atmosphere of optical depth #* bounded below by
a Lambertian surface; i.e., a surface which reflects equally in all
directions. Assume that each point of the surface is Lambertian with
a reflectance p,, and that each part of the surface receives the same
downward flux. The solar flux at the top of the atmosphere is, as
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usual, denoted by 7Fp, and it enters the atmosphere at the angles ug
and ¢p. The total flux received by cach surface element is the sum of
three separate companents {as shown in fig. (4-2):

I. A direct lux component——the incoming solar flux attenuated along
the slant path, .
rupFge T 0 (4-27)

2. A diffuse transmission component, arriving at the surface after
multiple scattering (see eq. (4-19})

o Fot(— o) (4-28)

3. A diffuse component arriving at the surface after multiple scatter-
ings and reflections between the atmosphere and the surface.

(1) \(2) (3)

Figure 4-2. Sketch illustrating the three ways a specific photon can interact with
the surface.

Write the total transmission through the atmespherc as
Te(—p0) = t{-p) + ¢~ /R (4-29)

Then, the total fiux which reaches the surface before any surface

reflection occurs is
mpo FoTr(—10) (4-30)

and the total flux reaching the surface after multiple reflections and
scatterings between the surface and the atmosphere is

o FoTr(— ) [p,.? +p2FE 4 B } (4-31)
where 7 is the spherical albedo of the atmosphere alone. (Note that the
relative simplicity of this expression stems from the assumed Lamber-

tian character of the surface. If the surface were not Lambertian, this
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would be a much more complex problem—see Tanré,) The first term
in the bracket represents flux which has been reflected once from the
surface, and then scattered back down to the surface. The second term
represents flux which is reflected upward from the surface, scattered
down by the atimosphere, reflected back upwards by the surface, and
finally scattered back downward by the atmosphere. The remaining
terms are interpreted similarly as multiple reflections and scatterings
between the surface and the atmosphere.

The total flux which reaches the surface from the multiple scattering,
then, is the sum of equations (4-30) and (4-31)

Fy(p) = npg Ry (- po) [1 + paF + p2F% 4+ goF 4 - ]

FoT (-
_ Tk r(_#o) (4-32)
1 — p¥
since peF < 1.
Since the surface is assumed to be Lambertian, the total fux
reflected by the surface is

T Fops Tr(—po)

Frur{uo) = psFriug) = =7
]

(4-33)

Now, look at the total flux leaving the top of the atmosphere in
the spectfic direction cos™! p. This too ig composed of three parts (as
shown in fig. 4-3):

1. A component of the incoming solar flux which is directly scattered
into the direction cos™! u before it reaches the surface

T Fo (i, po) {4-34)

2. The total flux received at the surface, reflected by the surface, and
directly attennated by the atmosphere

Mo fopsTr=p0) v ju (4-35)
I—ps"_'

3. The total flux received at the surface, reflected by the surface, and
duiffusely attenuated by the atmosphere

o FopsTr ( —ﬂO)

T ) (4-36)

56

Chapter §
\/

Ve \7/ \}’//

Figure 4-3. Sketch of some of the ways a given incoming photon can interact with
the atmosphere and surface and finally escape.

Thus, writing .
To(w) = tu) + ™" /¥ (4-37)

we can write the total flux leaving the top of the atmosphere in the
direction defined by u as

. 7o Fops Tr(— o) Tr (1)
Frer (1, 80) = o Fo R(u, po) + 51 :W_, - {4-38)

Following equation (4-16), we can define the total bidirectional
reflectance of the atmosphere-surface as

P (u, pg) = TREEUAEO) _ oo o)+

psTr(—po)Tr(n) (4-39)
Fng

1 — pa?

(Note again the symmetry r*(u, p19) = r*{(pg,¢).) Then, by analogy
with equation (4-20), if we multiply equation (4-39} by 2 du and
integrate over all p, we get the planar albedo of the atmosphere and
surface system, B

- {4-40)
1 — ps¥

r*(ug) = r(ug) +

where 1
T, =2 [0 WT () dp (4-41)

Finally, the spherical albedo is obtained from equation (4-40) by
integrating over ug: _
PaTa?
1 — py7

=%

F*=F+ (4-42)

Liou (1980) develops these same relations in a much more rigorous
way by applying the basic definitions of the R and T functions to the
RTE. It is felt, however, that the more heuristic approach given here,
following Tanré, brings the physics of the process more directly into
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the derivation, and, hence, may be more appealing to the reader, who
wants to see physically how the various terms react with each other.

Liou's development should not be ignored, however, as it permits
one to derive the same results by a more rigorous manipulation of the
basic definitions and concepts and, hence, to attain some fAluency in the
use of these more formal statements. In this same context, see also
section 72 of Chandrasekhar (1960).

It should be painted out that for homogeneous atmospheres t(y) =
t(—), but this is not generally true for nonhomogeneous atmospheres;
i.e., the upward transmission function for a nonhomogeneous atmo-
sphere is not, in general, equal to the downward transmission.
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Approximate Analytical Solutions to the RTE

There are a number of approximate solutions to the various forms
of the RTE we have developed so far, and considering their simplicity,
for the Earth’s atmosphere many of them are surprisingly accurate
when compared with “exact” solutions. The reasou for this is that,
except in the cases of radiation through clouds, heavy fog, or haze, the
Earth’s atmosphere is optically thin. Many of the approximate solutions
are based on thin atmospheres, which allow only very low orders of
scattering to dominate, and thus, when applied to many problems
or studies in the Earth's atmosphere, yield numerical solutions which
compare very favorably in accuracy with much more sophisticated
“exact” solutions. However, some care must be taken to insure that the
solutions presented in this chapter are only applied under the conditions
for which they were derived. Long-term familiarity with, and perhaps
daily application of such solutions, frequently causes even the expert
to forget the regions of applicability, so one must be wary of trying to
apply these approximate results to problems for which the generating
assumptions are not valid.

The first two solutions covered in this chapier- -the thin-atmosphere
approximation, and the single-scattering solution-- are either applicable
only to, or are generally more accurate when applied to, a thin atmo-
sphere; i.e., an atmosphere dominated by low orders of scattering. This
can occur in an atmosphere of small optical depth, or in an atmosphere
of large optical depth if its absorption is also large -i.e., @ <L (See
the discussion in Irvine, 1968, or Trvine and Lenoble, 1973} The sundry
forms of the two-stream solution are applicable to atinospheres of any
thickness.

The two-stream solutions, presented later in this chapter, and the
Eddington solutions of the next chapter, are examples of a frequently
recurring theme in RTE work, namely, the directional averaging of
the radiance in order to achieve computationally tractable results.
The methods of Schuster-Schwartzschild, Sagan-Pollack, and Coakley-
Chylek all usc different directional averaging devices to reduce the
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radiances in the upper and Jower hemispheres to constant parameters
independent of direction. This process results in a pair of coupled
linear differential equations with constant coefficients (for homogeneous
atmospheres), one for the upward intensity and one for the downward
intensity.

Thin-Atmosphere Approximation

The thin-atmosphere approximation is probably the most direct and
simplest solution of the RTE. (We assume here only the azimuthally
symmetric case.) It can be obtained directly from the RTE by simply
assuming that the atmosphere is so thin optically that the derivatives

dl (1w, 1)
dr,

can be replaced by their finite difference forms-—see equations {5-7) and
{5-8} and Coakley and Chylek, 1975.
Start from equation {2-41)

dl, (7, @ !
u_v;_"ﬂ =L(p) 5 [ Ll W )Pa)dd (5-1)
Tu -1

with the normalized, azimuthally averaged phase function

1
%[_l Plu,p') =1 (5-2)

Recall from the discussion in chapter 2 that equation {5-1) contains
both the direct and diffuse radiation components.

Separate the integral in equation (5-1) into the upward and down-
ward components

dl (1t o, [0
W) — 1) = % [ bl Pl )
Ty 2 -1

1
- 7[ Ly (7, )P, ) dyd!
Q

or
dl.(7,, w 1
u—'%iﬁl = Iy(ry, 1) — _vf Lo(ru, i) P{p, p') dpd!
T 2 ]
(’:JV 1 ! [ t
= | Lol =) Pl ) a (5-3)
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Now, let us distinguish the upward and downward components of
intensity by the symbols

I,I(T,,,ﬂ.) = Iu(""mp)
1Y, 1) = L(r, —p)

and then write equation (5-3) for each component separately. For the
upward component

a1} (7, 1)
el i)

~, 1
w
= 1M, p) - —”[ e, )P, ad) dyf
dr, 2 Jo

, 1
w
S [ b )Py i (5-4)
To get the downward component, replace g with —pu in the first, second,
and fourth terms of equation (5-4). This is not necessary for IJ, ip
the third term, as this is the upward component of intensity which is
scattered downward:

! -~ 1
—u )t =% [ PO
I2s
-~ 1
“’—; A 1, W) P(—p, ~ ) dy! (5-5)

Recognizing that , '
P(—,u,—,u ) = P(I‘;ﬂ)
(see eq. (1-43})) we can write equation (5-5) as

L
dr,

-~ 1
= Ili(r,,,p) - w_;j(’) Ile(Tu,u')P(-"p,p’) dy’
- 1
- % [U B, ) P(p, i) i (5-6)

Now, replace the derivatives with the finite difference forms

dIlI(TVap‘) —~ IE(Tl/!”) - IL(O,#)

N 5-7
d'ry v ( )
and ! l
diy(ry, ) _ Litrv, ) — 1500, ) (5-8)
dr, Tu
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Put equation (5-7) into equation (5-4) and solve for I,I(O,,u)

T wl// 1 TU, u it ) d“;

4 ey f I, i) P, —pt') dit! (5-9)

i
lham:(l—%)mmh

Note the physical significance of the terms in equation (5-9) as sketched
in figure 5-1. The first term on the right-hand side is the upward
intensity at 7, in the direction g which is not scattered—it only
undergoes abhsorption along the slant path from 7, to 7, = (¢

E‘TU/# ~] - T_" (l’ & 1)
Il #

Figure 5-1. Sketch illustrating the physical interpretation of the terms of
equation {5-9).

The second term is the upward intensity at 7, in the upward
direction p' which is scattered into the direction y, and the third term
is the downward intensity at 7, in the direction —g' which is scattered
upward into the direction u.

Now, we want to eliminate the I,i term in the second integral of
equation (5-9). So we substitute equation (5-8) into equation (5-6) and

solve for L],(Tu,u)

1
T Ty W
I () = 130, ) (1 - —) + :7" A I Y P(—p, ') dy!
Tu wu/ Il Tu, “ _u)dﬂ (5’]0)
u 2

The terms in equation (5-10) have a similar interpretation to those of
equation (5-9). If equation (5-10) is substituted into equation {5-9) and
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only first-order terms in 7, are retained, then

(o) — 150, 1)

and equation (5-9) becomes

I vyp wwy [l AP Y dot
IV(O,JI] ={1-— IU{TU!“‘) +— [ [u(TVJL )[ {n”n“* } dp
i io2
" 1
T—uw—v[ 10, /)Pl —) did (5-11)
w2ty

We can get the reflection and transmission coefficients of a thin
atmosphere directly from equation {5-11) {sec Coakley and Chylek,
1975). To get the reflection function, assume a solar beam incident
on the top of the atmosphere

2w l1(0, o) = 7 Fob(p — pg) (5-12)

(the factor 2 arises from the azimuthal integration) and assume the
incident diffuse radiation at the bottom of the atmosphere

2ril(r,, 1) =0 (5-13)
Then equation {5-11) becomes for this case

Tu wu y

- P, —po) (5-14)
The reflected flux is given hy
! " T
wm=%[ummmw:§mw%[Pmﬂmm:(mm
0 0
and from equation (4-17) the planetary albedo is

r(it0) *-*wu/ Py, —po) dpe (5-16)
2 1

We can use equation (5-11) to find the transmission function, T'(ug),
even though equation (5-11} describes the upward intensity component,
by the simple artifice of letting the solar Aux impinge on the bhottom of
the layer and examining the fiux emerging from the fop of the layer.
Note that we use T(ug) rather than {(up) to denote the transmission
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function, as here we are determining the tote! transmission function and

not just the diffuse component.
We have the boundary conditions

2l (ny, 1) = mFob(u — pup) (5-17)

and

2nfL(0,p) =0 (5-18)
Put these into equation (5-11} to get

F T o
10, ) = 1_T—") AL T v Op
(0, 1} ( )2 (pt— p0) + "2 2 (a2, 1)

Again the flux is given by equation {5-15)

\ . F wy Fy f1
P,I{()) = 27 (l - ;) > + 271’1],7”—{ A P, po) dy!

The transmission function is gotten from equation (4-19)

T T WV
T{u) = (1 - —) f Pl o) dy' 5-19
Ho/ o 2 (#' 1o) (3-19)
The first term on the right-hand side of equation (5-19) represents the
contribution of the direct transmission
e el P 4 (T_” & 1)
Ho 2]

and the second term, which is analogous to equation {5-16), is the
transmission function for the diffuse term.

We can use the normalized property of the phase function, equa-
tion (1-27), to write this in another form. From equation (1-27) and
aziinuthal symmetry, we have

lfl p( f)

2 1 H,,u -

10 ' 1t

—[ P(#,u)du'+v/ Plu,p) dy' =1
2/ 2Jo

1 1 1 1
. [ Plu -4 dp' + 1 f Pl ') dpt' = 1
2,0 2 0

Or
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and since

Plp,u') = P(y', p)
Py, —p') = P(—p,¢t))

we can write the integral form of equation (5-19) as

1 1 , , 1 1
5/ P(,u,,uo)d,uzl—if Pl
0 0

and hence write equation (5-19) as

T(Mo)—l—%[l—wui-— [ Plon-po) du| (20

Equations (5-18) and (5-20) show that for a thin atmosphere, both
the albedo and the transmission functions are linear functions of optical

depth.
Define L
= 5[ P{p, —po) dp (5-21)
0
Then from equation (5-16)
r(uo) = L&, 8(po) (5-22)
HO
And from equation (5-20)
T(io) = 1~ =% 1 = Gy + Do)} (5-23)
Finally, if we define .
B =/0 Bluo) dpo (5-24)

we can get the spherical albedo and spherical transmission function by
using equations (5-22) and (5-23} in equations (4-24) and (4-25)

7= zfvf:»’v.@ (5'25)

T=1-2n(1-a& +@.8) (5-26)

The quantities 3{ug) and A are used quite extensively in the litera-
ture, especially that pertaining to the derivation of approximate solu-
tions to the RTE. The quantity S{ug) is the backscatter fraction for a
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beam of radiation entering the atmosphere at the angle cos™! ug. This
is geometrically proportional to the fraction of the total surface area
of the phase function above the horizontal plane through the scatter-
ing center, as sketched in figure 5-2. The quantity 73 is the integrated
backscatter fraction over the whole range of entry angles. Azimuthal
symmetry has been assumed throughout this section, and hence, also
in the definition of 3(ug) and 3.

Figure 5-2. Interpretation of the hackscatter fraction. The phase function is the
Henyey-Greenstein type for small asymmetry parameter, g.

Wiscombe and Grams (1976) discuss these backscatter fractions in
detail and give integral methods of evaluating them for general phase
functions. Table 5-1 shows #{ug) computed by their method for various
values of g (asymmetrical parameter) and gy, and table 5-2 shows values
of 3. Both tables are for the Henyey-Greenstein phase function. The
table data are also plotted in two accompanying fignres (figs. 5-3 and
5-4}.
~ The tables reflect one’s intuition about the behavior of F{ug) and
A. For isotropic scattering, B{ug) = A = 1/2 for all juy (one-half of the
radiation is scattered forward and one-half is scattered backward for any
entry angle). For very elongated phase functions (g near 1), most of the
radiation is scattered in the forward direction. Hence, both §(u} and 3
approach zero (very little backscattering). For very low incidence angles
near 90 degrees (4 — 0) a somewhat higher fraction is backscattered
than for near-normal incidence angles, 8{u = 1) > A{pg = 0).

The reflection and transmission functions from equations (5-22) and
(5-23) are compared with some exact computations using the doubling
method {Lion, 1973) in figures 5-5 and 5-6. Note that, as expected,
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TABLE 5-1. VALUES OF f(pa} vs. g FOR VARIOUS g

[For the Henyey-Greenstein phase function]

q Ho = 0.1 Ho = 0.2 un = 0.3 Ho = 0.4 Ho = 0.5
0.06 0.500 0.500 0.500 0.500 (1.500
RIS 496 A92 4849 485 481
10 492 485 ATT ATO 462
A5 489 ATT 466 404 443
.20 .484 469 .454 438 423
.25 480 A60 441 422 403
30 476 451 428 404 382
.35 471 442 413 386 360
A 465 431 398 367 337
45 459 419 .381 346 313
50 452 405 362 323 288
4 443 390 341 .298 262
.60 434 372 318 272 234
.65 421 350 291 243 200
70 406 324 .260 211 174
70 385 292 225 277 144
.80 .36 252 185 142 113
.85 314 202 141 105 085
.90 247 141 094 069 053
.95 141 072 .046 13 .026
1.00 .0 .0 .0 A0 .0

the solutions (5-22) and (5-23) for the thin atmosphere (7 = 0.0625)
show better agreement with the exact calculations than do those for
the thicker atmosphere (7 = 0.25). For both thicknesses, the agreement
is also better for steep incidence angles {pp = 1) than for shallow
incidence angles (g & 0), because for steep entries there is less chance
for multiple scattering to occeur.

Single-Scatter Solution

The single-scattering solution to the intensity equation is probably
the next simplest solution to the RTE. In this solution, we permit the
incoming solar radiation to be scattered only once, and compute the
resulting upward and downward intensities resulting from this single
scatter.

Many phenomena involving atmospheric scattering can be ade-
quately represented by the single-scattering approximation, the most
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TABLE 5-1. Concluded

g wp =06 | pg =07 o = 0.8 =09 | po=10
0.00 0.500 0.500 0.500 0.500 [ 0.500
05 477 474 470 466 463
10 455 440 433 425 423
15 432 421 410 399 389
20 409 394 380 367 353
25 385 368 351 334 319
30 361 .340 321 303 286
35 336 313 292 273 255
40 3t1 286 263 243 295
45 284 258 236 215 197
L) L2568 231 .208 .188 171
55 230 204 181 163 147
60 203 ATT .156 139 124
ki) 175 151 L1132 116 103
70 147 125 109 095 084
75 119 .101 087 078 067
80 003 078 066 058 051
BhH D67 056 048 041 036
90 043 036 030 026 023
95 021 017 014 012 011
1.00 0 0 0 0 0

notable exceptions being the scattering characteristics of clouds, heavy
haze, and fog, and possibly heavy aerosol concentrations. The extinc-
tion coefficient for background aerosols in the stratosphere, for example,
is of the order of 2x 10~% km. Thus, the mean free path for stratospheric
aerosol extinetion is of the order of 5000 km, and the single-scattering
solution should suffice for all but the most shallow solar flux entry an-
gles, along which the possibility of more than one scatter might take
place (sec Duglia, 1982). In the troposphere, a clear-day extinction
coefficient might be of the order of 2 x 10~2 km, giving a mean free
path of the order of 50 km, so that even here the single-scatter solution
might be used for some problems. In a heavy fog or haze, the extinction
coefficient might be of the order of 1 to 10 km, and obviously one could
nol try to use the single-scatter solution under these conditions.

We start with the formal solutions for the upward and downward
intensities, equations (3-5) and (3-7), which we now write, dropping the
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TABLE 5-2. VALUE OF B vs. ¢
[For the Henycy-Greenstein phase function]
g 8 g g
0.00 0.500 0.55 0.283
056 481 B0 .261
A0 .462 65 238
15 444 .70 214
.20 425 .75 .188
.25 405 .80 .181
.30 386 85 131
235 366 90 098
40 346 95 058
45 326 1.00 oc
a0 305

v subscript, as

. L . :
Hrp,¢) = I(r',p,cﬁ)e_(r =T/ +/ J(r',p,cb)'e_(’ "f}f”gﬁ- (5-27)

Hr—p,0) = 10, —pt, )e /¥ + f g, —M)e“""’“‘%’ (5-28)
0

The source function, J(r,u,¢), is the singly scattered incoming solar
radiance, which we write as

J(r 1, 8) = TrFoe_T/“UCJP(u’ ¢ :4;#0» #g) (5-29)

and which is the product of three terms:

TFye~T/m0 the incoming direct solar intensity attenu-
ated to the level 7
w the single-scattering albedo; i.e., the frac-
tion of the incoming solar radiance which
undergoes scattering
Plu.di—po, the fracti i i
= e fraction of the scattered radiance which

is scattered from the direction (—pug, ¢g)
into the direction {y, ¢).
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: 1.0
1.0 - B
i
0.8 |- . 0.8 - 4‘
i
i
f
0.6 F i 0.6

Exact (doubling) method
r(uo). T(uo) - & Thin-atmosphere approximation

rin. ), Tl B Exact (doubling) method
Equations (5-22), (5-23) . 0 0 o o Thin-atmosphere approximation
. Equations (5-22}, (5-23)
0.4 ~
]
: 0.2
;
|
1
0
Figure 5-5. Comparison of the thin-atmosphere approximation, equations (5-22)
and (3-23), with the exact (doubling) method for two values of the optical . . . . . !
depth, 7 = 0.0625 and r — 0.25. The Henyey-Greenstein phase function was Figure 5-6. Comp_anson of the thm-atmosphere approximation, equations (5 ?2)
used with ¢ = 0.75, &g = 1.0 and (5-23), with the exact {doubling) method for two values of the optical

depth, r = 0.0625 and 7 = 0.25. The Henyey-Greenstein phase function was
used with g = 0.75, @y = 0.8
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We assume as houndary conditions

10, —p,¢) =0 (5-30)
(7", pu,é) =0 (5-31)

i.e., no diffuse radiation enters the top or bottom of the atmosphere.

From equation (5-27), with equation (5-29) and the boundary
conditions

» T o e d !
I(r o) = (%) ngP(p,d):—uo,ég)[ g T el ’)/“‘t—:
— Q " L B rip
= 4F0P(p,¢. #n.fﬁn}“+“0€
i Y ]
x |e ("°+") -~ (,10‘*',1)] {5-32)

In particular, at the top of the atmosphere r = 0, and we get

1

uin Fi L B W |
I(U-u,cb):%P(ﬂ,ér—po,%)[l—e (“0“)] (5-33a)

Comparison of equation {5-33a} with equation (4-8) shows that we can
write the reflection coefficient for single scattering as

Rip o) = 2 s =t0) [1 - e*"(ﬂlﬁ‘ff)} (5-33b)

In a similar way, we get the downward component of the intensity:

by substituting equation (5-29) and the boundary conditions into
equation (5-28)

Hr, —p, @)

- . | ’
(43“) TRy P(~p, ¢ _ﬂo!tbo)[ o s e
T A 4

F ]

—rfp pr _pf L
F[)P(—,U,Q&C—ﬂo,d)u)e r [ € T (FO ") d‘r"
1}

Here, we must distinguish between two cases:

1. = pgy, and
2op# o

T4
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For case 1 we get immediately

w T
Nir,—p.d) = Tl (-p,¢: -—un.%)gﬂ r/uo (5-34)
and for case 2,
@ pok - -
Ip(r, ~p ) = 2 0Py b —po, o) [6 e ”’“0} (5-35)
4p-po
Emerging from the bottom of the atmosphere
* (I) T* -
I[(T )y T My ¢) = EFOP(—“!¢ DM, ¢0)Ee /i (57363‘)
* @ F . =
B~ @) = 5 FO0 Py, =g, g) [T — 7T 0]

44— po
{5-36h)
Comparing equation {5-36b} with equation (4-9) gives the diffuse trans-
mission coeflicient for single scattering

o P{—p, - . .

ta(upo) = SPCE IO [ortli v o] (£ ) (5-570)
1 p—w

The direct component of the transmission coefficient is, of course,

=T /o

For case 1 {u = pg), the diffuse part of the transmission function is

wTr .
ti{p, o) = ZPe T80 P(— g, do © —ito. o) (e = pp) (5-37b)
0

We can now easily show that for a thin atmosphere, 7% <« 1,
equations (5-32) and {5-35) reduce to the thin-atmosphere solution
derived earlier. For 7* <« 1, we get from equation (5-32)

w Fg‘l"v
I(T‘.U‘fﬁ) = '71 1

P(,U.,'¢’ RO Gﬁl)} (5"38)

Assuwining azimuthal symmetry the upward flux at 7 = 0 is

=~ *

|
FI(0) = 2n [ 0% FaT Pl o) die = mioFor* o)
Q0
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which is identical to equation {5-13), derived from the thin-atmosphere
assumption.
The direct component of the downward flux is

FU*) = nFypge™" /M0~ nFypg (1 - T—) (5-39)
Bo

The diffuse downward component of intensity becomes, from equa-
tion (5-306h)

. - F - L]
107, —p9) = 302 Pl —g, d0) [1 S 1m] =
T HO

&
dp- Mo 4

f‘
Fo—P{—~p,—ug)
7

and the diffuse component of the downward flux becomes

T*

.
FUry = 2n [ WS R PU o) ds = mioFor® 11 = Blyo)

The total downward flux is thus

*

FI(T") = mFgug (1 - :TO) + mFgdr*[1 - B{ug))

From this, the total transmission function emerges as

T(uo) =1~ — (1 = & + 9B(uo)]
1o

which is identical to equation (5-23). Note the difference between the
thin-atmosphere and single-scattering solutions. The single-scattering
solution makes no assurnptions about the thickness of the atmosphere—
it only assumes that the photons are scattered only once.

Two-Stream Solutions

The two-stream solutiong are, in general, arrived at by writing the
RTE for the upward and downward components separately, and assum-
ing that the upward intensity is constant over the upper hemisphere
and independent of the angle u, and that the downward component
is a different constant over the lower hemisphere, also independent of
#. The differential equations each involve an integral, and the method
of approximating the integral leads to a set of two linear differential
equations. These equations have constant coefficients when applied to
homogeneous atmospheres, as they are here.
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We consider in this chapter three such methods of approximat-
ing the integral mentioned above. These lead to well-known ap-
proximate solutions—the Schuster-Schwartzschild approximation, the
Sagan-Pollack approximation, and the Coakley-Chylek approximation.
This third form, the C-C approximation, appears to have a slightly
less rigorous formulation than the others, but it retains the dependence
of the solution on the solar incidence angle, ug. When appropriately
applied, these equations all give numerical results which are in good
agreement with other solutions.

The differential equations resulting from these three approaches are
identical in algebraic form, the only differences appearing in the terms
making up the constant numerical coefficients.

These three sets of two-stream approximations will be derived in
this subsection. The reader is invited to examine the excellent review
article by Meador and Weaver (1980}, in which a number of well-known
approximations, including other than the classical two-stream solutions
developed here, are discussed and compared. Meador and Weaver
neatly identify the theoretical thread common to all of these methods
and show that they all reduce to the same algebraic form, except for
the grouping and definition of some constant algebraic parameters. The
paper by Lyzenga (1973) is also worthy reading, in that he shows that
the Sagan and Pollack formulation can in fact be rigorously derived by
assuming a two-point Gaussian quadrature formula to approximate the
integrals mentioned above. He also shows that a single transformation
relates the two-stream and the Eddington approximation discussed in
the next chapter. Lyzenga’s approach is used below to derive the Sagan-
Pollack equations.

The two-stream analysis is applied to the azimuthally symmetric
form of the RTE, for either the total intensity {direct plus diffuse,
eq. (2-41)), or for the diffuse component only (eq. (2-50}). We will
not derive in detail all the possible combinations here, as the repetition
would serve no purpose, but will derive one total intensity solution and
one diffuse intensity solution. Some limited numerical comparisons will
also be given.

The Schuster-Schwartzschild (S-8), the Sagan-Pollack (S-P), and
the Coakley-Chylek {C-C) equations can all be reduced to the same
differential equation form. These three forms will be derived separately
below, and the general form of the solution given.

Schuster-Schwartzschild (ref. e.g., Ozisik, 1973). Start with
the form of equation (2-41} and write the upward and downward
components separately, as in equations (5-4) and (5-6). We will drop
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the subscript v from the I, the 7, and the &, but must keep in mind
that these developments are for monochromatic radiation only.

dIl(r, p) @ [l
= e =5 [0 Pl dif

~ 1
-5 [0 1M1, W) P, 1) (5-40)
dl (1, ) @ [!
—u— = =) - 5 /U 1o, WY P, — ') dpd!
= 1
- u—;fo )P, ') dy! (5-41)

Multiply equation (5-40) by du and integrate from 0 to 1

d 1 1 - i 1
;[ ul!(1,4) d.u=f (v p) du - E/ d.u/ (5, VPG, ') di!
TJo 0 2 )y 0
-~ i 1
- %/{; du[) Ij(r,,u.')P(lu, —p'} dyd (5-42)

Interchange the order of integration in the last two terms

d 1 1 - 1 1
= sl () d#=f IM(r,p) d#—%/ 1'(r, ') du’/ Plu,u) du
L] 0 0 0
- 1
- %/ By, ) dy! (5-43)
o

Since by equation (1-33) and the symmetry in u, g,
Py, —p) = P(—p.¢)

we have with the definition of equation {5-21)

1 1
d
o .ul'(f.#)du=f Iy du =1~ Btu)] | I{r,u') dy’
Ja ] 0

1
- 2B(n) f I, p) dy’ (5-44)
L

To this point, equation (5-44} is exact—at least insofar as the differ-
ential equation (5-40) is exact. Now, we make one of the approximations
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mentioned above—we assume [ to he independent of y in cach hemi-
sphere, so that {T(r, #) — f1{(+) (and similarly for 71}, This gives the
5-5 approximation

! J
/ wl' (7, p) dp = *'IT(T} (5-45)
o 2
and we write equation {5-44) in the form

1dI(7)

= I(7) = oI = B ) — oplu) I (7) (5-16)

In a similar manner we can develop equation (3-41) to the form

_1dIi)
2 dr

= 1Hr) — ef() T (7) = all - AT () (5-47)

Equations (5-46) and (5-47) are the S-3 form of the differential equa-
tions describing the upward and downward components of the total
intensity fields in the two-stream approximation,

Sagan-Pollack (Sagan and Pollack, 1967; see also Lyzenga, 1973).
Again we start with equation {2-41} with the subscript ©/ dropped from
I, 7,and w

dl(r, )
dr

- 1
=1I(r,u) - %f ACE w )P (i) ded (5-48)

Lyzenga argues that instead of taking [T and 1} to be some average
value of T over their respective hemispheres, it is more appropriate to
be guided by the two-point Gaussian quadrature method of numerical
integration, and take for the average value of [ that value which
would be obtained if we solved equation (5-48) along the ray given by
= +1+/3. This conclusion can be substantiated more formally from
equation (2-41), if we replace the integral with a two-point Gaussian
quadrature and write our equation for each ray separately. This gives
the pair of equations

ldlr(r)‘ 1 w {1 ' R ! .
E o =1 (r)—a-/_l[{r,u)})(ﬁ,y) g (h-49)
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and

1 dit(r o f1
7 d*f ) = () ~ %f_l I(r, 1) P (—%,p') dy’ (5-50)

Apply the Gaussian two-point quadrature formula to the integrals in
equations (5-149) and (5-50)

1 i

./_.ll .’(nu')!’(%,;j') dy’ xl'(r)!’(ﬁ ﬁ)+f1(1‘)f) (—3,——3) (5-51)
( )+11(7)P( \/‘57%)

Nl
ITENEY LY PR = (s
/71 (") ( ﬁ,#)rfu 1
(5-52)

If we use the two-term expansion of the phase function, equation (2-42),
we get

Pp,p') =1+ Py (p) Py (u)
andl hence, the integrals in equations (5-51) and (5-52) become

respectively,
() (1 + %) +14(r) (1 - %)

1(r) (1 - %) + 1) (1+%)

andl equations (5-49) and (5-50) become

1

and

N e 7y~ (1 = )1 () — @bl (r) (5-53)
and
1 dr!
7 df(f) = I (r) ~ @bl (7) = &(1 = b) 14 () (5-54)
in both of which )
b= (1 - %) (5-55)

These are the 5-P forms of the two-stream equations. We can further
evaluate @y in terms of the more familiar asymmetry factor, g, which
is the first moment of the phase function (see eqs. (1-46) and (1-47))

1 1
0= [ wP du (5-56)
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and with equation (2-31) we get

LA
g=§[_lﬂzwﬂ’1(u) dp

Hence, we can definre b in the more familiar way

b=>(1-9) (5-58)

N)I»—

Coakley-Chylek (Coakley and Chylek, 1975). The C-C form of the
two-stream equations is found directly from equations (5-4) and (5-8)
simply by assuming that I' and I! are independent of u, and using
the definition of equation (5-21). This gives immediately the pair of
equations

dI'(r)

pe—ps = (T} = Gt = AU (r) - @8(u) () (5-59)
Yr
—u‘”dj’ﬂl(r) I (7) - a1t - AU (5-60)

Solution of the Two-Stream Equations

Comparison of equation (5-46} with equation {5-47}, equation (5-53)
with equation (5-54), and equation {5-59) with equation (5-60) shows
that they all can be put into the same algebraic form

dIt(r)
dr

11 = 11(7) — (:J(l - ’f)II(T) - (D'TIJ(T) (5'61)
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drl(r)
—H]
dr
in which we have the correspondences recorded in table 5-3.

TABLE 5-3. COMPARISON BETWEEN py; AND ~
FOR THE THREE SOLUTION METHODS

= 1) = oI () - o(1 = I (7) (5-62)

Solution

method M1 s
S-8 1/2 Bl
s-p 1/V3 b
c-C p Blw)

It is comforting to note that equations (5-61) and (5-62) satisfy our
physical intuition. For example, let us look at equation (5-61) at some
altitude. If we increase z to z + dz, then 7 decreases by dr. If we write
equation (5-61) in the form

It
L = (a1 + ot ) - ot ()

we see that I1(z+ dz) is reduced by the first right-hand-side term, the
absorption of the upward radiance between z and z + dz, as well as by
the second right-hand-side term, the radiance backscattered out of the
upward beam, and that it is increased by the last term, the part of the
downward beam which is backscattered in the upward direction.

Equations (5-61) and (5-62) can be solved by any number of stan-
dard techniques. We select here the operator approach. Put equa-
tions {5-61) and (5-62) into the form

fms—p-a0 -l iie) =l ey

{ugrn-au-ltm=are o

Solve equation {5-64) for I'(r). Substitute into equation (5-63) and
expand the operator to get

d? 2\ 1
F~£)I (r)=0 (5-65)
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where ‘
2—a? 32 (5-66)
P el ke (5-67)
i
) (5-68)
#1

Equation (5-65) then solves immediately as
I'(7) = Ae’" + Be™ ¥ (5-69)

where A and B are constants of integration. Put equation (5-69) into
equation (5-63) and solve for 1! (7},

I'(7) = Awet + Bue %7 (5-70)
where o
w = 3 {(5-71)
and
_ats (5-72)
3
Finally, apply the boundary conditions
1(0) = Iy (5-73)
My =0 (5-74)

where 7° is the total optical thickness of the atmosphere. Solve the
resulting expressions for A and B to give the intensity solutions in final

form
—E(rT ) &)
Ty = 70 | € i 575
I'fr)=1y [ €T e {5-75)
—E{(77—1) _ eklrt 1)
Ly we ve 576
IMr) = 0[ — o (5-76)

From these, the reflection and transmission functions are found to be

1t{0) B e—br" _ 7

577
Iy we £77 — pel™” (5-77)
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and

) w— v
= o we €' —pebr” (5-78)

T

Thus, if we for instance use the S-P parameters from table 5-3,
the resulting expressions may be algebraically different from those of

Sagan and Pollack (1967), but the results will be numerically identical
to theirs,

Solution for conservative scattering, & = 1. The case of conservative
scatlering, w = 1, cannot he found directly from the solutions of
equations {H-75) and (5-76) simply by setting &t = 1, because £ = 0
for & = 1, and the solution falls apart. The conservative scattering case
must he gotten by starting with the differential equations {5-61) and
(7-62) and setting & = 1

f

i =t (r) - 1) (5-79)
e

S Rl (5-50)

The right-hand sides of these equations are identical and must, there-
fore, be constant

(1) 1 (r) = M (5-81)

M is a constant. Equation (5-79) has the immediate solution

(r) = Mr B (5-82)
H1

where B is again a constant of integration {not the same B as we just
used earlier). Similarly, equation (5-80) gives

M
1y ==~ % (5-83)
1

Substitute equations (5-82) and (5-83) into equation (5-81) to evaluate

the constant M. Since M is constant for all 7, it is most conveniently
evaluated at 7 = 0. This gives

M =+(B- B
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and equations (5-82) and (5-83) are rewritten as
i'try=nB (1 + ﬂ) -Xp (5-84)
m)
N =Lp+ (1 - 31) B (5-85)
B 1

The constants B and B' are evaluated from the boundary conditicns
of equations {5-73} and (5-74}, and hence, the final solutions for the
two-stream conservative scattering case can be written as

' riaad 5-86)
i (T) = IU l+%tr ( -
A
=1 [1 - :%rr] (5-87)
The reflection and transmission functions become
1 il
R= ’I_m) . (5-88)
0 1+ ™
]
I 1+ 3=

Note in this case that R+ T = 1, as there is no absorption in the case
of conservative scattering. Also, in the limit as v* — oo for w = 1,

R(t* - o0} =1 @=1)

T(r* =) =0 {w=1)

Since there is no absorption, all of the incoming radiation eventually
escapes from the atmosphere (R = 1), and obviously, nothing passes
through the infinite optical depth (T = 0).

The two-stream flux equations are simply obtained from the radi-
ance solutions

Flr) = 27r‘/uI I (D) dp = 2mpy I1(7) (5-90)
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1
Pl (r}y = 211'/0 le (v)dp = 2mp 14 (r) (5-91)

Solution for diffuse component only. The two-stream solutions
presented thus far have involved the total intensity—the diffuse plus
the direct components. Liou {1980} presents a solution for the diffuse
component only. The solution closely parallels the development given
above, so just the barest outline will be given here. Start with equa-

tion {2-51) and evaluate the integral by the Gauss method:

f [ drx Y aif(z) (5-92)

]——ﬂ.

(e.g., Abramowitz and Stegun, 1970), where the weights

1
aJ’ = 7 1 / PZn(x) diE
Pzn(Ij) -1 T~ T4

and the z; are the zeros of the even-numbered Legendre polynomials.
Also, we have

a_j=ay I_j = w.’L‘j

and thus can write equation (2-51) for a ray defined by p, as

dl{r,
#.‘%%-Tﬁ"- =I(r g m*ZwePz(u) Z 8; Pyl )1 (7, 14)
Jj=—-n
o N
- ZFOIZD(—l)tﬁePe(u‘}Pt(—no)e_T/”’ (5-93)

in which we have used the property of Legendre polynomials

Po(—x) = (—1)" Pn(x)
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For the two-stream solution, we take ¢+ = £1. Then since yy =

31?2 and a; = a_; (Abramowitz and Stegun, 1970) we can break
equation (5-93) into two equations

deT(T) :IT(T) — (1 - b}II(T) ~ obIr)
dr )
- %Fe(i — 3gpuopy e TIH0 (5-04)
#M‘“dl!# =1 ()~ &1 = 6) I (7) — bl T(7)

@ _
~ 7 FolL + Bguouy)e™7/40 (5-95)

Proceeding as before, writing equations {5-94) and (5-95) in operator
notation, we find after some messy but straightforward algebra that

1'(7) = Ave*™ + Bue %" + e~ 7/ R0 (5-96)

IH7) = Aue®™ + Bue ¥ + Ae~7 0 (5-97)

where the following definitions hold:

_1-a _l+a )\—ﬂ_ﬁ c a+ o = 1 -w
v= V=3 - T~ T 1-ag
21 248 2 (1=ag)(1 - &)
= 22 W k* = 2
1—kp 1 k2y Hi
~(1 —ag){(s™ + st st
I () () I Gl
M1 Hopt
—(l—w)(s™ —s%) (a7 +s7)
29 = 7
I 1200

w
i=Z%inmm)

The application of the boundary conditions usually used with the diffuse
component
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gives the constants

eve™T IHO _ yyekT"
A fd

wle— kTt _ 2kt

ek eye=7" /10
ule—kr* _ v‘lekf‘

b=

With the fluxes determined from equations (5-90) and (5-91), the
planctary albedo is given by equation (4-16) with the incoming col-
limated Mux by equation (4-14). From these, after some algebraic
reduction,

Flioy
7 Foug
_ [(,,2 ~u?) (G2 - Gl)e—f'/#n

riug) =

D 2
+ uv ((—;‘%-(—;3) (e—kr‘ - e"'-)] + 2u; (gg«;ﬂ) (5-98)

in which

6= (1) 53

Go = f_—i% [Qﬁ+ (%)gﬁﬁjl(l—&)]

—_ £ *
D — U2€ kr — v2ekr

The diffuse transmission eoefficient can similarly be written as

Fl*

Hpg) = E‘E)TTO)
- 1 -
- Eﬂ_l{w, (Eiz_ﬁ) [e-’ (%) . (%“‘)}
D 2
+(u2ﬁv2)(G2+G1)}
2
— % (Gz_-;-_(ﬁ) e~/ ua

The total transmission coefficient, diffuse plus direct is, of course,

T(po) = tpg) + e~ /10 (5-99)
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If we consider the special case of an infinitely thick atmosphere,
7" -+ 00, we find that in the limit, the albedo of an infinitely thick
atmosphere becomes

r(up) = 21 K%) +> (Gz—;cﬂ)] (5-100)

Note that this is not unity, as we found before for the conservative
atmosphere case. Here, @ # 1 and there is absorption present, so not
all of the incident radiation escapes from the top of the atmosphere.
In the next chapter, results from equations (5-98) to {5-100) will be
compared with those from the Eddington approximation.
The conservative solution, in which & = 1, also proceeds from
equations (5-94) and (5-95)

Tia

#l%l =bIT(r) = bl (1) — s~ "/H0 (5-101)
li

R e W B CR YY)

the solutions to which are

b
Ir(‘r) =B (1 + —T) - BzET- + G]FQG_T/’“O (5-103)
B #
b
1) = Bi— + B, (1 - 91) + fy Fpe~ /0 (6-104)
K1 Hl
in which
_ (.@Linlé.f_'. + a;Fge"./“O)
Bl = Br*
1+ o
By=-41Fy
and
1
1= 350 (1 - sguony - 2)
M1 11

bi=—-1— (l + 3guom + 25”—")
4 1
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The fluxes, as before, are given by equations (5-90} and (5-91). The

upward flux at the top of the atmosphere is

L2 P TR R T
2rugp Fo [ﬂf + (1 € )]

Fl(0) = (5-105)
b,r‘
T+

and hence, the planetary albedo becomes

b § (1 - 3guom ~ 26%) (1 - i)
148

r{po) = {5-106)

As it should, this also approaches 1 as 7* becomes infinite.
Similarly, the downward flux at the surface, 7 = 7%, becomes

*

. br* b .
FYrt) = 2may [B,— + By (1 - —T—-) + B e /#0]
H H1
and since the scattering is conservative

t(uo) = L — r{uo) (5-107)

from which the diffuse transmission function can be found.

There i3 a very interesting extension of the Schuster two-stream
method to n streams in a paper by Acquista, House, and Jafolla (1981).
No azimuthal symmetry is assumed, and instead of just considering an
upper and a lower hemisphere, as done above, the authors break each
hemisphere into an arbitrary number of nonoverlapping patches and
compute the radiance stream for each patch. No numerical data are
presented, but it is reasonabiy claimed that computational costs are
substantially less than for other more nearly exact methods for a given
accuracy, and great flexibility in the choice of patches is claimed, for
minimizing computational costs for particular applications.
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The Eddington Solution

The basic differential equations describing the Eddington approxi-
mation are derived somewhat differently from those of the two-stream
solutions. However, the mathematical technique leading to the solution
is quite similar, and hence, will not be given in the same detail as in
the preceding chapter.

The Eddington solution begins by assuming that the intensity,
instead of being approximated by different upward and downward
constants, can be approximated by a linear function of g of the form

I, p) = Io(7) + phat7) (6-1)

where Iy and I, are functions of = only, and not of . Now, if we apply
the same two-stream approximation to equation (2-51), i.e., let N =1,
we get

dl ol i
“%ﬂ —1(r,p) — “5’ [w"P"(“)L Po(ud ) (m, ') dit

1
+ @ Py (u)/ 1 P I(r, 1) dp']
~ 2 o110 (3 Pof) Pol ) + 1 Py () Py (= o))

or

di(r, o 1 5 1
y E;T.U) =I(r ) - 7 [[_1 I, ﬂ’) di’ +uJ:,u/_] W I uh ri,u']

— ZFpe™ /M0 (1 = B upo) (6-2)

which is identical to assuming a two-term expansion of the phase
function directly in equation (2-50)

P, i) = 1+ Oy
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The Eddington method for solving the RTE also leads to a two-
stream type of solution, but as indicated earlier, and discussed in detail
below, begins in a completely different manner. It will be seen that the
intensity bonndary conditions cannot be completely satisfied at either
surface, although the fluz boundary conditions can be at least formally,
if not exactly, physically satisfied. For this reason, the Eddington
solution is more accurate for very thick optical depths. It also uses a
two-term expansion for the phase function, resulting in a solution that
is most accurate for scattering, which is close to isotropic. This cecurs
well inside an optically thick atmosphere, after multiple scatterings have
taken place (see Irvine, 1968). Multiple scattering deep in the interior
effectively smootlhs out the phase function in that the sharp maxima
and minima usually present in the phase function disappear, and the
scattering becomes more nearly isotropic.

The integrals in equation (6-2) can be evaluated with the use of the
Eddington assumption, equation (6-1}

1
/._1 {r, 1 )dy’ = 2Ip{r)

t 2
f 1#’1 (i)’ = 211 (7)

and with equation (5-57), equation {6-2) can be written asg

u% olr) + why(7}] =Io(7) + pli(7) = & [Io(r) + gpTa(7)]
- %Foe‘ff HO(1 — Bgppg) (6-3)

Equation (6-3) can be broken up into two equations for f)(r) and
Ip(7) as follows: multiply equation (6-3) by du and integrate from —1
to +1.

dli(r)

dr

= 3(1 — OYy(r) - gwoe-f/ﬂo (6-4)
Now, multiply equation (6-3) by pdp and integrate over the same limits

dlo(r)
dr

- 3. ~
= (1= Gg)1y(r) + @ Foguoe™ /40 (6-5)

We now again have two coupled linear ordinary differential equations
with constant coefficients. These are solved the same way as for the
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two-stream solution, and give
Io(7) = Ae*™ + Be™*" + e~ /M0 (6-6)
I1(7) = aAe*™ — aBe™*" + ge~T/Ho (6-7)
in which the following definitions hold
|-G
o2 = 30 -9
1 —wg
3 Gou 3. G}
=—-why | —=—=|.0=-wky | —5>5
“ 4“’0(1—k2pg A= 39k 1- k22

K2 = 3(1 — @)1 — &g)
and

Gyp=1-wg+yg

. 1
G = 3(1 — &)gup + —
Ho

Note that here we cannot apply the boundary conditions
oy=0,11(r")=0

since to do so would result in two equations in four unknowns. The
reason for this is that equation (6-1) is really the first two terms of a
Legendre polynomial expansion for the radiance, I(7, i)

I(7,p) = lo(7) Py(} + Iy (7) Py ()
and we cannot depict a constant function {constant zero Hux at all entry
angles pg) with only a two-term expansion. However, we can at least
formally apply the boundary conditions to the fluz form of the solution.
Using equation (6-1) in the flux definition

F](T) =2 /(-Jl pl(r, pdyu=n [lg(f) + gll(r)] (6-8}

¢ 2
()= [ro(r) - gmr)] (69)

Insert equations (6-6) and {6-7) into equations {(6-8) and (6-9)

Fl(r) = 27r/

Fl(r) = Ave*” 4 Bue k" 4 ¢e=7/H0 (6-10)
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FHr) = Aue®™ + Bue ¥ 4 ye~"/Ho (6-11)
where
v=m (I + z—a)
=T (1 - %a)
€= (a + g,@)
=7 (a - %ﬁ)

Then, from the fluz boundary conditions
Fiir"y=0 FY0)=0

=Ty _ ekt
VEE ue
A= 7

wZe— kTt _ y2ekt*

B= v'ye_'"‘ — uee™ " /#0
T gle—FT _ glgkrt

Just as we did in chapter 5 for the two-stream case, we can write
the reflection and diffuse transmission coefficients for the Eddington
solution as

rlug) = El), [Ll (UQ _ u?) e T b0 _ Louv (e_h. - e+kt.)] +L (6-12)

tug) = % [LZ (‘IJ2 - ua) + Ljuv (cét.(%ik) - eﬁf.(#"'k) :I + Lze—f'/po

(6-13)
where - )
Ly = @30 = B)oug +1 - 3(1 —5g + gl
2 | 1— k2l
@ [3(1 - @)gpd + 1+ 3(1 - Sg + ¢)uo |
0 3
Ly=73 2,3
2 1-& [T ]
D= uZe—kT' _ vZekr'
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For a semi-infinite atmosphere

v — Lou
m(po) = ——— (6-14)
The case of conservative scattering, @ = 1, must again be handled

separately. Start with equations {6-4) and (6-5) and set w =1

dly(r) 3o —rf
= —-I Ho 6-15
dr 4 0° ( )

and

dlg(r)
dr

Equation (6-15) immediately integrates to

3
= (1= g)1,(7) + ; Foguoe™7/40 (6-16)

3
L) = 4—F0,uge_r/“0 +K (6-17)

where K is a constant of integration. Substituting equation (6-17) into
equation (6-16), and integrating, yields

3

—Zng%e"T/'”“ +(1—-g)Kr+ H (6-18)

Io(7) =
where H is another constant of integration.
If now equations (6-17) and (6-18) are put into the flux equa-
tions (6-8) and {6-9), and the same boundary conditions are applied,
we get finally

H= F";" (1 + %uo) + %K (6-19)
with
~%Foug [1 + Juo + (1 - %uo) 6”‘/“”]
K= 31— g)r* 4+ 4 (6-20)

From these results, the albedo for conservative scattering in the
Eddingten approximation becomes

2L(7%, o)

=] - —_—_— 21
riko) 31— g)r* +4 (6-21)
where
* 3 3 =g
L(r* po) =1+ ghot\1-gHole (6-22)
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Two-Stream and Eddingten Solutions for Semi-Infinite
Atmospheres

For an infinitely thick atmosphere, 7* — oo, the two-stream albedo
is given by equation (5-100) and the Eddington solution by equa-
tion (G-14).

The lwo-stream and Eddington solutions for a semi-infinite at-
mosphere are compared in figure 6-1. (The figure also shows other
solntions  including the delta-Eddington which is discussed below.)
The particular numerical values were selected to permit compariscn
with numnerical results in Irvine (1968). We can see that, in general,
the agreement, is quite good, with the Eddington albedo being slightly
lower than that gtven by the two-stream solution in all cases. For an
excellent discussion of the relative accuracy of these two methods, com-

pared with some exact resnits, see the review article by Irvine and
Lenoble (1973).

The Delta-Eddington Method

Possibly the most challenging problem to be faced in radiative trans-
fer theory is how to handle very asymmetric phase functions. Neither
the simple two-stream approximation nor the Eddington solution can
adequately cope with a phase function with a sharply scattered for-
ward peak, which is the type usually encountered in aerosol and cloud
studies.

The delta-Eddington method was devised by Joseph, Wiscombe,
and Weinman (1976) to allow the computationally simple Eddington
method to be applied to sharply peaked forward-scattered phase func-
tions. They approximate the phase function by a Dirac delta to account
for a portion of the forward peak, and a two-term expansion for the rest
of the phase function. The two-term expansion of P(cos #) follows from
equalion (2-31} as

Plcos®) = 1 + @y Py (cos )
and with the definition of the asymmetry factor g of equation (5-57)

this becomes
Plcos8) = 1 + 3gP(cos 0)

The delta-Eddington phase function can now be written as

Pleos @) = 2f56(1 —cosd) + (1~ f){1 + 3gcosé) (6-23)
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—— Two-stream

— —Eddington
e Exact {doubling} method
o Delta-Eddington

0.1 i i ! 1 ]
0 0.2 0.4 0.6 0.8 1.0

Yo

Figure 6-1. Comparison armong four methods for a semi-infinite atmosphere. The
dark circles are for the exact (doubling) method. Henyey-Greenstein phase
function with g = 0.5.
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where f is the fraction of the radiation scattered into the forward peak.
The azimuthal averaging of the phase function follows as

Plust) = o= [ Pleose) do (6-24)
and using equation (1-33) with
(1 ~cos) = 278 (p — p')6(¢p ~ ¢')
we write equation (6-24) as
Pl ') = 2f6(p — ) + (1 = [)(1 + 3gpep) (6-25)

Now, from the azimuthally averaged form of the RTE, equa-
tion (2-41)

di{r, 5 1
LM =%)/:1?f5(u*u')ffr‘p") !

- 1
+ %f (8 = )L+ 3gpa' ) (1, ) di’
—1

—of1(rm) + 28

1
3 f)] (1 + 3gup" ) (r, ') dy’
—1

which can be rearranged to give

e & ')
I(Tsﬂ) = f

”(l—@‘-f—) ar Y 1 __‘Df{l-%-?)guu’)l(f,u') dp' (6-26)

T2

But this is precisely the form of the RTE, equation (6-2), if we define

r=(1-&f) (6-27)
and

(1= f)w

YETTar (6-28)

Joseph et al. also show that for the delta-Eddington phase function to
have the same asymmetry factor as the original phase function (the one
we are trying to approximate), then

g=f+{(1-/)
98
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or

e

| —

L)

i

g = (6-29)

—

Finally, if the Henyey-Greenstein phase function is used, which does
indeed produce reasonable results for many applications, they show

that
f=¢ (6-30)

and hence, equation {6-29) becomes
g = TL (6-31)

Thus, the same equations derived earlier for the Eddington sclution
may be used if we replace @, r, and g with @', 7', and g.

Comparison of Two-Stream and Eddington Results

The two-stream, Eddington, and delta-Eddington solutions are
compared with the exact (doubling) method (Liow, 1980) in figures 6-2
to 6-5, for the case of conservative scattering (& = 1) and one case of
nonconservative scattering (& = 0.8) for two optical depths, 7% = 4.0
and 7* = 0.25, with ¢ = 0.25 used in both cases. The superiority of
the delta-Eddington method is clearly evident, especially at the more
nearly vertical incident angles (g == 1.0).
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Discrete Ordinates Method

The discrete ordinates method is a very powerful analytic approach
to solving the RTE. This method was developed by, or at least perfected
and popularized by, Chandrasekhar. The procedure can be used to ex-
tract numerical results for the simpler forms of the phase function, and
has been used for numerical studies of nonhomogeneous atmospheres.

Its greatest utility, however, seems to be a starting point for many
theoretical attacks on the RTE. The theory has been developed to a very
high degree of sophistication, and for that reason, it is worth spending
some detailed effort in introducing this approach. The mathematics
appears formidable at first glance, but once the reader gets into it, it
emerges much simpler than imagined.

The analysis here is confined to homogeneous semi-infinite atmo-
spheres, and is carried far enough to permit the introduction of the
well-known H-function of Chandrasekhar. The principle of invarience
for semi-infinite atmospheres is introduced and the integral-equation
formulation of the H-function derived. The zeroth and first-order so-
lutions to the integral equation are also derived, and some numerical
results are given for higher-order approximations. Finally, some ele-
mentary applications are presented.

The extension to finite atmospheres is not given here, as it would
be far beyond the intended scope of these notes. However, once the
semi-infinite atmosphere case is understood, the reader will have little
difficulty extrapolating to the finite atmosphere development, and the
X- and Y-functions, which are the finite atmosphere analogues to the
H-function, will no longer seem quite so formidable or incomprehensi-
ble.

The analysis to be presented here follows chapter 3 of Chandrasekhar
very closely, and merely supplies some of the missing steps in his
development, although his text is so well written that it is difficult,
even within the confines of the present supplement, to improve on it
much. The analysis is restricted to two cases: (1) conservative isotropic
scattering, and (2) nonconservative isotropic scattering. Again, his
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results for nonisotropic scattering can easily be followed once the
isotropic case is understood.

To repeat something stated earlier, the isotropic case should not be
dismisseel lightly. Asdiscussed in [rvine and Lenoble {1973) and Sobolev
(1975}, it is possible to develop simelarity relations which can be used
in some cases to approximately reduce an anisotropic scatter problem
to an equivalent isotropic one. These relations allow an equivalent
isotropic optical depth and single-scatter albedo to be defined in terms
of the real anisotropic parameters. The isotropic problem is then
solved and the solution transformed back to the “real” problem space.
Similarity relations will be discussed briefly at the end of the chapter.

Gaussian Integration

We first present a few identities derived from Gaussian integration,
as some of these results are needed in later developments.

Basically, the integral of a continuous function is replaced by a finite
sum

1 m
f flaydz~ Y a;f(z;) {7-1)
—i je—m
where the weights a; are given by
_ 1 1 P (x)
a; = P:H(IJ') [_1 :I:—xJ'dI (7-2)

and the ordinates x; are the zeros of the Legendre polynomials, Fp,(z).
For our present needs, it is convenient to reatrict ourselves to the zeros
of the even-numbered polynomials, Pop,(z). (See the discussion in
Chandrasekhar for more details as to why this is so.) For these divisions

@ =a_ T = <%

(7-3)

For the case in which f(r)} =z™

! 2
[ M dr = ——
-1 m+ 1

=0 (for m odd)

we get

(for m even)

Then, since

] n
m = T
[_lz dr = Z a;r;

j=-n
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n
I 2
5 ey -
. J m o+l
j=—n

=0 (for m odd)

(for m cven)

(7-4)

Abramowitz and Stegun (1970) give tables of a; and r; for a number of
orders n. See Chandrasekliar, or any good text on numerical methaods,
for more details of the Gaussian method.

RTE for Conservative, Isotropic Scattering

The governing equation for this problem is equation (2-41), with
w=1and Plcos8) =1

1 1
‘u(”(d#”) = [(7, 1) - 3 [ ENTON T (7-5)
T o

Replace the integral with the Gaussian approximation and evalnate
equation (7-5) at each of the 2n streams defined by the Gaussian
guadrature points {sce fig. 7-1).

n

Z ajly

j=-n

; 1
W=

(7-G)

dr -2
Thus, equation {7-6) becomes a system of 2n lincar equations with
constant coefficients. As usual with systems of differential equations of
this type, assume a set of exponential solutions

I = gie " (i=12....n} (7-7)

where the g; are unknown constant coefficients.  Substitute equa-

tion (7-7) into equation {7-6) and reduce

1

1
g (1 + u;k) = 2 Z i
3=-n

(7-8)

Now, even though we do not know what the numerical values of the
g; are, they arc constants, and the right-hand side of equation {7-8)
directs us to sum over all these constants. Thus, the right-hand side of
equation (7-8) is also a constant, ', and therefore, the g, must be of
the form .

K

7-9
L+ p,k ( )

4 =
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Figure 7-1. Sketch showing the ray directions for the n = 4 case discussed in the
text as the running numerical example,

I we substitute equation {7-9) back into equation (7-8), we get

- — =1 (7-10)

J=-n

Now, the limits on the sum are from —-n to +n. We can use equa-
tion (7-3) to simplify equation (7-10) and write it in a neater form. If
we expand equation (7-10) and look at the j = m term

! G--m m
= 4+ — 4. 4™  4...
2 l+pmk+ +1—umk+
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Since each 7 produces a pair of terms like this, we can write, using
equation (7-3)

i 2am
l==2| 42 4
2 [ 1 — p2 k2
so that we can write equation (7-10) as
n
a;
YL =1 (7-11)
TS
1=1 L 'U'Jk

This is the characteristic equation for the equation set (7-6), from which
we can get the 2n eigenvalues, kq. Equation (7-11) is of degree n in k2,
and, thus, it can be seen that the eigenvalues occur in pairs, +kq. For
k% = 0, we have from equation (7-11)

while equation (7-4) gives, for m =0

n n
Za_,-:Z::vZaj=i
=1

j=—n

and hence, k% = 0, or k = 0 is also a double root of equation (7-11).
Note that this results from the assumed conservative scattering.

Note that equation (7-11) has n vertical asymptotes (see, for ex-
ample, fig. 7-2)—namely those values that occur at k = 1/y;. If we

write
n

Fly =3 —Ls 1
= 1 pjk
we see that F{(0) = 0, and for &k <« 1, F(k) > 0. Also,

Iler}} F(k)y=-1
Thus, F{k) plots as shown in figure 7-2, where we have used n = 4 as
an example. (The 4-point Ganssian example will be carried throughout
this chapter.} Since u{= cosf) < 1, the eigenvalues are positive, with
one root at k = (. The roots can be found by the Newton-Raphson
method
Fkn)

F'(ky)

kyyy) =kn — (7-12)
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k) =0.

Figure 7-2. Fik) vs. k for the n = 4 case. The asymptotes occur at k = 1/, and the eigenvalues at F{
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where the starting values can be taken as (1/u + ¢), where ¢ is some
small number.

For n = 4 (4-point Gaussian quadrature), Abramowitz and Stegun
(1970) give the following:

gy = 0.1834346425 aq = 0.3626837834
pg = 0.5255324000 ag = 0.3137066450
s = 0.7966664774 a3 = 0.2223810345
uq = 0.9602898565 ag = 0.1012285363

Using equation (7-12), we get the roots in table 7-1.

TABLE 7-1. ROOTS FROM EQUATION {7-12)

a ke

0 0.

1 1. 103185321
2 1.091778876
3 4.458085714

With the k. now given, equation {7-7) gives the complete solution
for I as
n—1 kT n—1 kor
Le ™ Fo [ nefe
I; = —_ ]+ —_— (7-13)
! ,.Zz:l ( L+ piikn QE:,:I 1 — ik

where L,, and L_, are constants of integration.

But, we have not yet included the & = 0 root. Guided by the grey
Eddington solution {see e.g., Kourganoff, 1963), we assume for [; the
solution

I = b1 +q7) (7-14)
with b and g; constants. Substitute equation (7-14) into equation (7-6)
l n
W= Z 5 (7-15)
J=-n

and these equations can be satisfied if we let

g, = G+ (7-16)
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wliere §) is another constant. Thus, with equation (7-13), the complete
solution to cquation (7-5) is

n—1 —knT n—1 k.t
L “ L_,etc
=0 E Lot 7 +§ Lol ™ +r4u+Q (7-17)
I+ pika

=1 =1 1- ,Uik'a

T equation (7-17), the b, Q, and Ly, (@ = 1,2,...,n — 1) are the 2n
constants of integration,

We can climinate some of these immediately. The radiance should
not, of course, become infinite as 7 — oo. Thus, all the L_, must
vanish, and equation (7-17) reduces to

n-1l Lyekat
_ al 7 : 7-18
L=b Z(Hmkﬂ T+ +Q (7-18)

=1

One relation among the remaining constants can be found by applying
the boundary condition that the incoming diffuse radiation at the top
of the atmosphere (7 = 0) be zero for all the —pu;. This gives, for
equation (7-18),

n-1 L

(13
=Y —C 4 Q 7-19
U =1 I- lt‘ikﬂ i + ( )

Equation (7-19) gives n equations in n unknowns, ¢ and n — 1 values
of L, The constant b is not as yet found-—it is left arbitrary for now.
Thus, of the 2n original constants of integration, n — 1 are found to be
zero by the requiremnent that I; remain finite as r — o0, 1 are found
from equation (7-19}, and b is as yet unknown.

Somewhat later in his text, Chandrasckhar goes to great lengths
Lo develop adirect and simple way to determine numerical values for
the constants L, and Q- -probably because at the time his original
text was written, there were no efficient and accurate methods for
inverting large matrices or for solving large systems of linear equations.
With modern computers and numnerical techniques, these sophisticated
algebraic methods are no longer needed and will not be developed
in these notes.  Instead, we will solve directly the system of equa-
tion {7-19).
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For the 4-point Gaussian example, equation (7-19) gives the system
of equations

1.253703L1 + 1.412414Lg + 5.487454L3 + Q = 0.1834346
2.379598L + 6.117365Ly — 0.744676L3 + Q = 0.5255324
8.255792L; — 3.729726Ly — 0.391910L3 + Q = 0.7966655
~16.840604 L1 — 1.891903L7 — 0.304781L3 + Q = 0.9602899

The solution to these equations gives

L1 = —0.009461126
Ly = —0.036186730
L3 = —0.083921097

Q = 0.706919484

{The values in Chandrasekhar are inadvertently given in reverse order.
A note found in Kourganoff, 1963, p. 104, points out this reversal.)

Some Elementary Identities

Note that the solution of equation (7-18) contains a term similar to

ol B Hikee

It will be convenient to generalize this to a continuous function, and
define the moments

Di(z) = 3~ %4 7-20
m(I)—Zm (7-20)

We can derive a recursion forinula for Dy (x)

~1
D D I o el (R
m-l —t. 1+ px - iy |
o P N e W il
= ;a!u! ; Tz
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But by equation (7-4)

_ 28
Za,ﬂ;” (. —

H

{6 = 0 for m even)

{6 = 1 for m odd)

hence s
2 aft 26
Doy i(z) = — - LT
i@ m IZT,: l+ux m Dm{z)
or o5
1
Dle) = 1 |2 - Do) (7-21)
is the required recursion equation. Thus we get, for m odd
1 2
Dyj—ila) = - o1 Dy .9(z) (7-22)
and for m even
Dyj{z) = Dzyl( T) (7-23)

By comparing equation (7-20), with m = 0, to equation (7-10)
n

@
Dylz;) = ﬁ,ﬁ“ =2 (7-24)
J-:—Tl Laa]

and, thus, from equations (7-22) and (7-23) we get the sequence

Du(.l:) =2
D(z}=0
Da(z)y=0
Dy(z) = 2z
3x

By repeated application of equations (7-22) and (7-23), with the above,
it is possible to establish the general formulas (see Chandrasekhar),
since k is a root of the characteristic equation.

2 2 2
. — k)= 3 e
L e  TAA T S 11 AL T T

(7-25)

114

Chapter 7

-2 2 2

(27— D&% (25— 3k ak22 (7-26)

Dyjk) =

where 1 = 2,3,... 1.
The even Legendre polynomials caus always be written in the form

Py (p) Z P2jit % (7-27)
et

where the pa; arve constant coefficients.
Consider the expansion

n a_,‘.”':‘;i
ZPZ]D:ZJ (k) = szz 3. To ok
Jj=0 j=-n !
T . ™
_ _ J ) “Z:
= Z l+;lkkzphﬂ-’
FERE =
n
- I8
Z ]+“ kz 21 n”'_}
J=-n

But, by the Gaussian quadrature procedure we have adopted, the p;
are zeros of the even-nuimbered Legendre polynomials. Henee, the right-
hand side of the above equation is equal to zero, and we have

n

Y pajbajik) =0 (7-28)
=0

From this Chandrasekhar derives an equation which is usced in several
places in the remaining development

1
(kykg . kpo Ot i) 7 {7-29)

{Note the different ranges on the subscripts of equation (7-29).)

The Flux Equation

The flux is defined as before, for azimuthally synunetric radiation

t
F(r) = 2fr[ pd (1, 0)dp
—1

115



Introduction to the Theory of Atmospheric Radiative Transfer
Or, in the Gaussian approximation

T
Fry=2r Y a;lu; (7-30)

Jj=-n

If we substitute the solution (7-18) into equation (7-30)

n n

n-1 n
~ s ~knT bt T
Flr) =2nb {Z Lae™ %o . #“I‘TnﬂwQ) Z ayp + a.#f}

a=1 i=—n i=—-n i=—n

From the definitions of Dy (z) in equation (7-20) this becomes

n—1 n n
Fir) = 2nb [Z Ln.e-knTDl{ko) +(r+Q) Z aip + Z a,—,u?]
=]

t=-n 1=—n

But Dy (k.) = 0, and from equation (7-4)

2 ai; =0
i

St
1

and thus we get
4
F(r) = i?rb (7-31)
Since {r is a constant, this equation says that the flux is constant at
alt -r—fw.h_mh is indeed true for this problem. (Since we have considered
the equilibrium problem of conservative scattering in a semi-infinite
fttmosphere, the net flux in must equal the net flux out, and the net flux
is cons_erved at all altitudes because there is no absorption or emission.)
Equation {7-31) allows us now to evaluate the constant b

3
b:z’ﬂ'F

and, hence, this establishes our final constant of integration. The
solution of equation (7-18) becomes
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n—1 —kaT
I o
I =3am y (“—e—) T4y +Q] (7-32)
a=

in which all the constants are now known.

The Source Function

From differential equation {7-5), the source function for this problem
is written in the Gaussian quadrature form

T

1! 1
J=§/_1I(‘r,,u) d,u,rcsi Z a; I;

1t=—n

(7-33)

Insert the solution equation (7-32) into equation (7-33) and proceed
as in the F-integral; i.e., interchange orders of summation and use the
Dyy(z) definitions, and we find that J reduces to

3 n—1 _
J =3k (Z Lo 47+ Q) (7-34)
a=1
Following Chandrasekhar, define
n—1
(1) = Y Lee FaT 1+ Q (7-35)
=1
and we can write the source function in the Eddington form
3
J = ZT(’F[T + q(7)] {7-36)

Inserting our numerical values in equation (7-35), we get

q{r) =0.706919 — 0.009461 cxp{—1.103188+) — 0.036187 exp(-1.591778r}
- 01.83921 exp{-4.458087)

See table 7-2.

Given the source function, we can now usc equations (3-5) and (3-6)
to get the intensity at any 7, 4 (assuming, of course, the same boundary
conditions and symmetry in ¢ = —u). Thus, we write equations (3-5)
and (3-6) as
dt

00
Mo = [ d)e -]
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T
10, = [ e

Substitution of equation (7-34) into the above and integrating poses no
major problems. The results are

| 3 n—l c_ku'f
Irp) = ynF ;Mm +T-HJ+Q) (7-37)

. n—1
Iir.—p) = :l—im':‘ |:Z 1 ,L:"u (e—knr _ e—r/n) T4 (Q (1 = 6ﬁ1/”)]

a—1

{7-38)

TABLE 7-2. VALUES OF g¢(r) FROM
EQUATION (7-35)

T q(7)

0. 0.577350
0.1 0.613849
: 1.0 0.695441
3.0 0.706268
5.0 0.706868
10.0 0.706919

0o &

These are the final forms for the upward and downward radiance
componcents in the ath approximation. Note that this is the intensity in
direction u based on a 2n-stream approximation for the source function.

The Law of Darkening

By putting 7 = 0 in equation (7-37), we get the angular distribution
of the radiation emerging from the top of the atmosphere; ie., the law
of darkening or the himb darkening equation

3 n—1 L
(O, ) =-nF * -
| (0, 1) il (“E:] Lt ko +p+Q (7-39)
From our numerical example, we get
0.036187 0.083921

o) 3 [ ~ (009461

= - - + 0.70691
TF 4 (1 +1.103188p 1+ 1.159178u | + 4.458080u o g]
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TABLE 7-3. VALUES FROM EQUATION (7-39)

" i o]
0.0 0.433013 0.345082
0.1 0.531852 0.423850
0.2 0.620516 0.494504
0.3 (0.704562 0.561488
0.4 0.786070 0.626444
0.5 0.866012 0.690152
0.6 0.944910 0.753029
0.7 1023094 0.815321
0.8 1. 1006499 0877182
0.9 LI77915 0.938718
1.0 1.251812 1.0

See table 7-3.

Compare equation (7-18), a st of equations with a discrete argu-
ment, j;, with the parenthetically enclosed term of equation (7-39),
which is a continuous function of ji. These are identical in forin, except
for the sign of the . As a lead-in to the H-functions, we deline the
continuous function

L35
Lo
= —p4+¢ 7-40
S{u) r!le T~ ko p+ G (7-40)
From this, we can write the boundary conditions (7-19) as
Slp)=10 (i=12,...,n) {(7-41)

and the law of darkening, equation {7-39), can be put into the form

IO, ) = %rrF.‘?(Ap] (7-42)
a form which will be found to be more useful aller we have derived the
H-function. Note that the quantity 375(—p}/4 can be to some extent
interpreted from equation (7-42) as a diffuse reflection coefficient; Le.,
it gives the angular distribution of the reflected radiance in terms of
the incoming flux, F.
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The [/-Functions

Note frow the definition of equation (7-40) that the S-function is
defined in terms of the L, and Q. These must in turn be obtained
by solving a set of linear equations, equation (7-19). Knowledge of the
L. and @ pertnits us to determine the intensity and flux components
Al any point within the atmosphere. However, in many cases we
are not concerned about the detailed structure of the radiation field
mside the medium, but really need to know only what comes out
of the top and/or what comes out of the bottom of the atmosphere.
Chandrasckhar presents a method for doing just this, and this analysis
leads 1o the definition of the H-functions, a set of functions which, for a
given phase function, can be computed once and for all and tabulated.
Note carefully the distinction between emission and scattering in the
following development. Equation (7-51) expresses emission in terms of
the fi-function, while equation (7-84) expresses scattering in terms of
the fi-function with two different arguments. We proceed now with
this derivation.

The sswinmation in equation (7-40) contains the expression (1 — kqpu)
in the denominator of each term. ¥ we define the function

n—1

R() = [ (1~ kan) (7-43)

=]

then, by multiplying S{u} by R(u), we get a function which is clear of
fractions.

n-1 n—1
S(u)R3) = TT (1 = kape) (Z T —ﬂ+Q) (7-44)

a=] a=]

Since f(ye) is a polynomial of degree (n — 1) in u, the presence of the
pi-termn in the parentheses of equation (7-44) means that the product
S{p)ft{se) is a polynomial of degree n in . Also notice that S(p)R{p)
vanishes for g = g;,7 = 1,2,...,n, since by equation (7-41) S vanishes
for these values,

Define the polynomial

Plp) =[] (e - n) (7-45)
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which is also a polynomial of degree n in u. Since P(u) and S{u)R(u)

are both of degree n in 1, and have the same roots, u;, they can differ
from each other by, at most, a multiplicative constant; i.e.,

S(u)R(u) = KP(p) (7-46)
The constant K can be determined by comparing any power of u on
both sides of equation (7-46). In this case, it is easiest to compare

coefficients of the highest power; i.e., of p. From equation (7-44}, it
can be seen that the coefficient of 4™ on the left-hand side is

(=" k1ka .. . kn_y
while the coefficient of 4™ on the right-hand side is unity. Thus
F=(-D"kiko. . . kyy
and hence, from equation (7-46)

S(u) = (—1)"ksks ... kn_l% (1-47)

With the definition equations (7-43) and (7-45), and equation (7-29),
this can all be put into the form (changing the sign of )

o b

. . (#+ p3)
S(~p) = — =1 7-48
=#) ﬁ#:#z---#n““(l+k ) (7-48)
cr 4
a=1

which now only contains the discrele coordinates, u;, and the eigen-
values, kg, of the original systemn of equations. From equation {7-48)
comes the discrete form of the definition of the H-function

n

1 TT(w+mi)
_ i=} .
H{p) = prP—— Tﬁl(uk ) (7-49)
ol

a=1
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The equation {7-48) can be written
S(—u} ! H{w) (7-50)
—l} = — -
ny =
and the law of darkening, equation (7-42), becomes
3
0, u) = %WFH(,«:) (7-51)

For onr numerical example, in which n = 4, we get from equation (7-49)

1) 1 [(u + 0L1B343) (12 + 0.52553) (u + 0.79667) (4 + 0.96029)]

= 0073749 {1+ 1.103192)(1 + 159178211 + 4 45808n)

Sec table 7-4.

TABLE 7-4. VALUES FROM EQUATION (7-49)

[ H{p)n=4 H{pt)exact
0.0 1.000000 1.0000
¢.1 1.228240 1.2474
0.2 1.433003 1.4503
.3 1.627100 1.6425
(.4 1.815335 1.8293
0.5 1.999953 2.0128
0.6 2.182162 2.1941
0.7 2.362674 2.3740
0.8 2.541940 2.5527
0.9 2.720262 2.7306
1.0 2.897849 2.9078

Tle exact solutions were computed from an integral equation to be
developed later. It can be seen, however, that the fourth-order solution
1s not too bad, considering the relatively simple arithmetic involved.

As mentioned earlier, Chandrasekhar goes to great lengths to de-
velop expressions similar to equation (7-47) for the constants L, and
. These derivations will not be repeated here, for reasens already
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stated, but his results will be given for completeness and reference.
Define the polynomial

n—1

Ro(p) = [T (0 —kap) (7-52)
A=l
B#o

Then the constants L, and @ can be fonnd without having to invert
any matrices, from the relations

P{1/ky)

Loy = (-1)"kiky. . kyo ) =—— 7-53
a = (=1)"kikz n L (1 7k (7-53)
with P(z) given by equation (7-45), and
T n—1 1
Q=3 -3, i {7-54)
=1 =1

From our numerical example, we got,

P(t/k) = -0.00162775
P(1/kq) = 0.00255488
P(1/ky) = —0.00518676
Ri{1/k,) = 1.346865
Ra{1/ka} = —0.552715
Ra{1/ky) = 0.483843

We also get kjkoky = 7.828524. Then, using equations {7-53) and
(7-54) we get

Ly = —-0.0094611411
Ly = —0.0361860937
Ly = —0.0839211267
@ = 0.70691923070
which can be compared with the values found earlier, following equa-

tion (7-19), by inverting a 4- by 4-matrix.
Chandrasekhar also derives an aceuracy check

- | i

QD La= 7 (7-55)

=1
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and, using our numerical data, we get for the left-hand side
0.5773508692 compared with the exact value of 0.5773502692.
So far, we have achieved a number of significant goals:

I. We have completely solved the simple case of the radiant field
for which the net flux is constant, and a conservative, isotropic
scattering medium.

2. We have gotten some numerical values—in the fourth-order
approximation-—for some of our expressions. These do not seem
quite so frightening any more.

3. We have developed some basic concepts and ideas which will be of
more use later on- specifically the S- and H-functions.

4. We have solved the limb darkening case for this simple problem.

Now, we consider a somewhat more difficult and useful problem.

Diffuse Radiation With Non-Conservative, Isotropic Scattering

We will now consider the problem of the scattering of a collimated
beam into a semi-infinite atmosphere; i.e., the scattering of sunlight
by a planetary atmosphere. Our starting equation is equation (2-50),
which, for isotropic scattering, becomes

ditr, 1)
dr

- 1
n = I(r,p) - %’[1 {7, p2) dp — grDFe_(T/‘“G) (7-56)

Here, @ is the single-scattering albedo, and it is assumed that a parallel
beam of solar radiation of flux F is hitting the top of the atmosphere
at the angle fy = cos™ 1 .

The development given here will be somewhat sketchier than that
in the carlier part of this chapter, as they are very similar and should
not now pose any difficulty.

Again we discretize the integral and solve equation (7-56) along the
discrete rays defined by u;,

w1ty > I_.,u_,—%&:!-‘e“’/““ (i= 21, £2,. +n) (7-57)
We first solve the homogeneous system

di; 1.«
,u,-:i}i = Ii — -2-u) z G'j[j (7-58)
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by assuming, as before,

—kt

I; = gie
If we put this into equation (7-58) and reduce, we get the characteristic
equation for this problem

n a-

- J
— 7 7-5%
Y (7-59)

This is identical to equation (7-11), except for the presence of the &.
But this is a big “except,” for now there are no roots at k =0, and it
will not now be necessary to introduce the somewhat artificial solution
(7-14) into the system. The complete solution follows directly.

The asymptotes of equation (7-59) oecur at the snine place as those
of equation (7-11), but the roots are somewhat larger, depending on
the value of &, since

i
> = -
1 - ,u?k?

i=1

£ —
A%

The roots of equation (7-59) can be found for any & in the same way
as before. For the n = 4 case the data are as in table 7-5.

TABLE 7-5. ROOTS OF EQUATION (7-59)

w a=1 a=2 a=23 a=4

1.0 0. 1.103186 1.591779 4.458086
0.9 0.525430 1.108937 1.615640 4.554851
0.8 0.710413 1.116799 1.642629 4.652965
0.7 0.828671 1.127655 1.672473 4.752078
0.6 0.907693 1.142395 1.704602 4.851871
0.5 0.959481 1.160900 1.738275 4.952060
0.4 0.992327 1.181880 1.772515 5.052401
0.3 1.012963 1.203057 1.806656 5.152683
0.2 1.026230 1.222732 1.840027 5.252727
0.1 1.035120 1.240155 1.872179 5.352384
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So, a set of solutions to the homogeneous equations is

n L;e—kjf 1L ! ekJT

I = it M e A }
! JZ 1+ psk, +Z 1 pk (7-60)

=1 g=1 7
Now, we need a particular solution to equation (7-57). Assume one
of the form

I = %&Fhie’”"”“ (7-61)

where the h; are constants. Substitute into equation {7-57) and we find
that the h; must satisfy

. i n
h; (1 + i‘i) =5 Y ajhi+1 (1-62)
Ho 2 j=—n

and hence the h; must have the form

hy = i (7-63)
where + is an unknown constant. Put this back into equation {7-62)

Polay | ]
- Z[l—(u?/ﬂ%)] (764)

g Jour

Put equation {7-63) into equation (7-61) and combine with equa-
tion (7-60), and we get the complete solution to the system of equa-
tions (7-57)

il Li,e_k‘" = L'vc.ﬂk"f 7. e T/Ho

L=y

+ 4 GF —————
oV hpke U mka 4 1 (o)

(7-65)

As before, in order to bound the radiance as v — co, we must require
that ali the L', = 0, which leaves

n —kat —r/u
7. Lae ~e U
I, = —wF E +
B 1+ prika 1+ (pi/ o)

a=]

{7-66)
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We apply the same boundary conditions at the top of the atmosphere—
the incoming diffuse radiation at 7 = 0 is zero along the rays —pu;, and
we get the system of equations for the 7 remaining constants L.

n I +
“{x
S + ~ 0 (7-67)
U= ks V= (pi/ o)

=1

As a matter of comparison, note the difference between equation {7-67)
and cquation (7-19) for the conscrvative scattering case. In cqua-
tion (7-67) the a-summation goes from 1 to n rather than from 1
to {(n — 1), and there is no Q constant. As pointed out above, these
differences result from the fact that i = 0 is not a root. All the
solutions we need are contained in equation {7-67}.

With ~ defined by equation (7-64), equation (7-67) again provides
us with n equations in the n unknowns Lo. We can solve this system
just as before to get the complete solution for the total radiation field.
However, if we only want the law of darkening for the emerging field at
the top of the atmosphere, this can again be expressed in terms of the
H-function, and we need not evaluate the L. However, to carry along
the numerical example, we will evaluate equation (7-67) for the n = 4
case we have been using. We will put arbitrarily & = 0.8 and get

~ = 0.947722
Ly = 0516131
Ly = 0.046078
Ly = 0.246943
Lg = —0.402956

~

This source function for this problem in the Gaussian approximation
is, from equations (7-57),

R B
J(r) = 7% Z UJ,]J,"I*‘;EO.,'FC /i

j=-n

If we substitute equation (7-65) into the above and reduce,

|
Jr) = gm? (Z Lac 57 + ~,c“fff‘“)

=1
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If we substitute this into equations (3-5) and (3-6) as before, with zero
houndary concitions on the incoming diffuse radiation, we get for the
complete solution to the radiation field at any r, »

n ket —7/ g
F.a Lae Yioe
I = —wf E ' + 7-68
(7. 1e) Vi ( 1+ kap Mo+ p ) ( )

=]

n

flr.—p) = %&F [Z Lo (eik"f - e_T/"“’) +—2 (e—T/"U - c‘f/"')}

ot 1—kap 1~ plng
{7-69)
The law of darkening follows from equation {7-68) with 7 =0
T =~ L o
0, u) = —&F — 4+ 0 7-70
(0.4) = 20 (;Hka”m”) (7-70)

We would like to write equation (7-70) in terms of the H-function as
we did hefore. Again guided by the formn of the characteristic equation,
putting z = 1/k we write for equation (7-59)

i [ a; . oa
=4 Aﬁ]—} =022y =1 (7-71)
(2 ) 52 2 _ 2
= 1 (,uj/z) R
and define the continuous function
n a.:
~ a2 2
T(z)=1-wz Z R (7-72)
=1 2
Obviously, this must vanish for z = 1/k, since k is a root of the

characteristic equation,
Now, T(z) is a polynomial of degree zero. Thus,

n
’ 2 2
r(z) [1(* - )
7=1
is a polynomial of degree n in 2 with roots +1/ka, = 1,2,...,n. The

polynomial
f
H (1 - kﬁzg)
1=1
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is also of degree n in z with roots +1/k,. Thus, as before, these two
polynomials can differ by at most a multiplicative constant

T(z) ﬁ[ (22 —,u?) =K ﬁ (1 - kgzz) (7-73}
1

=

From equation (7-72) we see that T(0) = 1, and hence if we set z = Q
in equation (7-73)

K= (-1)"ulud - u
and, thus, from equation (7-73) we can write T(z) as

n

Hu — koz)?

v =l
T(2) = (-)"piud o ud 2=

1% -ud)

LES]

fI (1 —kaz) ﬁ (1 + kaz)
a=1

= (0 (g opn)? 2 0 (7-74)
0 [T e -2 ][] twa + 2
a=1 =1
But from the defining equation (7-49), this can be written
T(2) = ——" (7-75)
- H(z)H(=2)

If we let z = pg in equation (7-72)

a; n a,;
To) =1~y 52 g =1-a3 —2___
T ug - u o= )

But this is exactly equal to the denominator of equation {7-64); thus,
we get

1
= iy = M0 H (=p0) (7-76)

giving us the unknown constant -+ in terms of the H-functions.
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Now, again repeating the earlier procedure, we can be guided by the
form of the law of darkening, equation (7-70), and with equation (7-76)
define the continuous function

B n Lo H{po) H{—ug) :
Su) = Z 1 — kap + 1= (pfpo) )

a=l

in which again §(p1;} = 0, 1 = 1,2,...,n. The law of darkening becomes
L
10,1) = J5FS(-4) (7-78)

which we want to write in terms of the H-functions. The function

n

(1= 29800 [T (1 = kaw) (7-79)

#o a1

is a polynomial of degree n in g, which vanishes for u = p; because
5(p;) = 0. Thus we can write

(1 ;ﬁ) S() [T (1 = kape) = K' [T {0 — 1) (7-80)
Ho =1 a=1I
or n
, [Tt #a)
S() = 1 (’f ot (7-81)
° H (1 — kap)
o=1

Comparison of equation (7-81} with equation {7-48) shows that this is
almost in the right form. If we redefine the constant K'

-1 n

Kf K ( )

g jin

then equation (7-81) can be manipulated to the form
KH{(~u)

1 - (1/po)

in which we now need to evaluate K. From cquation (7-77)

Sy = (7-82)

(1- £ st=(1-£) a{jl Lo H (o) H(- )
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and from this we can see that as u approaches i

Jim (1 - -"—) S(p) = H{pg) F (= o)

H— g 10

while from equation (7-82)

lim (1 - i) S(p) = K H{—pg)

== i) 1o
and, thus, we find that K = H(uq), and equation {7-82) becomes

_ H(po)H{(—p)

S(u) = 7-83
(s) i~ (p/po) (7-43)
and the law of darkening, equation {7-78), becomes
1(0,p) = ZaF 0 H (o) H (1) (7-84)
4 uptu

Recall Chandrasekhar’s definition of the scattering lunction, equa-
tion {4-4)
oy
1(01 !‘l) = fs(ltaliﬂ) (7'85)
4
(The w comes in because of the way we have defined the incoming solar
Alux —Chandrasekhar defines it to be mF, while we have defined it as
just F.)
If we compare equation (7-85) with equation (7-84), we find

n_ o T
—wF H H = ——5{,
i (o) H (42) 1 {1ty o)
or
1 1 -
(" + “—) S{pe, pro) = GH (po) Hd) {7-86)
B Hp

which gives the scattering function In terms of the tabulated H-
functions.

Use of equation (4-10) allows the reflection function R#{s¢, j1p) also
to be written in terms of the Ji-function

(l ' i) Rlst, o) = 1 H{st0) (1) (7-87)
“ Mo i
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We note that interchanging u and g in equations (7-86) and (7-87)
gives

S(u, po) = S(uo, 1)

R(“r nu'ﬂ) = R(”U? P')

which are examples of the law of reciprocity, a concept which occurs
frequently and is much used in theoretical analyses.

Applying our numerical example to equation (7-70), with ug = 0.4,
w = 0.8, and n = 4, we get the following comparison in table 7-6 with
Chandrasekhar’s exact results for the reflection function. Again we note
that the n = 4 approximation is reasonably good, the maximum error
heing about 1 percent at g = 0.5.

TABLE 7-6. VALUES FROM EQUATION (7-70)

{0, 10,7
" ( F )n:4 ( m )exact
0.0 (.270783 0.272217
1 243725 248014
2 219711 222972
3 199753 202310
4 183164 185255
.5 169225 170984
6 157331 158864
9 147081 .148436
8 138144 .139359
9 130277 .131380
1.0 123693 124303

Similarity Relations

We can note from our earlier developments that the radiation field is
essentially characterized by three basic quantities—the phase function,
the single-scattering albedo, and the optical thickness. A change in
any of these quantities produces a change in the radiation field. The
question thus arises: Can we change these parameters simultaneously
in such a way that the radiation field remains at least approximately
fixed? Tn particular, can we relate a given set of parameters P(u, u'),é,
and 7 to an equivalent set of isotropic parameters?

The answer is obviously yes, or we would not have raised the question
here, and this section would not have been written. We have already

132

T

——

Chapter 7

seen one example of such transformations in the discussion of the delta-
Eddington method of chapter 6, in that equations (6-27} and (6-28)
give a transformation which relates the delta-Eddington solution to the
classical Eddington solution.

As pointed out by Sobolev {1975), the approximate similarity of
the radiation field in an atmosphere with anisotropic scattering to
the corresponding field in an atmosphere with isotropic scattering
will take place only after a large number of scatterings, i.e., large
optical thickness and W = 1. Also, similarity can only be discussed in
connection with azimuthally averaged fields, since the isotropic radiance
is azimuthally independent.

The diffuse radiation field in a plane-parallel atmosphere follows the
now-familiar equation (2-29)

LA %f[(r)P(cosG) dn

dr (7-88)

Suppose now we assume that the fraction r of the radiance is scattered
isotropically (i.e., P{cos#) = 1), and the remainder {1 -- r) is approx-
imated by a Dirac delta function, so that we can write for the phase
function

Pleosf) =r+{(1—-1)6 (7-89)
If we put equation (7-89) into equation (7-88)
di @
il S — r)b} d
v =1- 5 [ 100+ -7
w @
= - Z;rf[(‘r) dQ - G(l —rdnl
= Il - (1~ )] - %r/ 1(r} ds2 (7-00)
If we divide through by [I — &(1 — )]
df @ r [
e e el JESPE—— S W[ 9 ] 7-91
T TR e s wrs ) R G (7-91)
and thus, by defining
= —a( —r)r (7-92)
and -
r
By = .93
R Y g (7-93)
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we can wrile equation (7-91) in the form

dr iy
“E =1- i [ I{r) dft (7-94)

Equation (7-94) is therefore identical in form to equation (7-88) with
P{cosf) = 1, which thus describes isotropic scattering. In this way,
equations (7-92) and (7-93) can be considered to be similarity relations
which transform the anisotropic problem of equation (7-88) to the
equivalent isotropic problem of equation (7-94), under the assumption
in equation (7-89).

We now have to determine the quantity » in equation (7-89). The
more {orward scattering we have, the smaller the value of r. We have
seen earlier that, in the Henyey-Greenstein phase function, the factor g
controls the size of the forward-scattering peak; the larger the amount
of forward scatter the more nearly g approached unity. Thus, if we
choose

r=1-g (7-95)
then we get
1 =(1—&g)r (7-96)
and ”
oy = 2L=9) (7-97)
1 —wg

as our set of similarity relations.

The discussions in Sobolev (1975) and Irvine {1975) indicate that
equations (7-96) and (7-97) produce solutions that agree well with more
nearly exacl solutions in most cases, the agreement generally being
better for integrated quantities, such as total albedo or the atmospheric
flux, rather than quantities such as radiance. Again, this is because the
integration, after multiple scattering, tends to smooth out the effects of
the phase function.

The similarity solutions for one of the cases given earlier for the two-
stream and Eddington methods are presented below and in figure 7-3.
The #(ug) were interpolated in the tables of H-functions at the end
of chapter 8. The similarity relations give the correspondences in
table 7-7. The correspondences in table 7-7 in turn give the values
for the reflection function shown in table 7-8.
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TABLE 7-7. CORRESPONDENCES

W ]
0.9% 0.9802

45 9048

90 8182

Chapter 7

TABLE 7-8. r(j), SIMILARITY SOLUTIONS

Ho @ =099 w=0.93 w =090

0.0 0.8593 0.6915 .5736
B 8285 6377 0121
2 B048 6003 ATL8
A3 7835 .HB8R 392
4 7635 o414 ALEG
;) 7447 5169 ARTT
1] 7268 A7 3667
i 098 4746 3479
R 6071 4561 A3
RY) 772 A391 Ay
1.0 6616 4234 3020
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~—— SimiTarity solution
—— Delta-Eddington

o Eddington

o Exact {doubling) method

0.9

0.2 i 1 i Il |
0 0.2 0.4 0.6 0.8 1.0
o

Figure 7-3. “The similarity relations equations (7-92) and (7-93) used for the same
case as Ngure 6-1,
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The Principle of Invariance

The principle of invariance is a very elegant concept that was
first put forth by Ambartsumyan {1958) and later perfected by Chan-
drasekhar and others. The principle is deceptively simple and will be
applied here to the case of a semi-infinite, homogeneous atmosphere. It
allows us to derive a single integral equation for a function which can be
identified with the H-function. This linear equation permits the exact
computation of the H-function. (The numerical solution is an iterative
one. Thus, it is exact only in the limit, but practically converges to 6
to 8 decimals in a few iterations for small values of the single-scattering
albedo. The convergence is slower as the single-scattering albedo ap-
proaches unity.)

The principle of invariance for an infinitely thick atmosphere can
be stated as follows: we are given the infinitely thick atmosphere with
certain reflection and absorption properties. If we add an additional
layer of the same optical properties to the top of the atmosphere, we do
not change the overall reflective and absorptance characteristics of the
atmosphere. By adding a thin layer, we can compute the differential
change in reflection and absorption and set these changes to zero. The
result is a linear integral equation for a function which we can relate to
the H-function derived in the last chapter.

We will follow essentially the development of Liou, and use his
definition of the reflection and transmission functions, and then relate
the final equation to the form developed by Chandrasekhar.

We assume that the added layer is so thin that at most a single
scatter can occur in it. Then, for a given photon which is reflected out
of the top of the atmcsphere, only one of the five histories sketched in
figure 8-1 can occur:

1. The photon can penetrate the thin layer and be reflected from the
infinitely thick layer (ITL).

2. The photon can be singly scattered upward from the thin layer
before it reaches the ITL.
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\/\V/f [l S/

AT

(1) (2) {3) (4) (5

Figure 8-1 Sketch showing the five single-scatter scenarios between the added
thin layer and the infinitely thick layer {ITL).

3. The photon can be singly scattered downward by the thin layer,
then reflect upward from the ITL.

4. The photon can penetrate the thin layer, reflect from the ITL, and
then he singly scattered upward by the thin layer.

5. The photon can penetrate the thin layer, reflect upward from the
ITL, and then be singly scattered downward by the thin layer to be
once more reflected up and out by the ITL.

We assume that Ar, the thickness of the thin layer, is €« 1, and hence
only terms linear in At will be retained. The single-scattering albedo
determines the fraction of the incoming photons which are scattered.
In the thin layer, it is assumed that there is no absorption along a path
which involves a single scatter, but that there is absorption along a path
which penetrates the thin layer and along which there is no scatter. In
other words, we assume that a given photon may be either absorbed or
scattered, but not both.

For azimuthal symmetry, Lion’s definition for the reflection function
follows from cquation (4-6)

1
10,1) = 2 [0 Ru, 1 )1(0, —' Y’ it (8-1)

The reflection coefficient for an infinitely thin layer can be obtained
from the single-scattering solution given by equation {5-33b}, which for
™ = Ar € 1 reduces to
w A7
10, p) = P, o )0 Fo (8-2}
B0
and hence, the reflection coefficient becomes
w AT

o P(p, —po) (8-3)

R(p, po) =
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For thin layers, the transmission function reduces to

A
EuAT/jl ] — or

i

The simplest way the writer has found to derive the differential
changes in R due to the addition of the thin layer is to start with the
emergent beam and work backwards to the source. This will be done in
the five parts of figure 8-1 for cach of the five scenarios sketehed above.

In figure 8-1{a), reflection from the I'TL,

I{-Or,p) = (L= A/p)I{0, p)
10, ) = 1{0, —po) R{n, 1)
I(0, —pg) = (1 ~ Ar/ug)uoFy

\‘OFO I{-A7,1)
T = =-Atr

U o

1(0,-u0) I(O,u) -0

FFigure 8-1{a). Sketeh of the first event, reflection from the TTL.
Put all these together
I(=Ar,p) = (1 = Ar/p)R(u, po) (1 — A7/ polpolo
Expand and retain only terms to first order in A7
[(=Ar, )/ poFo = Rl po) — Blpa o) (Arfp+ &r/po)

But this is the new reflection coefficient, and hence the change in the
reflection coefficient due to this first cvent is

ARy (i, po) = = R{p, o) A7 (L po + 1/1) (8-1)
In figure 8-1(b), single upward scatter from the thin layer,
(=&, 4) = Rig, polpo o
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vo /I(-Ar.u)
T = =AT

-!10 H

=20

Figure 8-1(L). Sketch of the second event, single upward scatter from the thin

]ﬁy(‘h
F I(-AT,n
VO i / ( )

“Hg

I(O,-u')

Figure 8-1{c). Sketch of the third cvent, single scatter from the thin layer followed
by a reflection from the ITL.

and from equation (8-3}

w AT
H-Arp) = Py, — F
( #) e (. —to) o Fo
and hence,
@ At
ARy (i, o) = ——Plp, ~ 8-5
2 (14, #o) T (#, —po) (8-5)

In figure 8-1{c), single scatter frotn the thin layer followed by a
reflection from the ITL,

](7AT' ﬂ') = (1 - AT/IU')I(Or nu)
](0: H’) = R(ﬂ! ,l'.l.’)I(O, *F')

w ATt
HO,~y') = (m) P{—p', —po)po Fo
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But since all possible g’ must be inciuded, we must use equa-

tion (8-1)
1 At @ Ar
I{—Arp) = 2[ ' dp! (1 - —) R(p, 1" o Fo— P(—u', — po)
0 I dpp
@ At AT 1
= poFp—~— (1 - —)/ R(p, ) P(~tt', —prg) dye’
Mo # 7 Jo

and so to order Ar

w AT

ARz{p, pg} = ™

1
[0 Riu, W) P(~4', —po) du'  (8-6)

In figure 8-1(d), reflection from the ITL followed by an upward
scatter from the thin layer,

=m0 = (5o ) Plns 10,4

1O, 1) = Ry, —p0) (0, —pe0)
1{0, —po) = (1 — Ar/po)uoFo

Hofo / I{-a1, )

-1
]
'

>

+

-UD

I(Os 'UO)
T=20

Figure 8-1(d). Sketch of the fourth event. reflection from the ITL followed by an
upward scatter from the thin layer.

Again, using equation (8-1) we get,

w AT AT 1
170 = S0 (1= 20) [ R, o) Pl ) i
u o/ Jo
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or

o or !
fu Ry, —po) Plus, p') dpt’ (8-7)

24

ARg(p, o) =

In figure 8-1(e), reflection from the ITL, followed by a downward
scatter from the thin layer, and a final reflection from the ITL,

I(~am, ) = (1 = Ar/p)I(0,u)
10, 1) = R(p, ) (0, —p')

1o, v") {0, u')

Figure 8-1{¢). Sketech of the fifth event, reflection from the ITL, followed by a
downward scatter from the thin layer, and a final reflection from the ITL.

and hence, integrating over all g,

1
10, 1) = 2[ 2 Rp, )1(0,—pu') dut
0

Now,

w Ar
ﬁp(*ﬂ’:ﬂ”)[(ﬂ' “”)

10.4) = '

and we can write 7(0, u) as

w AT !
[(0,p) = WI(O’“”} | Rip, & )P(—p', p") dy

and to order Ar
H—Ar ) = 98T
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But now,
10, 1") = IO, —po) R(p", o) = (1 - —) R{p" .~ po)ioF

But this must be integrated once more, this time over all ¢”, and we
get

1
w AT
R(;x”,—m,)f R P (=" 1™y !
0

1
H-Arnp) = 2(#0%)[ wdp! —
0 2L

or, regrouping the integrals

1 1
ARy, po) = @ AT[ Rip, 1) ri,u’/ R, —po) P~ 1" dp”
4] 0
(8-8)
Now, according to Lhe principle of invariance

AR+ AR+ ARy + ARG+ Al = 0 (8-9)

and so, from equation {8-4) to equation (8-8) in equation (8-9), we
divide out the A+ and factor out &/4pug, and write

(-L + 1) Rip, o) =

0 i

1
[
P(—popo) + 214] Pl ) R 'y dgd
4 o

!
+ 2#(1/ Pl VR po) did!
0

1
+ [211/ Rip ') dﬂ.r:|
J0

1
x [zm/ P(—p YR 1) fijl”:|} (8-10)
0

which is the desired integral equation for K{j, pn). Note that this
equation is nonlinear. The only restrictions on cquation {8 L0} are that
the atmosphere must be homogencous, plane-paraliel, and semi-infinite.

Now, let us consider the case of isotropic scattering. Then all of the
phase functions in equation (810} are equal to nnity, and

- 1 L
1 '
( +1)mu.no): el [Hm/ R ') di +2;m[ RU  ia) g
S0

o M QI Ju

1 ]
+ 4.um:f R{, ") dyd’ [ RBp" ) lfu"] {(&-11)
(4]

J0
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[f we interchange g and pg in equation (8-11}, we get the same expres-
sion, indicating that R(p, pg) and R(pg, 1) both satisfy equation (8-11).
This does not prove, of course, that R{p, pg) = R{up, ). As it turns
ont, this is indeed equality, but since its validity can only be established
hy a rather lengthy analysis (Chandrasekhar), we will accept without
proof

R(ﬂn‘-"ﬂ) = R(HOa#) (8_12)

as another manifestation of the principle of reciprocity.
IZquation (8-11) can be factored to give

. 1 1
I
(— + l) Rl pg) = —— |1+ 2:1[ Rip ) dp’| |1+ 2#0[ Ry’ py) dp’
ho oon dppn 0 0

(8-13)
Guided by the form of equation (7-87) we can define
1
) = 142 [ Rl i) dod (8-14)
]
and write equation (8-13) as
(o + ) o) = 7 H ) H ) (8-15)
— - alu'U = I'O "
o M ppg

and we see that equation (8-14) is another definition of the H-function.
Equation (8-14} is exact in that it does not involve any orders of
approximation.

If we write equation (8-15) as

wH( JH (p0)

J 8-16
R(u, po) = Py (8-16)
and substitute equation (8-16) back into equation (8-14), we got
@ L H(y')dy!
H{y) =14+ -pH f —_— 8-17
() rH W) | o (8-17)

which is the integral equation for H promised earlier. Equation (8-17)
can be solved iteratively to determine H{u) to any degree of accuracy.

Cliandrasekhar presents a much more sophisticated derivation of
equation (8-13} and the succeeding relations, resulting in an equation
very similar to equation (8-11) for his scatter function; his equation
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can, of course, be obtained from our equation {8-11) by using the
correspondence equation {4-10}. Once the physics of our derivation of
equation (8-11) is fully understood, it can be of great benefit to review
Chandrasekhar’s analysis, from the point of view of gaining facility in
manipulating the fundamental definitions and using the integral form
of the RTE to develop our resnlts.

The mean value of f(u), fly, is a useful starting point for the
iterative solution of equation (8-17). Define

Hy = /01 H(u) du (8-18)

Multiply equation (8-17) by du and integrate

LH(
/H Jdu=1+ = /f pH pdud,u

Interchange ¢ and p' in the above and add the two results together

1
2fH Yep=2+2 U[H“)H HOW du’ dy

Bt

R
5[ [ it

Ho=1+%H}

or

from which

Ho = % (1 - JL_-E) (8-19)

We now write equation (4-17) for the planetary albedo for the model
atmosphere in terms of the H-functions

1
T(ug) = ‘Zfo R{p, po)u du
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and using equation (8-16)

r(uo) = 5 Hlso) | ' Hw) (1- 22
= SHGo) | [ () dn - o [ 1 e

By use of equation {8-17) the integral can be eliminated to give, along
with equation (8-19)

r{eo) =1- H(pp)Vl - @ (8-20)

Equation (8-20) is plotted in figure 8-2 for various values of w. The
spherical albedo follows from equation (4-24)

1
F=1-2VT5 [ o (o) duo (8-21)

The first-moment integral in equation (8-21) was evaluated numerically
from the H-function tables, and ¥ vs. @ is plotted in figure 8-3.

We can get an approximate analytic form for the H-function, and
thus the reflection coefficient from the two-stream solution. For the
two-stream case, n =1, p = 1/v/3, a; = 1, and the eigenvalues follow
immediately from equation (7-59)

k= /31 - @)

From the definition of the H-function, equation (7-49)

1+ pv/3

H = e 8-22
W = A=) (8-22)
and thus the reflection function becomes
@ 14 2v3) (14 poV3
R, o) = (4 uv3)UL+ pov3) (8-23)

4(p + po) [1 + pm] [1 + po/3(1 — J’)]

If we evaluate H{p) for the n = 4 case used as our example, we get for
it == 0.5, & = 0.8, the data in table 8-1.

It can be seen that going from a two-stream to an eight-stream model
significantly improves the accuracy of evaluating the H-functions, and
hence also the reflection functions.
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1.0
F\ o
. 999
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.99
0.6
.96
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Mo
Figure 8-2. Reflection coefficient for an isotropic semi-infinite at mosphere, cotn-
puted from the Chandrasckhar H-functicus.
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Figure 8-3. Spherical albedo for isotropic scattering. Exact from H-function.
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TABLE 8-1. R(u,ug)

i 2-Stream 8-Stream Exact
0.0 0.53803 0.56256 0.56528
0.1 49378 52749 .53645
0.2 46589 48915 49607
0.3 44759 45399 -45950
0.4 43529 .42289 42745
0.5 42689 39559 39943
0.6 42112 37152 .37488
0.7 41717 .35022 .35318
0.8 41450 33124 .33391
0.9 41276 31423 .31666
1.0 41169 .20891 30114

First-Order Solution for the K -Function

The zeroth-order solution for H(g) is given by equation (8-19). If
we use this in the right-hand side of equation (8 17}, as the first guess

of H(u), we get the first-order solution

@ L
Hi(u)=1+ = H?f
(,U!} + 2# 0 0 ﬂ+#f
Hi(p) =1+ ngg In (1:“) (8-24a)

A somewhat better approximation can be obtained by first solving
equation (8-17) for H(u) to give

== [ ]

and then solving this by substituting Hg for H(u) on the right-hand
side. This gives

Hy(p) = [1 - %,quln (”T”)]_l (8-24b)

For w = 0.5, reflection coefficients computed from equation (8-20), using
the first-order solutions for H from both equations (8-24a) and (8-24b),
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are compared in figure 8-4 with the exact solution using the exact H-
functions tabulated at the end of this chapter. Both approximations
are adequate for large absorption (& < 1), but equation (8-24b) gives
decidedly better results for larger & (nearly conservative scattering).
Whether either approximation is adequate depends, of course, on the
application.

Equation (8-24a) or equation (8-24b) could, in turn, be resubstituted
into equation (8-17) and a second-order solution derived. The algebra,
however, hecomes quite messy, and it is probably advisable to evaluate
the resulting integrals numerically if this order of approximation is
required.

Table 8-2 compares results computed for equations (8-24a) and
(B-24b) with the exact results.

TABLE 8-2. VALUES OF H, (4)

i Equation (8-24a) [Equation (8-24b) Exact,
0.0 1.00000 1.00000 1.00000
0.1 1.07935 1.07554 1.07241
0.2 1.11315 1.11727 1.11349
0.3 1.13281 1.14790 1.14391
0.4 1.14615 1.17202 1.16800
0.5 1.15721 1.19174 1.18776
0.6 1.16848 1.20826 1.20436
0.7 1.18146 1.22237 1.21858
0.8 1.19706 1.23459 1.23091
0.9 1.21578 1.24528 1.24171
1.0 1.23785 1.25473 1.25128

The iteration procedure for computing H{u) uses Hp, equa-
tious {8-24), as the first guess and proceeds from equation (8-17). The
solution converges faitly rapidly for small &, but more and more iter-
ations arc needed as & — 1. Tables of the J{-fnetion for isotropic
scattering are included at the end of this chapter (table 8-3).

If one nses equation (8-17) directly, the convergence proceeds some-
what as shown in figure 8-5.

Chandrasekhar, recognizing the slowness of the convergence of equa-
tion {8-17), gives an alternate integral equation form for H ()

1 = W [V H()
—— =] -+ »—[ =y 8-25
tw =Y 2 Jy (8-25)
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1O~ Exact Chandrasekhar H-function

o First-order theory for H-function, rquation [8-24b)
+ First-arder theory for li-function, equation {8-24a}

= .99

= .9

= .6

W= .3

1 1 ] 1 1

Figure 8-4. Selected single-scatier albedo solution from lgure 8-2 showing the
accuracy of two of the approximate solutions, cquations (8-240) and (8-24Db).

151




bt Tt K i i

Introduction lo the Theory of Atmospheric Radiative Transfer

H{u)

No. of jterations

Figare 8-5. Sketch illnstrating the iterative beliavior of equation (8-17).

No. of iterations

Figure 8-6. Sketch illnstrating the iterative behavior of equation (8-25).

By a straight application of equation (8-25), however, no signif-
jcant improvement in the rate of convergence is noticed, although
Chandrasekhar claims that it is decidedly superior to equation (8-17).
Its convergence proceeds as sketched in figure 8-6. Convergence could
perhaps be speeded up somewhat if we take, for example, the mean of
the zeroth and first iterations as the second guess, the mean of the sec-
ond and third iterations as the fourth guess, etc. This was not tried by
the writer. Chandrasekhar’s iterative procedure is not discussed in his
text, but perhaps this is the method he used to increase the rate of con-
vergence. The problem is, of course, academic, as numerical solutions
are available for all &, and the job is finished.
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TABLE 8-3. H-FUNCTIONS FOR ISOTROPIC SCATTERING

M w = 0.1 w =102 w=0.3 @=04 [w=05
.00 1.000000 |[1.000000 |1.000000 |1.000000 [ 1.000000
0.05 1.007841 1.016118 1.024902 1.034293 | 1.044428
0.10 1.012385 | 1.025632 |1.039895 |1.055387 |1.072402
0.15 1.015844 |1.032948 |1.051553 }1.071988 |1.094720
0.20 1.018645 |1.038919 |1.061149 {1.085784 |1.113465
0.25 1.020993 | 1.043956 | 1.068300 |1.097594 |1.129654
0.30 1.023006 | 1.048296 |1.076365 |[1.107899 | 1.143889
0.35 1.024760 | 1.052095 |1.082581 |1.117017 |1.156568
0.40 1.026306 {1.055459 |1.088110 |1.125169 |1.167971
0.45 1.027685 |[1.058467 |[1.093072 |1.132519 |1.178306
0.50 1.028922 (1.061177 |[1.097559 |1.139192 |1.187734
0.55 1.030042 |[1.063634 |{1.101641 |[1.145285 |1.196381
0.60 1.031060 | 1.065875 |1.105375 [1.150876 |1.204347
0.65 1.031991 | 1.067929 |[1.108805 |1.156030 |1.211717
0.70 1.032846 11.069820 |1.111971 |1.160799 {1.218559
0.75 1.033635 |1.071567 |1.114903 1.165227 |1.224932
0.80 1.034365 |1.073187 {1.117626 |1.169352 |1.230885
0.85 1.035043 | 1.074694 | 1.120165 |1.173203 |1.236459
0.90 1.035674 |1.076099 [1.122536 |(1.176810 |1.241693
0.95 1.036264 |[1.077413 11.124758 | 1.180196 | 1.248617
1.00 1.036816 11.078645 {1.126844 |[1.183380 |1.251259

Mean 1.026334 {1.055728 |[1.088933 ([1.127017 |1.171573
Ist rmom. 0.515611 | 0.533165 |0.553122 [0.576214 | 0.603486
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TABLE 8-3. Continued TABLE 8-3. Continued

n w=06 |w=07 |w=08 |w=085 [0=090 m w=092 [46=091 |0=006 [0=008 |5 =099

0.00 1.000000 |1.000000 |1.000000 |1.000000 [1.000000 0.00 1.000000 [ 1.000000 | 1.000000 | 1.000000 | 1.000000

0.05 1055613 | 1.067885 |1.082180 |[1.090455 | 1.099980 0.05 1104330 | 1.109161 | 1.114731 | 1.121700 | 1.126408

0.10 1.091388 (1.113078 )1.138860 |1.154176 |1.172201 0.10 1180688 | 1.190025 [ 1.201077 | 1.21519G | 1.224940

0.15 1.120454 | 1.150357 | 1.186654 |1.208633 | 1.234933 0.15 1247339 | 1.261434 | 1.278137 | 1.299801 | 1.314988

: 0.20 1.145168 |[1.182519 |1.228642 |1.257015 |1.291436 0.20 1.307860 [1.326672 |1.349186 |1.378764 |1.309768
: 0.25 1.166734 11.210034 | 1.266321 | 1.300861 | 1.343268 0.25 1.363707 | 1.387286 | 1.415750 | 1.453571 | 1.4R073%
' 0.30 1.185867 |(1.236418 | 1.300586 |1.341086 |1.391346 0.30 1.415788 |1.444169 |1.478699 | 1.525056 | 1.558707
0.35 1.203043 | 1.259515 (1.332031 |1.378299 |1.436276 0.35 1.464702 | 1.497907 |1.538598 | 1.593750 |1.634178

0.40 1.218599 | 1.280617 |1.361086 |[1.412937 :1.478491 0.40 1.510876 | 1.548914 | 1.595842 | 1.660019 | 1.707496G

0.45 1.232788 | 1.300016 |1.388077 |1.445334 |1.518322 0.45 1554634 1 1.597502 | 1.650726 | 1.724130 | 1.778906

0.50 1.245806 | 1.317943 |1.413259 | 1.475753 |1.556029 0.50 1596228 | 1.643017 | 1.703480 [ 1.786286 | 1.848504

0.55 1.257807 | 1.334580 |1.436839 |1.504405 |1.591821 0.55 1.635867 | 1.688357 | 1.754287 | 1.846650 | 1.916703

0.60 1.268919 | 1.350077 | 1.458986 |1.531467 |1.625876 0.60 1.673720 | 1.730086 | 1.803301 |1.905354 |1.983349

0.65 1.279244 | 1.364560 | 1.479845 | 1.557089 |1.658340 0.65 1.709935 | 1.771944 | 1.850652 1.962507 | 2.048627

0.70 1.288870 | 1.378134 {1.499537 |1.581397 |1.689343 0.70 1.744637 | 1.811351 |1.896449 |2.018205 [2.112617

0.75 1.207870 | 1.390887 | 1.518166 |1.604501 |1.718996 0.75 1777935 | 1.849314 | 1.940791 |[2.072528 |2.175388

0.80 1.306306 | 1.402800 |1.535825 |1.626499 |1.747398 0.80 1.809926 | 1.885924 | 1.98376G3 | 2.125549 | 2.2364507

0.85 1314234 [ 1.414235 | 1.552593 | 1.647475 | 1.774634 0.85 L84069G | LU21266 | 2.025441 | 2.177330 | 2.297498

0.90 1.321700 |1.424955 |1.568540 |1.667505 |1.800784 0.90 L.870323 | 1.955413 |[2.085896 |2.227920 !2.35693G

0.95 1.328745 | 1.435102 |1.583730 |1.686656 |1.825916 0.95 1.898876 | 1.988434 |2.105188 |2.277398 |2.415353

1.00 1.335406 11.444745 |1.598217 |1.704989 |1.850095 1.00 1.926417 |2.020389 |2.143376 |2.325784 |2.472787

Mean 1.225148 | 1.292221 |1.381966 |1.441651 |1.519494 Mean 1.559038 |1.606492 [1.666667 |1.752201 | 1.8i8189
Ist mom. |0.636634 |0.678670 |0.735817 |0.774378 |0.825317 Ist mom. |0.851467 |0.883087 | 0.923548 |0.081749 | 1.027182
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TABLE 8-3. Concluded

I w = 0.995 w = 0.999
0.00 1.000000 1.000000
0.05 1.129618 1.133736
0.10 1.231690) 1.240491
0.15 1.325628 1.339664
0.20 1.414627 1.434417
0.25 1.500122 1.526160
0.30 1.582903 1.615664
0.35 1.663460 1.703400
0.40 1.742120 1.789679
0.45 1.819117 1.874719
0.50 1.854621 1.958680
0.55 1.968765 2.041679
0.60 2.041654 2.123810
0.65 2113372 2.205145
0.70 2.183989 2.285743
0.75 2.253563 2.365652
0.80 2.322145 2.444913
0.85 2.389778 2.523558
0.90 2.456500 2.601616
0.95 2.522344 2.679111
1.00 2.587341 2.756066

Mean 1.867918 1.938693
1st mom. 1.061731 1.111331
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Additional Topics

There are a great number of problems contained in radiative transfer
theory that were not addressed at all in these notes. We will mention
Just a few of these here as a conclusion to the text, describe them
briefly, and indicate some references which perhaps address them more
thoroughly.

Determination of Optical Parameters

All of the methods discussed in the text have assumed that the
optical parameters used in the equations, such as optical depth, phase
function, asymmetry parameter, single-scattering albedo, etc., were
all known. These parameters can be computed to an acceptabie
degree of accuracy, in most cases, hy the use of well established
numerical or theoretical methods or both. The complete repertoire of
procedures again consists of both “exact” and approximate methods,
but unfortunately, it would take another text larger than the present
one to describe them in sufficient detail.

For homogenecus atmospheres, the optical depth can be computed
for a single frequency and along a given slant path with little difficulty.
Unfortunately, all measuring devices measure radiation in a finite band
of frequencies, with a variable response across the band. The absorption
coefficient varies very rapidly with frequency, and at a single frequency,
many tens of nearby lines may contribute to the monochromatic ab-
sorption coefficient. Thus, a great deal of data concerning the positions
of line centers, line strengths, and line shapes must be available. Addi-
tionally, since the lines are generally spaced such that they overlap to
varying degrees, a very fine grid spacing in wavelength must be used
to get the total absorption in a given finite bandwidth. This prob-
lem is further complicated by the fact that the line optical parameters
vary strongly with altitude (i.e., pressure and temperature} and with
frequency, and hence. the absorption changes in a strongly nonlinear
fashion with these parameters. As a result, generally three nontrivial
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integrations are required to completely describe the absorption charac-
teristics of radiation; i.e., over wavelength, angle, and altitude.

Band models attempt to reduce the frequency integration to a
tractable problem. Some assumptions concerning the distribution of
line centers and the distribution of line strengths are made to reduce the
frequency integral to one which can be evaluated in terms of elementary
functions. This scheme has produced a number of popular band models
which have been used in a number of atmospheric physies applications,
such as climate modeling and studies of the thermal structure of the
atmosphere. Three excellent references for band model derivations and
applications are those by Goody (1964), Rodgers {1976), and Anding
(1969).

The scattering optical properties can also be determined, at least for
spherical particles, The scatter properties of particles which are very
small relative to the wavelength of the incident radiation (i.e., molecular
scattering) can be accurately described by the Rayleigh theory (Liou,
1980, van de Hulst, 1957), while for very large particles, ray tracing
techniques are generally used (Liou, 1980). Particles in the intermediate
size range are the ones which cause most of the computational problems.
The most general theory here is the Mie theory (Liou, 1980, van de
Hulst, 1957, Stratton, 1947). However, as stated earlier, this theory
is complete only for spherical particles, although some success with
cylinders and flat plate particles has been reported (Liou, 1980, van
de Hulst, 1957, Kerker, 1969}). The optical properties such as phase
function, and scatter and absorption cross sections are functions of only
two parameters-~the ratio of the wavelength of the incident light to the
particle radius, and the complex index of refraction of the material
from which the particles are made—and are independent of pressure
and temperature.

If the particle size distribution is known {number density of particles
as a function of particle radius, for example), the overall properties of a
unit volume of scatterers (polydispersion) can be computed (Liou, 1980,
Deirmendjian, 1969). Since both the total number of particles per unit
volume and their size distribution may in general vary with altitude,
there is thus a strong altitude dependence built into the scattering
properties of a polydispersed conglomerate of particles.

As mentioned above, these computational procedures are well de-
fined and are nsed extensively in the literature, although the computa-
tional details are quite invelved and time consuming, and in some cases
tax even the most modern of high-speed computers.

Some approximations to the Mie results have been reported in the
literature, and may be profitably used in studies in which the ultimate
in accuracy is not needed --e.g., in studies of climate modeling and the
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effects of aerosols on global climate (van de Hulst, 1957, Penndorf, 1962,
Plass, 1966).

Finite Homogeneous Atmospheres

The discrete ordinates method {chap. 7) and the principle of invari-
ance (chap. 8), as discussed in the text, are applicable only to semi-
infinite homogeneons atmospheres with isotropic scattering.  Chan-
drasekhar (1960) and Soholev (1975) extend these techniques in elegant
mathematical fashion to finite homogeneous atmospheres with arbitrary
(to some extent) phase functions.

The principle of invariance can be simply stated for a fnite atmo-
sphere. If we add an infinitely thin iayer of the same optical properties
to the top of a finite atmosphere, then the changes in the reflection func-
tion and the transmission function for this incremented atinosphere can
be computed. Similarly, if we add an infinitely thin layer to the bot-
tom of the atmosphere, these changes can again be computed. The
two sets of change must be equal; equating them, one arrives at two
coupied nonlinear integro-differential equations for the reflection and
transmission functions for the finite atmosphere, equations quite simi-
lar to equation (8-10), By rearranging terms and factoring as we did
earlier, two functions can he defined which are similar in utility to
the H-functions. These are the famous X- and ¥-functions of Chan-
drasekhar, which describe the reflection and transmission of isotropic
radiation in finite atmospheres. Further manipulation vields a coupled
set of integral equations for these functions similar to equation (#-17).
Then the angular distribution of the radiant energies from both the top
and the bottom of the atmosphere can be described in equations similar
to equation (7-84).

The X- and Y-functions can be computed and tabulated (see
Chandrasckhar), just as we did for the H-Tunctions, for specilic phase
funetions.

As the thickness of the finite atinosphere increases, approaching the
semi-infinite case, the X-Tunction approaches the H-function and the
Y -function goes to zero. Thus, the N-function is related to the reflection
properties of the finite atmosphere, while the Y-funetion is related (o
its transmission propertics.

For very thin atmospheres, the X-Tunction approaches unity and
the Y -function approaches ¢ T and the resultant equations for the
radiance reduce to the single-seattering solution we fouud in chapter b,

Anisotropic Scattering

In chapter 1 it was pointed out that the phase function can in many
cases be described by a Legendre polynomial expansion in the scattering
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angle. In both the semi-infinite and finite atmospheres, if this is done
and the principle of invariance applied, the result is one (for semi-infinite
atmospheres) or two {for finite atmospheres) integral equations for an
H-function or for the X- and Y-functions, for each term of the Legen-
dre expansion, and these are in general horribly coupled. The numerical
problems thus generated are so enormous, that, to this writer's knowl-
edge, no one has generated general tables of these funetions except for
isotropic scattering and some limited results for Rayleigh scattering.
However, even for the relatively simple cases of the two-term expansion
and the two-term Rayleigh expansion, the computational difficulties
are such that even Chandrasekhar only presents a limited number of
numerical tables.

Similarity may he applied in some cases. However, in general some
other numerical technique, such as the adding or doubling methods
to he deseribed later, is usually used. The discrete ordinates method,
and the related spherical harmonics methods, have been successfully
applicd namerically in some limited cases, even for nonhomogeneous
atmospheres, but it is generally conceded that the other procedures are
numerically and computationally superior for these applications.

Effect of Surface Albedo

In our analysis of the inclusion of surface effects in chapter 4,
was assimed that the reflective surface was Lambertian (i.e., isotropic
scatter from the surface) and was the same for all parts of the surface
plane. This is in general not a realistic approximation, but again the
nmnerical results may be aceurate enough for some applications. Little
work has been done on other than Lambertian surfaces, but some results
are available for specularly reflecting surfaces. See the thesis by Tanré
and the paper by Deschamps et al. in Deepak, 1980.

Other Computational Techniques

There are a number of so-called “exact” methods available in the
literature, which are comparable to or somewhat better than the
discrete ordinates method for nonisotropic scattering. These methods
are exact in the sense of some limiting process as described with the
discrete ordinates method covered in chapter 7. A few of these methods
will be discussed in this subsection.

Adding and doubling methods. These methods are similar and are
hoth based on the following premise: suppose we have two slabs of opti-
cally active material, and supposc that we know the reflective and trans-
mission properties of each slab separately. If we place the two slabs to-
gether, face to face, then by considering the multiple transmissions and
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reflections between the two slabs, it is possible to determine the overall
transmission and reflective properties of the composite slab considered
as a unit. In its most fundamental form, we can show this as follows
in figures 9-1 and 9-2, where the slabs are shown separated for clarity
only. We let the reflectance and transmission coefficients be denoted by
R and T, respectively, with subscript 1 referring to the upper siab and
subscript 2 referring to the lower.

1 2 3 4 5 6

gk kR R

VA A'A'AV

Figure 9-1. Illustration of the various orders of scattering between two finite thick
layers. The layers are shown separated for clarity only.

The following rays emerge from the top of the composite slab:

1. Ray 1 is simply the reflection from the upper slab, R;.

2. Ray 2 is a ray transmitted through the upper slab, reflected from
the lower slab, and transmitted through the upper slab, T RpT7.

3. Ray 3 is transmitted through 1, reflected from 2, reflected back
down from 1, reflected again from 2, and transmitted out through
1, Ty Ro Ry R0 Ty

4. For the remaining rays, there are similar multiple reflections between
} and 2 and transmissions through 1.

Collect all these together, and we have for the total reflection from
the top of layer 1

Ria=Ry + TV RyTy + TYRe Ry RoT) + Ty Rp R\ Ro Ry BTy +
and these can be collected to give
Ria= R+ T\ReT\ (1 + Ry Ry + RERE + )
Since Ry Rz < 1 we can write this last as

R]le

Ryp=R + ————
12 ]+l—R1R2
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Transmission is handled the same way, as shown in figure 9-2, and the
composite transmission function can be written

Ty =TT+ T oR{Ty+ YRR R R\ T + - -
=T\To(1+ RiRy + RER3 +- )

1 /X

RVAVAVAVA

//////"//////////’///

Figure 9-2. Same as figure 9-1 except showing the various orders of scattering
involved in diffuse transmission.

or
Tip= %5 (9-2)

The similarity between equation (9-1) and equation (4-39) or equa- )

tion (4-40) cannot have escaped the reader’s attention.

In more realistic application, the order of multiplication in equa-
tions (9-1) and (9-2) must be preserved, and the simple products are
replaced by integral functions over all directions (see, e.g., Liou, 1980}.
Another approach is to construct the R and T as matrices whose ele-
ments are in general integrals of sundry combinations of the directional
representations of the reflection and transmission coefficients. This ap-
proach is directly oriented toward computer application; see, for exam-
ple, the excellent paper by Twomey, Jacobowitz, and Howell {1966);
see also van de Hulst (1963), the highly mathematical series of papers
by Grant and Hunt (1968a, 1968b, 1969), and the paper by Hunt and
Grant (1969).

Both the adding and the doubling methods use the generalized form
of equations (9-1) and (9-2).

The doubling method is applicable to homogeneous atmospheres.
A very thin slab is selected, say Ar = 2 x 107%0 or s0, and the
reflection and transmission coefficients are computed by one of the thin-
atmosphere solutions covered in chapter 5, say the thin-atmosphere
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solutions, equations {5-16) and (5-19). Now, if we assume two slabs
of the same thickness and saine R and T, then the generalized forms
of equations {9-1) and (9-2) ean be used to compute K and T for the
thickness 2 A7. These R and T then can be used in turn to compute a
pair of K and T for a thickness 4 Ar, 8 Ar, etc., doubling the thickness
with each application of equations (9-1) and (9-2) untit the desired total
optical thickness is reached. Obviously, the doubling method can only
be used for homogeneous optical slabs.

The adding method is similar and can be used for inhomogeneons
atmospheres.  Suppose the inhomogeneous layer is divided into a
number of thin layers, and the thin-atmosphere solution {or indeed,
the doubling method!) is used to compute the R and T for each layer
separately. Then, the appropriate forms of equations (9-1) and (9-2)
can he used to get Hj2 and Ty2. Then the third layer can be added to
this to yield Rjg5 and T'23, and then the fourth and succeeding layers
until the entire atmosphere is completed. Liou (1980) presents some
very useful tables of reflection and transmission coeflicients computed
from both the discrete ordinates method and the doubling method.

Coakley, Cess, and Yurevich (1983) present an interesting method of
using reflection and transmission coefficients computed from the delta-
Eddington method with the adding and doubling methods.

The spherical harmonics method. The spherical harmonics method
is very similar to the discrete ordinates method; in fact, the discrete
ordinates method is a specialized form of the spherical harmonics
method. In this method, shown here for the azimuthally symmetric
case, it is assumed that the intensity itself as well as the phase function
can be expanded in a series of Legendre polynomials

(1) om (1) (9-3)

0- LB

where the 9y (1) are coeficients which are functions of 7 only, and the
phase function is expanded as

N
Plpsp'y = 37 (20 4+ 1) fnPa(pn) Palpd) (9-4)

n=0
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After substituting into the RTE and simplifying, one gets a system
of differential equations for the ¥y (r),

APy dtpm—1

(m+1) 0 +m e + (2m — 1){1 — & fm)¥m

= 4n{1 — @) B(T)ém (fo=1) (9-5)

where B(T) is the Planck function. For isotropic scattering, all the
fim = 0 except for fo = 1. If one retains N terms of the expansion
equation (9-3) (the Pp-approximation), then equation (9-5) yields a set
of N + 1 simultaneous, linear ordinary differential equations for the
Yo, W1, - Vo (¥net is set to zero), which when substituted back
into equation (9-3), give the intensity at any 7, .

The boundary conditions for the -method are difficult to satisfy
exactly, and in general some approximation must be used. We have seen
this earlier in connection with the Eddington method, and in fact the
spherical harmonics method with ¥ = 0 and NV = 1 yields precisely the
Eddington equations. See Ozisik (1973} for an elementary discussion
of the Pp-method and for some schemes for handling the boundary
conditions. See also the discussions in Kourganoff (1963) and Lenoble
(1977).

Monte Carlo method. This is perhaps the only methed known
which can be applied Lo any radiative transfer problem regardless of
asymmetry, nonhomogeneity, or any other anomaly, and is the only
method which can really be called “exact.” However, as in other
applications, there is no “free lunch,” and one must pay a heavy price
n computer costs  mostly time— for this flexibility and general utility.

Basically, in the Monte Carlo method one injects a series of single
photons into the medium and follows one photon at a time in space and
tine as it travels through the three-dimensional medium. Whenever
the photon encounters an absorber or scatterer, a suitable probability
is nsed Lo determine whether an actual interaction occurs and what
type. If the interaction is an absorption, the computations stop here
and the encrgy of the photon is used to increment the total energy of the
medinm, and another photon is injected into the medium and followed.
If the interaction is a scattering, the direction into which the photon is
scattered is delermined probabilistically from the phase function. The
photon is followed through ensuing scatterings or absorptions or until
il escapes through the top of the atmosphere. It is apparent that a
great many photons must be tracked (orders of hundreds of thousands)
o provide a reliable sample size from which to determine reflection,
transinission, and absorption distributions, and therefore a great deal
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of computer time is required. A number of computational schemes have
evolved to shorten the computational time and retain the accuracy of
this method, but the expense has precluded its wide application for
radiative transfer studies. lts utility seems to be in the areas where
absolutely nothing else works, and to provide some limited benchmark
results against which to compare the results of more rapid but perhaps
less precise analyses.

See the most interesting discussions of this method in Irvine and
Lenoble (1973) and in the paper by Hansen and Travis (1974). The
papers by Kattawar and Plass (1968) and Plass and Kattawar (1968)
best describe the application of this method to radiative transfer
problems.

There are, of course, many other methods not mentioned here
for solving the RTE to greater or lesser degrees of approximation.
These include the method of successive orders of scattering, which is
an extension of the single-scatter method derived in chapter 5, the
eigenvalue expansion method of Case, the Gauss-Seidel method {a
numerical technique), and many others. Some of these are briefly
discussed in Irvine and Lenoble {1973), where specific references are
given, as well as in the paper by Hansen and Travis (1974), and the
text by Ozisik (1973). A much more comprehensive discussion is given
in Lenoble (1977), with many references and the basic equations.

Non-Homogeneous Atmospheres

Practically all of the methods discussed in the present text are
resiricted to solutions in a homogeneous atmosphere. There has been
much more effort expanded in applying these methods approximately
to nonhomogencous atmospheres. What is generally done is to divide
the atmosphere into a number of thin layers and treat each layer by, for
example, the discrete ordinates method. The main difference hetween
this technique and the approach we have taken is in the application of
the houndary conditicns. Here, one can use the zero diffuse radiation
boundary condition only at the top of the uppermost layer and at the
bottom of the lowest layer. In between, the boundary conditions must
be set up to insure continuity of flux or energy across each boundary.
This procedure generally leads to a set of simultaneous algebraic
equations which must be solved for a set of constant coefficients for
each layer considered {e.g., the constants A and B of equations (5-69)
and (5-70) would be different in each layer). Liou (1973) has done this
using the discrete ordinates method, and Wiscombe (1977) has used
the delta-Eddington method in the same way. Comparisons with the
more nearly exact adding method indicate that good accuracy can be
obtained with these schemes.
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QOther Problems

Finally, there are many other problems in radiative transfer theory
which are seldom mentioned in the literature. There is, for example,
the inclusion of horizontal inhomogeneities in the plane-parallel atmo-
sphere we have been using (e.g., finite clouds or actual differences in
optical properties due to climatic or meteorological effects), or the re-
vision of the plane-parallel assumption itself, i.e., considering spherical
atmospheres. Some of these problems have been addressed by neutron
physicists, since the travel of neutrons through absorbing and scattering
media is described by an equation very similar to our radiative transfer
equations—the main difference being that the neutrons can travel with
different speeds, while our photons all travel at the speed of light.

Other problems include the shadow effect, in which the shadowing
of one particle by another prevents the second particle from interacting
fully with the incident field—it is shielded to some extent by the
particles in front of it. This can occur, according to van de Hulst
{1957), if the mean spacing between particles becomes less than four
or five particle diameters. This problem practically never arises in
atmospheric applications of radiative transfer theory, but can arise in
neutron theory.

Anocther major problem area, which just over the last ten years or
s0 has begun to receive attention in the literature, is the problem
of the transfer of polarized radiation components and their use in
studying the properties of atmospheric components, and particularly
in the study of radiation fromn the surface of the oceans and clouds.
In most cases, this can be handled both numerically and analytically
by replacing the scalar equation we have been using with a vector
equation; i.c., the intensity scalar becomes a four-component vector
whose components are usually the Stokes parameters (see Deirmendjian,
1969, van de Hulst, 1957, Hansen and Travis, 1974), and the phase
function becomes a 4 x 4 phase matriz, whose components characterize
the polarization produced by a single act of scattering. Many of the
munerical techniques discussed in this chapter (adding, doubling, etc.)
can be used to analyze polarized fields, but little analytic work has
been done in this area {see Irvine and Lenoble, 1973, and Lenoble,
1977). Polarization for Rayleigh scattering has been considered by
Chandrasekhar {1960), and some work has been done by Sekera (see
Leneble, 1977).
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