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Chapter 1

Introduction

The importance of clouds to the present climate of the Earth is unquestioned, As
the Earth system undergoes change, both natural and human-induced, the physical
properties of clouds can be expected to change. To understand the current role of clouds
in the climate system, as well as possible roles in future climate systems, observation
of the current cloud fields of the Earth and their evolution in time is necessary.
Unfortunately, even some of the most basic features of clouds, such as their frequency
of occurrence or geometrical thickness, are difficult to determine. Recent satellite
observational studies, such as the International Satellite Cloud Climatology Project,
are leading to a significant improvement in understanding the horizontal distribution of
clouds; however, these kinds of satellite analyses are only beginning to address the issue
of the vertical distribution of the observed cloud fields. With the technologies currently
available, the most useful instruments for studying the vertical distribution of clouds are
active remote sensors, such as radar and lidar. Radar is the only device that can map
out the vertical distribution of most clouds under all weather conditions, whereas lidar
Is sensitive to tenuous upper level clouds in otherwise clear sky conditions. In this article
we will discuss the role of radar in the remote sensing of clouds and their properties.
Radar remote sensing of cloud properties can be viewed as a two step process. First,
the actual power levels that are eventually recorded in one form or another within the
radar unit must be interpreted; that is, they must be related to physical quantities
that are of interest and use in inferring the properties of clouds. Second, the methods
by which the radar-derived quantities are used to infer actual cloud properties must
be developed. The first step is, in many ways, a solved problem. There are standard,
accurate signal processing techniques for calculating the reflectivity, mean Doppler
velocity and mean Doppler width from the receiver signal voltages that result when a
meteorological target scatters transmitted electromagnetic radiation back to the radar
receiver. The second step is by no means a solved problem and much current research
is being devoted to the development of cloud property retrieval algorithms using radar-

derived quantities as input. The discussion that follows is organized around these two
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steps. We first discuss the issues of radar signal processing and then we describe the
results of some of the research that attempts to infer various cloud properties using the
radar-derived quantities as inputs.

Fortunately, the signal processing techniques applied to cloud-sensing millimeter-
wave radars are identical to the techniques developed since the late 1940s for the radar
remote sensing of rain and other interesting weather conditions (Atlas, 1990). There
are several published books that describe to various levels of detail the methods of
radar-signal processing when observing meteorological targets. As an introduction to
radar-remote sensing, Battan (1973} and Sauvageot (1992) are good starting points.
Doviak and Zrnic (1984, 1993) and Ulaby et al. (1982) provide a much more thorough
description about each aspect of a radar and its use in observing meteorological targets;
however, the increased levels of rigor make the discussions more difficult to understand
without a prior knowledge of the subject. The work of Doviak and Zrnic (1993) is
especially relevant to the information that we are presenting here. Therefore, we have
adopted the approach of trying to tie our discussion as closely as possible to their work,
while attempting to provide enough discussion and figures to clarify issues that we
initially found difficult to understand.

Retrieval of cloud properties using radar and related observations is a relatively new
subject. Our treatment here summarizes several recently published methods by outlining
the basic physics and essential mathematical relationships of each. Because this field is
still in its infancy, the methods have not been extensively compared or verified. Thus we

are unable to present an evaluation of the relative accuracy of the methods.



Chapter 2
The Radar Signal

To keep the following discussion of radar-signal processing steps as concrete as possible,
we will describe each step in the context of the 94-GHz cloud radar developed at the
Pennsylvania State University (Figure 1 and 2). Our examples are largely drawn from
this system because we are intimately familiar with its operation (Clothiaux et al,
1995). As Figure 2 illustrates, there are essentially two distinct components to the radar
hardware: the transmitter and the receiver. Therefore, our discussion is divided into two
parts. First, we describe the transmission of the electromagnetic wave from the extended
interactive oscillator out to the meteorological target and finally back to the receiver
antenna. Since most descriptions of radar remote sensing are couched in terms of power
densities, we then describe this same transmission process using power densities as the
physical quantity of interest. The second part of the discussion follows the return signal

from the output port of the receiver antenna through the receiver chain. We describe the

Figure 1. The Pennsylvania State University 94-GHz cloud radar.
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Figure 2. Block diagram of the radar hardware. The two outer dashed blocks enciose the transmitter

and receiver components of the radar. Within the receiver box, there are two more dashed blocks: cne

encloses the incoherent path processing hardware and the other the coherent, or Doppler, processing

hardware.

effects of the meteorological target motions on the return signal in terms of the voltages

that eventually emerge from the I and @ demodulators (Figure 2). Before launching

into a description of the transmission process we first mention one property of complex

numbers that we use in our discussion of electromagnetic fields. Let

A= Ayet?®

(2.1)

represent an arbitrary complex number. The operator R means take the real part of A;

that is,

A;,‘?rlc = R(A) = R{Ae'®) = R(Ascos ¢ + 1A, sind) = Ay co8 ¢. (2.2)



Even though electromagnetic waves are physical entities, they are often efficiently rep-
resented by complex value expressions during mathematical manipulation (Bohren and
Huffman, 1983, Section 2.2; hereafter BH, 2.2). For example, the plane, monochromatic
electric field

ﬁ(r, t) = E,cos(kr — wt)é (2.3)

can be represented by
E(r,t) = Eoeilkr—wtls (2.4)

with the understanding that the true field is described by the real part of z.

2.1 Electromagnetic Field Description of the Transmitted Signal

2.1.1 Electromagnetic Field in the Transmitter Waveguide
For pulsed radars such as the one illustrated in Figure 1, the primary function of
the transmitter is to send up into the atmosphere a pulsed beam of electromagnetic
radiation. To generate pulses of electromagnetic radiation at the carrier frequency (93.95
GHz, or 3.19 mm, for the Pennsylvania State University radar), an extended interactive
oscillator, or EIO, that generates electromagnetic radiation at the carrier frequency is
gated by a pulse modulator. A sketch of the resultant, pulsed electromagnetic wave that

travels from the oscillator out to the transmitter antenna is illustrated in Figure 3.

Field

Amplitude | | There is a sinusoidal

77777 \ |11\ variation of the electro-
U ™ magnetic field within

' / the pulse; the field

-~ amplitude is 0 outside

7T TN of the pulse envelope.

\. Tri 777—‘
‘ -
L | Time

ﬁ —:—..

\

t=0Ts t=1Ts  t=2Ts
A

~ e
~ ~
“
—

Figure 3. Cartoon illustration of the electromagnetic wave leaving the transmitter ascillator. The

pulse modulator generates the rectangular waveform which allows the oscillator output to be pulsed.
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The theory of propagating waves in rectangular shaped waveguides is well documented
(e.g., Reitz et al., 1979); the result for the electric field components of a transverse wave

propagating parallel to the interior space of the waveguide in the 2z direction is

2 N
M:) s_m(mry) sin( 7 _ ot | &x, (2.5)
b Ag /

2 5,
ﬁ T,¥,2,t) = Eoysin mn cos nTy sin il —wt)é (2.6)
¥ v y
a b Ag .

?X(ZE, v,z t) = Fox Cos(m

~and ﬁz(x, y, z,t) = 0&,. The wavelength Ag of the radiation within the waveguide and

along the direction of propagation is given by

() - () (- (3 e
Ag Ac a b
where a and b are waveguide dimensions, A = 27/wc and we is the carrier frequency
(Figure 4a). For the Pennsylvania State University radar, the waveguide dimensions are
e = 2.5mm and b = 1.3mm. Since Ac = 3.19mm and A; must be larger than zero for
a physically meaningful solution, the only viable choices of m and n are one and zero,
respectively. Therefore, ﬁx(z,y, z,t) = 0éx and Ey(m, z,t) reduces to

Ey(m, z,t) = Eqy sin(E> sin (QLZ - wt) ey. (2.8)

a Ag

The electromagnetic wave within the waveguide is transverse, sinusoidal in time and

polarized with the plane of polarization being defined by the direction of propagation
of the wave and the direction of the electric field (Figure 4b).

2.1.2 Transmitted Electromagnetic Field Far from the Radar
After suffering losses in power on its journey to the transmitter antenna, the elec-
tromagnetic wave emerging from the waveguide 1s sent up into the atmosphere by the
transmitter antenna (Figure 5). At a large distance r from the antenna with diameter
Dy, ice., in the far field of the antenna (4D3,/Ac >> 1), the electromagnetic wave
is polarized with both its electric and magnetic field components perpendicular to its
direction of propagation, which is radially away from the radar. The electric field com-
ponent of the wave is parallel to the plane of polarization illustrated in Figure 4b. The
mathematical description of the electric field at a point far away from the antenna is
(BH, 3.2)
ﬁi(r, 6,9.t) = A0 ¢) cos(ker — wet + @) &, (2.9)

-
where w, is the carrier frequency, ¢ is the time, r is the distance from the antenna, c is

the speed of light and ¢, sets the initial phase of the transmitted wave, The amplitude

“11-
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Figure 4.a.) Cross section of the waveguide connecting the oscillator to the transmitter antenna. The
electromagnetic field that propagates through the waveguide is parallel to the y-axis. b.) The plane of
polarization of the transmitted wave is defined by the direction of propagation of the wave and the

direction of the electric field.

A;i(9, ¢) depends upon the power delivered to the transmitter antenna and the shape of

the transmitter antenna (Figure 6). In complex language notation
A0, preter .,
Ei(r,0,,t) = A D ier-aet & (2.10)
r

2.1.83 Scattered Electromagnetic Field at the Receiver Antenna
Now suppose that at r the pulse encounters an object of some sort which we label as
m. The electric field scattered by the object back to the radar is

_ Sg)m(180°)e_i(wd,mf—¢s,m)eikcrm Ai(gm’ gﬁm)ei¢t ei(kc'-"m—wct)éi

Z)rant,n"z(i"ma Bm: Cbm: t)

Eerm Tm
(2.11)

+ 54‘m(ISOO)E_i(Wd!mthés.m) eikcrm Al(gm" Qf}m)Eid]t ei(kcrm "'LlJct)éC]_'OSS
kel Tm ’

where S : (180°) and Si,(180°) are the real magnitudes of the complex arnplitude

scattering matrix elements (BH, 3.2)
52,[]] fomnd ,S‘B‘nl(1800)8*i[“—'d,mt"‘d)s.m) (‘212)

-12-
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Figure 5. Cartoon illustration of the propagation of the electromagnetic field from the transmitter an-

tenna, to the atmosphere and then back to the receiver antenna.

and
Stm = Sam(180°)e  Wimt b5l (2.13)

The phases associated with these two matrix elements have two parts: one part ¢sm
that represents phase changes upon scattering and a second part wq pmt due to the
motion of the particle toward or away from the radar. Although the magnitude of the
cross polarization matrix element Sy {(180°) is generally small, it may contain useful
information about the properties of the scatterer. (Note that the Pennsylvania State
University radar is insensitive to the cross polarization electric field component in its
present configuration because this component of the field does not propagate through
the circular-to-rectangular waveguide hardware that connects the receiver antenna

to the mixer and preamplifier assembly.) Because of the generally small amplitude of
S4.m(180°) and the fact that polarization studies are beyond the scope of this article, we
neglect the cross polarization component at this point and write the scattered electric
field at the radar receiver antenna as

Sy o (180°)e " Hwamt=sm) A, (@ idy
?mm‘m(rm,@m,q’)m,t) = 2, ( )6 elkcrm 1( ma(:bm)ﬁ el(kcf‘m—wct) é-l_

ke T'm

(2.14)

-13-
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Figure 6. Beam pattern of the Pennsylvania State University 94-GHz cloud radar transmitter antenna.

The scattered electric field is now linearly polarized and we drop the vector notation to

emphasize that there is only one remaining component. Rearranging (2.14) leads to

Erant,m (Tm) O, Grn, t) = Arm (7 B, d)m)ei[zkcrm_(wc+wd’m)t+¢s‘m+¢t].- (2.15)
where So.m(180°) Ai (B, Sun)
) 2, i y & .
—4r,m(Tm1 Oy Pm) = = 2 TQI R (2.16)
¢

At this point we assume that both the transmitter phase ¢, and the phase shift $s.m
upon scattering are constants, even though ¢s, may be a function of time for such
meteorological targets as vibrating water drops or tumbling ice particles (Doviak and
Zrnic, 1993, Section 3.4.3; hereafter DZ, 3.4.3). The term wy ,t represents the shift

in phase of the scattered wave in the direction of the radar due to the relative radial
velocity of the target with respect to the radar and 2k.ry = 27(2r/A.) is the number
of wavelengths along the round trip path between the radar and the target in units of

radians.

-14-
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2.1.4 From Fields to Power Densities

In the radar literature the electromagnetic wave propagating through the atmosphere
is usually described in terms of the time-averaged power density over one cycle of the
carrier wave. The instantaneous power density of the field incident on the scatterer is

R(megma¢m1 t) x Eiz(rm19m:¢mit)‘ (2‘17)

The proportionality factor 7, takes into account the electric and magnetic nature of the

radiation: ]
Pi("'"ms O, Pms t) - ;;Eiz('rm: Om, Pm., t)- (2'18)
o

Averaging P.(rm, 0m, $m,t) over one cycle of the wave yields

1/ Ai(Bm, )\ 1 27 fwe
P(rm), Om, $m) = -"7_0( 1 Tr.nm )) [27"/Wc /0 COSZ(kcrm — wet + ¢ )dt]. (2.19)
The factor in brackets equals 1/2 so that the power density at the scatterer becomes

(DZ, 2.1)

. 2
Pi(rm, Om, ¢m) = %(M) - (2.20)

o Tm
In a similar fashion one can demonstrate that the average return power density at the

receiver antenna is

Prant,m(rnn gm; qsm) = —

Aem(Tm O, $m)]2 _ 1 (Szm(wo"))z(“f’m’%))2. (2.21)

215 B 27 keTrm Tm
The backscatter cross section oy is defined by (BH, 4.6)
S9 m{180°)\ 2
S 4W(2=_m(§_)> , (2.22)
H kc
so that the power density at the receiver antenna becomes
1 o Ai(Om, 2
Pra.nt,m(rm:gma d)m) = 3 bém( 1( = ¢m)) . (2.23)
Mo Tm Tm

We are now in a position to compare the electromagnetic field description of the

transmission process with the more widely used description based on power densities.

-15-



2.2 Power Description of the Transmitted Signal

2.2.1 Scattering from a Single Isolated Particle

In terms of the properties of the radar, let P, represent the average power density
over a single cycle of the electromagnetic radiation that is delivered to the transmitter
antenna input port. If the wave is stable over the duration of the pulse (i.e., the
amplitude and frequency of the sinusoid in Figure 3 do not change over the pulse.), B,
also represents the average power over the entire pulse. If the antenna were to radiate
isotropically, the power density a distance r away would be P,/4mr?, however, the
transmitter antenna provides a gain G along the main beam axis with a falloff in power
away from the axis given by the beam pattern f2(0, ¢). Therefore, the power density a
distance r from the antenna in the direction (4, ¢) is (DZ, 3.1)

(;%3) (ff(@, ¢)) (Gt)- (2.24)

As the beam travels a distance 7, it is attenuated by atmospheric constituents, such as
oxygen, water vapor and hydrometeors. Letting ke(r) represent the extinction coefficient
of the atmosphere along the beam path (units of m~!), the attenuation is (DZ, 3.3)

I7h = e Jo kelrdr, (2.25)

where, in keeping with Doviak and Zrnic (DZ, 3.3), we have written the loss as a

quantity greater than one. Therefore, (2.24) becomes

P, _ o A
Rr60,6) = (1) (26.0)) () (i), (2:26)
Comparing (2.20) and {2.26), the electric field amplitude 4;(f, ¢) in terms of the radar

parameters is
-Pth”o
271'!1;

Now suppose that at r the pulse encounters an object {labelled m} of some sort,.
The amount of energy scattered by the object in any direction is characterized by the
scattering cross section oy, (8', ¢') of the object. The cross section is defined so that the
power density at the radar receiver antenna is (DZ, 3.2)

Poaatm(Tins Oy ) = h )(ff(am,qam)) (Gt) (z;l) (%)(rl) (2.28)

4772

where we have incorporated attenuation from the object to the radar receiver. The
primes in the definition of ¢, and the double primes in Py result from the receiver
antenna not being collocated with the transmitter antenna. However, for most radar

applications the transmitter and receiver antennas are colocated. In this case we are
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interested only in the backscatter cross section and we set o (8',¢’) = opm and
(8",0") = (6m, ¢m), and ¥ = ry,. Note that if we set (2.21) equal to (2.28), we have

/P Ginoo Om,
Ar,m(rms Bm: ¢’m) = ts;z?tlf‘m ft( :12 ¢m) (229)
m

for the scattered field amplitude at the receiver antenna.

The receiver antenna has an effective aperture A¢(fm, ®m), so the power delivered by
the antenna to the receiver is

Pt ot = () (0 60) (6) (62) (22 () (om0,

(2.30)
Doviak and Zrnic (DZ, 3.4} demonstrate that
G2
AclBay tm) = (22 ) 2 (B f0) (2:31)

so the average return power at the receiver antenna output port becomes

Prarms B ) = iy ) (720 0)) (6) (1) (2) (57) (52 26, ),
(2.32)

which is known as the radar equation for a single point target. For most radars,
including the Pennsylvania State University radar system, G, = G; = G, fi = fr = /,
and Iy = [, = l. Therefore, we write the radar equation for scattering by an isolated
target as (DZ, 3.4)

Pef* (0, #1) G200, N
Pr,m(rm; Bma qu) = ; (471_)33"412 b’

(2.33)

2.2.2 Scattering from Many Particles
Meteorological targets, unfortunately, are not point targets. They are usually
collections of particles described by a distribution function N{(D,r), where N represents
the number of particles per unit volume with characteristic size I at location r. For
most applications in the literature, the targets are generally treated as spheres with D
simply representing the diameter D of the particles. If o(D) describes the backscattering
cross section of particles with characteristic size D, then the total backscattering cross

section per unit volume is (DZ, 4.4)
n(r) = /DJ(D)N(D,r)dD. (2.34)

Substituting n{r) dV for o, in (2.33), where dV is the volume element in spherical

coordinates, i.e., dV = r?sinfdfdedr, the return power from the resolution volume,

_17-



or spherical shell of particles, becomes (DZ, 4.4)

re ymop2m P 49, G2 dV/\g
Rimog) = [ [ 7 REAS OV (2.35)

There are two important points about this equation: 1) we have neglected multiple

scattering effects because these effects are extremely small; and 2) we have implicity
assurned that coherence effects between the particles are negligible. The limits r, and r,
are set by the pulse width and the distance to the target (Figures 7 and 8). Even though
the integration over # is from 0 to 7, most of the contribution to the integral comes from
the primary forward lobe of the antenna pattern. For the Pennsylvania State University
cloud radar the beamwidth at the half-maximum of the primary lobe is 0.24°. If the
resolution volume is sufficiently small, n(r, 8, ¢) = n(r,) and (2.35) becomes
242
P(r,) = [ " / f u ‘Zfs);ﬁ((ff’) F4(0, ¢) sin §doddr. (2.36)

For a circularly symmetric, Gaussian-shaped beam pattern (DZ, 4.13)

/ [ 78, 9) sin 848 = - ”92

n2’
and the received power becomes (DZ, 4.4)
PtGgA2T](r0)CprTr9%
(47)3r2l%(r,)161n2 "’

where we have replaced the radial increment, or radar resolution length, dr with crpy /2

(2.37)

Pri(ro) = (2.38)

for reasons which we will explain shortly. At first glance the derivation of P,(r,) seems
innocuous enough, but there are some implicit assumptions in the derivation that hide
a fair bit of the complexity that is at the heart of weather-radar signal processing.

We will discuss these issues in the context of the signals that emerge from the / and
) demodulators (Figure 2}, but before doing so we want to discuss the limits on the

integral in (2.35} in a bit more detail.
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Chapter 3

The Radar Resolution Volume

3.1 Radar Resolution Volume along the Beam Direction

At this point we want to emphasize the difference between a resolution volume
containing a single target and one containing many targets. Consider a single pulse
travelling through space along a given direction (Figure 7). Now suppose a single
scatterer is located at a distance ro = ct, from the radar. The leading edge of the pulse
encounters the object at time t,. Since there are no other scatterers involved in this
example, the back edge of the pulse undergoes no scattering until it, too, encounters
the object at ro. Scatter from the leading edge of the pulse reaches the radar at time
2t,, whereas scatter from the back edge of the pulse does not reach the receiver antenna
until time 2t, + Tpy, where Ty 18 the transmitted pulse width in units of time. At any
time ¢ such that 2t, < t < 2t, + Tpy, the receiver antenna is illuminated only from
radiation originating from the target located at 7o = clo. Therefore, analysis of the
radar signal over any time interval during this time period leads to information on the
scatterer at ro.

The scenario is quite different when many scatterers are located in and around the
scatterer at r, (Figure 8). As before, consider the case when the leading edge of the
pulse encounters the object at r, at time t = t, (Figure 8b). The backscatter from this
encounter reaches position 7, —c7py/2 at time to+'rpw/2. At this time, however, the back
edge of the pulse is also at location 7, — ¢7pw /2 (Figure 8c). If the back edge of the pulse
undergoes scattering at this point, then the scatter from the leading edge of the pulse
at position r, reaches the receiver antenna at exactly the same time as the scatter from
the trailing edge of the pulse at 7o — c7py/2 (Figure 8d). In fact, at time 2t, the radar
receives scattered waves from all points located between r, — cTpw/2 and 7,5 this region
of space is the resolution volume of the radar at the time 2t, (Figure 8d).

As in the single scatterer case, the radar receives a scattered field from position r, for
all times ¢ such that 2t, <t < 2¢, + Tpy; however, at the time 2t, the radar also receives

energy {rom the region between 7, — cTp/2 and r,, whereas at time 2ty + Ty it rEceives
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Figure 7. Cartoon illustration of a transmitted pulse scattering off a single, isolated scatterer. The pulse

width is 7, and the distance from the radar to the target is cto.
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Figure 8. Cartoon illustration of a transmitted pulse scattering off a collection of particles indicated
by the filled square in (d}. The pulse width is Tpw and the distance from the radar to the center of the

rarget is ctg — crp /4
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Figure 9. The time between radar pulses is T, and the time between receiver power samples is 7.

energy from all points between 7o and 7, + CTpw/2. It no longer makes sense to analyze
the properties of the pulse from 2t, < ¢ < 2t,+Tpy to infer properties about the scatterer
located at position 7, since the radar is receiving energy from different points in space
during this interval. To study the properties of scatterers in a fixed region of space, say
from ro—¢Tpw /2 to ro, only the radiation that reaches the receiver antenna at the precise
time of 2t, is of value.

Let T, represent the time between radar pulses and let 7, represent the time between
power samples that are collected by the radar receiver (Figure 9). (Do not confuse the
time between consecutive samples, i.e., s, with the pulse width of the radar, i.e., Tpuw!)
In this setup the first pulse is sent out at time 0T, and samples are collected at times
0T, + T, 0T + 275, etc... The second pulse leaves the transmitter antenna at time 17T
and samples are then collected at times 17 + 75, 175 + 275, etc... The number of distinct.
resolution volumes in space from which the radar collects information is equal to the
number of samples N, that are collected by the radar between any two radar piilses.
The samples collected at the times 0T +77s, 1T,+j7s, etc... are from the same resolution

volume whose center is located at

JT CT cf, T, ,
o=l T =gl &

Therefore, the radar receiver generates series of snap shots of the return signals that
correspond to specific regions in space. The region in space is easily indentified from the
delay t = j7g between the initiation of the pulse and the time the signal is sampled, as
well as the pulse width 75, itself. The time interval between each sample is simply 75.
With this notation in hand we write the limits 7, and ry in (2.35) as (c/2)(jTs — Tow)
and (c/2)(j7s), respectively. In (2.38) we approximated dr by the difference of these two

limits, i.e., ¢Tpw/2-
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3.2 Radar Resolution Volume Perpendicular to the Beam Direction
'The electromagnetic wave propagating from the transmitter antenna to the atmo-

sphere is not contained within a single, well-defined direction. Rather, the field leaving
the antenna (actually scattered by the antenna) to the atmosphere sets up interference
patterns so that the strength of the field is significantly different from 0 in a number
of different directions (Figure 6). Fortunately, the power in the forward lobe is 177.8
times, or 22.5 dB above, the power in the next most significant side lobe. For all prac-
tical purposes, therefore, the side lobes can be neglected in power calculations without
introducing significant error. For example, the derivation of (2.37) is based on a sin-
gle, Gaussian-shaped antenna beam in the forward direction. The side lobes can lead
to returned power from objects that are located to the side of the radar, which can be
problematic; however, these ground clutter issues are insignificant for the Pennsylvania
State University radar since the beam is narrow. The nonzero width of the beam within
the main lobe leads to a resolution volume that increases in size with distance from the

radar.
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Chapter 4

The Radar Receiver

4.1 Signal Transformations in the Radar Receiver

From the receiver antenna output port the electromagnetic radiation propagates
along a short stretch of waveguide to the mixer and preamplifier assembly. In the mixer
and preamplifier unit the physical nature of the signal is transformed from a time-
dependent, transverse electromagnetic wave at the input to a time-dependent voltage at
the output which is subsequently passed through the rest of the signal processing chain
by coaxial cable. Furthermore, the high carrier frequency we is transformed to a much
lower intermediate frequency w;. We write the signal voltage at the ouput of the mixer

and preamplifier unit due to a single point target as

Vmiz,m(t) = V;nir,mei{%cr—(wi+wd‘m)t+¢s'm+¢t] (4'1)

H

where the amplitude Viizm depends upon gains and losses in the mixer and preampl-
fier assembly, as well as the electromagnetic field strength A; n(r, 6, ¢}. At this point the
signal is split into two branches: one branch is input to the incoherent receiver path and
the other branch passes to the coherent, or Doppler, receiver unit. We describe the co-
herent receiver here and refer the reader to the article of Clothiaux et al. (1995) for a -
description of the incoherent path power estumates produced by the Pennsylvania State
University radar.
The signal passes to the I and @ demodulators with only power gains and losses
affecting it. In the I and @ demodulators an important transformation of the signal
oceurs. To remove w; from the signal, the physical voltage, i.c., the real part of (4.1)

after amplification,

Vign(t) = Vigm cos[a(t)], (4.2)
where i
alty = 2ker — (wi + wym)t + dsm + P, (4.3)
929



is mulitplied by the two reference voltages

Vres(t) = Vrego cos[6(1)] (4.9)
and
Viep(t) = Veesocos[B(t) - 7], (4.5)
where 8(t) = —w;t + ¢;. The reference voltages have their origin in a sample of the

transmitted signal that is eventually input to the I and @ demodulators through the
coherent oscillator, or COHO (Figure 2). The multiplication process in the demodulators

performs a transformation of the signal that is comparable to the trigonometric identity
1
cos{a) cos(f) = 5 [cos(af + 3) + cos(ax — ﬁ)]. (4.6)

A low-pass filter at the output of the demodulators removes the high frequency term
containing cos{a + 8), together with any other frequecies much greater than e« — 8 due

to nonlinearities in the mixer, with the result that
I{t) = Low Frequency Part[Viq,m(t)V;‘Lf(t)] = Vo,m €08[2ke — wy mt + @s.m), (4.7)
and
Q(t) = Low Frequency Part[‘[/}q,ml/rgf(t)] = Vom 8in[2ker — wymt + ¢s,m)- (4.8)

We emphasize that no matter what the nature of the electomagnetic field is at the
receiver antenna output port, the result of the coherent path signal processing is to
strip off the carrier frequency and create the I(¢) and Q(t) signal voltages. The voltage
amplitudes of I(t) and Q(t) are always a faithful representation of the electromagnetic
field strength at the receiver antenna output port. If the gains Gy and losses Ly, from
the receiver antenna to the output of the demodulators are known, then the amplitudes
of I(1) and Q(t) can be used to produce estimates of the electromagnetic field strength
at the receiver antenna. Furthermore, the variations in time of the I(#) and Q(t) signals
enable one to produce power density spectra of the signal from which estimates of the

velocities of the scattterers relative to the radar are derived.

4.2 Estimating Received Power from an Isolated Scatterer
The average power in the electromagnetic field at the receiver antenna due to
scattering from a single, isolated particle is proportional to the real part of the electric
field squared averaged over a period Tyn; = 27/ (we + wam} of the Doppler shifted wave:

Af'm ,93 2 1 Tn.nt
Prantm(r.6,¢) = [Arm(r, 8. 0)] { / 008 [2UseT — (we + wam )t + G+ Bildt]. (4.9)
Mo Tount 0
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As before, the factor in brackets is 1/2 so that

2
Prant,m(r, 9’ ¢) — [Ar,m (27'1; 9, ¢’)] ) (4‘10)

Therefore, apart from a constant of proportionality, the power averaged over a cycle of

the wave is simply the wave amplitude squared and divided by two.
This same power can be estimated from either the I(t) or Q(t) signal voltages.
Consider I(t) from (4.7). The instantaneous power in I(t) is
I*(¢)
Rref’

where R,¢; is the appropriate impedance. Therefore, the power averaged over the period

Pigum(t) = (4.13)

Ty = 27r/wd’m is

VI o1 T V2
P, n(t) = 22— 219%.1 — Wy m mldt = 2T 4.12
1q, ( ) R'ref T'iq 0 COs [ el \’.Ud, t + ¢3| ] Q-Rref ( )

Assuming that we know G,ys and Lgys, as well as the receiver antenna aperture A.(f, @),

we have
Pia(t)

- Ae(91 d’)GsysLs_yls '

Since I(t) and Q(t) are sinusoidal in time, there is a much simpler way to determine

Prant,m(t) (4.13)

Pigm(t): however, we must use a complex value representation for the voltage:

Pz'q,m (t) = [I(;)gi;(t)]

or

1 » ‘ : V2
= [V, i(2ker—wy mt+os.m) vV —i(2ker—wy mt+Psm) — o,m
2Rref[ o,m€ M o,m& ] QRref )

where T*(¢) is the complex conjugate of Z(t). At this point it Is instructive to expand

Piq,m(t) (4.14)

the exponentials in {4.14) using Euler’s equation to get

VOZ.m 2131, , .2 r
Pigm(t) = % (cos [2ker — Wyt + ds o] + sin"[2ker — wy mt + gf)s,m]). (4.15)
ref
Comparing {4.7) and {4.8) to {4.15), we can write
1 Py | QXY
Pigm(t) = ) 4.16
a0 = (5 + 5 (4.16)

Therefore, given instantaneous measurements of I(¢) and Q(t), (4.16} can be used as a
simple recipe to calculate the power over a cycle of the wave. This method of obtaining
the average power in the I(¢) and Q(t) signals is true only if they vary approximatety as

sinusoids in time.



4.3 Estimating Received Power from Many Scatterers

Now that we have calculated the backscattered power due to a single point target, let
us see what happens when we introduce a second target in the resolution volume. The
electromagnetic field scattered to the radar becomes

grant (t) — Ar mei[zkcrm"(Wc+wd,m)£+¢s,m+¢t] + Ar nei[m‘cfn‘(Wc+wd,n)t+¢5.ﬂ+¢t] . (4 17)

The power averaged over a time interval large compared to 27 /w, but small compared

to the time intervals 27 /wy ,,, and 27 [wq o is

Erant(t) €2 (t
Prant(t) = 2 t(2)'f] t( ) (4.18)
[¢]

or
1 .
Prong(t) = %((Ar,m)z + (Ar)? + Ap o Ay 2R (rm =)~ n =g )t +(Eom—fon)] (4.19)
+A LA, me—-i[2kc (T‘m—T’n}_(wd,m—wd_n)t-#-((ﬁ,‘m--qb_,ln)]) .

Expanding the exponentials yields

Prant(t) = ﬁ ((Ar,m)2 + (Ar,n)z (4'20)

+2Ar,mAr,n COS[?kC(Tm - Tn) - (wd,m - wd‘n)t + (ffﬁs,m - ¢s,n)})-

If one considers all of the scatterers N, per unit volume, the power becomes

1 Ns 1 NS . _ _ _ o 3
Prﬂﬂ-‘f(t) = M Z (Ar,m)2 + 2 Z ‘4r‘mx4r,nez[2kc(rm Tn) = (Wi m o id )i (s m ¢s‘n)}. (421)
9 m=1 o m#£n

The information dependent on the total cross section of the scatterers is contained

in the first sum. Therefore, if we can adopt a processing strategy that drives the
contribution of the second term to zero, we can recover the total cross section in the
resolution volume. Fortunately, if Pry,y is measured repeatedly over a time interval long
compared with: the time intervals 2r [{wqm — wan), m # n, and averaged, the second sum

does indeed go to zero. Therefore, we can write

) 1 Nn 1 N
Prane = Jim |53 Pransy| = 5 3 (Arn)?, (4.22)
N 2”0 m=1

n—oo | IV, =

where Ny, is the number of samples in the average. Therefore, (2.38) for P.{r,) holds
true as long as many power samples are collected over a sufficiently long period of time

and then averaged.
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Extending the above argument, when many scatterers are in the resolution volume,
the scattered electric field at the receiver antenna is

Ny
(8) = 3 ApmePherm=(emwan)ttoomtd, (4.23)

m=]

In terms of I(t) and Q(t) we have (DZ, 4.3)

gf‘ﬂ.ﬂt

Ny ‘
I(t) = ’R,( > %,me‘[”“c’"m““dvm”‘ﬁm]) (4.24)
m=1
and N
Q) = I( 5 Vo’mei[?kcrm—wd,mt+¢a,m]), (4.25)
m=1
or
N3
It) = S Vomcos[2kerm — wamt + @s,m] (4.26)
m=1
and
Ny
Q) = E Vo,m sin[2kcrm — wamt + bsm)- (4.27)
m=1
Using (2.16), (4.10), {4.13) and (4.14), we can write the voltage amplitudes V, m as
Vo = [ 2RrefGys L Ae(8,8) Prant,m (1, 0, 6) (4.28)
or
o BresGuysLibAclf, ) Sam(1807) A0, ¢} (429)
Mol ker?

where we have included the loss [ that we neglected in (2.16).
Note that we can write the sums for I{t) and Q(t) as

I(rs, Ty) = |Vo(rs, Ts)| cos(0(rs, Ts)] {4.30)

and

Qrs.Ts) = lVo(TSaTS)ISin[Q(TSwTs)]a (4'31)
where 7, indicates the time interval between the radar sending out a pulse and receiving
the backscatter from the pulse (i.e., 7 represents range) and T is the time interval
between pulses (DZ, 4.3). Since the summed I(r,Ts) and Q(7s,Ts) voltages can be

represented as sinusoids, we can estimate the power over a cycle using (4.16).
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Chapter 5

An Example

Before discussing the properties of the (¢} and Q(t) voltages, as well as the Doppler
moments, we thought that it would be instructive to illustrate all of the previous
discussion with a realistic, but computer simulated, “meteorological target.” To this end
we illustrate the results of a forward computer simulation in which we explicity calculate
the I(t) and Q(t) voltages for a specified drop size distribution located within a specified
resolution volume. In situ measurements by particle counting probes on the University
of Wyoming King Air aircraft during a field experiment in the Central Pennsylvania
area produced the drop size distribution illustrated in Figure 10, which we use as input

to the simulation. Multiplying the number densities measured in each bin by the radar
resolution volume yields the total number of drops N7, [i] in each bin i that we must
take into account in the simulation. Unfortunately, as Figure 10 illustrates, the number

of drops in the radar resolution volume (3.08 x 10! in this example) is to large to

1012\; |
10! ot !
0l — |
0 : .
[sh) = o
N
o 107 - A =
. r
3 \ ]
o , .
é 10% - .
E] L
104
I |
192 . e e e
1 10 100 1000

Drop-Size Diameter {um)
Figure 10. Drop size distribution measured by FSSP, 2D-C and 2D-P probes on board the University
of Wyoming King Air aircraft during an experiment at Rock Springs, Pennsylvania, in the Spring of
1995, that are scaled to the radar resolution volume. The measurements were obtained in a stratus deck

when the aireraft altitude was approximately 1 ki above the surface,
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simulate on modern day computers, so we devised the following scheme to make the
computer memory requirements manageable. The exact expression for I(t), with a
similar expression for Q(t), is

3.08x10!
I(t) = Z VD,m COS[sz'J"m — wd,mt + ¢s,m]- (51)
m=1

Instead of using (5.1) in the simulations, we replace it with

Npins Ninvin [‘]

I =3 Y SujyVies cosiZker(y — waipt + ¢sils (5.2)
i=l  j=1
where ‘

. Niinmazs i Niinmaz < Noowt 4],
Ninbin[z] = { I:,,-iga, ) l::’:gla. mbm[Z] (5.3)

Ninbin[z]! lf Ninbin[m] < Nbinmaxa
i = {\/Nf,fﬁfn[ﬂ DIV Noiumaz + 1, if 5 < (NG5l MOD Noimmaz), ¢ 4

L - ) . . . 1 . N
’ \/ ;’:;19“[1] DIV Nyinmaz: if 7 > (N::;fn[%] MOD ]Vbinmaa:)}

Viij)» T(,j) and wq g 5) are properties attributed to the 4t particle in the 4" bin, and
#si is the phase shift upon scattering from particle sizes corresponding to the it* bin.
The operation DIV implies integer division with no remainder and MOD stands for the
modulo operation. For the results we present here Nypme, = 1000. The equation in
(5.2) attempts to produce the same fluctuations and magnitudes in the I(t) voltages as
the exact expression (5.1). The motivation for this scheme is the observation that nearly
identical distributions of voltages over many samples, say 100 000, can be produced by

expressions such as

5000
I, = cos(2mr;) (5.3)
=1
and
1000
Iy =Y V5cos(2nrs), (5.6)
i=1

where 7; is a pseudorandom number between 0 and 1 and the factor /5 in (5.6) scales
the amplitude of I to match that of I, in (5.5) (Figure 11). The square root factor in
(5.6) corresponds to the scale factor Sy, ;) in (5.2) and V; ;) is implicitly set to one both
in (5.5) and (5.6).

In the simulation we use a pseudorandom number generator to randomly distribute
the particles within the simulated radar resolution volume. Since the distribution
in Figure 10 contained only liquid water, we assume that the drops are liquid water
spheres. Therefore, the theory for scattering from spherical particles, i.e., “Mie” theory,

is an appropriate tool to calculate the scattering amplitude matrix element S m (180°)
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Figure 11. Frequency of occurrence of I, (solid line) and 1, (dashed tine) defined in (5.5) and (5.6), re-
spectively. We used 100 000 samples to generate the histograms.

of the drops as a function of size. The equations for computing S2 m (180°) come from
Bohren and Huffman (1983); in fact, Bohren and Huffman (BH, 4.6) provide the
equation for 53 ,,(180°) and they also provide code that computes Sp ., (180°) (BH,
Appendix A). Once the location ;) and scattering matrix element 52 m{180°) are
computed for each particle, we compute the resulting voltage amplitude Vii ) using
(4.29). We then calculate the I(t) and Q(#) voltages using (5.2) with time ¢t = 0. To
simulate the particles falling within the resolution volume, we simply must advance the
time t in (5.2). Since we must take snapshots of the I(t) and Q(t) voltages at the pulse
repetition frequency fp, ¢ of the radar, we advance the time in increments of Ty =1/ fprs.
The Doppler shifts in (5.2) are related to the particle full velocities by

Wy = — (47;'””) (5.7)
In the simulation we assume that the particle fall speeds are related to the particle drop

diameter by
4D(1 — e~120), it D < .75 mm;

(D) =
L) {9.65——10.438_0'6D, if .75mm < D,

where D is the diameter of the particle in mm and the velocity v has units of m/s

(5.8)

(Rogers et al., 1993). The resulting scries of I{t) and Q{#) voltages are illustrated in
Figure 12.
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Figure 12. The first 50 I and Q signal voltages generated by the forward simulation of the Pennsylvania

State University 94-GHz cloud radar using the particle drop size distribution ir. Figure 10 as input.

-31-



Chapter 6

Radar Return Signal Statistics

6.1 I and Q Voltage Statistics

Now that we have the I(t) and Q(¢) voltages, and hence the received power Prane(t),
in hand, we can now obtain estimates of some of their statistical properties. Recall that
both the I(t) and Q(t) voltages contain sums of sines and cosines with arguments that
contain the terms

2ketim — W mt + Ps,m- {6.1)

We cannot emphasize the next two points strongly enough. The first point is that the
remainder of 2k.r,, MOD 27 is a random variable with a uniform distribution over the
interval from 0 to 2x. That is, since the exact locations of the scatterers are random
across the resolution volume, there is no fixed relation between 2kcr from one particle
to the next and the phasecs 2k.r,,, MOD 27 end up uniformly distributed over 0 to 27.
Therefore, the sums of the cosines and sines in I(t) and Q{t) are random variables
distributed between -1 and 1. The second point, which is based on the Central Limit
Theorem, is that a variable that is the sum of random variables of equal magnitudes
tends to be Gaussian-distributed when a large number of terms are involved. Since
the I(t) and Q{t) voltage amplitudes Vom are due to a “well-behaved” particle size
distribution where no one magnitude is significantly larger than all of the other
magunitudes, a series of measurements of either 7(¢) or Q(t), if long enough, produces
values that are Gaussian-distributed (Figure 13).

The I{t) and Q(t) voltages have a number of other interesting properties. At a
single, “isolated” instant in time one cannot predict the exact value of I(t) because one
cannot know ahead of time the exact location of each of the particles in the resolution
volume. This is not to say that one cannot predict the value of I(t) an instant after a
measurement of I(¢); if two samples of 7(¢) are obtained in a vanishingly short period of

time, their values converge. (In Figurc 12 neighboring I(t) voltages in time are always
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Figure 13. Frequency of occurrence of [ (solid line) and @ (dashed line) for

the 4096 samples of the forward simulation.

similar in magnitude.) Knowing /{t) at one instant does provide some useful information
in figuring out the values of I{t) at later “not too far in the distant future” times. The

autocorrelation function defined by
Zi?i"ﬂ m = T)(Im+L -7)

N/iiA% \/iiﬂl 1 TN+L _'T)

provides a quantitative assessment of how the I{t) voltages are correlated when offset by

R(L) = (6.2)

a lag of I. As Figure 14 illustrates, the simulated I(t) voltages are strongly correlated
for small lag times and the correlation decreases as the lag time increases from zero.
These same statements hold true for Q(t) as well.

I(t) and Q(¢), however, are not correlated; that is, knowing the value of I(t) at some
time does not provide any useful information in figuring out the value of Q(t) at the

same time and vice versa. In this case the correlation coefficient defined by
s Nas - =
L(I —1 (Qm+L - Q)

VN IL(I )2y N L Qs — Q)

with the lag L = 0 should be close to 0. For the time series in Figure 12, the correlation

R(L) = (6.3)

coefficient for lag L = 0 is indeed close to 0. Since the same random processes are
controlling the evolution of I(t) and Q(t), knowing I{t) at one instant does provide some

useful information in figuring out the values of (J{t) at later "not too far in the distant
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Figure 14. Correlation of I with itself (solid line) and with @} (dashed line) for lag times from 0

to 30 T,, where T, = 0.0001 is the simulated pulse repetition period for the forward simulation.

future” times and vice versa. Consequently, the magnitude of the correlation between

I{t) and Q(t) as defined by (6.3) increases as the lag L increases from zero (Figure 14).

6.2 Signal Power Statistics
Since I{t} and Q(t) are Gaussian-distributed independent processes, we have (DZ, 4.4)

Pl = e 0207 (6.4)
QU = o T, (6.5)

and . | ;
PN Q)] = plI] Q)] = el T O-@ 01/, (6.6)

For the present discussion we simply note that the power Pryn(t) goes as IAt) + Q*(t).

Therefore, it should come as no surprize that we can write (DZ, 4.4)
1 _ 2
p[Pranz(t)] = _2.;_2_6 Prant(t)/? (67)

as the power probability density function for a large number of power returns from
rain or perhaps a cloud. This distribution is an exponential distribution with a peak

probability of zero and a mean value of P, = 242
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Figure 135. Probability density function defined by (6.8) using a mean power of Py =

1 and averaging 1, 2, 5, 10, 20 and 33 samples.

Since we already know that a single power measurcment is, for all practical purposes,
useless, knowing that individual power measurements arc exponentially distributed
is not really that helpful. What we really want to know is the probability density
function for an average of NV power samples Prane(t), or Pn. After some mathematical
manipulations, that include application of the residue theorem from the theory of
complex numbers, the problem is solved. The resulting probability density function is
(Marshall and Hitschfeld, 1953)
NN(PONTT _Npaipe
(P)N(N =1) ’

which we graph in Figure 15 for a range of values of N and a given, fixed value of o.

p(Pn) = (6.8)
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6.3 Mixer Noise and the Minimum Detectable Received Signal
Now that we have characterized the scattered signal that comes back to the radar, we
must now sort it out from the noise introduced by the detection process. Radars, unlike
lidars, have one principle source of noise, namely, the mixer. The mixer noise process
is governed by Johnson shot noise. The noise voltage is assumed to be a Gaussian-

distributed random process with a mean voltage of zero and a standard deviation of

Oy = \/PTR, (6.9)

where P, is the average mixer noise power. (P, = 1.12 x 10~% mW for the Pennsylvania

State University radar receiver.) That is, the probability of a noise voltage is

1 2 o2
pVa(t)] = Vor Vn (8)/ 20 (6.10)

Comparing (6.4) and (6.5) to (6.10), we find that both the mixer noise and the I(t) and
Q(t) voltages are Gaussian-distributed. An important difference between these time
series, however, is that the mixer noise process is not correlated in time. No matter how
fast noise voltage samples are collected from the mixer, there is no guarantee that the
resulting voltages will be close in magnitude. For a time series of noise power samples
the autocorrelation function is essentially zero for all lag times L. Another difference

is the probability density function that describes the distribution of averaged noise
voltages. The probability density function of an average of N nolse power samples is
Gaussian-distributed with a standard deviation of ay/V'N, as opposed to the more
complicated (6.8) which describes the corresponding probability density function for
averages of NV signal power samples.

The goal now becomes finding the signal power Pr;,,; in the noise power P,. As an
illustration, we have produced sets of simulated voltages that are representative of
atmospheric return signals (i.e., exponentially distributed) and the mixer noise process
and the question becomes can the former be found in the later when they are summed
together. The series of illustrations that follow in Figure 16 address just this issue.
The voltages illustrated in Figure 16 represent an extreme situation that allows us to
demonstrate the power of averaging samples in order to recover a weak atmospheric
return signal.

Using a pseudorandom number generator, we generated 100 voltage samples with
the correct statistical properties of noise. We squared each voltage sample to obtain
the noise power and we then plotted the resulting points as the first 100 samples in
Figure 16A1. We then generated another 100 noise power samples as before. This time,

however, we also generated 100 “atmospheric” return, or signal. power samples with
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Figure 16. An example of the average power at the output of a radar receiver when 1, 100 and 40
000 instantaneous noise and signal plus noise power samples are averaged. In (A1), (B2) and {C1),
the first 100 averaged power samples contain ouly noise power, whereas the last 100 averaged power
samples contain both noise and signal power contributes to the signal. (A2} is a magnification of the
signal power samples that we added to the noise power in the last 100 samples of (Al). We plotted
these same samples on (A1), but their values were so much lower than the noise power that they are
hardly noticeable in (A1). {B2) and {C2) are identical to (B1) and (C1}, respectively, except for the
scale of the y-axis. The lower dashed line in {Al), (B2) and (C2) is at the level of the mean value of
the first 100 points, i.c, at the level of the mean noise, for each figure. The upper dashed linc equals the

mean of the first 100 samples plus one standard deviation of these same samples.
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the correct statistical properties, again using a pseudorandom generator. We added

one signal power sample to each noise power sample and plotted the results as samples
101 to 200 in Figure 16A1. Since the signal power levels are small compared to the
noise power levels, i.e., look for the second solid line in Figure 16A1, it looks as though
nothing has changed from the first 100 samples. The top dashed line in the figure has

a power level of 2.4 x 102 mW, which we obtained by adding the standard deviation
of the first 100 noise power samples to the mean obtained from these same samples. We
use this power level to differentiate signal plus noise from noise: everything above the
dashed line is considered as signal plus noise, whereas everything below the dashed line
is classified as pure noise. Applying this criterion to the series in Figure 16A1 leads to
poor results since many of the first 100 power samples are classified as signal plus noise
and almost all of the last 100 power samples are identified as noise. To detect the power
associated with the signal we must reduce the standard deviation of both the noise and
signal plus noise samples; to accomplish this we must average samples.

To this end we generated 10 000 noise power samples as before. We averaged the noise
samples in blocks of 100 before plotting them in Figure 16B1. We then generated 10 000
noise power samples, 10 000 signal power samples, added a distinct signal power sample
to each noise sample and averaged the summed samples in blocks of 100 to produce
samples 101 to 200 in Figure 16B1. In Figure 16B2 we magnify the y-axis to show that
we still get poor separation of the signal plus noise from the noise if we use the same
criterion as in Figure 16A1.

Finally, we averaged blocks of 40 000 noise samples and signal plus noise samples to
produce Figure 16CL. Notice that the standard deviations of both the noise and signal
plus noise samples are much reduced compared cither to Figure 16A1 or Figure 16B1.
More importantly, the magnified plot in Figure 16C2 demonstrates that the criterion for
separating noise from signal plus noise performs much better on this data: the number
of signal plus noise samples that are identified as noise are greacly reduced from before.
Therefore, by averaging more samples the average of the noisc samples converges to the
actual mean radar noise power and the standard deviation goes to zero. Furthermore,
the signal plus noise samples converge on the mean noise power plus the mean signal
power also with a vanishing standard deviation. If enough averaging is performed on
the samples, the standard deviations become sufficiently small that the “atmospheric”
return process is unmasked. We use this standard technique to separate signal plus noise
from pure noise when processing the Pennsylvania State University radar data and we
use a simple filter on the results in an attempt to remove the tvpe of misclassifications

that are illustrated in Figure 16C2 {Clothiaux ct al.. 1995). Once we have obtained an
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estimate of the signal power by subtracting the noise power from the signal plus noise
power, we can use the radar equation (2.38) to solve for the reflectivity n{ro)}, which is

one of the radar observables.
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Chapter 7

Doppler Moments

From the I(t) and Q(t) voltages we obtained an estimate of the quantity n{r,} which
provides information about cloud drop locations. 1(ro) also provides information
about the particle size distribution, but only through the integral of the backscatter
cross section across all particles in the radar resolution volume. We are now at the
point where we take the I({t) and Q(t) voltages and manipulate them in order to
retrieve information about the motion of the scatterers in the resolution volume. As we
illustrate, the power density spectra enables us to better estimate the particles sizes in
the resolution volume.

The two techniques that we use are the fast fourier transform (FFT) and the pulse
pair autocovariance algorithm. We apply these algorithms to the simulated 7{t) and
Q(t) time series from Chapter 5 and we then interpret the results in the context of the
particle size distribution (Figure 10) and particle fall velocities in (5.8) that we used to
generate them in the first place. This discussion is intended to be illustrative and by no
means describes which technique works best and under what conditions. For a discussion

of these issues, Doviak and Zrnic (DZ, 6.4-6.5) is an excellent starting point.

7.1 Power Density Spectra

Extraction of the power density spectra from the 7{t) and (2(t) voltages time series
is relatively straightforward (DZ, 5.1). Both the 7{t) and Q(t) time series from Section
5 have exactly 4096, or 212, samples. Since the number of samples is a power of 2, we
can use any one of the standard complex FFT algorithms to generate the power density
spectra from the time series (e.g., Press et al., 1988, Section 12.2). Using the I{t) and
@{t) time series in Figure 12 as the real and complex array inputs, respectively, to the
FFT leads to the power density spectrum S illustrated in Figure 17, where we have
transformed the abscissa from frequency to velocity using (5.7). The maximum and
minimum velocities in the spectrum are set by the pulse repitition frequency forf =
10000s~* of the radar. Substituting £, ¢ into (5.7} leads to the range of velocities over

which the spectrum is valid. The velocity interval between power density spectral
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Figure 17. Power density spectrum produced by applying a fast fourier transform, or FFT, to the

4096 I and Q voltages generated in the forward simulation. Negative velocities are downward.

points is set by the number of samples input to the FFT. Since the Pennsylvania State
University radar performs a FFT on 512 samples at a time, we broke the I{t) and Q(t)
time series into 8 segments of 512, or 29 points each. We then performed a FFT on each
512 segment and averaged the resulting 8 power density spectra to produce Figure 18.
The power density S{m) at each velocity v(m} in Figures 17 and 18 is directly related
to the total backscattering cross section of all the particles moving with a radial velocity

v(m) with respect to the radar. To further illustrate this point, in Figure 19 we plot
(D) N(D,r) dD Vs, (7.1

where V,.s is the resolution volume for the drop size distribution illustrated in Figure
10, as a function of the velocity that we obtained from the empirical relation in {5.8).
Note that the power density spectra in Figure 18 1s a faithful representation of Figure
19. In fact, for this highly idealized simulation, given an accurate radar calibration
and the radar equation in (2.38), we can use the power density at each velocity v(m)
to directly infer the number density of the drops in the resolution volume whose sizes
correspond to the velocity v(m). This kind of argument is often used in current research
aimed at retrieving particle size distributions from Doppler radar.

In many cases storing the power density spectra generated by the radar signal
processors is beyond the capability of the computers that are running the radar. In these

instances the power density spectra are used to calculate estimates of the first
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Figure 18. Power density spectrum produced by applying a fast fourier transform, or FFT, to the

eight 512 sample blocks of the forward simulation and then averaging the resulting spectra. Negative

velocities are downward.

and second moments of the spectra, namely, the mean power-weighted velocity and the

spectral width, i.e., the standard deviation of the power-weighted velocities about the

mecan. The mean power-weighted radial velocity within the resolution volume is defined

by {DZ, 5.2)
Nu/2
T= >  u(m)Sy(m)
m=—Np/2
and the spectral width o, is defined by (DZ, 5.2)
N2

ol= 3 luim) - 28, (m),

m=-Np/2

where S, (m) is the normalized power density spectra at velocity v(m) (DZ, 5.2), Le.

S(m)
Eﬁnz/fj\rn/g S(Tn) |

and the velocity v{m) is given by (DZ, 3.4.3 and 5.1)

o= (25) (2)

Sp(m) =

Applying these equations to the spectrum in Figure 17, we obtain a velocity of

(7.2)

(7.3)

1

(7.4)

(7.5)

~0.419 ms™! and a spectral width of 0.261 mns™!. These two quantities, together with
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Figure 19. The total backscattering cross section for all of the particles in the radar resolution volume
of the forward simulation as a function of particle size plotted against the particle size fall velocity.

Negative velocities are downward.

the received power, or zero moment, are the radar observables generally reported at

most Doppler radar weather sites.

7.2 Pulse Pair

Performing a FFT on the I{t} and Q(t) time series in an operationel setting requires
a fast digital signal processing chip with sufficient memory to store and process the
data, as well as a fast analog-to-digital convertor that can cover the dynamic range
of the radar without introducing any nonlinearities. Since this kind of technology has
become available only recently, early investigators in the field of weather-radar research
developed methods of producing estimates of the three Doppler momants directly
from the I{t) and Q(t) time series. One popular technique that is still in use today is
the pulse pair autocovariance technique. A description of the pulse pair algorithm is
provided by Doviak and Zrnic (DZ, 6.4-6.5). We simply apply their results to the I(t)
and Q(t) time series illustrated in Figure 12 and compare the resulting moments with

values derived from the power density spectra. If the complex voltage is

V(m) =I(m)+iQ(m) (L <m < Ny, Ny = 4096), (7.6)
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then the autocovariance of V at a lag corresponding to the interpulse period Ty = 1/ fors
is (DZ, 6.4)

i Ng—-1
= > VHm)V(im+1). (7.7)
Nn -1 m=1
R is a complex number with a real part R, given by
1 Np~1
Br =57 2. I(m)I(m+1) + Q(m)Q(m + 1)] (7.8)
n m=1
and a complex part given by
1 Np—-1

Re= = X Um)Qm+1) - Q(m)1(m -+ )] (79)

The amplitude of R is

IR| = \/RZ + R2 (7.10)
and the phase is
bR = tan_l(%). (7.11)

The pulse pair estimate of the mean power-weighted radial velocity of the particles in

the resolution volume is (DZ, 6.4)

A
= - 7.1
! (47.’1’1)@3’ (7.12)
where ¢x is given in radians, and an estimate of the spectral width is (DZ, 6.5)
A NEARS
= m(2) 5> Ry, 713
7 (2:rr.,»ﬁ>in R G (7.13)
where (DZ, 6.5)
1 &n
5=+ > WVim)P - P, (7.14)
Yrn—

and B is an estimate of the mean radar noise power. Applying (7.12), (7.13) and (7.14)
to the simulated I(t) and Q(¢) time series produces an estimate of —0.423 ms—1 for the

mean radial velocity and 0.255 ms™! for the spectral width.
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Chapter 8

Cloud Properties from Ground-Based Remote Sensing

8.1 A Climate Model Perspective

The preceding sections have described radar wave Propagation and signal processing
and shown how the measured power return can be related to the properties of the
scatterers in the sample volume. In our previous articles (Clothiaux et al., 1995; Syrett
et al., 1995) we have shown how millimeter-wave radar can be used to provide a unique
and detailed look at clouds, including both their three-dimensional structure and
microphysical structure. Quite recently, we and others interested in millimeter-wave
radar technology have begun investigating how to translate the radar observations
into quantitative data on cloud properties. To some extent, this can be done using the
radar alone. However, much more powerful results can be achieved by using the radar
observations in combination with observations from other instruments. In this section,
we provide an overview of the various techniques being employed. Before discussing
these in detail, however, it is useful to consider the data needs from the perspective of
the climate community.

As we have demonstrated above, millimeter-wave radar can provide a detailed and
unique look at cloud structure, including some aspects of cloud microphysics. It is
important, however, that we take the next step of translating this information into
quantitative data on cloud properties. Before discussing this process in detail. it is useful
to consider from the perspective of the climate community what the data needs are.

One of the major uncertainties in current climate models is the treatment of clouds as
embodied in the model parameterizations, and the impact of those clouds on the model
radiation fields. Cloud parameterizations vary in their input requirements and output
variables but, as a general rule, the output must specify cloud location (height and
thickness) and amount of condensed phase (liquid or ice). The latter is then converted
i some fashion to an optical depth that can be used as an input to the model radiative
codes. More detailed parameterizations also produce information about clond particle

size and the vertical distribution of the condensed phase as outputs. Therefore, for
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a given set of parameterization inputs, verification of a parameterization relies on
validating the following basic predicted quantities: number of cloud layers, base and top
height of each layer, and either the amount of condensed phase or the particle drop size
distributions within each layer. Note that if the particle drop size distribution within a
layer is known, then the amount of condensed phase can be inferred. Because climate
models at best simulate the statistical distribution of these quantities, it is important
that we also look at our ability to provide a temporal distribution of these observed

properties.

8.2 Models of Cloud Drop Size Distributions

Before describing several techniques proposed in the literature for retrieving water
vapor path W, liquid water content L. and path L, and ice water content Tue
and path Ip, as well as the cloud particle number density distribution, it is useful
to set forth the notation that is commonly employed in descriptions of the retrievals.

For cloud particles let n(D) dD represent the number of particles per unit volume
with a size between D and D + dD, where dD is a small increment in the pertinent
dimension of the particles. For spheres D represents the particle diameter, whereas
for nonspherical particles D may perhaps represent the maximum dimension or the
diameter of a spherical particle that has the same volume as the particle in question.
The total number of particles per unit volume becomes
Dmax

N, = [Dmm n(D)dD, (8.1)
where we have adopted the notation of Flatau et al. {1989). For analytic convenience
Domin and Dy are generally sct to 0 and oc, respectively; the error this appoximation
introduces is generally small.

The particle size density function n{D) is usually modelled either by a lognormal
distribution or the general modified gamma distribution. These two distributions are
useful because they fit the observed distributions of cloud particles and the moments of
the distributions can be defined in terms of known functions. The lognormal distribution
15 defined by

n;og(D) = %;Bexp [_(M\/%D-ﬂ)z}’ (8.2)

where ¢ and D,, are parameters. The moments Ijo,(p) of njeq are defined by

1 =,
logp) = 7 || DP1iog(D)AD = DiiFiog (p), (8.3)
t 40
where -
g p
Frog(p) = exp ( rf ). (8.4)
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The general modified gamma distribution is defined by
Nie ; Dyer-1 1 D e
ﬂ.mg(D) = ﬁ;')-(-D—n) 5; exp [_(D_n) ], (85)
where I'(v) is the complete gamma function and ¢, v and D,, are parameters. The
moments [ny(p) of the distribution are

Ing(?) = 37 [ DP1img(D)dD = DEFony (), (8.6
where
Tl +p/e)
Fmg(p) = —F(;)— (8'7)

For a given choice of model, the goal of the retrievals is to determine the model free
parameters, together with V¢, as a function of height. The liguid water content L. and

ice water content I,,. follow from
o0
L(T)we(z) = [~ p(D)V(D)n(D)dD, (88)

where p(D) is the density of the particles under consideration and V(D) is the volume
of the particles with dimension D. The liquid water path Lyp and ice water path I,

follow from integrating the L, and I, in a vertical column:
o
LI)up = [ Li)uel2) dz. (8.9)

8.3 Cloud Boundaries from Radar Reflectivity

Although detection of cloud location and thickness, hereafter simply referred to
as cloud boundaries, from radar seems relatively straightforward, construction of an
accurate, reliable algorithm to process large quantities of data is challenging. Since a
tairly detailed description of our algorithin is given by Clothiaux et al. (1993), only the
principal features are outlined here.

The starting point for any cloud boundary algorithm is a definition of the minimum
detectable signal for the radar. This quantity is related to the physical characteristics
of the radar, the number of pulses that are being averaged, and the noise power of
the signal processing chain. Our current algorithm begins by defining all signals more
than one standard deviation above the radar receiver noise as representing a possible
significant cloud detection. This threshold includes, however, a significant number of
noise events (Figure 20a). We then produce a cloud mask (i.e., a binary two-dimensional
image of cloud occurrence in time and height) by smoothing this basic image using
a box-car filter in time and space. The presence or absence of a possible significant
detection at the 24 “ncarest-neighbors™ surrounding a particular pixel are used to

ostimate whether or not that particular pixel is a significant cloud detection. As
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Figure 20. (a) Receiver power output returns greater than one standard deviation above the noise are
indicated by the black dots and all other power returns are indicated by white dots. {b) The binary

cloud mask image produced by applying a two-dimensional boxcar filter to the image in {a}.

Figure 20b demonstrates, our processing removes the noise and produces a contiguous
cloud mask which can then be used to identify cloud boundaries in an automated
fashion.

An example of cloud statistics generated in this fashion is shown in Figure 21. These
data were acquired by the Pennsylvania State University 94-GHz cloud radar during
the First ISCCP Regional Experiment, Phase II, (FIRE II) held in Coffeyville, KS, in
late 1991 (Uttal et al, 1995). The cloud base histogram (Figure 21a) shows distinct
maxima in the upper troposphere around 8 km and in the lower troposphere around
3 km, with a pronounced minima in between. The former are, of course, cirrus clouds,
while the Iatter is a combination of boundary layer and decp convective clouds. Due to
the extreme sensitivity of millimeter-wave radar to small particles, they often obtain
significant return from boundary layer aerosol, particularly under humid conditions.
These radars are even more sensitive to the larger precipitation drops, making it difficult

to devise an algorithm that can automatically differentiate between the visual
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Figure 21. Frequency of occurrence of (a) cloud base height, (b) cloud top height and (c) cloud
thickness as recorded by the Pennsylvania State University 94-GHz cloud radar during the FIRE II

experiment in Coffeyville, Kansas.

cloud base and the constituents below cloud base. For radiative and microphysical
purposes, we generally want to know the visual cloud base, l.e., the base of the cloud
droplet distribution, rather than the precipitation base. In our ongoing research we are
exploring the use of concurrent ceilometer or lidar cloud base data to identify periods
of precipitation, thereby allowing us to correct the radar cloud base statistics so that
they contain only information about clouds and not the precipitation emanating from
them. Another possibility for inferring the cloud base height in the presence of drizzle
is bimodality in the radar Doppler spectra, where one mode corresponds to the eloud
particle returns and the other to the drizzle drop signals,

Cloud top heights are generally much easier to infer from radar reflectivity time-
height cross sections. The cloud top distribution from FIRE II (Figure 21b) shows a
distinct maximum around 9 km with a secondary maxima below about 6 km. The upper
maximum is largely cirrus but includes a few occurrences of deep convective clouds.

The cloud base and top data can be differenced to produce frequency distributions of
cloud thickness (Figure 21c). These distributions are dominated by cloud thicknesses
on the order of 0.5 to 3 km. While we expect this result to be robust, there is some
exaggeration of the effect in these histograms because the radar was not operated
during periods of the most severe convection. There are cloud thicknesses that span the
complete troposphere (9 to 12 km), indicating that some deep convective clouds were
sampled.

A unique aspect of cloud radar is its ability to detect multiple cloud layers. Using the

cloud mask as a starting point, we can connt. the number of clowd boundary bottoms
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Figure 22. Percentage of occurrence of multiple cloud layers as recorded by the Pennsylvania State Uni-

versity 94-GHz cloud radar during the FIRE II experiment in Coffeyville, Kansas.

and tops profile-by-profile to estimate the frequency of occurrence of multiple cloud
layer systems. During the FIRE II experiment, clouds occurred approximately 60 %
of the time (Figure 22). (For these statistics, we did not include layers with cloud
tops below 800 m in order to avold confusion with aerosol layers, insects, ete...) When
clouds did occur over the radar, they were multilayered 33 % of the time. Using data
from two radars, as well as a lidar, Uttal et al. {1995) concluded that during the FIRE
II observational period when clouds occurred they had a better than 50 % chance of
being muitilayered. We conclude that multiplelayered cloud systems are not rare and

to accurately estimate their vertical distribution cloud radar is essential.

8.4 Cloud Properties in a Vertical Atmospheric Column

8.4.1 Cloud Liquid Water Path from Passive Radiometry

Given that cloud boundaries can be determined, the most important cloud bulk
property that we would like to obtain from our observations is the column amount of
condensed water, either the liquid water path Ly, or ice water path Iyp. Measurement
of the condensed liquid water column amount is perhaps most easily inferred from a

determination of the atmospheric optical depth at some wavelength, where the optical



depth is defined as
oo Na
= /0 :._Zlk)\‘,-(z)p,-(z)dz. (8.10)
In the definition of 7y, N, is the number of atmospheric constituents radiatively
active at the wavelength A, k) ;(2) is the volume-averaged, wavelength-dependent
mass extinction coefficient of the i* species and pi(z) is the density of the i species.
Defining &, ; as

— _ B ka(2)pi(z)dz

MR ei(e)da (&1
we can write the equation for 7, as
N, o0
Ty = Zl[k/\,,'[o p,-(z)dz}. (8.12)
Now the integral -
| etz (8.13)

is just the column amount of the i** species and is the quantity that we want to infer
from measurements of 7. For example, near 24 and 32 GHz, water vapor, cloud liquid
water and oxygen are the dominant radiatively active atmospheric constituents. Since
the column amount of oxygen is relatively constant in time and space, we can assume its

atmospheric optical depth to be the constant Thory- Lherefore, (8.12) becomes

™= Thoy s [ o)z + Ea [ iz, (8.14)
where p,(2) and py(z) are the vertical density profiles of water vapor and cloud liquid
water, respectively. The two integrals on the right haud side of the above cquation are
simply the water vapor path W,, and the liquid water path Lup, respectively. Since
we have measurements at two frequencies, we have two optical depth equations in
two unknowns, assuming that m and Iy are known, which can be inverted to yield
Wi and L,,. Importantly, the inversion is well-behaved because the total optical
depths at the two frequencies have different dependencies on the water vapor and
cloud liquid water column amounts. Furthermore, the retrieved Wip and Ly, are not
seriously affected by the presence of ice particles in the atmosphere since ice water is not

radiatively active at these two wavelengths.
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8.4.2 Cloud Liquid and Ice Water Content from Radar Reflectivity

In an alternative approach using only radar reflectivities Liao and Sassen (1994)
theoretically compute the radar reflectivity Z and liquid water content Ly for liquid
water drop distributions generated in an adiabatic cloud model. Performing a regression
of the liquid water content versus the radar reflectivity for distributions generated with
a number of different cloud model parameters, Liao and Sassen (1994) arrived at the

relationship
Lye = 0.49(N; Z)%3, (8.15)

where N, is the total number of drops per unit volume and depends upon the initial
number of cloud condensation nuclei in the cloud model simulation. Liac and Sassen
(1994) performed a similar regression analysis of the ice water content versus radar
reflectivity using a number of different in situ observations by aircraft with the result
that

Lye = 7.492078, (8.16)

Liao and Sassen (1994) found their empirically derived relationships to be consistent

with the results of a number of earlier investigations that adopted a similar approach.

8.4.8 Cloud Drop Size Distributions from Passive Radiometry and Radar Reflectivity

Matrosov et al. {1992) combine a measurement of brightness temperature between
10 and 12 jm and particle radar reflectivity at 9.3 GHz to infer the average particle
concentration N; and the average scaling diameter D,, across the depth of an ice cloud
layer. (Actually, Matrosov et al. (1992) retrieve a diameter Diy that splits the cirrus
cloud particle distribution into two equal volumes of cloud drops, as opposed to the
scaling diameter D, of a modified gamma distribution.) Their strategy consists of
using the measured brightness temperature, or radiance, to infer the cloud optical
depth. From the cloud optical depth they are in turn able to solve for the product
NtDEL. The reflectivity obtained from the radar then allows them to solve for Ny and D,
individually.

Consider the case of a vertically and horizontally homogeneous cirrus cloud layer with
no underlying water clouds. Using a two-stream radiative transfer model in the cloud
layer and ignoring any sources of radiation above the cloud layer, Matrosov et al. {1992)
derive a simple parameterization for the nadir directed radiance Icib at the base of the
cloud layer:

Ijb = B(Ty) {1 - exp(waoru)], (8.17)



where B(T,;) is the blackbody radiance for a physical temperature T at the base

of the cloud layer, 70 is the optical depth of the cloud layer and a, (= 0.7} is a free
parameter used to achieve the best prediction of I ib from B(T,) and 7° for a number
of forward two-stream model calculations using a range of values both for the cloud
optical thickness and the particle size distribution parameters N; and Dy. To infer I (fb
from measured radiances 7}, one must know the atmospheric transmittance 7. between

cloud base and the surface:
I =14 - B(Tw)(1 = T))/ T, (8.18)

where B(Ty,,) is the blackbody radiance of the subcloud atmosphere with a mean
temperature 15, and Iﬁl is the radiance measured by the instrument. Therefore, with
knowledge of 7, T7,r and T, which can be estimated from radiosonde profiles, the
measured radiance I}, can be inverted to optical thickness 7.

For a vertically and horizontally homogeneous cloud layer the optical depth of the
cloud layer is

n=[[" Qert(D)Tr(—g)znmg(D)dD} H., (8.19)

where Q.;:(D) is the extinction efficiency of the cloud particles with size dimension D
and H, is the cloud layer thickness. Assuming that most cirrus ice particles are larger

than 10 to 12 gm, Q. (D) 2= 2 and 7, becomes
= E/O DPtimg( D)dD| 1. (8.20)

Using the moments equation (8.6) with ¢ = 1 and v = 2, which Matrosov et al. {1992)

argue is adequate for most cirrus cloud particle distributions, Ty becomes
T\ = 37N, D> H,. (8.21)
Therefore, with a zenith directed radiance measurement one can infer the value of the
product N, D2, Now the radar reflectivity Z is defined by
S _
A :]0 Dy, (D)dD, (8.22)

or
Z = 2016 N, D5, (8.23)

where we have used (8.6). Since there are now two equations, i.e., (8.21) and (8.23),
we can solve for the two unknowns N; and D,. If the cloud layer is not vertically
homogeneous, Matrosov et al. (1992) replace Z in (8.23) with the average value of Z

from the top to the bottom of the cloud layver.

S5



r's

»

L

t R

& B

8.4.4 Cloud Drop Size Distributions from Passive Radiometry, Radar Reflectivity and
Radar Velocity

In order retrieve N; and D, as a function of height within a cirrus cloud layer, and
thereby allow the Iy to vary with height within the cloud, Matrosov et al. (1994)
developed a retrieval algorithm combining a measurement of the brightness temperature,
or radiance, between 10 and 12 um with radar measurements of the particle reflectivity
and Doppler velocity as a function of height within the cloud layer. As before, Matrosov
et al. (1994) assume that ¢ = 1 and they demonstrate that the retrievals are not
extremely sensitive to the value of v so we set v = 2. For a vertically inhomogeneous

cloud layer the optical depth defined in (8.19) becomes

rn= Y[ Qest (D)7 (3) mngDID] Heys), (8.24)

where H,; is now the radar resolution volume spacing and N, is the number of radar
resolution volumes in the cloud layer. Note that the number of range gates with cloud
return can be obtained from the location of the cloud boundaries. Again assurning that
Qez(D) = 2 for all D, the optical depth becomes

NQ
ry = 3 {20167 N, ;DS Hey |- (8.25)
j=1

The measured optical depth 7, ;r 18 inferred from the infrared window measurements of
sky brightness temperature using (8.17).

As before, the radar reflectivity is defined by (8.23), where Ny and D, are now a
function of height, i.e., Ny ; and Dy j, respectively. The reflectivity-weighted mean
Doppler velocity due to all of the particles in a radar resolution volume is

Vi, = e gé(DgDﬁnmg(D)dD'
fo° Donpg(D)dD
Based on Pruppacher and Klett {1978), Matrosov et al. (1994) assume that the fall

(8.26)

speed of the particles are related to the diameter by
vi(D) = ADP, (8.27)

where A and B are constants that depend upon the crystal shape. Substituting (8.27)

into (8.26) and using (8.6) yields

(v + B+ 6)] B
I'(v + 6) ™

where air density and viscosity effects have been neglected.,

Vi = Al (8.28)

At this point 2N, + 2 unknowns have entered into the set of equations, i.e., N;; and

D, ;. where j = 1,..,Ng, A and B. However, there are only 2V, + 1 measurements

-



consisting of Z; and Vi, where j = 1, -y Ng, and 7, ;. Since the variation of B is
relatively small, i.e., 0.75 to 1.4, Matrosov et al. (1994) set B = 1. Picking an initial
value of A, for A, Matrosov et al. (1994) solve (8.23) and (8.28) for V; ; and Dy ; at
each range gate. Computing the infrared window optical depth 7;; from (8.25) and
comparing the result with the measured optical depth 7, i, they are able to derive a
new value for A, i.e.,

A= A, (M )3/4

T ) (8.29)
such that when (8.25) is recomputed with the this value of A and the existing values

of Nj; and Dj,, the measured optical depth Tm,ir Tesults. Using A from (8.29) to solve
(8.23) and (8.28) for N;; and Dy, ;, Matrosov et al. (1994) arrive at their final estimates
of the particle concentration and scaling diameter as a function of height within the
cloud layer. The ice water contents I, and the ice water path I, follow immediately
from (8.8) and (8.9), respectively.

For the retrievals to work, the reflectivity-weighted mean Doppler velocity V¢ ; must
represent the fall velocities of the particles in the air with no vertical motion, Since
there are generally updrafts and downdrafts within a cloud, the raw radar derived value
of V¢ ; cannot be used in (8.28). Based on work by Orr and Kropfli (1993), Matrosov et
al. (1994) circumvent this problem by averaging over several hours all of the Doppler
velocities Vi ; at each resolution volume whose corresponding reflectivities fall within
a narrow reflectivity bin. If the reflectivity value is indicative of a specific particle
distribution within the radar resolution volume and if the average vertical motion of
the air over the averaging interval is near zero, then the average velocity generated for
each reflectivity bin of each resolution volume corresponds to the vertical fall speed of
the particles in still air at the resolution volume location. Therefore, the reflectivity
observed for each resolution volume is used as an index into the reflectivity bins from

which an estimate of the average, still air particle fall speed is recovered.

8.4.5 Cloud Drop Size Distributions from the First Three Radar Doppler Moments
Frisch et al. (1995) utilize the first three spectral moments, i.e., reflectivity, Doppler
velocity and Doppler width, to retrieve the particle size distributions in light drizzle and
stratus clouds with no drizzle. For both of these conditions, Frisch et al. (1995) assume
that a lognormal distribution is an adequate model. Therefore, their retrieval amounts
to inferring the particle number density N, scaling diameter D, and distribution width

7, of a lognormal distribution from the three Doppler moments.
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For a lognormal distribution the reflectivity Z; is defined by
® 16 6 1807
Zy= [ DPriogy(D)dD = NiiD3;'*, (8.30)

where j represents a particular resolution volume. Based on Gossard et al. (1990), Frisch
et al. (1995) assume a linear relationship between the drizzle-particle fall speed vy and

the particle diameter D:

D-5%
vy(D) = =, (8.31)
where a = 2.4 x 1074s and b = 2.0 x 10~5m. Therefore, the first Doppler moment Vy,; 1s
Jool(D -~ b)/a}DOniog j(D}dD Dnjy\ 13022 _ b
Vi, = = (Emd)el803/2 _ = 8.32
) J§° Dbnyog ;(D)dD ( a )e ’ ( )
while the second Doppler moment W) is defined by
RPUD = b)/a = Vi1 Dnueg i(D)AD_ Dinjj\2 1302 ( o?
W, = T2 Dorueg (D)dD = ( . ) e (e i - 1). (8.33)
Solving for exp(lSan) in (8.32) and substituting the result into (8.33), one has

1/2

oj = {In[l + W;/(Vy; + b/a)l} (8.34)

For drizzle either below cloud base or within a cloud of a negligible reflectivity, Zj,
Vy; and Wj are due to properties of the drizzle. Therefore, we have three unknowns,
i.e., Nt j, Dy and gj, and three equations. i.e., (8.30}, (8.32) and (8.33), with which
to solve for them. From (8.34) one can solve for o;. Using the retrieved value of ¢; and
(8.33), one can then solve for Dy ;. Finally, one can solve for Ny ; by substituting the
retrieved values of o; and D, ; into (8.30).

For stratus clouds that consist of small drops and no drizzle, only the measurement
of Z; produces useful information about the cloud drops. In this case, Vi, and W; are
due to the mean vertical air motion and turbulence, respectively, since the small drops
are presumably moving with the air. Therefore, we now have N, useful measurements,
Le., Z; for j = 1,... Ny, where IV, is the number of radar resolution volumes providing
significant returns from the cloud drops. To reduce the number of unknowns, Frisch et
al. (1995) assume that o; = 0 = 0.35 for all j, Ny ; = Ny for all j with N; unknown,
and Dy ; is unknown and changes from one resolution volume to the next. All together
we now have N, + 1 unknowns. To have a well-constrained retrieval of Dy ; and Ny one
additional measurement is needed; therefore, Frisch et al. (1995) assume that the liquid
water path Ly, is measured as well.

For this situation the reflectivity becomes

Z, = NyDp et (8.35)



where Ny is a constant and ¢ = 0.35. To solve for Dy, ; in (8.35) one must know N,
which can be estimated from the measured Lyp. The liquid water content Ly, at the

7" resolution volume is
Ly, _[O pul37(5) Jriogs (D)AD = (—5—) D3 e 2, (8.36)
Solving for Dy, ; in (8.35) and substituting the result into (8.36) yields
T P IV, _ —185% 2
Ly = (—m’"’é’ (2} N e8] 002, (8.37)

Integrating the liquid water content over the depth of the cloud layer, we have the liquid
water path L,
Lup = %L Hej = (T22YN} 29012 WL
wp = = wegtle] = \7g t € (JZ,; j ) c.j- (8.38)

Substituting the measured L, and radar reflectivities Z; into (8.38), one can solve for
Ni. Once Ny is in hand, D, ; can be obtained from {8.35) and the Lyy,j from (8.36).

8.4.6 Cloud Drop Size Distributions from Radar Doppler Spectra
Gossard (1994) presents a technique that uses the entire Doppler spectrum in a
retrieval of the cloud drop size distribution. The innovation in Gossard’s retrieval is
that the effects of turbulence and any mean vertical wind motion within the radar
resolution volume on the Doppler spectrum are explicity accounted for in the retrieval.
Assuming that the radar wavelength is much larger than the cloud drops, the density of

the refiectivity Z as a function of diameter D, i.e., the integrand of (8.22), is
SU(DY = nyg(DYDS, (8.39)

where the superscript ¢ indicates that turbulence is not included in the definition of

S4(D). In Figure 23a we plot ny,, (D) and SUD) for gamma distribution parameters

Ny = 654 x 10m™3, v = 1, and D, = 0.0233 mm. Since v is one, the drop size
distribution in Figure 23a is exponential. The choice of D,, = 0.0233 mm forces the
maximum value of SI(D) in Figure 23a to occur at D, = 0.14 mm since the modal

value of 5¥(D) occurs at Dy, = Dp(6+v —1). Changing variables in (8.39) from the drop
diameter D to the drop fall speed v, where we assume a known relationship D = D{v),
we have
dD
S1(v) = SHD() T (v) (3.40)
v
For the spectrum S%(D) in Figure 23a, the corresponding fall velocity spectrum S?(v) is
iltustrated in Figure 23b, where we use (Rogers et al., 1993)
~0.5 ‘
oDy =4( 2 D - ey, (8.41)
Po
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Figure 23. {a} Cloud drop number density nmq(D)} (dashed line) and reflectivity density S?(D) (solid
line) for gamma distribution parameters Ny = 6.5 x 10°m~—%, D, = 0.233mm and v = 1. (b) Reflectivity
density versus drop fal! velocity for no turbulence (upper dashed line), turbulence with v, = w, = 0.4
(lower dashed line) and turbulence with v, = w, = 0.8 (solid line). Positive velorities are downward.
() Reflectivity density S{(D) that results from changing variables in S1(v) from drop fall velocity v to

drop diameter D.
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Again, the superscript ¢ in S%(v) indicates a quiet air spectrum with particle fall
velocities that are not affected by turbulence. If turbulence is present, then the spectrum
S%(v) must be convolved with the turbulence spectrum to produce the final spectrum

SHOE
1

St(v) = /U * 52w e~/ =) vl gt (8.42)

2
TUS

where, like Gossard (1994), we have assumed Gaussian turbulence. The results of such

a convolution are illustrated in Figure 23b for v, equal to 0.4 and 0.8. Apart from mean
vertical wind motions within the radar resolution volume, which shifts the spectra in
Figure 23b either to the left or right, St(v) corresponds to the observed radar Doppler
spectrum and is one of the outputs of a cloud radar. Gossard’s technique attempts to
retrieve the parameters N, and D,, given spectra St (v) that are potentially influenced by
turbulence and mean vertical air motion within the radar resolution volume.

If one simply changes variables in St(v) from v to D, i.e.,
dv
SYD) = SL(u(D)) S2(D), (8.43)

the resulting spectrum may look nothing like the original spectrum (Figure 23c¢) because
of the effects of turbulence and perhaps a mean vertical wind within the radar resolution
volume. Obviously, any drop size retrievals based solely on the spectrum St (D) will
contain serious errors. Note, however, that the ratio of the peak of SY(1D) (c.g., Figure
23a) to the peak of SY{D) {e.g., Figure 23¢) is a function only of the turbulent width o,
and the modal diameter D,, and can be calculated for all possible combinations of these
two parameters, just as we have done to generate the three panels in Figure 23. This
fact motivates Gossard {1994) to define the deconvolution factor DF as the ratio

du

DF = DF(Dm,vs) = SH(Dy) / [St(1) -d—ﬁ(Dm)J, (8.44)

where v, s the modal value of the spectrum S'{v) (e.g., the peak of the solid line in

te,

Figure 23b) and the factor StZ(Um)[dl,’/dD(Dm)] Is an estimate for the mode of S4(D,,)
(c.g., the peak of ST{(D) in Figure 23¢). We are now in a position to illustrate the basic
equation that Gossard uses to retrieve the modal diameter D,, of S4(D).

The reflectivity factor defined in (8.22) can be integrated with the aid of (8.6) yielding

Dy (6 (a + 6!

6+ a)
where we let « = v — 1 in accordance with Gossard (1994). Rearranging factors, Gossard

Z = N( (8.45)

bl

!

writes 4 as

Z = 8D, fle) Dy, (8.46)
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where the modal value of SI(D) is
Ni (o + 6)(1+cr) e—(6+a) D-,?n

S{(Dm) = 2D (8.47)
and ( )1 elo+ )
o+ 6)el®Te
fla) = (a+ 6)(7+°) . (8'48)
Solving for S4(Dy,) in (8.44) and using (8.45), (8.46) and (8.47) gives
Do = 7/[£(c) St(vm) G5 (D) DF (D 00)] = 0. (8.49)

The reflectivity Z and mode S:(vm) of the Doppler spectra are radar observables. If

we assume a value for a, e.g., zero, one or two, then the only two unknowns in (8.49)
are D,, and v,. As Gossard demonstrates, the part of the peak in §%{(v) with negative
Doppler velocities, i.e., particles moving upwards and away from the radar, is a function
of the turbulent width v,; hence, the width v, can be recovered by fitting a Gaussian
function to this region of the spectrum. Once an estimate of v, is in hand, one can
numerically solve (8.49) for Dp,. Given Dp, and Z, Ny follows from (8.45), (8.46),

(8.47) and (8.49). Note that the value of vr, does not explicitly enter into the retrieval;
consequently, updrafts and downdrafts within the radar resolution volume do not affect

the outcome of the retrieval.
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Chapter 9

Concluding Remarks

Millimeter-wave radar is proving to be a tremendously useful tool for the study of
cloud properties. A number of papers have demonstrated the usefulness of radar reflec-
tivity measurements for qualitative studies of cloud behavior, as well as quantitative
determinations of cloud boundaries. However, the real power of radar lies in combin-
ing reflectivity and Doppler velocity measurements with lidar cloud base and passive
radiometric measurements. Radiometric measurements typically provide integral mea-
surements of total condensed phase. By using these as constraints on cloud particle re-
trievals from the active sensors, we can devise methods that allow us to define the verti-
cal distribution of cloud particle size and condensed water content. This is a remarkable
achievement. Further, the instruments currently being developed are much more robust,
than their carlier counterparts. Millimeter-wave radar and srall lidar systems can be
run continuously and unattended, as can passive radiometers. Various investigators have
demonstrated this capability with individual instruments, and now the Atmospheric Ra-
diation Measurement (ARM) program, sponsored by the United States Department of
Energy, is putting instruments systems together for iong term operations.

Given this progress, development of routine signal processing techniques for radars
and retrieval algorithms for instrument systems must be viewed as high priority
research. Much like satellites provide measurements of spatial variability, these suites
of ground-based instruments can be used to continuously measure cloud statistics,
provided that algorithms are available to process the raw data streams. These statistics
will have many uses, including model verification and satellite retrieval validation. Most
importantly, the unique perspective on cloud properties provided by these retrievals and

statistics will improve our understanding of cloud physics and cloud processes.
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Table 1.

Radar Parameter Relationships

R'm.in = Rdeadtime + NbitsAR
Roper = Rdeadtime + (Nvoi - I)Rspace

Ry = (cripp) /2
AR = (c7p)/2
Vu = A/(4TIPP‘NCOI1)

AVy = (2V,}/Nyp
Te o¢ Ny, Nirt, Nopee, 1 /Processor Speed
Radar Sensitivity o Tow, NVpits

Noise Fluctuations oc 1/N,,;, 1/\/Nopee
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