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Improved Mie scattering algorithms

W. J. Wiscombe

Scattering of electromagnetic radiation from a sphere, so-called Mie scattering, requires calculations that
can become lengthy and even impossible for those with limited resources. At the same time, such calcula-
tions are required for the widest variety of optical applications, extending from the shortest UV to the lon-
gest microwave and radar wavelengths. This paper briefly describes new and thoroughly documented Mie
scattering algorithms that result in considerable improvements in speed by employing more efficient formu-
iations and vector structure. The algorithms are particularly fast on the Cray-1 and similar vector-process-

ing computers.

I. Introduction

Mie scattering calculations pervade the entire field
of atmospheric optics. Applications range from one end
of the electromagnetic spectrum to the other—from UV
solar radiation backscattered by stratospheric aerosols
to satellites, through visible and IR radiation scattered
by clouds and aerosols, to microwaves and radar scat-
tered from large hydrometeors.

The actual formulas for Mie scattering are well
known.:2 The quantities required are

2 XN
Qexl = X (Zn + I)Re(an + bn)- {1a}
Izn=1
2 N . .
Qsca=", b (2n+1)(|ﬂn|2+|bnlz), {1b}
x%na=1
4 N [ntn+2) A .
A e [ Tng 1 Rt bubin)
Zn+1
T2 Retanby)| - 1c)
nin+ 1)
NYooZn 41
Sy = Y ————{aama ) + by ryip)], (1d)
1 n=1n{n+l)[ r nn#]
NoZn+
Ssluy= ¥ n ltn T l) + by, ()], (1e)

n=taln + 1)
which are, respectively, the extinction efficiency, scat-
tering efficiency, asymmetry factor, and complex scat-
tering amplitudes for two orthogonal directions of in-
cident polarization. (|81]|? and |S.|? are the scattered
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intensities.) Size parameter x is the sphere’s circum-
ference divided by the wavelength, The complex-val-
ued Mie coefficients a,, and b,, depend on x and on the
complex refractive index m = mge — immm. They are
expressed in terms of spherical Bessel functions; in
particular, following Infeld’s formuiation,? they involve
the function

Anlmx) = (mx) /i, (mx), (2)

where Y, (z) = zj,(z). Finally, u is the cosine of the
scattering angle, and the angular eigenfunctions are

Nr:(,U) = P,,{,u), 3]
Talt) = pmwa () — {1 — w2hmn(p), (4)

where P, is a Legendre polynomial.

The only remaining question is how to structure the
Mie computation for maximum efficiency, while at the
same time maintaining accuracy and avoiding numerical
instability and ill-conditioning. The first published
Mie algorithms were those of Dave*® although Irvine,
Plass, and Cheyney, to name just a few, had been doing
Mie calculations for several years prior. Most new in-
vestigators in the intervening years tended to use Dave's
algorithms or variants thereof.

Mie calculations have gained a reputation for being
time-consuming. This is, first, because the upper limit
N in Egs. (1) is roughly equal to x, which can become
very large, e.g., about 1260 for a 100-um water drop at
a visible wavelength of 0.5 um. Second. because in
typical applications one wishes to sum these series for
a large number of radii (as in integrating over a size
distribution) or for a large number of wavelengths (as
in integrating across the solar spectrum) or for a large
number of refractive indices (as in inverting scattering
measurements to deduce refractive index). The present
author alone has used manv hours of Univac 1108, [RM
360/01, CDC 7600, and Cray-1 time doing Mie compu-
tations.
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In light of ali this, it seems likely that a pair of new
and very efficient Mie algorithms, which the author has
developed over the past several vears and which are fully
described in a recent report,? will be of broad interest.
A synopsis of the original features of the algorithms and
certain selected timing comparisons are given below.
For the remaining features and listings of computer
codes implementing the algorithms, the reader is re-
ferred to the report cited in Ref. 6.

. A, Computation

The complex function A, was computed by upward
recurrence in the early days of Mie calculations. Then
Kattawar and Plass? showed that upward recurrence
could be highly unstable if absorption (myy) was large
enough, but that downward recurrence was always
stable. Davet allowed for this by furnishing two algo-
rithms, one with upward recurrence and one with
downward recurrence; the user could take his pick.

This seemed a highly unsatisfactory state in which
to leave the matter. Therefore we sought a criterion for
determining a priori, from x and m, when down recur-
rence had to be used (when it is safe, up recurrence is
always preferable because it is faster). At first we did
this by observing the breakdown of many upward re-
cursive A, computations, from which we were able to
descry an empirical criterion for allowing up recurrence.
This had the form

MimX < flmRge). (5)

Taking f{mge) as linear in mg, was not unreasonable,
but we were able to make a much sharper determina-
tion.

We did this by not considering A4, computations in
isolation, but by considering the full Mie computations.
Exact Mie results were generated using down recurrence
for A, and compared with the corresponding results
produced by up recurrence. At first we looked only at
the Mie quantities Qext, Qacas and g [Egs. (1a)—{1c)}, and
we counted up recurrence of A, as a faiture whenever
it produced a relative error exceeding 107% in any cne
of these quantities. It was clear from our initial studies
that for fixed x and mg,, whenever up recurrence failed
for a given imaginary index, it failed for all larger indices
as well. Therefore, for each pair {x,mg.} we performed
an upward search on mriy, to find the first value mj, at
which up recurrence failed. The search was succes-
sively refined until m{,, was determined to 3 significant
digits. We considered values of x from 1 to 10,000 and
values of mpge from 1.05 to 9.25, which should cover al-
most any conceivable situation of practical interest.

This search revealed that, for fixed mg,, the product
minx rapidly approached an asymptotic value from
above as x increased, This asymptotic value depended
on mge. Mathematically speaking, this meant there
was some function f(img.) such that

XMy = min (xmi,) = f(mgeh,
all x

and such that the inequality was roughly an equality
over almost the entire range of x. The values we ob-
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Fig. 1. Empirically determined values for the function f(mg,) de-

scribed in the text, and polynomical fits to those data: {a) considers

Qext, @ace, and g only; (b) includes the angular functions 8; and Ss as
well.

tained for f(mpg,) are plotted as solid dots in Fig. 1(a).
They can be fitted quite excellently by the polynomial
expression

filmpe) = —8 + 26.22m}. — 0.4474mb,
+ 0.00204m%, — 0.000175m},, (8)

which lies on or slightly under most of the data points.
[A quadratic in mge gives an acceptable fit, but Eq. (6)
is considerably better.]

We then extended our study to include the angular
scattering functions Sy and S [Eqgs. (1d) and (1e)],
calculated at 1° increments from 0° to 180° inclusive.
Up recurrence was regarded as a failure if at any angle
the real or imaginary part of 8, or S5 had a relative error
exceeding 1075, (Qext, Qscar and g played no role be-
cause their relative errors were invariably down at the
10710 level when S, or S5 relative errors first reached
1075, The reason is that the earlier terms in the S, or
Ss sums may cancel, so that the later terms, which are
most sensitive to up-recurrence instability, dominate
the sum; this phenomenon is greatly mitigated in the
sums for @et, Quca, and g.) The data we obtained are
plotted in Fig. 1(b). They are considerably more noisy
than the data in Fig. 1(a), which is due to the following
circumstance: sometimes the real part of S; or S5 is
orders of magnitude smaller than the imaginary part or
vice versa. These very small components are quite
sensitive to up-recurrence errors because considerable
cancellation of significant digits has taken place in
summing for them. These very small components,
which dominate the f(mg.) determination, are neces-
sarily noisier than Qeyt, @uea, or . Because the data in
Fig. 1(b) are more erratic than they are in Fig. 1{a), we
have only fitted a quadratic to them:

folmpe) = 13.78mp, — 10.8mge + 3.9. N

This function was chosen to lie under almost all the data
points in order to be conservative.

A more limited study than the present one was done
by Wiscombe® The scattered intensity |S1|2 +|Sy|?
and the degree of polarization ({S2}2 — |S1|2/(|S2]2 +



Table |. Comparison of Number of Heratlons Required by the Dave and
Lentz Methods to Calculate Ay(mx) In SHuations Where Eq. (7) Requires
Down Recurrence * "

Number of iterations

x m Dave method Lentz method
100 1.05 -1 41 16
1.50 —¢ a0 22
1.95 —¢ 122 31
1000 1.05 — 0.01: 115 53
1.05-0.1: 121 a2
1.05 ~ 555 20
1.50 ~ 0.1 613 135
1.50 — 1 943 28
1.95-0.1 1,108 254
1.95 - 1,370 42
10,000 1.05 ~ 0.01: 1,464 232
1.05 — 0.1 1,519 40
1.05 = 5,864 20
1.50 - 0.01: 6,414 1384
1.50 — 0.11 6,447 161
1.50 — 9,747 30
1.95 - 0.01c 11,364 2599
1.95 - 0.1/ 11,392 309
1.95— 14,020 44

@ A convergence criterion of 1078 was used in the Lentz method.

{S1]2%) were examined at 60 angles rather than S, and
S at 181 angles, and m g, was varied only from 1.05 to
2.5. The criterion so derived was

falmuey = 16.35mp, + 8.42mp. — 15.04, (8)

which falls roughly midway between f;(mgn.) and
f2(mge).

Equation (5)-(7) furnish a priori criteria when up
recurrence of A, is safe. If down recurrence must be
used, it can be made considerably more efficient by in-
itializing it using the Lentz method® rather than using
Dave’s method.” Dave initializes using Ay*(mx) = 0,
where N* = 1.1|mx| + 1. Presuming N* > N ~ x +
4x'/3 + 1 (see Sec. V) and since only A, through A are
required, Dave’s method requires about (1.1|m| — 1)x
— 4x!/* iterations to get Ay. (We say presuming be-
cause we have found many cases where N* < N, so that
Dave’s method fails utterly. For example, N* = 17
while N =19form =1.05—:7and x = 10; or N* =117
while N =119 form = 1.05 — 0.1/ and x = 100.) Table
I compares this number, for a few values of m and x not
satisfving Eq. (5), with the number of Lentz method
iterations necessary to calculate Ay. Since an iteration
of either type requires about the same amount of com-
putation time, the Lentz method clearly enjoys a dra-
matic advantage. The number of Dave iterations fur-
thermore rises sharply as the imaginary index increases,
while the number of Lentz iterations falls in the same
situation. The Lentz method also has an error that is
easily controllable and has explicit procedures to avoid
ill-conditioning.

It should be emphasized that the Lentz method is
only faster in combination with our up-recurrence cri-
terion. A more extensive version of Tahle [ (see Ref. 6)
shows that, as the imaginary index falls below mj,,, the

number of Lentz method iterations rises sharply and
becomes comparable with the number of Dave method
iterations.

The above empirical criteria are, of course, somewhat
dependent on computer precision. On the CDC and
Cray-1 machines all computations could be done in
single precision (14 significant digits). But the 8 sig-
nificant digit single precision on the IBM and Univac
machines is inadequate, and one must do the A, re-
currence (but not the Ay initialization for down re-
currence) in double precision on those machines.

ll. &, and S§; Computation

‘The computation of scattering amplitudes S, and S5
[Egs. (1d) and (1e)] ordinarily requires almost all the
time in a Mie scattering calculation. This is because
the right-hand sides in Eqgs. (1d) and (1e) are typically
summed for many angles. Thus efficiency in this part
of the calculation is mandatory. We achieve this effi-
ciency partly by vector structure (see Sec. V1) and partly
by two devices to be discussed in this section.

First, we have derived more efficient recurrences for
the angular eigenfunctions 7, and 7, [Egs. {3) and (4)],
namely,

Talp) =nt — my_((p),
n + I}t

n

Tn+1kut) = 8 +(

where s = um,(u), and t =s — 7, _;(u). Derivations
are given in Ref. 6. These recurrences require a total
of three multiplications and three additions, compared
with six multiplications and four additions for Dave’s
recurrences.” [We have assumed precalculation of
purely numerical factors like (n + 1)/n in both cases.]
In our scheme, 7,,(u) is calculated just before the nth
series term is formed, while 7,1(u) is calculated just
afterward; this allows the sharing of the common
quantity t.

The second device consists in calculating not S, and
S5 but rather

N oan 4]
St=8+S% ¥ —0 T (a4 Bu)(ma + 1),
n=1n{n+ 1)
N 2n+1
S—=8,-8= —— ~bp) — Tal
: : n§1n(rz+l.)(ﬂ'1 (mn = 70)

Assume that the purely numerical factor (2n + 1)/n(n
+ 1} is incorporated into a,, and b, or a,, + b,, cutside
of the vector loops over angle where the §; and S, or S*
series are incremented (see Sec. VI). Then only one
multiplication and one addition are necessary to form
a series term for S* or §—, while two multiplications and
cne addition are required to form a series term for S, or
S4. After summing is completed, S; and S, are easily
recaptured from S* at insignificant cost compared with
the rest of the Mie calculation.

IV. Small Particle Approximation

In the small particle or Rayleigh limit x — 0, the Mie
formulas become ill-conditioned. In particular, the
recurrence for 4,, the recurrence for a spherical Bessel
function involved in a, and b,, and the numerator in
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the expression for b, all involve subtraction of nearly
equal numbers as x — 0. After finding the usual for-
mulas for this limit (e.g., those cited in Refs. 1 and 2)
insufficiently accurate in cases where mm < 1, as de-
scribed by Wiscombe,® we developed improved versions
as follows:

5

@ext = 6x Re (61 + by + ga‘g],

Quca = 62T,
1

g =—Reld1(d, + 6%,
T
3 5
Sip) = 5*3 [dl + {61 +§¢52) .ul.

3
Salp) = Ex“ [51 +adu+ 262(2#2 - 1)],

where

5
T= 6|2+ |62+ 3 |dat?,

1 4m2+ 5
1...__x2 — x#

. .m2=1 10 1400
01=2l 1

3 D

Bmt — 385m? + 350
1400

7
D=m2+2+(1—16m2)x2 x4

2-1 1
+2im x3 (1——-x2),
3 10

2m?-5
1+ x2
5 R 2mZ--‘l 70
=ix
‘ 45 9m? - 5
- £2
30
1
1--—x?
a_>=1x'3m”-1 14
15 ) am?—17
2m?*+3— x=
14

This formulation retains 6 significant digits (compared
with exact Mie results) up to x = 0.1, 4-5 digits up tox
= 0.2, and 2-3 digits up to x = 0.5, provided |m| < 2. It
loses accuracy as |m| increases, so these formulas are
used only when |m|x < 0.1, which ensures at least 6-
digit accuracy.

V. Number of Terms in Mie Series

To take advantage of vector structure, one must es-
timate a priori the number of terms N in the Mie series
[Eqgs. (1a)-(1le)]. This is in direct contrast to Dave’s
procedure,® which consists in stopping summation when
la, |2 + |b.|? falls below 107'%,  Analysis of the con-
vergence behavior of these series reveals that itis only
slightly influenced by refractive index and that N~x.
In order to get a more precise estimate, we followed the
suggestion of Khare? that N ~ x + cx /%, where the x 1/3
term accounts for edge wave contributions. Upon
generating a large amount of data on N as a function of
x using a convergence criterion like Dave's, we found
that these data could be excellently fit by

1508 APPLIED OPTICS / Vol. 19, No. 9 / 1 May 1980

x+4x24+1 0.02<x <8
N=4{x+406x3 42 8<x <4200
x +4x134+2 4200 < x < 20,000,

(Chylek in a private communication noted that N must
be taken roughly 1% higher than our value for the very
special purpose of finding certain very narrow, very
sharp spikes in Qex, etc., as a function of x. These
spikes are actually observed in experiments employing
single spheres suspended by laser light pressure.) This
fit rarely overestimates the number of series terms re-
quired by more than one or two. And it applies to all
refractive indices since Mie series convergence is de-
termined entirely by Bessel functions of x alone.

V1. Vector Structure

The newer computers, like the Cray-1, process vectors
in very much the same way that older machines pro-
cessed scalars (see Ref. 10). This can lead to dramatic
speed increases when calculations are structured to
enable processing of entire vectors at once.

Mie calculations involve two types of vectors, one type
having the index n in Egs. (1a)—(1le) and one type having
an angular index. Loops over index n can be com-
pletely vectorized except when summing is being done,
in which case they are only partly vectorizable. But
loops over angle are always fully vectorizable. There-
fore, the angular loop for S; and S» is placed inside the
summing loop, in order to achieve maximum vector
structure: this explains the importance of the S; and S»
caleulation improvements in Sec. 111

The only significant parts of the Mie calculation
which eannot be vector structured are the Lentz method
for Ay and the recurrences for A, and a certain spher-
ical Bessel function. All such iterative computations,
in which a result depends on one or more prior results,
are intrinsically unvectorizable. But the remaining
parts of the Mie calculation have been vectorized, in-
cluding summing operations (using the techniques de-
scribed by Johnson!?).

VUIl. Timing Studies

Table IT compares published times for Dave’s algo-
rithms? and the faster of the two algorithms in the
Wiscombe report.6 (The slower algorithm is designed
to use the absolute minimum amount of memory, which

Table H. Execution Times for Dave® and Wiscombe® Algorithms for a
Single Mie Calculation {Egs. (1a)-{1e)] with 182 Scattering Angles?

Time (sec)
x Dave® Wiscombe®
0.1 0.7 0.00018
1 1.1 0.00036
10 2.7 0.00098
100 20 (.0054
1000 194 0.0456
H000 945 0.222

@ Dave used an IBM 360/50, which is about 100 times slower than
the Cray-1 used by Wiscombe.



Table HI.

Cray-1 Times {in Milliseconds) 1o Execute the Vectorized migvy

Code® for Various Combinations of Mie Size Parameters and Number of Angles *

Mie size parameter

No. of
angles 1 3.3 10
0 0,083 0.10 0.14
3 0.13 0.18 0.28
7 0.13 0.18 0.28
15 0.14 0.20 0.32
A 0.16 0.23 0.39
63 .20 0.2 0.51
127 0.29 0.42 075
250 0.47 0.73 1.3

33 100 334 1000 5000
0.25 053 L5 56 2

037 1.3 38 12 53
059 14 40 13 55

Q.66 1.5 4.5 14 62
080 19 55 17 77
L1 26 T2 106
16 40 12 3 165
2.9 T2 22 63 298

a fach time represents an average over my, = 1.1(00.2)2.5, with mm

={.1.

exacts a penalty of lesser efficiency.) The new algo-
rithm is 3040 times faster when the difference in basic
computer speed is factored out. Of this, a factor of ~7
is due to the vector structure, a factor of ~2 to more
efficient formulations, and the remaining improvement
1o the use of single precision rather than the slower
double precision of Dave’s routines.

Table 11I shows the times required to do Mie calcu-
lations with the new algorithm, for size parameters
ranging from 1 to 5000 and anywhere from 0 to 255
scattering angles. Each quoted time is an average over
the times for eight values of my, for fixed m, = 0.1.
[The times are 5-30% faster for m,, =0 because special
branches are taken in the Mie coefficient {a,,b,) cal-
culation and because only up recurrence is used for
An]

There is a big rise, a factor of 2-3, in going from zero
to three angles in Table HI. But after this initial jump,
one must go all the way to sixty-three angles to double
the three-angle time. This shows the dramatic ad-
vantage of vectorized angular loops, as well as the sav-
ings to be reaped if only Qexi, @ucar and g are re-
quired.

For size parameters x below 100, the Table IT] times
rise considerably more slowly than linearly in x, dem-
onstrating the advantage of vector structure in certain
n loups, including the ones for summing. Only beyond
x = 100 do the times go up about linearly in x, but this
phenomenon is specific to the Cray-1 and comes about
hecause the Cray-1 processes vectors in sixty-four-ele-
ment segments.

Timing studies like these furnish a concrete basis for
testing claims of Mie algorithm improvement and in-
cidentally allow one to make rough a priori estimates
of the times required for particular Mie computa-
tions.

VL.

Dramaticallv faster Mie algorithms have been made
possible by vector structuring and by much more efti-
cient handling of the A, and 8; and S, caleulations,
Better formulas for the small particle case are also

Summary

presented. Timing studies indicate a factor of 30-40
improvement over Dave's algorithms* when interma-
chine differences are removed. Accuracy of the new
algorithms is b-6 significant digits or better, and they
have heen used without difficulty up to size parameters
of 20,000 for real refractive indices from 1 to & and
imaginary indices from 0 to 10. Mie calculations which
were impossibly long a few years ago can be done rou-
tinely with these algorithms.

We thank Ron Welch (University of Mainz, Germa-
ny) and Eric Smith (Colorade State University) for
encouraging us to make these algorithms more widely
available and Tom Ackerman (NASA Ames) for testing
the slower one (MIEV0) directly against Dave’s DBMIE
(converted to single precision) on his CDC 7600.

The National Center for Atmospheric Research is
sponsored by the National Secience Foundation.
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Efficiency Factors in Mie Scattering

H. M. Nussenzveig®
Cooperative Institute for Research in the Environmental Sciences, Boulder, Colovado 80309, and National
Cenier for Atmosphevic Research, Boulder, Colovado 80307

and

W. J. Wiscombe
National Center for Atmospheric Research, Boulder, Colorado 50307

(Received 22 May 1980}

Asymptotic appraximations to the Mie efficiency factors for extinction, absorption, and
radiation pressure, derived from complex—angular-momentum theory and averaged over
Aj ~nr (3 =size parameter}, are given and compared with the exact results. For complex
refractive indices N=n +ix with 1.1 $# $2.5 and 0 $x €1, the relative errors decrease
from ~(1-10)% to ~(10°*~10"%% between 8 =10 and 4 =1000, and computing time is re-
duced by a factor of order 4, so that the Mie formulae can advantageously be replaced by
the asymptotic ones in most applications,

PACS numbers: 42.20.Gg, 42.68.Va

The Mie efficiency factors! for extinetion (Qex)s Evaluation of the exact Mie expressions?® re-
absorption (¢,.), and radiation pressure (Qu) quires summing ~ 8 partial waves. Upon integra-
are just the corresponding croas sections divided tion across size or wavelength with a step fine
by the projected area 7a® of the scattering sphere.  enough to resolve the ripple (A8 <0.01-0.1), one

These quantities are important in many applica- is faced with exorbitant computation times. Ap-
tions. Typical size parameters g =ka (& =wave proximations® based on geometrical optics and
number, a =droplet radius) range from «1 up to classical diffraction theory do not have the re-
~10%, with complex refractive indices N = + iK, quired accuracy until 8 exceeds several thousand
11=n=1.9, 10°°<xks1. The efficiencies vary (cf. below). Clearly, better approximations, de-
extremely rapidly® with 8, » and x; but in most void of ripple, are needed.

applications one is only interested in means (@) The complex-angular-momentum theory of Mie
over some range Ag, not in this high-frequency scattering® can furnish such approximations. By
“ripple.” a simple extension of previously developed tech-

1490 © 1980 The American Physical Society
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niques,* ® we find for the extinction efficiency,

Qup =2+ 1,092 386 157/ +81m{-}(N’ +1)(N? = 1) 14871 N3N + 1) NP - 1)*1[1 " % — _ﬁi;-,_‘)]ﬁ-n

. . (N=-1\]"YN - 1\*
xexpl2i(N — 1)8] - }V - I)E[J —( 3 )] (N S 1)
Xexpl2i{N -1+ z;w)s]} ~0.715 3537874/ - 0,332064 3

x Im{e' AV - 1) AN + 1)(2N* - 6N% + 3))87*2 + OB + ripple. (1)

To obtain the average absorption efficiency (Q,,,’ over A8~ =, one applies the modified Watson trans-
formation® to the corresponding Mie series expansion!-? and then takes the average over AS. The re-
sult® is

<Qah> =<Qabu>! + (Qab) ae. t (Qabs)b.e. ’ (2)
n/a
(Quyr = éf" @(r,,) sind cosd db, (3)
2 oy,
(Qabs) ae, =2-l/sﬂ-3/ag;‘{l j; ‘P(TJ A+)dx; (4)
2 x
Qo' e. =2_mﬁ-’h,§’1-’; l'[‘P("'nt-) - (7 Nax, (5)
where
elr;) =(1-e Y1 -r /(1 -re™), (6)
and 7, and r,, are, respectively, the external and internal reflectivities for polarization A, given by
= Rl 32 =1,2; R, = (=12, ~ue,\)/(z +ue,); {7
z=cosd, u=Ncosd’, sinf =Nsind’, {8)

= =a-2 = _Jz for Eq. (3)
e, =1, e;=N"% 2z;=2z, z, {zau for Eqs. {4) and (5),

and
b =48 Im(N cosd’ + 8’ sind). (9)

6' is the complex angle of refraction corresponding to the angle of incidence 6. [(8) is just Snell’s
Law.] 7, are the Fresnel reflectivities (r,, =»,,), and b ig the damping exponent along a complex
shortcut through the sphere. Thus (3} is an improved version of the geometrical-optic* result.

The terms (4) and (5) represent the contribution from the edge domain® (a.e. =above edge; b.e. =below
edge); »,,* is obtained from 7,, by the substitution

P (Z/ﬁ)”sei"'/’Ai’(i: xe’"’s)/Ai(:t xe’“’/’), (10)
where Ai is the Airy function, ¢ is related to x by
sinf=12%2"198"2¢ (+ in a.e.; - in be.) (11)

[with corresponding changes in the derived quantities (8) and (9)], and the limits of integration are

X, =21/3(n _ 1)32/3, P =(ﬁ/ 2)8/3_ (12)
Finally, in (5), #;," is obtained from »;,~ by the substitution
2 - (2/B)1/3x1/2- (13)
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The average radiation-pressure efficiency is given by®

<Qpr) = 1= (e — W ae, =~ Wob,e.s (14)

wer =Re§)1 fo""w gind cosfe ¥~ | Rynl 2+ 1~ (R P [*(1+£3l Rynl %) e 7], (15)

W) ae, =2758°¥* Re ?’ Jo ost =7y +D)a, (16)
=1

@0y, =2710p73N Ref: f:b[(P 2 =B = (T =1 )) dx, (17)
=1

where )

P =f1(z)Ry,\*Ry)s (18)

Ty a2 fae M1 + R (1 + Ry W1 +R N1 +Ry, N1+ Ry *Ry\ fre™ 7Y, (19)

fi2) =1 +iz%/(1 =iz), f,=e ¥°, (20)

Ry = {f)) AN, —u + (- 1)'iM?lN3z +u +iMD "2, (21

Ry =(f,) LON? + MDYz, —u +(— WiM (1 —uz JI[(V3 + MP)z + u +iM (1 +u2)] "2, (22)

with M?=N? - 1. In all quantities with (x) upper
indices, the substitutions (10) and (11) are under-
stood. Finally, §,” and #,” are obtained from
£y ,Ta" by the substitution

2"~ (2/8)'°(Vx +i/4x). (23)

Again, (15) represents an improved version of
the geometrical-optic’ result, while (16) and (17)
represent above-edge and below-edge corrections.

We have made detailed comparisons® between
the exact Mie resuits (suitably averaged to elimi-
nate the ripple®) and the above asymptotic approx-
imations® over the ranges 10 <8 <5000, 0<k <1,
forn=1,10, 1,33, 1,50, 1.90, and 2.50. Results
for n =1.33 and 10 <3 <1000 are shown in Fig, 1.

Figure 1{a} is a three-dimensional plot of (Q@..).
The oscillations arise form interference between
diffracted and transmitted light, and they are
damped out as k8 increases. Figure 1(b) shows
level curves for the logarithm of the percentage
error of approximation (1), Negative values {er-
rors <1%) are shown by dotted lines, Thus the
relative error falls below 1% already at 8= 15, it
is £0.1% at 2 70, s0.01% at 82200, and = 10°°%
at g 2 10°,

Figures 1{(c) and 1{d) show similar plots for
(@1, and Figs. 1(e) and 1{f) for (). The rela-
tive errors are somewhat greater than for (Q@u.
and are the worst for (@), where one must have
A = 90 to achieve better than 1% error.

The accuracy improves not only as 8 increases,
but also as n increases. Previously known ap-
proximations (based on geometrical optics and

Qassica.l diffraction theory) have an accuracy
that is almost independent of » and that only
reaches 1% at 8 =1000 and (0.2-0.5)% at B =5000.

The computing time is reduced relative to exact
Mie computations roughly by a factor of 0(8), and
it is only about twice that for geometrical-optic
approximations.

Besides the improvement to the geometrical-
optic—type contributions, the main asymptotic
corrections arise from the edge domain. Their
functional form is quite similar to the geometri-
cal-optic one, extended to complex angles of inci-
dence and refraction. Thus, as was found in pre-
vious discussions,’ the edge effects represent a
kind of analytic continuation of ray optics to com-
plex paths, where diffraction corresponds tc bar-
rier penetration. Similar interpretations have
been suggested in atomic,'® nuclear,'! and parti-
cle'? physics.
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