110	
united nation	
erfucational, science	
and cultur	
organizate	
(
international arom	

the

abdus salam

international centre for theoretical physics

301/1152-5

Microprocessor Laboratory Sixth Course on Basic VLSI Design Techniques 8 November - 3 December 1999

LOW POWER DESIGN &
POWER ESTIMATION

Nizar ABDALLAH Actel Corporation 955 East Arques Avenue Sunnyvale, 94086-4533 California U.S.A.

These are preliminary lecture notes intended only for distribution to participants.

Low Power Design & Power Estimation

Outline

- Motivation for Power Tools
- Low-Power Design Methodology
- Principles for Power Reduction
- □ Principles for Power Estimation
- Conclusion

Deep-Submicron Technologies

Higher Density and Performance Capabilities (FPGAs: 100 000 Gates; 100 MHz Clock rates)

Power Dissipation Problem

4CTC Motivation for Power Tools

4 times / 3 Years Increase for the last 20 Years

□ PowerPC / Motorola

8.5 Watts

□ Pentium / Intel

16 Watts

□ Alpha / Dec

30 Watts

□ Alpha 300 Mhz / Dec

50 Watts

Motivation for Power Tools

Power = Cost For Major Applications Today

- □ Battery Lifetime (Cellular, Medical, ...)
- Packaging Cost
- □ Reliability (Time to Failure)
- ☐ Green PC program (< 30 Watts)

Nizar Abdallah

Motivation for Power Tools

Power = Less Performance

- □ Clock Frequency
- □ Temperature Increase
- □ Electromigration

Acte Motivation for Power Tools

Packaging Cost is an Issue

Motivation for Power Tools

Today...

Design Win = f(performance, cost)

Tomorrow...

Performance = f(Power, ...)

cost = f(Power, ...)

Design Win will also be low-power dependent

ACTE Motivation for Power Tools

We Need...

- ✓ Low Power Design Methodology
 - ✓ Power Estimation Tools
 - ✓ Power Optimization Tools

Methodology

Analogous to Timing Methodologies

- ✓ All Levels of Abstraction
- ✓ Back-Annotation from physical Design

Power Reduction

Sources of Power Consumption

- □ Dynamic Power (70-90%)(Switching activity)
- □ Short-Circuit Power (10-30%)
- □ Leakage Power (<5%)(Important for battery lifetime)

Power Reduction

Expression for CMOS Power

Gate Generating a Simple Clock Signal with Frequency f

$$P_{average} = C V_{dd}^2 f$$

□ In general, a signal with a transition density D

$$P_{average} = 1/2 C V_{dd}^2 D$$

Power Reduction

$$P_{average} = 1/2 C V_{dd}^2 D$$

- Reducing Switching Activity
 Prevent glitches (Architecture, Synthesis, ...)
 20% of power increase due to glitches
- Reducing Load Capacitance
 Gate sizing, Low-Power cell library
 Circuit techniques (Pass-Transistor, ...)
- Reducing Supply Voltage
 Drawback: Circuit delay increases

13

Power Estimation

Two Problems

- Design Dependent
 Tools Should be Available to the Customer
- Input Pattern Dependent (more Central Problem)
 Difficult when the application is not known
 A good vector set may be very long

Power Estimation

High-Level Power Estimation

- □ FPGA: Block Macromodels Available Problem to estimate net consumption
- Models for Logical Level, RTL Level, Behavioral Level Need for a power cost function

Power Estimation

What About Accuracy and Improvements?

Assuming we Have a representative Vector Set,

Low-Level Timing Simulation	10% from Spice
-----------------------------	----------------

Improvement

At the Logical Level is About	5%
-------------------------------	----

□ At the RTL Level May Reach	90%
------------------------------	-----

Nizar Abdallah

Conclusion

- Power Consumption Issues Can no Longer be Ignored for High Density FPGA Design
- □ Timing / Power: The same challenge
 - Input pattern dependency
 - All abstraction levels
 - Power and timing constraints
 - Net consumption is becoming very significant
- □ DPCS IEEE 1481 is also for Power
- A Balance between Power, Area, and Delay
- Absolute Accuracy is not a Critical Issue

FPGA Solutions

Motivation

- □ Cost (Small Series, New Designs, ...)
- Rapid Prototyping
- □ Emulators
- □ Development Time
- □ Test Time

Motivation

□ Relatively High Density (100 000 Gates)

□ Relatively High Performance Capabilities (100MHz)

Motivation

☐ Market in 1993: \$539M

☐ Market in 1998: \$2124M

□ Annual Growth Rate of 32%

Sales

□ Actel

\$151.3M

□ Altera

\$639.0M

□ Xilinx

\$610.6M

Design Methodology

Typical ASIC

Design Methodology

Performance

□ Relatively High Density (100 000 Gates)

□ Relatively High Performance Capabilities (100MHz)

4CTC Memory Based Architecture

Can be ...

- Changed During the Development
- Updated after Delivery to the Customer
- Purchased in Larger Quantities
- □ Reused (No Inventory if not Sold)
- □ Fully Tested Prior to Delivery

One-Time Architecture (Antifuse)

Have ...

- □ Higher Speed (Less RC Delays on the Interconnections)
- High Reliability
- No Time-Delay to Reload the Interconnection Information (Available Immediately on Power-Up)

Actel Antifuse

Nizar Abdallah

Actel PLICE Antifuse

Programmable Low Impedance Circuit Element

Open Resistance = 10s of MOhms Short Resistance = 500 Ohms

Nizar Abdallah

SX Family

Features

- □ 2 Global Clocks
- □ PCI Compliant I/O
- Mixed Voltage Operation
- □ Built-In JTAG
- □ More Routing Resources
- □ New Antifuse
- □ New Architecture

SX Family

Routing Interconnects are Above Logic Modules

Pre-SX Architecture

A 0.6 Micron Technology

Nizar Abdallah

SX Routing Resources

Direct Connects

- Connects Combinatorial Cell (C-Cell) to its Adjacent Sequential Cell (R-Cell)
- No Antifuses
- □ 0.1 ns Routing Delay

Fast Connects

- Every Cell Output Connects to One
- Accessible by Cells in the Same Cluster or the One Below by One Antifuse
- □ 0.4 ns Routing Delay

SX Parts

Part#	SX08	SX16	<u>SX16P</u>	<u>SX32</u>	<u>SX64</u>
Gates	8,000	16,000	16000	32,000	64,000
MaxIO	129	177	177	246	340
Rcells	256	528	528	1080	2160
CCells	512	924	924	1800	3600
Availb.	98	98	98	98	99

ALLIANCE Web Site

http://www-asim.lip6.fr

Good Luck...