

abdus salam international centre for theoretical physics

301/1152-6

Microprocessor Laboratory
Sixth Course on Basic VLSI Design Techniques
8 November - 3 December 1999

INTRODUCTION TO VLSI ASIC DESIGN AND TECHNOLOGY

> Paulo Rodrigues S. MOREIRA CERN EP/MIC CH-1211 Geneva 23 SWITZERLAND

These are preliminary lecture notes intended only for distribution to participants.

Introduction to VLSI ASIC Design and Technology

P. Moreira, CERN-EP/MIC Geneva Switzerland

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

"The world is digital..."

- Analogue loses terrain:
 - Computing
 - Instrumentation
 - Control systems
 - Telecommunications
 - Consumer electronics

"...analogue will survive

- Amplification of very week signals
- A/D and D/A conversion
- Very high frequency amplification
- · Very high frequency signal processing
- As digital systems become faster and faster and circuits densities increase:
 - Analogue phenomena are becoming important in digital systems

"Moore's Law"

The number of transistors that can be integrated on a single IC grows exponentially with time.

"Integration complexity doubles every three years", Gordon Moore - 1965

Trends in transistor count

6

Trends in clock frequency (1)

Trends in clock frequency (2)

8

Trends in feature size

Driving force: Economics (1)

- Traditionally, the cost/function in an IC is reduced by 25% to 30% a year.
- To achieve this the number of functions/IC has to be increased. This demands for:
 - Increase of the transistor count
 - Decrease of the feature size (contains the area increase and improves performance)
 - Increase of the clock speed

Driving force: Economics (2)

- Increase productivity:
 - Increase equipment throughput
 - Increase manufacturing yields
 - Increase the number of chips on a wafer:
 - reduce the are of the chip: smaller feature size & redesign
 - Use the largest wafer size available

Example of a cost effective product (typically DRAM): the initial IC area is reduced to 50% after 3 years and to 35% after 6 years.

2001 and beyond?

Semiconductor Industry Association (SIA) Road Map, 1998 Update

				=	
	1999	2002	2014		
Technology (nm)	180	130	35	IEEE Spectrum, July	
Minimum mask count	22/24	24	29/30	1999	
Wafer diameter (mm)	300	300	450	Special report: "The 100-million transistor IC"	
Memory-samples (bits)	1G	4G	1T		
Transistors/cm² (μP)	6.2M	18 M	390 M		
Wiring levels (maximum)	6-7	7	10		
Clock, local (MHz)	1250	2100	10000		
Chip size: DRAM (mm²)	400	560	2240		
Chip size: μP (mm²)	340	430	901		
Power supply (V)	1.5-1.8	1.2-1.5	0.37-0	.42	
Maximum Power (W)	90	130	183	į.	
Number of pins (μP)	700	957	3350		
Tringto 9 11 Navambar 1000	lesten al ati a			40	

How to cope with complexity?

- By applying:
 - Rigid design methodologies
 - Design automation

Design abstraction levels

Trieste, 8-11 November 1999

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

		-
	Ť	
	•	

- CMOS devices
- pn-Junction diodes
- MOSFET equations
- What causes delay?
- MOSFET capacitances
- CMOS device hazards

In a CMOS process the devices are:

- PMOS FET's
- NMOS FET's
- + unwanted (but ubiquitous):
- pn-Junction diodes
- parasitic capacitance

and

- parasitic bipolars
- parasitic inductance

pn-Junctions diodes

- Any pn-junction in the IC forms a diode
- Majority carriers diffuse from regions of high to regions of low concentration
- The electric field of the depletion region counteracts diffusion
- In equilibrium there is no net flow of carriers in the diode

pn-Junction diodes

- Under zero bias there is a built-in potential across the junction
- The built-in potential is:

$$\phi_0 = \phi_T \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right)$$

$$\phi_T = \frac{k \cdot T}{q} \cong 26 \text{ mV } @ 300^{\circ} \text{ K}$$

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \text{ for silicon @ } 300^{\circ} \text{ K}$$

pn-Junction diodes

Ideal diode equation

$$I_D = I_s \cdot \left(e^{V/\phi_T} - 1 \right)$$

• For $V>\phi_T$ (forward bias)

$$I_F \cong I_s \cdot e^{V/\phi_T}$$

- For V<0 (reversed bias) $I_R \cong -I_s$
- In practical diodes due to thermal generation

$$I_R \cong 100 \text{ to } 1000 \times (-I_s)$$

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

- CMOS devices
- pn-Junction diodes
- MOSFET equations
- What causes delay?
- MOSFET capacitances
- CMOS device hazards

In a CMOS process the devices are:

- PMOS FET's
- NMOS FET's
- + unwanted (but ubiquitous):
- pn-Junction diodes
- parasitic capacitance

and

- parasitic bipolars
- parasitic inductance

pn-Junctions diodes

- Any pn-junction in the IC forms a diode
- Majority carriers diffuse from regions of high to regions of low concentration
- The electric field of the depletion region counteracts diffusion
- In equilibrium there is no net flow of carriers in the diode

pn-Junction diodes

- Under zero bias there is a built-in potential across the junction
- The built-in potential is:

$$\phi_0 = \phi_T \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right)$$

$$\phi_T = \frac{k \cdot T}{q} \cong 26 \text{ mV @ } 300^{\circ} \text{K}$$

$$n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \text{ for silicon @ } 300^{\circ} \text{ K}$$

pn-Junction diodes

Ideal diode equation

$$I_D = I_s \cdot \left(e^{V/\phi_T} - 1 \right)$$

• For $V>\phi_T$ (forward bias)

$$I_F \cong I_s \cdot e^{V/\phi_T}$$

- For V<0 (reversed bias) $I_R \cong -I_s$
- In practical diodes due to thermal generation

$$I_R \cong 100 \text{ to } 1000 \times (-I_s)$$

Depletion capacitance

- The depletion, the nand the p-type regions form a capacitor
- This capacitor is bias dependent:

$$C_{j} = \frac{C_{j0}}{\left(1 - \frac{V}{\phi_{0}}\right)^{m}}$$

Simplification: for V<0

$$C_i = k \cdot C_{i0}$$

The NMOS

- Substrate: lightly doped (p-)
- Source and drain: heavily doped (n+)
- Gate: polysilicon
- Thin oxide separates the gate and the "channel"
- Field oxide and field implant isolate the devices

MOSFET equations

Cut-off region

$$I_{ds} = 0$$
 for $V_{gs} - V_T < 0$

Linear region

$$I_{ds} = \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[\left(V_{gs} - V_T \right) \cdot V_{ds} - \frac{V_{ds}^2}{2} \right] \cdot \left(1 + \lambda \cdot V_{ds} \right) \text{ for } 0 < V_{ds} < V_{gs} - V_T$$

Saturation

$$I_{ds} = \frac{\mu \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(V_{gs} - V_T\right)^2 \cdot \left(1 + \lambda \cdot V_{ds}\right) \text{ for } V_{ds} > V_{gs} - V_T$$

Oxide capacitance

$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}} \left(\text{F/m}^2 \right)$$

Process "transconductance"

$$\mu \cdot C_{ox} = \frac{\mu \cdot \varepsilon_{ox}}{t_{ox}} \quad \left(A / V^2 \right)$$

Mobility

MOS output characteristics

- Linear region: V_{ds}<V_{gs}-V_T
 - Voltage controlled resistor
- Saturation region: V_{ds}>V_{gs}-V_T
 - Voltage controlled current source
- Curves deviate from the ideal current source behavior due to:
 - Channel modulation effects

Bulk effect

- The threshold depends on the:
 - Doping levels
 - Source-to-bulk voltage
 - Gate oxide thickness

$$V_T = V_{T0} + \gamma \cdot \left(\sqrt{2\phi_F + V_{sb}} - \sqrt{2\phi_F} \right)$$

$$V_{T0} = \phi_{ms} - 2\phi_F - \frac{1}{C_{ox}} [Q_{b0} + Q_{ox} + Q_I]$$

$$\gamma = \frac{\sqrt{2\,q\,\varepsilon_{si}\,N_A}}{C_{ox}}$$

$$\phi_F = \phi_T \ln \left[\frac{N_A}{n_i} \right]$$
 for p - substrate

Bulk effect

- When the semiconductor surface inverts to n-type the channel is in "strong inversion"
- V_{sb} = 0 ⇒ strong inversion for:
 - surface potential > $-2\phi_F$
- V_{sb} > 0 ⇒ strong inversion for:
 - surface potential > $-2\phi_{F+}V_{sb}$

Weak inversion

- Is $I_d=0$ when $V_{gs}< V_T$?
- For $V_{gs} < V_T$ the drain current depends exponentially on V_{gs}
- In week inversion and saturation:

$$I_d \cong \frac{W}{L} \cdot I_{do} \cdot e^{\frac{q \cdot V_{gs}}{n \cdot k \cdot T}}$$

- Used in very low power designs
- Slow operation

What causes delay?

- In MOS circuits capacitive loading is the main cause
- Due to:
 - Device capacitance
 - Interconnect capacitance

$$\Delta t = C \cdot \frac{\Delta V}{I} \approx \frac{C}{2 \cdot \mu \cdot C_{ox} \cdot V_{dd}} \cdot \frac{L}{W}$$

MOSFET capacitances

- MOS capacitances have three origins:
 - The basic MOS structure
 - The channel charge
 - The pn-junctions depletion regions

MOS structure capacitances

 Source/drain diffusion extend below the gate oxide by:

x_d - the lateral diffusion

 This gives origin to the source/drain overlap capacitances:

$$C_{gso} = C_{gdo} = C_o \times W$$

 $C_o \text{ (F/m)}$

 Gate-bulk overlap capacitance:

$$C_{gbo} = C_o' \times L, \quad C_o' \quad (F/m)$$

Channel capacitance

- The channel capacitance is nonlinear
- Its value depends on the operation region
- Its formed of three components:

C_{ab} - gate-to-bulk capacitance

C_{as} - gate-to-source capacitance

C_{ad} - gate-to-drain capacitance

Operation region	C _{gb}	C _{gs}	C _{gd}
Cutoff	C _{ox} W L	0	0
Linear	0	(1/2) C _{ox} W L	(1/2) C _{ox} W L
Saturation	0	(2/3) C _{ox} W L	0

Channel capacitance

Trieste, 9-13 November 1998

CMOS devices

Junction capacitances

- C_{sb} and C_{db} and diffusion capacitances composed of:
 - Bottom-plate capacitance:

$$C_{bottom} = C_j \cdot W \cdot L_s$$

- Side-wall capacitance:

$$C_{sw} = C_{jsw} \cdot (2L_s + W)$$

Trieste, 9-13 November 1998

CMOS devices

Source/drain resistance

• Scaled down devices \Rightarrow higher source/drain resistance: $L_{c,d}$

 $R_{s,d} = \frac{L_{s,d}}{W} \cdot R_{sq} + R_c$

 In sub-μ processes <u>silicidation</u> is used to reduce the source, drain and gate parasitic resistance

MOSFET model

CMOS devices

CMOS parasitic bipolar

CMOS device hazards

CMOS device hazards

Sources of latchup:

- Electrical disturbance
- Transient on power and ground buses
- Improper power sequencing
- Radiation
- ESD

How to avoid it:

- Technological methods (beta reduction, substrate resistance reduction, trench isolation)
- Layout rules:
 - Spacing rules
 - Contact distribution
 - Guard rings

CMOS device hazards

Trieste, 9-13 November 1998

CMOS devices

		,

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

CMOS technology

- Lithography
- Physical structure
- CMOS fabrication sequence
- Yield
- Design rules
- Other processes
- Advanced CMOS process
- Process enhancements
- Technology scaling

CMOS technology

- An Integrated Circuit is an electronic network fabricated in a single piece of a semiconductor material
- The semiconductor surface is subjected to various processing steps in which impurities and other materials are added with specific geometrical patterns
- The fabrication steps are sequenced to form three dimensional regions that act as transistors and interconnects that form the switching or amplification network

Lithography: process used to transfer patterns to each layer of the IC

Lithography sequence steps:

- Designer:
 - Drawing the layer patierns on a layout editor
- Silicon Foundry:
 - Masks generation from the layer patterns in the design data base
 - Printing: transfer the mask pattern to the wafer surface
 - Process the wafer to physically pattern each layer of the IC

Basic sequence

- The surface to be patterned is:
 - spin-coated with photoresist
 - the photoresist is dehydrated in an oven (photo resist: light-sensitive organic polymer)
- The photoresist is exposed to ultra violet light:
 - For a positive photoresist exposed areas become soluble and non exposed areas remain hard
- The soluble photoresist is chemically removed (development).
 - The patterned photoresist will now serve as an etching mask for the SiO₂

- The SiO₂ is etched away leaving the substrate exposed:
 - the patterned resist is used as the etching mask
- lon Implantation:
 - the substrate is subjected to highly energized donor or acceptor atoms
 - The atoms impinge on the surface and travel below it
 - The patterned silicon SiO₂ serves as an implantation mask
- The doping is further driven into the bulk by a thermal cycle

- The lithographic sequence is repeated for each physical layer used to construct the IC.
 The sequence is always the same:
 - Photoresist application
 - Printing (exposure)
 - Development
 - Etching

Patterning a layer above the silicon surface

Trieste, 8-10 November 1999

• Etching:

- Process of removing unprotected material
- Etching occurs in all directions
- Horizontal etching causes an under cut
- "preferential" etching can be used to minimize the undercut
- Etching techniques:
 - Wet etching: uses chemicals to remove the unprotected materials
 - Dry or plasma etching: uses ionized gases rendered chemically active by an rfgenerated plasma

Physical structure

NMOS physical structure:

- p-substrate
- n+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1
- L_{eff}<L_{drawn} (lateral doping effects)

NMOS layout representation:

- Implicit layers:
 - oxide layers
 - substrate (bulk)
- Drawn layers:
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

Physical structure

PMOS physical structure:

- p-substrate
- n-well (bulk)
- p+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1

PMOS layout representation:

- Implicit layers:
 - oxide layers
- Drawn layers:
 - n-well (bulk)
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

Trieste, 8-10 November 1999

CMOS technology

0. Start:

- For an n-well process the starting point is a p-type silicon wafer:
- wafer: typically 75 to 230mm in diameter and less than 1mm thick

1. Epitaxial growth:

- A single p-type single crystal film is grown on the surface of the wafer by:
 - subjecting the wafer to high temperature and a source of dopant material
- The epi layer is used as the base layer to build the devices

2. N-well Formation:

- PMOS transistors are fabricated in n-well regions
- The first mask defines the n-well regions
- N-well's are formed by ion implantation or deposition and diffusion
- Lateral diffusion limits the proximity between structures
- Ion implantation results in shallower wells compatible with today's fine-line processes

3. Active area definition:

- Active area:
 - · planar section of the surface where transistors are build
 - defines the gate region (thin oxide)
 - defines the n+ or p+ regions
- A thin layer of SiO₂ is grown over the active region and covered with silicon nitride

4. Isolation:

- Parasitic (unwanted) FET's exist between unrelated transistors (Field Oxide FET's)
- Source and drains are existing source and drains of wanted devices
- Gates are metal and polysilicon interconnects
- The threshold voltage of FOX FET's are higher than for normal FET's

- FOX FET's threshold is made high by:
 - introducing a channel-stop diffusion that raises the impurity concentration in the substrate in areas where transistors are not required
 - making the FOX thick

4.1 Channel-stop implant

 The silicon nitride (over n-active) and the photoresist (over n-well) act as masks for the channel-stop implant

4.2 Local oxidation of silicon (LOCOS)

- The photoresist mask is removed
- The SiO₂/SiN layers will now act as a masks
- The thick field oxide is then grown by:
 - · exposing the surface of the wafer to a flow of oxygen-rich gas
- The oxide grows in both the vertical and lateral directions
- This results in a active area smaller than patterned

- Silicon oxidation is obtained by:
 - Heating the wafer in a oxidizing atmosphere:
 - Wet oxidation: water vapor, T = 900 to 1000°C (rapid process)
 - Dry oxidation: Pure oxygen, T = 1200°C (high temperature required to achieve an acceptable growth rate)
- Oxidation consumes silicon
 - SiO₂ has approximately twice the volume of silicon
 - The FOX is recedes below the silicon surface by 0.46X_{FOX}

5. Gate oxide growth

- The nitride and stress-relief oxide are removed
- The devices threshold voltage is adjusted by:
 - adding charge at the silicon/oxide interface
- The well controlled gate oxide is grown with thickness t_{ox}

6. Polysilicon deposition and patterning

- A layer of polysilicon is deposited over the entire wafer surface
- The polysilicon is then patterned by a lithography sequence
- All the MOSFET gates are defined in a single step
- The polysilicon gate can be doped (n+) while is being deposited to lower its parasitic resistance (important in high speed fine line processes)

7. PMOS formation

- Photoresist is patterned to cover all but the p+ regions
- A boron ion beam creates the p+ source and drain regions
- The polysilicon serves as a mask to the underlying channel
 - This is called a self-aligned process
 - It allows precise placement of the source and drain regions
- During this process the gate gets doped with p-type impurities
 - Since the gate had been doped n-type during deposition, the final type (n or p) will depend on which dopant is dominant

8. NMOS formation

- Photoresist is patterned to define the n+ regions
- Donors (arsenic or phosphorous) are ion-implanted to dope the n+ source and drain regions
- The process is self-aligned
- The gate is n-type doped

9. Annealing

- After the implants are completed a thermal annealing cycle is executed
- This allows the impurities to diffuse further into the bulk
- After thermal annealing, it is important to keep the remaining process steps at as low temperature as possible

10. Contact cuts

- The surface of the IC is covered by a layer of CVD oxide
 - The oxide is deposited at low temperature (LTO) to avoid that underlying doped regions will undergo diffusive spreading
- Contact cuts are defined by etching SiO₂ down to the surface to be contacted
- These allow metal to contact diffusion and/or polysilicon regions

11. Metal 1

 A first level of metallization is applied to the wafer surface and selectively etched to produce the interconnects

Trieste, 8-10 November 1999

12. Metal 2

- Another layer of LTO CVD oxide is added
- Via openings are created
- Metal 2 is deposited and patterned

13. Over glass and pad openings

- A protective layer is added over the surface:
- The protective layer consists of:
 - A layer of SiO₂
 - Followed by a layer of silicon nitride
- The SiN layer acts as a diffusion barrier against contaminants (passivation)
- Finally, contact cuts are etched, over metal 2, on the passivation to allow for wire bonding.

Yield

Yield

 $Y = \frac{number \text{ of good chips on wafer}}{\text{total number of chips}}$

- The yield is influenced by:
 - the technology
 - the chip area
 - the layout
- Scribe cut and packaging also contribute to the final yield
- Yield can be approximated by: $Y = e^{-\sqrt{A?D}}$

A - chip area (cm²)

D - defect density (defects/cm²)

- The limitations of the patterning process give rise to a set of mask design guidelines called <u>design rules</u>
- Design rules are a set of guidelines that specify the minimum dimensions and spacings allowed in a layout drawing
- Violating a design rule might result in a <u>non-functional</u> circuit or in a <u>highly reduced</u> yield
- The design rules can be expressed as:
 - A list of minimum feature sizes and spacings for all the masks required in a given process
 - Based on single parameter λ that characterize the linear feature (e.g. the minimum grid dimension). λ base rules allow simple scaling

- Minimum line-width:
 - smallest dimension
 permitted for any object in
 the layout drawing
 (minimum feature size)
- Minimum spacing:
 - smallest distance permitted between the edges of two objects
- This rules originate from the resolution of the optical printing system, the etching process, or the surface roughness

- Contacts and vias:
 - minimum size limited by the lithography process
 - large contacts can result in cracks and voids
 - Dimensions of contact cuts are restricted to values that can be reliably manufactured
 - A minimum distance between the edge of the oxide cut and the edge of the patterned region must be specified to allow for misalignment tolerances (registration errors)

MOSFET rules

- n+ and p+ regions are formed in two steps:
 - the <u>active</u> area openings allow the implants to penetrate into the silicon substrate
 - the <u>nselect</u> or <u>pselect</u> provide photoresist openings over the active areas to be implanted
- Since the formation of the diffusions depend on the overlap of two masks, the nselect and pselect regions must be larger than the corresponding active areas to allow for misalignments

- Gate overhang:
 - The gate must overlap the active area by a minimum amount
 - This is done to ensure that a misaligned gate will still yield a structure with separated drain and source regions
- A modern process has may hundreds of rules to be verified
 - Programs called <u>Design</u>
 Rule <u>Checkers assist the</u>
 designer in that task

P-well process

- NMOS devices are build on a implanted p-well
- PMOS devices are build on the substrate
- P-well process moderates the difference between the p- and the ntransistors since the P devices reside in the native substrate
- Advantages: better balance between p- and n-transistors

Twin-well process

- n+ or p+ substrate plus a lightly doped epi-layer (latchup prevention)
- wells for the n- and p-transistors
- Advantages, simultaneous optimization of p- and n-transistors:
 - threshold voltages
 - body effect
 - gain

- Silicon On Insulator (SOI)
 - Islands of silicon on an insulator form the transistors
- Advantages:
 - No wells ⇒ denser transistor structures
 - Lower substrate capacitances

- Very low leakage currents
- No FOX FET exists between unrelated devices
- No latchup
- No body-effect:
 - However, the absence of a backside substrate can give origin to the "kink effect"
- Radiation tolerance
- Disadvantages:
 - Absence of substrate diodes (hard to implement protection circuits)
 - Higher number of substrate defects ⇒ lower gain devices
 - More expensive processing

- SOI wafers can also be manufactured by a method called: Separation by Implantation of Oxygen (SIMOX)
- The starting material is a silicon wafer where heavy doses of oxygen are implanted
- The wafer is annealed until a thin layer of SOI film is formed
- Once the SOI film is made, the fabrication steps are similar to those of a bulk CMOS process

Advanced CMOS processes

- Shallow trench isolation
- n+ and p+-doped polysilicon gates (low threshold)
- source-drain extensions LDD (hot-electron effects)
- Self-aligned silicide (spacers)
- Non-uniform channel doping (short-channel effects)

Process enhancements

- Up to six metal levels in modern processes
- Copper for metal levels 2 and higher
- Stacked contacts and vias
- Chemical Metal Polishing for technologies with several metal levels
- For analogue applications some processes offer:
 - capacitors
 - resistors
 - bipolar transistors (BiCMOS)

- Currently, technology scaling has a <u>threefold</u> <u>objective</u>:
 - Reduce the gate delay by 30% (43% increase in frequency)
 - Double the transistor density
 - Saving 50% of power (at 43% increase in frequency)
- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by α
 - Device voltages reduced by $1/\alpha$ (not in all scaling methods)
 - Typically $1/\alpha = 0.7$ (30% reduction in the dimensions)

The scaling variables are:

This is called <u>constant field</u> scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called **constant voltage**. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below 0.8µm only "constant field" scaling is used.

Some consequencies 30% scaling in the constant field regime (α = 1.43, 1/ α = 0.7):

Device/die area:

$$W \times L \rightarrow (1/\alpha)^2 = 0.49$$

- In practice, microprocessor <u>die size grows</u> about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area)
$$/(W \times L) \rightarrow \alpha^2 = 2.04$$

In practice, <u>memory density</u> has been scaling as expected.
 (not true for microprocessors...)

Gate capacitance:

$$W \times L / t_{ox} \rightarrow 1/\alpha = 0.7$$

Drain current:

$$(W/L) \times (V^2/t_{ox}) \rightarrow 1/\alpha = 0.7$$

Gate delay:

$$(C \times V) / I \rightarrow 1/\alpha = 0.7$$

Frequency $\rightarrow \alpha = 1.43$

- In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to two factors:
 - the number of gate delays in a clock cycle decreases with time (the designs become highly pipelined)
 - advanced circuit techniques reduce the <u>average gate delay</u>
 beyond 30% per generation.

Power:

$$C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$$

Power density:

$$1/t_{ox} \times V^2 \times f \rightarrow 1$$

Active capacitance/unit-area:

Power dissipation is a function of the operation <u>frequency</u>, the power <u>supply voltage</u> and of the <u>circuit size</u> (number of devices). If we normalize the power density to $V^2 \times f$ we obtain the <u>active</u> <u>capacitance per unit area</u> for a given circuit. This parameter can be compared with the oxide capacitance per unit area:

$$1/t_{ox} \rightarrow \alpha = 1.43$$

 In practice, for microprocessors, the active capacitance/unitarea only increases between 30% and 35%. Thus, the twofold improvement in logic density between technologies is not achieved.

- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width → increased resistance
 - Denser interconnects → <u>higher capacitance</u>
 - To account for <u>increased parasitics</u> and <u>integration</u> <u>complexity</u> more interconnection layers are added:
 - thinner and tighter layers → local interconnections
 - thicker and sparser layers → global interconnections and power

Interconnects are scaling as expected

Parameter	Constant Field	Constant Voltage	
Supply voltage (V _{dd})	1/α	1	<u>†</u>
Length (L)	1/α	$1/\alpha$	
Width (W)	1/α	$1/\alpha$	Scaling
Gate-oxide thickness (t _{ox})	1/α	1/α	Variables
Junction depth (X _i)	1/α	$1/\alpha$	
Substrate doping (N _A)	α	α	↓
Electric field across gate oxide (E)	1	α	†
Depletion layer thickness	1/α	$1/\alpha$	
Gate area (Die area)	$1/\alpha^2$	$1/\alpha^2$	Device
Gate capacitance (load) (C)	1/α	$1/\alpha$	Repercussion
Drain-current (I _{dss})	1/α	α	
Transconductance (g _m)	1	α	
Gate delay	1/α	$1/\alpha^2$	†
Current density	α	α^3	Circuit
DC & Dynamic power dissipation	$1/\alpha^2$	α	Repercussion
Power density	1	α^3	
Power-Delay product Trieste, 8-10 November 1999 CM	1/α ³ OS technology	1/α	\

Lithography:

Optics technology	Technology node		
248nm mercury-xenon lamp	180 - 250nm		
248nm krypton-fluoride laser	130 - 180nm		
193nm argon-fluoride laser	100 - 130nm		
157nm fluorine laser	70 - 100nm		
13.4nm extreme UV	50 - 70nm		

Lithography:

- Electron Beam Lithography (EBL)
 - Patterns are derived directly from digital data
 - The process can be direct: no masks
 - Pattern changes can be implemented quickly
 - However:
 - Equipment cost is high
 - Large amount of time required to access all the points on the wafer

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

		·	

CMOS logic structures

- CMOS logic: "0" and "1"
- The MOST a simple switch
- The CMOS inverter
- The CMOS pass gate
- Simple CMOS gates
- Complex CMOS gates

CMOS logic: "0" and "1"

- Logic circuits process
 Boolean variables
- Logic values are associated with voltage levels:

$$-V_{IN} > V_{IH} \Rightarrow$$
 "0"

$$-V_{IN} < V_{II} \Rightarrow "0"$$

- Noise margin:
 - $-NM_H=V_{OH}-V_{IH}$
 - $-NM_L=V_{IL}-V_{OL}$

The MOST - a simple switch

MOSFET's in digital design

- Important characteristics:
 - It is an unipolar device
 - NMOS charge carrier: electrons
 - PMOS charge carrier: holes
 - It is a symmetrical device
 - Source = drain
 - High input impedance (Ig=0)
 - Low standby current in CMOS configuration
 - Voltage controlled device with high fan-out

Regions of operation (balanced inverter):

V _{in}	n-MOS	p-MOS	V_{out}
0	cut-off	linear	V_{dd}
$V_{TN} < V_{in} < V_{dd}/2$	saturation	linear	\sim $V_{ m dd}$
V _{dd} /2	saturation	saturation	$V_{dd}/2$
V_{dd} - $IV_{TP}I>V_{in}>V_{dd}/2$	saturation	linear	~0
V_{dd}	linear	cut-ofi	0

Triest, 9-13 November 1998

CMOS logic structures

- Propagation delay
 - Main origin: load capacitance

$$t_{pLH} = \frac{C_L \cdot V_{dd}}{k_p (V_{dd} - |V_{TP}|)^2} \approx \frac{C_L}{k_p \cdot V_{dd}}$$

$$t_{pHL} = \frac{C_L \cdot V_{dd}}{k_n (V_{dd} - |V_{TN}|)^2} \approx \frac{C_L}{k_n \cdot V_{dd}}$$

$$t_p \approx \frac{1}{2} (t_{pLH} + t_{pLH}) = \frac{C_L}{2 \cdot V_{dd}} \left(\frac{1}{k_n} + \frac{1}{k_p} \right)$$

- To reduce the delay:
 - Reduce C_L
 - Increase k_n and k_p. That is, increase W/L

- CMOS power budget:
 - Dynamic power consumption:
 - Charging and discharging of capacitors
 - Short circuit currents:
 - Short circuit path between power rails during switching
 - Leakage
 - Leaking diodes and transistors

- Dynamic power dissipation
 - Function of the transistors size
 - Gate and parasitic capacitances
 - To reduce dynamic power dissipation
 - Reduce: C₁
 - Reduce: V_{dd} ← The most effective action
 - Reduce: f

Regions of operation: "0" to "1" transition

NMOS:

- source follower
- $-V_{gs} = V_{ds}$ always:
 - $V_{out} < V_{dd} V_{TN} \Rightarrow$ saturation
 - $V_{out} > V_{dd} V_{TN} \Rightarrow cutoff$
- $-V_{TN} > V_{TN0}$ (bulk effect)

PMOS:

- current source
- V_{out} < $IV_{TP}I$ ⇒ saturation
- $-V_{out} > V_{TP} \Rightarrow linear$

Triest, 9-13 November 1998

CMOS logic structures

Regions of operation: "0" to "1" transition

$V_{out} < V_{TP} $	NMOS and PMOS saturated
$ V_{TP} < V_{out} < V_{dd} - V_{TN}$	NMOS saturated, PMOS linear
$V_{out} > V_{dd} - V_{TN}$	NMOS cutoff, PMOS linear

Regions of operation: "1" to "0" transition

$V_{out} > Vdd - V_{TN}$	NMOS and PMOS saturated
$V_{dd} - V_{TN} > V_{out} > V_{TP} $	NMOS linear, PMOS saturated
$V_{TP} > V_{out}$	NMOS linear, PMOS cutoff

Both devices combine to form a good switch

 Delay of a chain of pass gates:

$$t_d \propto C \cdot R_{eq} \cdot \frac{N \cdot (N+1)}{2}$$

- Delay proportional to N²
- Avoid N large:
 - Break the chain by inserting buffers

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

CMOS logic structures

Triest, 9-13 November 1998

- Can a compound gate be arbitrarily complex?
 - NO, propagation delay is a strong function of fanin:

$$t_p = a_0 \cdot FO + a_1 \cdot FI + a_2 \cdot (FI)^2$$

- FO ⇒ Fan-out, number of loads connected to the gate:
 - 2 gate capacitances per FO + interconnect
- FI ⇒ Fan-in, Number of inputs in the gate:
 - Quadratic dependency on FI due to:
 - Resistance increase
 - Capacitance increase
- Avoid large FI gates (Typically FI ≤ 4)

Triest, 9-13 November 1998

Outline

- Introduction
- CMOS devices
- CMOS technology
- CMOS logic structures
- CMOS sequential circuits
- CMOS regular structures

CMOS sequential circuits

- Sequential circuits
- Interconnects
- Clock distribution
- DLL's and PLL's

Triest, 9-13 November 1998

CMOS sequential circuits

Triest, 9-13 November 1998

CMOS sequential circuits

Interconnects

- The previous result assumes that signals can propagate instantaneously across interconnects
- In reality interconnects are metal or polysilicon structures with associated resistance and capacitance.
- That, introduces signal propagation delay that has to be taken into account for reliable operation of the circuit

Interconnects

Triest, 9-13 November 1998

CMOS sequential circuits

Film	Sheet resistance (Ω /square)	
n-well	310	
p+, n+ diffusion (salicided)	4	
polysilicon (salicided)	4	
Metal 1	0.12	
Metal 2, 3 and 4	0.09	
Metal 5	0.05	
	(Typical values for an advanced process)	

- Via or contact resistance depends on:
 - The contacted materials
 - The contact area

Via/contact	Resistance (Ω)	
M1 to n+ or p+	10	
M1 to Polysilicon	10	
V1, 2, 3 and 4	7	

Interconnect layer	Parallel-plate (fF/μm²)	Fringing (fF/μm)
Polysilicon to sub.	0.058	0.043
Metal 1 to sub.	0.031	0.044
Metal 2 to sub.	0.015	0.035
Metal 3 to sub.	0.010	0.033

 Three dimensional field simulators are required to accurately compute the capacitance of a multi-wire structure

- Delay depends on:
 - Impedance of the driving source
 - Distributed resistance/capacitance of the wire
 - Load impedance
- Distributed RC delay:
 - Can be dominant in long wires
 - Important in polysilicon wires (relatively high resistance)
 - Important in salicided wires
 - Important in heavily loaded wires

- Clock signals are "special signals"
- Every data movement in a synchronous system is referenced to the clock signal
- Clock signals:
 - Are typically loaded with high fanout
 - Travel over the longest distances in the IC
 - Operate at the highest frequencies

"Equipotential" clocking:

- In a synchronous system all clock signals are derived from a single clock source ("clock reference")
- Ideally: clocking events should occur at all registers $\underline{\text{simultaneously}} \dots = t(clk_{i-1}) = t(clk_i) = t(clk_{i+1}) = \dots$
- In practice: clocking events will occur at slightly different instants among the different registers in the data path

Triest, 9-13 November 1998

 Skew: difference between the clocking instants of two "sequential" registers:
 Skew = t(CLK_i)- t(CLK_{i+1})

Maximum operation frequency:

$$T_{\min} = \frac{1}{f_{\max}} = t_{dFF} + t_{\inf} + t_{p,comb} + t_{\inf} + t_{setup} + t_{skew}$$

- Skew > 0, decreases the operation frequency
- Skew < 0, can be used to compensate a critical data path <u>BUT</u> this results in more positive skew for the next data path!

- Different clock paths can have different delays due to:
 - Differences in line lengths from clock source to the clocked registers
 - Differences in delays in the active buffers within the clock distribution network:
 - Differences in passive interconnect parameters (line resistance/capacitance, line dimensions, ...)
 - Differences in active device parameters (threshold voltages, channel mobility)
- In a well designed and balanced clock distribution network, the distributed clock buffers are the principal source of clock skew

Clock buffers:

- Amplify the clock signal degraded by the interconnect impedance
- Isolate the local clock lines from upstream load impedances

Triest, 9-13 November 1998

CMOS sequential circuits

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

CMOS sequential circuits

Phase Locked Loops

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998

Triest, 9-13 November 1998