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1 First lecture: Getting started

1.1 Introduction

The aim of these lectures is to give a rather detailed account on how methods
of statistical mechanics can be used to quantitatively investigate learning
from examples in artificial neural networks. Some types of networks are
shown in figure 1 below.
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Figure 1: Different tvpes of networks of formnal neurons. a) general architec-
ture, b) fully connected attractor neural network. ) feed-forward network
with one hidden layer, d) single laver perceptron.

A mathematical analysis is. however. possible for some extreme architec-
tures only. Two tvpes of connectivities will bhe of special interest. In the
first one everv neuron is connecred with every other neuroun. see fig.Ib. The



dynamics is then highlv recurrent and will in general result in a chaotic se-
quence of different activity parterns of rhe neurons. The other extreme type
of architecture. called feed-forward newral nefwork, is shown in fig.1c. In such
a network, the neurons can be arranged inlavers/ = 1., . L such that every
neuron in layer / only receives inputs from neurons of layver {{ —1) and in turn
only feeds neurons in taver (/ + 1). The first laver. / = 1. is called the input
layer, the last one. [ = L the oufput laver. whereas all lavers with 1 <[ < L
are referred to as hidden lavers.

Due to the absence of feedback loops the dyvnamics is very simple: the
input is mapped to the output via successive time steps. The network there-
fore performs a classification of the inpur strings into classes Iabeled by the
different configurations of the output laver. This arclittecture is well suited
for learning from examples. In particular the simplest feed-forward neural
net, the perceptron, having no hidden lavers ar all, as shown in fig.1d can be
analyzed in great detail.

1.2 A simple example

It is certainly appropriate to introduce learning from examples by discussing
a simple example. Consider the perceptron shown in fig.2. It has N = 20
input units S; each connected directly to the single output o by real valued
couplings J;. For any input vector S the output 15 determined by the rule

T :Hgn(zf,«q:_] : (1)

We would like to use the necwork ro vank L0-dipits dual numbers. TFo this
end we require the output to be +1 { —1) if the dual munber represented by
the left ten input bits is Iarger (smaller) rhan the one given by the right ten
inputs . For simplicity we ignore for the moment the possibility of the two
numbers heing equal.

With some thought. it is casy 1o construct a set of couplings that do the
job perfectlyv. Consider the coupling values

R = e =T
Jrrto— e = 20, (2)

displayed also in fig.3. This choice gives. as it should. a larger weight in

YA 3-digit dual number with dual code (-11-17 s equal to 027 +1-21 +0-29.



Figure 2: Simple perceptron used to rank dnal numbers

the superposition {1} to the leftmost bits in the two subficlds of the input.
On the other hand it ensures that less significant bits are able to tip the
balance if the first bits of the two numbers coincide. The above problem
is simple enough to guess the appropriate values of the couplings. Doing
s0 is an example of explicit programming as used in almost all present-day
computers.

However, we can apply another. more interesting procedure to solve the
problem, namely by learning f{rom examples. Let us first initialize the cou-
plings J; at random. We then select. out of rthe total of 22° ~ 10° different
input strings. a given number p of input vectors £ = 1.... . p at random
and for each case provide the correct output which we denote by of.. Next. we
train the network with this set {70/}, To this end we sequentially present
each of the input vectors to the network and verifv whether the resulting
network output o# given through (1) is correct. Le. coincides with of. If so,
which will initiallv happen for roughly half of the cases. we simply proceed
to the next example. If however o # o we modifv the conplings in such
a way that the example under consideration is less likelv to be misclassified
upon the next presentation. Various rules that achieve this goal are avail-
able. in the simulations shown below we used the randomized perceptron
learning rule. We iterate this procedure until all examples of the training set
are reproduced correctly. The tact that the procedure converges is a priori
not obvious, but it does so for the problem under cousideration: ranking
numbers is a learnable problent for the perceptron.

The success on the training set. however. does not tell us whether the
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Figure 3: Graphical representation of the perfect couplings for a percep-
tron to rank dual numbers as given by (2). J, ... Jy, (white) are positive,
Ji1 ... Jy (black) are negative. ¢f. (2).

network has really learncd the rule hehind the the examples. To answer this
question the performance on so fur wiscen inputs has to be investigated. A
quantitative measure of the degree of generalization from the examples to
the rule can be obtained by determining the fraction of wrong outputs when
running through the complete sev of 270 different inpits. This fraction is
called the generalization error = and is one of the central quantities in the
analysis of learning problems.

Fig.4 shows = as a function of the size p of the training ser as result-
ing from simulations as described above. Note that - is a random variable
which depends on the particular choice of the training set. In fig. 4. we have
reproduced the average over 1000 random realizations of the training set.

The general behavionr is as expected. Tor po= 0 the werwork has no
information at all about rhe target rule. By chance hail of the examples are
classified correctly. - = 5. which is the known success rate for pure guessing.
With increasing p the generalization ervor decreases vionotonically and for
p — oc¢ it must. of course. vanish. However. the surprising [act is that the
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Figure 4: Simulation results {circles) for the generalization error of a percep-
tron learning from examples to rank dual numbers. The results are averaged
over 1000 realizations of the training set. the statistical error is smaller than
the symbol size. The full line gives the analytic result of the quenched cal-
culation, the dashed linc that of the annealed approximation.

generalization error becomes ratlier small alreacdy for p of the order of a few
hundred, which is much less than the total anmber of different input vectors!
In other words. the network is able ro generalize rather well in the sense
that it can approximate the desired rude on the basis ol a very limited set of
examples.

In a similar way. one can show that a somewhat more complicated network
made of Boolean gates is able to fearn the addition of numbers trom examples
[1]. Another striking demonstration of learning fromn examples in artificial
neural networks is the ability of a multi-laver neural net to read English text
aloud [2) and many more examples have been documented [3].

At first sight it may seem somewhat enigmatic that a svstem as simple
as the perceptron should be “intelligent enough” to decipher a rule behind
examples. Nevertheless the explanation is rather simple: the perceptron can
only implement a very limited set of mappings between nput and output,



and the ranking of nurbers happens o be one of thent. Given this limitation
it is therefore comparatively easv ro select the proper mapping on the basis
of examples. These rather vague statements will be made more precise in
the following lectures.

To get a more concrete idea of how the perceptron proceeds in the above
problem, 1t is instructive to look at the evolution of the couplings .J; as a
function of the size p of the training set. In fig.5 the couplings are shown for
p=950and p = 200. In hoth cases woe hd\(‘ normalized them such that J, = 29
in order to facilitate comparison with the target values p given in (2} and fig.3.
As one easily realizes. the relation between the most important couplings
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Figure 5: Graphical representation of the peveeptron couplings after learning

50 (left) and 200 (right) examnples respectively.

The signs of the columns

indicate whether the couplings have the same sipnas the perfect couplings
of fig.3 or not.

Juydoy ST T s fixed firs

the complete set.
Ji3 vield a correct output for 15/1
how the initial efficiency of the learning process is achioved.

This is because they decide about the
output, for the large majority of input patterns, both in the tralning and in

Considering that correet values for /). /. gy Jy, and
G of all patrerns alreads. one understands

By the same

token. one expects that inputs which give informarion abont the couplings
Jo. S0, Jio and Sy are rare. with a rather slow asvinptotic decay of the
g: /10, J19 20 \

generalization error to zero as a resule.
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1.3 Annealed analysis of Gibbs learning

To begin with let us introduce a simple geometric interpretation of the clas-
sification sgn(JS) of an input S by a perceptron J. Itis +1 or —1 depending
on whether the angle between S and J is smaller or larger than 7 /2. Hence,
the collection of points at which the classification switches from +1 to —1,
also referred to as the decision boundary. is just the hyperplane orthogonal
to J through the origin. For this reason. the classifications implementable
by a perceptron are called limearily separable.

It is clear that the length of J and S have no impact on the classification.
To avoid the possibility of different coupling vectors yvielding identical clas-
sifications it has become customary to normalize both couplings and inputs
according to

N N
J2 = Z J;‘Z — ‘\,r and S'Z — Z b\.lz _ jV (3)

1=1 1=1

respectively. Hence both tvpes of vectors lie on the surface of a N-dimensional
sphere with radius VN which in the following we will call the N-sphere. In
order to compare the classifications performed by a teacher perceptron T
and a student perceptron J. we project the input examples onto the plane
spanned by the coupling vectors of teacher and stucent (see fig.G). One eas-
ily realizes that the projections lving in the shaded region originate from
inputs that are classified differentlv by teacher and student. If the inputs
are chosen at random. the probability of disagreement, which is precisely the
generalization error £, is just the probability for falling into this region. Since
the decision lines are orthogonal ro the vectors T and J. we conclude that
e = 0/n, where 8 is the angle hetween T and J. The generalization error
is therefore proportional to the geodesic distance hotween the two polnts on
the N-sphere that correspond to the reacher and the studeat perceptron. 1t
is convenient to introduce the so-called teacher-student srerlap:

T
==

R (4)

Since we fixed the lengths of the vectors equal to v.V. R is nothing but the
cosine of the angle # between J and T. and the generalization error can be
written as:

i
s = —arccos [T (5)

it



Figure 6: Projection of the input space to the plane spanned by the coupling
vectors of teacher and student. Patterns with projection tn the shaded region
are classified wrongly by the student.

We now turn to a simple strategyv for fixing the student couplings during
learning. Consider the coupling vectors J that score on the examples exactly
like the teacher. The set of these compatible students is called the version
space. We ask for the genevalization cerror of a vector J drawn at random
from this version space. This simple prescription is called Gibbs learning. Tt
is interesting since the results to be found for this learning vule characterize
the typical performance of a compatible student.

Within the framework of Gibbs learning the generalization error decreases
with increasing training set size because more and more couplings J are re-
jected as incompatible with the exampies causing the version space to shrink
in size. If we were able to quantify the “survival chance” of a coupling when
presenting a new example. we could infer the average beliaviour of the gener-
alization error as the training procecds. Thisis indeed possible if we group the
couplings into ¢lasses with respect to their overlap with the teacher. For all
couplings J with overlap ? defined in (4}, the chanee of producing the same
output on a randomly chosen input as the teacher is 1 = favccos RY/m = 1—¢
by the very definition of the generalization ervor =0 Let £y(2) be the volume
of coupling vectors J with overlap 7 = cos{wz) before training has taken
place. Since the examples are assued to be independent. and each example



will reduce this number on average by a factor 1 — 7. we conclude that the
average volume €2,(=) of compatible students wich generalization error £ after
presentation of p training examples is given by:

Q) = Qo)1 =) (6)

In the limit ¥ — ¢ a simple caleutation gives to leading order in NV:

AT A%
Qole) Zfd.lé(.]z ~ N)é(T - eos(ma)) ~ (_‘xp{?[l + In 27 + lnsin®(7e)]}
(7)
and. from (6) and (7) we find using the scaling p = .V of the training set
size

i

Qp(e) ~ exp{NV [é(l +In27) + }), Insin?(nz) + aln(l — £} |} (8)

The expression in the square brackets is plotted in fig.7 as a function of
for several values of . Note that although it is a smooth function of &,
the corresponding differences in values of €,(2) are exponentially enhanced
by the large prefactor N in (8). We therefore conclude that by choosing a
student vector at random from the version space we will. for large N, with
overwhelming probability pick one with the value of = that mazimizes the
function shown in fig.7. All other values of £ are realized by coupling vectors
that are exponentially rare. We therefore expect that the generalization error
is, in the large N limit. given by:

| A
o) = “1'?.-’5““‘3\'[3 Insin?{77) + a nf{l — 2)] (9)
For o = 0 the maximum of £, vceurs ar = = .5 corresponding to students

“orthogonal™ to the teacher. Clearty. withour any further information, all
the choices of J are equally probable. and those students which perform ran-
dom guessing exponentiallv dominate in number over all the others. During
the learning process. this effect is connterbalanced by a contribution ncor-
porating information coming from the training set. In the present case of
(Gibbs learning this is the termn o In{l — =} in (8}, For large training sets
the generalization error becontes small and. as expected. we find € — 0 for
o —r OC.
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Figure 7: Expression in the square brackets of (8) as a function of ¢ for
a=10,1,2,3.4and 5 {from top to bottom}

The above result also provides some qualitative insight about how arti-
ficial neural networks can learn fromn examples. Firstlv, the specific archi-
tecture of the network implics a kind ol a-priori hierarchy of implementable
mappings. “Easy” input-output relations are realized by many different cou-
pling vectors, “difficult” oues require rather detailed microscopic configura-
tions. One could call this hierarchy the prejudices of the svstem. Secondly,
classifications which are incompatible with the training set are eliminated.
This type of learning hence hmplies a trade-off between acenracy and flexi-
bility. A systemn with equal ability for the implementation of all mappings
can in principle learn any problem. but its generalization characteristics will
be equally poor for all of them. A very specialized svstemr on the other hand
will be able to learn a very restricted class of probleins onlv. but it will do so
rather fast. In fact spectacular “Eurcca”-like sudden rransitions to perfect
gencralization can occur in such systeins {see lecture 5.

In order to see how accurate our simple analvsis of Gibbs learning 1s, we
have included the result (9} as the dashed line into fig.4. From the compar-
ison with the simulation results we clearly sce that although the qualitative
behaviour is described correctly there are significant deviations. In particular



for large @ we find from (9)

EE (10)

which although giving the correct scabing is quantitatively poor due to the
wrong prefactor.

So what went wrong with our analvsis? The maiu flaw is that we did not
treat the randomness in the learning examples £ and the teacher couplings
T correctly. Let us denote by Q(z:€".T) the volume of student coupling
vectors making an angle m# with the teacher vector T which remain in the
version space after learning the p examples €. Due to the random choice
of both T and the £ also Q{<:£".T) is a random quantity. However. ,
as defined in {6) just describes its average. In many situations dealing with
random systems the average also gives a reasonable estimate for the typical,
i.e. most probable value of a random qguantity. This is. however, not always
the case and it is in particular not true for Q€. T). As a result one
finds for large N with overwhelming probability a value of Q(e; €*, T) that
is different from the average described by (8}). In fact one can show that (9)
always gives an upper bound to the true ¢ in accordance with fig.4.

In order to demonstrate that the distribution of Q(s: €% T) is indeed
badly characterized by its average for large N and. more immportantly, to find
a correct way to describe the typicel behaviour of z(a). it is useful to first
reconsider the above approach within the framework of statistical mechan-
ics. Building on this formulation we will then develop the central statistical
mechanics techniques for the quantitative analysis of learning problems.

1.4 The annealed approximation in statistical mechan-
ics
Let us rephrase the above learning scenario from rhe point of view of sta-
tistical mechanics. The microscopic variables are the components J; of the
student vector. Thev span the so called phase space. The generalization error
¢ is the relevant macrovariable. A given value of = can be achieved by many
different choices of the microvariables J. The important quancity Q{s; €4, T)
denotes the volume in phase space occupied by all the microscopic states
which for given & and T realize the macroscopic state specified by . In

statistical mechanics it is quantified by the entropy S which is nothing but

L



the logarithm of this volunie:
(=" T) =InQ:=€"T (11)

From (7) we hence find for the entropy before learning for laree V:
P! ! &

So(e) ~ =1 +1n 27 + lusin®(7s)] . (12)

I\Ji/‘

The entropy has the appealing property of being ertensive, e, it is propor-
tional to the number of degrees of freedon: V.

The first two terms in {12} are independent of # and just correspond to
the surface of the N-sphere. It is convenient to normalize Q(s: €4, T) with
respect to this value. To this end we will use from now on the integration
measure

43 513 = N)
[dI o(J2 =N

du(J) = (13)

ensuring [ du(J) = 1. The renormalized entropy is then simply given by

[]nsm (w)] . (14)

As learning proceeds. more and more couplings J are rejected because
g ]
they are incompatible with the training examples €. The function

He —Te“ ——Je") (15)

et

is one if J classifies all exainples exactly like the teacher and zero otherwise. It
may hence serve as an dindicator funclron of the remaining couplings forming
the version space.

The arguments of the #-funetion have been normabized such that they
remain O{1) for ¥ — >, Although this is not abschirely necessary since the
Heaviside function #(.r) depends only on whether its argument is bigger or
smaller than © it is quite belpful {for keeping track of the order of different
terms in the thermodvnamic limii. [t also facilitates the comparison with ex-
pressions for smooth. i.e. gradual nearen characteristies in which the scaling
of the argument 1s reallv important.
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Using the indicator function \(J) the normalized volume of the whole
version space after learning p examples can be written as

Qp(gﬂ.T):/dﬂ HH __Tg“ —Je) (16)

It depends on the teacher vector T and the particular examples £ forming
the training set all being random variables. Let us calculate the average
Q, = {{Q(&*. T))) of the version space voluie. Here and in the following
the double angle {{...}) denotes the average over the training examples and
the teacher couplings. The logarithm of Q, is called the annealed entropy

Semn = In{(E".T))) (17)

To explicitly perform the average we will nse the distribution

Ps(s) =1 {%ri(S, +1)+ %{5(51; -1 (18)

:

for the inputs. For the teacher we assume that its coupling vector T is
choosen with constant probability from the N-sphere, i.e.

Pp(T) = (27¢)" ¥/26(T2 = N) (19)

As we will see shortly. however. the average over the teacher is trivial since,

after the £*-average has been done. all choices of T give the same result for
the generalization error.

The random variables appear in (16} in a multiplicative manner and inside

a function. One can extract thein by the use of delta functions. Introducing

the auxiliary variables
Ay = VJ.;“‘ aned = LT : 20
VAN and o, = Nay £ {20)

one can rewrite (16) as follows

Q, = /d,u(.])/Hd/\ﬂ_rf.u“HH()V,H!,_J
" I 7

I 1
[Tt - o9t - —<Teh (1)

/.
i Vo



At this point, one could formally proceed ro represent the delta functions by
their Fourier representation. to achieve a factorization over the components
of the examples £€*. We will however use a shorteut. For fixed value of J
and T, both A, and u, are sums of .V independent terms and by the central
limit theorem they obev a Gaussian distribution. With the help of (3), (4)
and (18) one finds:

LAy = Uupy) =0 (22)
(v\m = ({up)) =1
JT
/\.‘, . - — = f?
“ ;f”K \

To evaluate (21) we use the bi-Gaussian probability distribution determined
by the moments (22) and find :

0, = [ dutd)
dAudu,, 1 |
/HZK\/I_:WHH (At} exp{— ST R %:(,\ff—%ui — 2RA )}
(23)

where R is just a shorthand notation for JT/N. To proceed, one notes that
the J- and A -u,-integrals are entangled through the combination R,\ wUy-
They can be decoupled by introducing an additional delta function S(4F ~R)
which effectively amounts to perform the J-integral in slices of constant R,
just as we did in the previous section.

In this wayv we get

/ (ﬂ?/d,u 4—1?3
-1

d A di, 1 2,2

/II - \/‘T%RZHH iy b exp{— - R ZJ(,\“ ~ g, — 2RAu, )}

(24)
Now the A -u,-integrals factorize in jr and using
dh [ du 1 Y Y 1
exnd — ————— (N ut = 2RAujp =1 — —arccos It

V1—R?Jy v2nJo \/f':’—ﬁ_ bt 201 - R )} i

(25)



we find with (7) and (3)

i
Q, = / dRexp{ NV B In{l - B*) +alnfl - éar(:cos R}|} (26)
. 2 T
Similarly to (8) this expression shows that the restriction of the coupling
vector to the version space introduces an extra term counterbalancing the
purely entropic part (14). Due to our scaling p = o\ of the training set
size this new contribution is extensive. too. It is called the energetic part for
reasons that will be elaborated on more thoroughly in lecture 3.

The asymptotic behaviour of the remaining R-integral in (26) in the
thermodynamic limit ¥ — o can now be determined by the saddle-point
method. This yields finally

5, = N max [1 In(l — R4 + aln(l — B ATCCOS Rﬂ . (27)
|2 T

This result implies in particular that the average phase space volume 2, is
dominated by couplings with overlap

R = argmax B In{l1 - R*) +aln(l - :l;ar(:cos R)] (28)
(26) and {28} reproduce (8) and (9) respectively. This is reasonable since
we have in both cases analyzed the uverage of the phase volume Q(€#,T).
From (16), however, we infer that Q(&"*. T) involves a product of many ran-
dom contributions. Products of independent random numbers are known
to possess distributions with long tails for which the average and the most
probable value are markedly different. Ou the other hand. the logarithm
of such a quantity is a large sum of independent terms and hence becomes
Gaussian distributed so thart its average and wost probable value asvmptot-
ically coincide. Similatly. the typical value of Q(€". T is for large N given
by ?

QVPLEE T ~ exp{ {({In Q€. TN . (29)

This is in accordance with the general dogma of the statistical mechanics
of disordered systems that cafensioe quantities such as entropy and energy
are self-avercging, see [7. 8], A reliable analyvsis of the tvpical generalization
behaviour therefore requires the calculation of ({In Q{€7. T)}) rather than
({QE*.T)Y. As we will see in the next lecture this indeed vields the correet
result.

?This holds true although the different rerms in Q€. T) are weakly correlated.

La






2 Lecture 2: The Gardner analysis

As became clear at the end of the last lecture the anncaled entropy Sgun =

In{(Q2(&*, T))} cannot be used to describe the typical generalization behaviour.

A correct theory must instead be built on the so-called quenched entropy de-
fined by

S = ((InQ&" . T))). (30)

This involves the calculation of the average

(e, T} = ({In /d,u Nt fTs“

73

\/—16” 0y (31

over the random examples of the training set and over the random teacher
vector. This quenched average is technically much less straightforward than
the annealed one (21). The main problem is that the integral over J cannot be
performed analytically for every individual realization of the examples. Only
after the average over the examples the svstem is “translationally invariant”
in the sense that all neurons ¢ are equivalent to cach other so that the integral
over J can be reduced to an integral over a single component J of J. We
hence have to interchange the average and the logarithm in (31) in some
way. It is far from obvious how to accomplish this in a controlled fashion.
Fortunately, quenched averages have heen a central problem in the theory of
disordered solids since the early seventies and we can build on the techniques
developed in this field. A way which-although by no means mathematically
rigorous—has turned out to be successtul i many sitnations is the so-called
replica trick [9], relving on rhe simple identity

P
Inr = lin — " = lim (32)
n—0 ¢f} o I
Used for our problem it vields
(€. Ty — 1
Qe T = Ly LHE T (33)

rn—{) ]

and the calculation of {(In $2(&7. T})) has been transformed to that of ({Q™(€",

For general real n this is, of course. as complicated as the original average.

T))-



However, for natural nunibers o= 12,3000 the average can he rewritten as

<<Q”(£“-T)>>:<<Ud/r{J)H9((\/—lT—,T£“ (\/\ ey Gy
pooon
= ) Temn TT T ave)
h a=] gl a=1

which looks like the combined average of n different copies {(replicas) of the
original system with the same realization of the random examples. As we will
see shortly. this average is only slightly more complicated than the annealed
one calculated in the last section. The main guestion which remains is how
to find the proper analytic continnation which allows to perform the limit
n — 0 from the result for natural n. This can be a very hard problem ?
fortunately for most of the systems considered in this book. a comparatively
straightforward procedure is successful.
Let us now perform the detailed caleulation of the quenched entropy

S = ((InQUE" . T))er 1 (35)

for a spherical perceptron J with N inputs trained by random examples
€y = 1. .p = aN classified by a randomn spherical teacher perceptron
with coupling vector T. We will consider the probability distributions (18)
for the components & of the examples and (19) for the teacher’s coupling
vector T.

Using the replica trick we relate ((InQ(€".T)))e 7 to {{$2"(§", T)))ew
via
IO LEE <4
{(n Qg Ty = lim e Mg - |

1 =i I

so the crucial gquantity to calenlate 1s

1t ” 1
o = (r(er Te = [ aury [To e Tien 37)

o

where

A
dp{J) = H <, Z J; {38)

-1 =

3 An authoritative reforence for the veplica method is [8].

IR



denotes the spherical measure defined in (13).
To calculate 2™ we first introduce the variables

Jegr Tg"
AL = ——i— and i, = ——£: (39)
Al A
V. V.

by 4-functions to obtain

Qi = /rff,u(J”’_] / Hd,\” / Hd”“HB gAY ) (40)

i 1L

J“g“) V8 (1, —

. T
alAY —
{{O(AL ~

VoY

Nerr

and use their integral representation. We then find

' ' d)\“ l/\t fi i,
Q) :/ Hd#(J“) / H 2(“ / / H ( uzflu; (41)
HG up Ay ) exple Z/\a/\u +?Zu“u#}

.

<(exp{ \/— Z \,u Juﬁ” \/— Z H“.Tg eu

thopt

With the help of {18) we find for the average '111 rhis expression because of
the statistical independence of the components £
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The asymptotic behaviour of this expression for large .V is given by *#

{{exp{> In(l - ——(Z/\‘,”.f;’ o, T (43)

INT}
SCUEED D RIRHES SULED D MRS D o
L 1
—52'&-?\;21;2}))’1‘
it i

Obviously the dominant terms for farge N are the sae for any distribution
of examples with the first two mowments

(X)) =0 and Q&&= a0, (44)

Using J? = T? = N we obtain afrer inserting (43) back imo {41}

NGO /Hd,u (1) / H dA; (}'/\ / H elit u’uﬂ H9 uﬂ)\” (45)

1 .4
{{exp{i Z )\“‘)\},“ + JZ Wy — i) Z(,\;’l)2
fi T ope
-3 Z Z R S SEAVEED DD SV D S 4%
{a.b) A 7 T it ) '

Here 3~ , 4 denotes the sun over all verms with o # b To make further
progress we introduce the anxiliary variables

1 l
SO Al R = YT (46)

4\IOL(= that this expansion caunot Le justificd for all values of Ihv inregration variables
Au ik, JO and Tp. The contributions to @1 from regions with (A, St 4, T = 0(VN)
are, however, negligible for NV — x




to decouple the J-from the A-u-integrals. We then find

/ [ Vg / H NdR" (47)

a<h
/Hdu J4)( H() (J'T — VR*Y) Tl—[fj (Je — N
a<h
/‘H dA;, d/\ / H du;u’u# HH(”;:/\D expl(i Z /\Z)(,L(] . iZu”ﬂ#
gt H.e
S L - S e - L)
d o uh e H

The remaining average over T ist trivial since the integral over J* gives the
same result for almost all choices of T. Having averaged over the examples
the teacher average is hence redundant. This is no surprise since for an
isotropic distribution of examples no direction of T is in any sense special.

We finally introduce integral representations for the remaining d-functions
in (47) including those contained in the integration measures du{J®) and
perform the Gaussian u,-integrals. In this way we end up with

ab aly

ko 1 g o
Ol — /H" /H‘g’w;‘i /Hr QW;N (48)
exp{z——z.fsa-l-r\ Zq”“ e N ZR” ?”

<
1'](!. , ” b .
f{]\'@_m{_gzpz RO ETEDILPIEY
du, ff)\j ay z " _£ — L
/1:[ \/%/ gd)\ /H ! HU Ay ) exp{ - g:ué Z(l (R‘JL)Q)Z#:(/\Ju )2
- %ZZ)\“#UX”{) o RORY) 4 Z \”“,\\ — !.Z i, Z)\“ R%}
o (ob) pat

Now the Jf-integrals factorize in /o Le. they give rise ro a single J%-
integral to the power V. Similarilv the ui,-/\;';_-/\””—inr‘ngmls factorizes in p
and can hence be reduced to a single u-A-A-iutegral to the power p = aN.
Altogether this vields:



dk® dg* (iq dR*dR®
/H / H 2:4 / \ / H 2 —/\
exp {JV iré Z ku + Z f,’dh")”h — Z YR 4 7ok (;'m“- R+ “(‘;H(Qab. RQ)} }

@ Wl u
(49)
with
1.6 sab pa . dJ" ! I T . ~ul 1o . Ha Fo
Gs(k®, 6% R = ln/H e exp{A§Zk (J4)? —zZq bjegh - zZR J}
" I3 o < a
(50)
and
b " du . dX 9 ian2
Ggq™, R") = ln /H dA H HH (uA) (‘\p{——‘)——_— Z(l—(Ra) (A%
- -Z/\“ ¢~ R*RY) +:Z)\ X — mz/\dﬁa (51)

(a,b)

Gg is called the entropic pari since it just measures how many spherical
coupling vectors J fulfill the constraints (46). On the other hand Gg is
refered to as the energetic part since ir is specific to the cost function or
learning rule respectively which is heing uscd.

We now proceed to evaluare the asvinptotic behaviour of the integrals
over the auxiliary parameters ¢ ¢"* R 2" and & for N = ~c by the
saddle-point method.

The extremum with respect to k% g and [t* can be found in closed form
since the J%-integrals are Gaussian. Intmdu(:ing the > n matrices 4 and
B by

.~(

Agy = 1k" 50y + G0 — d,,) and Buy = S + (1 — ). {52)
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the Je%integral in the entropic part can be performed to yield 5

S ab Ba no 1 1 et e -
Gs(k®. §®. RY) = — = g nfder ) - EZB (A DR . (53)

Tk

Using Indet 4 =Trin A the part of the exponent in (49} which depends
on k%, g% and R® may be written as

T 1 1 S -1 b l-~_ ; el Sl i
4§—§Trhl.4f§ZR (4 )m‘J‘I? +Ell‘{B+}Zh) R (34)

IRl o

To find the extremum with respect to the elements of R and A4 we set
the derivative of this expression with respect to R° and A, to zero.

0= - Z(A‘*)m.[?”' iR (55)
0= —2(A ) 4 1Z:f?“(—rl) (47 R+ iB (56)
- 9 E cd T 2 { = el bhd 4t 9 cd -
This gives

RE=iy Awh’ (57)
b

and
(.4_1 )r'(i = Bt_'r_f - R“]?d = C(‘d M (58)
Using these results we find thar (54) is at the sacdle point simply given by

%T‘r InC. Therefore (49) simplifies to

1
O exp{ N extr sTrln €+ oG olgt R Y (59)

(2¢1h NI

Determining the remaining extremum with respect to ¢** and R* is not
straightforward, in particular in view of the analytic continuation n = 0 to
be performed at the end. The subileties of the general case are discussed in

5The transformation k° — k% — iz nakes the integral convergent for all € > 0 and does
not change the asymptotic behavionr since the extremun with respeet to % lies on the
negative imaginary axis.
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detail in [8]. In our case it twrns owt that the valnes of ¢* and R at the
extremum are replice symnetric, oo thev obey

ab

g =y and R'=nr . (60)
which simplifies the further analvsis considerably.

First we note that in this case the matvix ' defined in (38) has an (n—1)-
fold degenerated eigenvalue (1 — ¢} and an additional one (1 —¢) + n(q — R?).
This gives
g — "

T —y

We then use the remaining ¢-functions in (51) to restrict the integra-
tion range of « and A" and simplifv the energetic part using a Hubbard-
Stratonovich-transformation. With the shorthand notation Dt = dtexp{—t*/2}//2n
we find

. s’} i . ' (j}‘tl I o (1, R e
GE=lr12/Dt/U Du/u I / IT eyl G > Y (62)

+izj\“(A” —uR — q— R4}

éTrlnC: gln(l - q)+ éln(l+n ) (61)

' e " 1A 1 "
:1112/Dt/ Du / o~ - oxp{ — (A — uR — /¢ — R?t)?
0 Jo \/m { 2(1 — q) 4 )}

o Jq = R+ ul?
—ln?/[)t/ pygr( YT O T
. 40

vVi—y

Shifting the integration variable 1 — (\/mf +ulty/ /4 the w-integral
may be performed and we get

Ri o i
f]ﬁd(_ J,‘—";J
Vg — It Vg
Extracting the dominant terms in (61) and (63) for v — 0 {s now a simple
matter and we find

(;]; =ln2 / DtH{— (63}

] l g - R
(n) A e 2 _ S
£ exp{Nn Cgﬁ'r [2 In{i —q) + 0=
t . I8 _ i
. Ve - \ I —yq



Using (36) this finally gives

1 1 ¢ — R?
Iz — oxtr | = - S
N((inQ(§ IO ('ﬁ?{ [_2 ln{l —q) + 51 a)
. ‘ [t { -
+2u/ DfH(—;—q = 1?'3)]“ H(—\/1 - qt)} (65)

Setting the derivatives with respect to ¢ and 2 of the right hand side of
this expression to zero we find after some partial integration

g— R* « / , Rt expf -~ liqﬁz}
= | DtH{- — 66
=g * \/qAR?)H'Z(\,/l.'im o
and
qu—R?_t/f%mP“gﬁf;+T%” (67)
1 — n 7 _ A .
vaT=q . H(- /50

These two equations coincide for ¢ = . In fact our special learning sicuation
is characterized by an interesting svimmetry.  The teacher T is chosen at
random from a uniform distriburion on the whote sphere (ef.(19)) and of
course, by definition. lies within the version space. On the other hand our
learning scenario consists of sampling student vectors at random with equal
probability from the version space. Therefore the typical teacher-student
overlap R should coincide with the tvpical student-student overlap ¢ and we
find

el B
q:R—ﬁﬂ—H/way%J (68)
P , H{V R

For the entropy we get for ¢ = IV {from (65)

1 1 R
ﬁ((ln Qe*. T = extr {E (i = R)+

' R I
20 [ DEH{—y/ ———t —w——<
+ rl'/ { \/ | 71?1‘)111[{( l—Rf):| (69)
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Figure 8: Results for the teacher-student overlap R {dashed) and the gener-
alization error & (full) as funcrions of the training set size . The inset shows
the decrease of the quenched entropy per coupling with increasing «. The
dotted line gives the behaviour of the information gain A7

Fig.8 shows the behaviour of the velevant quantities as resulting from the
numerical solution of (68) and subsequent use in (69) and (3). The qualitative
behaviour is as in the annealed calculation. The teacher-student overlap R
starts at 1 = 0 for o = 0 and monotonically increases with o tending
asymptotically to B = 1 for o — >. Correspondingly the generalization
error £ monotonicallv decreases from its “pure guessing” value = = .3 to zero
for @ — oc. The shrinkage of the version space swirh increasing number of
training examples is quantified by the decrease of the quenched entropy with
increasing «v.

To test the quantitative accuracy ol the Gardner approach we have -
cluded the result for =(ev) as full line in gl As can be seen. the agreement
with the simulation results 1s very good. The remaining differences for in-
termediate values of o are due to the fact that the simulations were done
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for N = 20 whereas the analvtical calculations are strictly valid tor ¥V — oo
only. From the nevertheless good agreemment hetween theorv and sinutlation
we may conclude that the sratistical mechanies analvsis. which relies on the
thermodvnamic limit N - . often vields results that also describe finite
systems quite aceurately.

We have hence seen that the volume of the version space is not self-
averaging. Although its probability distribution becomes sharply peaked for
N — oo, the most probahle and average values do not coineide! The annealed
calculation, resting on the average of the version space volume. therefore fails
to describe the typical behaviour. Being easyv to caleulate it is nevertheless
often useful since it may give insight into the qualitative behaviour of the
system and can also vield fairlv good guantitative approximations.

The correct self-averaging quantity in the generalization problem turns
out to be the entropy in phase space. e, the logerithn of the version space
volume. Its analytical determination is possible for ¥ — ~c using the replica
trick borrowed from the statistical mechanics of disordered svstems. The cal-
culation is fairly straightforward within the replica svmmetric ansatz. which
we will always use in the first place for the investigation of a learning problem.
One has to keep in mind, however. that a consistent treatment always re-
quires checking the reliability of this ansatz. For the simple learning scenario
discussed above the replica svimmetric assumption vields correct results. This
is related to the fact that the version space is connecred (it is even convex)
meaning that for any two elements there is always a line connecting them
that lies entirely inside the version space. A connected version space is the
equivalent to an ergodic dvnaics which in the theory of disordered systems
is known to be correctly described by replica svmimetry.






3 Lecture 3: Learning by minimizing cost
functions

3.1 Gibbs learning at non-zero temperature

Gibbs learning as introduced in the previous tecture chavacterizes the gen-
eralization performance of a tyvpical compatible student by averaging over
the version space comprising all vectors J that realize zero training error.
On the other hand appreciable generalization is sometines possible also with
non-zero training error. There are interesting situations in which perfect
learning is either impossible or too ezpensive in the sense that practically the
same quality of generalization can be achieved before zero training error has
actually been reached. Under these circumstances it is interesting to know
the typical generalization behaviour of a student with given non-zero training
error £;. Let us see how the approach of statistical mechanics can be adapted
to this more general situation.

For a particular learning situation specified by a teacher vector T and a
set of inputs & the training error = is defined as the fraction of disagreements
between teacher and student on the examples £, ie.

1<
s(J) = - f(—A\* 70
G (70)
with the stability A# defined by
!
A= —=Jg"7] . 71
N £ 7 (71)

The central quantity in the analyvsis of compatible students was the version
space volume

Qer. Ty = /fz,f(.nHm_\.ﬂ) . (72)

=1

It is clear that in order to include coupling vectors J with non-zero training
error into the analysis we have to replace the indicator funetion x(J) as de-
fined in (15) by a function weighing the differeut J-vectors according to their
training error £, in a smooth manner. The choice advocared by statistical
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mechanics Y is
) e oxpl—JEI) (73}
where

E(J) = Zy(f_yz_) = Naz(J) (74)
'(l

and £ is a free parameter. [t mmplies that the probability of a student vector
J to be chosen on the basis of his performance on the fraining examples is
given by

Py ~exp(=3FE(J)) . (75)

hence also couplings with ¢, > { are taken into account. Surely, their chance
to be realized quickly decreases with increasing =,

Let us shortly illustrate whyv the replacement (73) serves the required
purpose. Consider the average of some function ¢{J) thar depends on J only
through the training error £,(J). This average can be written as

N
[dp(J)exp(dE(J)) glJ) = / = Q=) expl—JaNg) glzy) (76)
. Jo

where

‘ , I &

Q=) = / dp(dy ol — = B~ A1) 7

)= )i ) ; (77)

describes the part of J-space giviug rise to training ervor =, Similar to the

previous lecture it can be shown that the ewtropy S(e,) = In (=) is extensive

and can hence be writfen as S(z,) = Ns(s,) with s(5,) = O(1) for N — .
The integral (76) therefore assumes the form

-1
/ degexp(Nis{a) — Jaz]) gle (78)
9]

and for large N the average of g{J) is dominated by coupling vectors J with
the typical training error ¢, that maximizes the exponent in {78), and which

SFor an argument based on statistics. see the lectures by Sava Solla.
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is hence the solution of ds/d:; = jo. Cousequently. by appropriately choos-
ing the free parameter J one can concentrate the whole average on student
vectors with a particular training ervor z,. As 3 increases. the corresponding
typical training error decreases. The version space analysis of the previous
lecture is eventually recovered for J — x.

The observation of the temperature selecting a specific training error,
hence a specific value of E is. of cowrse. just the ilustration of the equiva-
lence between a canonical and a microcanonical deseription. well known from
statistical mechanics. E(J) as defined in (71 plavs the role of energy and 3
that of the inverse temperature I° = 1/.4. The microcanonical approach used
in lecture 2 based on the evaluation of the phase space volume Q{e: 4. T) is
thus replaced by the calculation of the so-called partition function

205,6T) = [ du(Tjexpl =3B (3)) (79)

normalizing the canonical distribution (75). The central quantity of the
canonical approach becomes the so-called free energy

F(I.6"T)= -ThZ{3.&.T) (80)

which is extensive and therefore assumed to be self-averaging for large N.
The corresponding free-energy density

f(B8,a) = lim j—((F(u’.ﬁ“.T))) =-T1 (lnZ{3. € T)  (81)

. ’
111 —
Nowx N Nox N \

can be calculated by a minor modification of the formalism discussed in the
previous lecture. Since

expl—IE)) = expt—1) (-} (82)
it

=L+ (= oan)
I

this modification reduces to the reptacement

O(A) = (o™ =11 — e 9)9(A)] (83)
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in (51). The final results can then he read oft (65)-(67):

- 1
[ L N (i —¢)

f(3, ) = —extr m "oy

q,R
20x / It . q
+— | Dt H(———==)1n [r—' Tl —e Y H(— %t:[ 84
3. ( Vi 72 ) (\/1—(]) (84)
with the corresponding saddle-point equations

~-R* Ri exp{ - L
Q,fﬁizﬂ/m H{————] U ’fi . (85)

-q 7, Vii— R L-"']ﬂ—l L H(— /‘_I%af)}

and

Rya— T o [, ool 55 + 7))
NVA T, ﬁ+H(,v:’;{:f)
fixing the order parameters R and ¢. Again I denotes the typical teacher-
student overlap. determining the corresponding generalization error e through
(5), while ¢ corresponds to the tvpical overlap between two students. Note
that R # ¢ due to the absence of a teacher-student svmmetry.

The relation between the free energy and the internal cnergy e, and the
entropy s can of course be written as nsual: f = min, [a=, — Ts(e,)]. The
typical training error then follows from the standard relation:

1Ol (30)
e 03

(86)

(87)

In fig.9 the training and generalization error are shown for different values
of T' as a function of a. One observes that the gencralization error is al-
most as small for moderate 17 > 0 as it is for zevo-temperature Jlearning,
Asymptoticallv the behaviour remains = ~ 1/ and the whole influence of
the non-zero training error boils down ro a temperature dependent prefactor
which increases with increasing 1,

3.2 General statistical mechanics formulation

We are now ready to demonstratre rhat for most of the fearning rules discussed
in the literature an analvtical caleulation of the tearning and generalization
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Figure 9: Generalization error (full) and training error (dashed) as functions
of the training set size o for Gibbs-learning at temperature 7 = .2,.5 and .8
(from bottom to top). For comparison the generalization error for T = 0 18
shown as dotted line.

error is possible within the statistical mechanies framework. The main point
is the observation that the learning rules are equivalent to selecting a stu-
dent vector which gives the minimum value of an appropriately chosen cost
function which we will call the learning error E(J).

For random examples chosen independently of eack other. it 1s most nat-
ural to use a learning error of the following additive form :

EJ) =Y V(M) (88)
It

with the stabilities A# defined in {71). The cost funetion (74} used in Gibbs
learning forms a special case of (88},

The learning error introduced above is extensive in the nuniber p of exam-
ples, which itself is chosen proportional to the dimensionality .V of the input
space. We saw in finite temperature Gibbs learning. that within the statis-
tical mechanics analvsis this error plavs the role of the energy with which
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by happy coincidence it shares the same abbreviation £, The generalization
error will be determined by the competition of this energy with the entropic
term, namely the number of J-vectors thar correspond to a given value of
the learning error.

Qur aim is to caleulate the generalization performance as a function of
the training set size « for different choices of the potential 1 occeuring in (88).
Similar to the analysis of general Gibbs learning above this can be achieved
by introducing the partition function associated with the crror £

Z = /d;z(.]}r“'“”‘r : (89)

The partition function is a raudom variable through its dependence on
the randomly chosen training examples aud reacher couplings.  Again the
corresponding free energy £ = N f = — T In Z is an extensive quantity, which
1s expected to be self-averaging in the thermodynanie Hmit. Hence F can
be evaluated by performing the average over the exammples and the teacher.
The required replica technique follows verv closely the line of calcutation for
the finite temperature Gibbs case. with the only modification that #(—~A) is
substituted by V7 (A}, Under the assumption of replica symmetry one finds
that :

g — R* 1

-+ — {1l — ¢}

f(,i/)), (,t) = — eXtir [m) 5

q.R

200 f Rt ' 1A v A~ Jqt)?
+£ Dt Hi————=)In / 'ﬁ—ij—”-——f expl{—J1A) L"‘_\ﬁ—))
g . Vg — R? V2Rl —q) 2(1 —q)

(90)

The order parameters ¢ and 2 have their usual meaning and are determined
from the extremum conditions correspouding to (90). The generalization
error is then obtained by inserting the value of 7 into (5).

Only those coupling vectors J contribute substantially 1o the partition
function Z defined in (89). for which the learning ervor E{J) is only of order
1/4 larger than the minimal possible value £, 1t is hence clear that with
imcreasing J both the partition fanction and rthe free enervgy will be dominated
by vectors J with smaller and smaller values of £(J). Eventually, i.e. in the
limit § — oc, it will therefore be possible to extract the properties of the
optimal coupling vector minimizing the cost function from (90).
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From an algorithmic point of view. those cost functions £(J) which pos-
sess a unique minimum are of particular interest. Indeed. if this is the case,
the minimum may be found using a standard gradient descent algorithm.
In such a case. the limit 4 — x will be accompanied by ¢ — 1 since the
different solutions J all have to converge to the same minimum. One ob-
serves from the saddle point equations corresponding to (90} that J — oo
and ¢ — 1 are compatible il we take = J(1 — ¢) to be finite. Replacing
the extremum condition for ¢ by one for o and after applving a saddle-point
argument to the A-integral. the free energy density in this linit reduces to

f(T =0, U!) = emm((f)

1 - R? ‘ Rt A — )2
= —extr i — 2(}1/ Dt H{—~——=) min (1'(.).) + (——4)
I.R 2 I LN 2r
(91)

where Em = Negin 15 the minimun of the learning error E(J).
For a given potential 1/(A) the generalization performance of the J vector
minimizing V' can hence be obtained by the following two steps:

(1) Find the function Ay{t.r) which minimizes

(A=)

T

(92)

(2) Determine the values of I and + as a function of o from the saddle-
point equations corresponding to (91) which are of the torm:

. . . 2o it _ 2
2(1‘/ Df{.lu(t..ll—*f) J[f(—_lj] = 1-R (93)
2ex ' R?1?
— | Dt No(fopy expl—r——) = R
zm_m)./ olfth =5y &9

3.3 A choice of learning rules

The above formalisin can be applied to vartous learning vules. As a particular
simple example Hebb-learning gives a useful illustration. It corresponds to
the specific choice

PUA] = —2 (95)
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for which the minimum of the cost function E(J} can be found explicitly,
namely

I~ g (96)

1

From (92) - (94) one obtaines

A(](f. .1') =t+r (97)
and
[ 20
R = /s
\/ 200+ 7 (98)
= R
o= e 9
\f 20 (99)
which results in
1 C 2
£ = —arccos 100
T \/ 26 + 7 ( )
This result can also be obtained by a simple statistical analvsis [11].
Gibbs learning uses the training error as cost function. ie.
VA =6(—1) (101)

such that the corresponding ervor fanetion £ just counts the total number
of misclassifications. Obviously (90 reduces to (34) in this case.
Adaline learning is defined by a least square ervor goal of the form

() = --L(A - w) (102)

D

For ex < 1 this rule gives rise to the coupling vector

? ] —r— L
3= DT g (103)

JIRG

with the correlation matrix

. 1 Pdd g i
(- j3r%s = TE‘ 5 (T'ZI'U,' . (104)
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If the vectors £“o’. are linearly independent as happens with probability 1 for
large N and independent £ if o < 1 the matrix C, 15 non-singular. Since the
student couplings are then explicitly known the generalization behaviour can
be analyzed using methods from statistics [12]. The application of adaline
for & > 1 involves an additional minimization in . The analysis of adaline
learning for o > 1 can hence be easily accomplished as follows. From (102)
we get
f+ =

Aglton) = T 0 (105)
#?

so that the integral in the expression {91) for the ground state energy can be
performed analytically and we find including the minimization in &:

1 - R? 0
Emin(Q) = —extr —

5 L2
- =24/ =K i
sRxe | 2 w2+ Wl \/;h R) (106)

The extremum conditions give rise to the following three equations

= kR) (107)

2
1~R2—(y( )(ﬁ'2+1“2

R= \/ - h‘2.+ o (108)
. ot 2R
(1= %) =0 (1~ \/;?) (109)

For o > 1 these equations admit the unique solution

. (v — 1) R o — 1] o

S 110
T4+ 20 —4 T4+ 20 -4 7+ 20— 4 ( )

The result for R(a) specifies the decay ol the generalization error and is
included in fig.10. The asvmptotic behaviour is given by

tf'.'T - ;')

o)~

(111)

2570

i

which obeys the same power law as for the Hebb rule. Note the remarkable
behavior of the generalization error at intermediate values of . It goes
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through a focal minimum at o = .62 and increases back 1o the random
guessing value ¢ = .5 for «« = 1. This non-monotonic behaviour is termed
overfitting because of its similarity with the analogous phenomenon observed
in polynomial interpolation. In the present case it vesults from the insistance
on a “wrong concept” when training the svstem. Indecd the real stabilities of
the examples with respect to the reacher are not all identical and forcing the
student to obeyv this preseription completely compromizes his generalization
ability.

A similar analysis is possible for many other fearning rules [L0]. Some
results are summarized in table 1 and fig. 10.

0.5 T ]

0.0 :

Figure 10: Generalization error - as a [unction ol the training set size « for
the Hebb-rule (dashed). Gibbs learning at zero temiperatine {dashed-dotted),
the adaline / pseudo-inverse rule (long dashed). the maximal stable vector
resulting e.g. from the adaline rule (dotted} and the Bayes rule (full). The
asymptotic behaviour for «« — > is listed in table 1.
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Table 1: Potential of the cost function and asymptotic behaviour of the
generalization error £ for large values of the training set size « for various
learning rules. The generalization performance for smaller vatues of o are
shown in fig.10.

3.4 The optimal potential V'(A)

Two natural questions have remained unanswered so far: first. is there an
optimal choice of the potential V(A and second. does the resulting gener-
alization error saturate the lower bound resulting from the Baves rule? A
variational calculation allows to answer hoth questions aflirmatively [15]. Let
us define the quantities

F(t.r) = AN{too)—t=—2V(A%r ) (112)
Rt

N = 2H(—— 113

( 17]?2) (113)
2 expl—- R:,fjg

Y= ,_MM) (114)

3%



where A is defined through (92}, From (93) and (94). one obtaines:

R? SRS (LAl
T— - MINEs T an (115)
G VALY

where the average is with respect to the Gaussian measure D It is easy to
verify, e.g. on the basis of the Schwartz inequality. that Ge ey < {u){u v?)
for any function « > (0. with the equalitv sigy attained only for ¢ constant
with respect to the variables over whicly the average s being taken. It follows
that the r.h.s. of {115). and Lence also the value of 70 is maximal for the
choice F* = CY/X. where (' is a constant independent of ¢, The r.hs. of
{115) then simplifies to o{¥Y?/\", By a change of variables § = —uy/1 — R2,

one thus finds that (115) is equivalent to

2 ' . __ﬁ}_tQ
L i i (116)

V1-Ry 7. H{(=Rit)

the equation for the Bayes rule [13. 14]. Hence. we have identified a cost
function through the explicit form of F*. whose unique mininim reproduces
the Bayes generalization behaviour.

This result sounds exciting. since we are able to reproduce the lowest
possible generalization error through gradicnt descent. There are however
some reasons for caution. First. the potential is specific to the teacher student
perceptron scenario with random examples. Second. even though one can
construct the optimal potential explicitly. it does not have a simple form. In
particular, a more detailed analvsis [15; reveals that the potential is infinite
for negative stabilities. hence one has to start the gradient descent procedure
while already inside the version space (which can be achieved by a prior
application of the adatron algorithm). Third. the optinmal potential depends
on «, e, its form changes with the size of the traming set. This feature
is expected to be rather generic since the optimal strategy 1o be followed
will in general depend on the anonnt of information alveady obtained. Note
also that the optimal cost function depends on R henee in order to use the
optimal potential we have first to caleulate R{n) analvtically and to rely on
the self-averaging character of i



4 Lecture 4: Noisy Teachers

4.1 Motivation

As a rule teachers are unreliabie. From time to time they mix up questions
or answer absentmindedly. How much can a student network learn about
a target rule if some of the examples in the training set are corrupted by
random noise? What is the optimal strategy for the student in this more
complicated situation?

Let us analyze these questions in detail for the two perceptron scenario. It
should be emphasized that quite generaliv a certain robustness with respect
to random influences is an indispensable requirement for any information pro-
cessing system, both in biological and in rechnical context. If learning from
examples were possible ouly lor perfectly error-frec training sets it would be
of no practical interest. In fact. since the noise blurring the correct clas-
sifications of the teacher can usually be assumed to be independent of the
examples one expects that it remains possible to infer the rule, probably at
the expense of a larger training set.

A general feature of noisy generalization tasks is that the training set
is no longer generated by a rule that can be implemented by the student.
The problem is said to be unrealizable. A simple example is a training set
containing the same input witl: different outputs which is well possible for
noisy teachers. This means that for large enongh rraining sets no student
exists that can reproduce all classifications and the version space becomes
empty. For networks with many inputs this transition occurs at a sharp
threshold «, of the training set size. Above this threshold the training error
£, of the student is always larger than zero and the question arises whether
it is really necessarv or advantegeous to insist on zero training error below
the threshold.

4.2 Sources of noise

We will now investigate these problems in detail for the paradigmatic setup
of a teacher and a siudent perceptron. As before T aud J are the coupling
vectors of teacher and student perceptron respectively. and £ denotes the
inputs of the training set chosen at random according to the distribution



(18). However. the corresponding outpats are now given by

gl = f,’“.‘-ij.’,lll:%Tmsm} : (117)
VA

Several sources of noise have heen incorporared inro this expression. The

possibility that the couplings of the teacher herself are flictnating from ex-

ample to example around the pure values T has been accounted for by the

replacement T v T'". An appropriate distribution for the T is

1 1 (T.’;U - I—J‘}Z
) = e X

' NPT 202
where o, denotes the strength of the Huctuations. This tvpe of noise is called
weight noise.

Alternatively the errors in the training set may arise because the teacher
receives corrupted inputs € instead of the original €%, The generic proba-
bility distribution for this kind of input noise is given by

o cmy2
Py = _ﬁL(,\q)(_(_gf____é)_
7 - O N7

V 27{(}'“, ZJiT'
where again o, characterizes the noise strength. The mmpact of input noise
is for large input dimension ' completely identical to that of weight noise
because in both cases the local field of the teacher s Gaussian distributed
around the error-free value T&"/ V' N Both types of noise theretore affect in
particular examples that are near to the decision boundary of the teacher.

A qualitatively different mechanisi to bl the examples of the training
set is described by the parametrers o with disuiburion

P(T (118)

) (119)

I . 1 —a . .
= = e s S e (120)

P

In this case a fraction (1 - a}/2 of all classifications is inverted. irrespective
of how “confident” the teacher is. 1t will rurn our rhiat this tvpe of output
noise has a quite different inthuence on the generalization hehaviour of the
student.

At this point we have to note that in the case of noisv examples there
are two possibilities to charactevize the degree to which the student is able
to approximate the teacher. We mayv either ask for the probability that the



student gives for a randomly chosen inpnt a different output than the teacher.
Or we may be interested in the probability that there is a difference in the
error-free classifications of the teacher and those of the student. The first
quantity is called the prediction error 2, the latter is the generalization error
e. Only in the case of noiseless learning do hoth error measures coincide.
Clearly. if the student is able to decipher the tavget rule the generalization
error £ will tend to zero for large training set sizes. The prediction error £,
however, will always be larger than a certain residual error <, characterizing
the noise corrupting the teacher classifications.

Both the generalization and the prediction error are simple functions of
the teacher-student overlap £7 which. also ir the presence of noise. remains
a self-averaging quantity. The generalization error is again given by £ =
arccos R/m. The prediction error can be obtained by a similar argument.
For the case of input and weight noise we get from its definition:

617 = ((6(_(7{!‘0'))>S,nmsc - (<H(““"1\/—T Z T;E: \/]_T_ Z Jzﬂfa)”S.rmiﬁe (121)

where the average is now over the fest example S and the noise. Similar to

(20) we introduce the auxiliary variables

= LJ S and W' = -1—T’ -8 (122)
Sy %

that for large N are Gaussian random variables with moments

A

(A = ) =0 (123)
(A% =1
<<U,!2>> - (] + (-“'rilu)(1 i O‘j)
'y =R

Replacing the disorder average in (121} by the average over u' and A and
using (25) we find for input and weight nolise

1
= —arccos(~ ) (124)

ik[,

il

where

= _ (125)




is an appropriate parameter describing the noise strength. The residual error
g, that remains even if the student has learned the error-free classification of
the teacher perfectly resules from this expression for £ = 1. i.e.

1
I, = - Arcreos © (126)

i

In the case of output noise we get similarily

:_,U — ((U(_O’:’""I),}:‘)S.miiw (127)
l+a,, Il —a
=3 ({B(—oro)))s + ——{{Blora)))s
1 1+ 1 —u
= =l—3 ‘ arceos 1+ ¢ arceos(—17))
1—ua (i

= + —arceos I

The residual error is of course given by

1 —u
T': .)

(128)
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Hence, also in the presence of noise the ceutral quantity to characterize
the generalization performance is the teacher-stndent overtap R. In order to
calculate it as a function of the training set size ¢ and the parameters of the
noise we can use a straightforward generalization of the methods introduced
in lecture 2.

4.3 'Trying perfect learning

To begin with we investigate the generalization beliaviour of a student per-
ceptron that irrespective of the noise present in the wraining set tries to
reproduce all example classifications exactly. A suitable learning rule to do
that is zero-temnperature Gibbs-learning characterizing the performance of a
typical student {rom the version space,

Let us first consider the case of weight oy input noise. Including the
average over the noise as specified by the probability disiributions (11R)
and (119) into the pattern average (121 we find that all that changes in the

subsequent calculations is the replacement B+ ~f7 i the encrgetic part
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(51). Consequently the saddle point equations (66).(67) for the two order
parameters [? and ¢ are modified to

— R? [ ~ IRt e?xp{——f%rwf'“’
4 :i/ DtH(— e ) ',_L} (129)
l-q 7 Vi RN = A
and
y y M AR _ﬁ —ﬁri)!fﬁ; ....“7
Ry/q— +*R? _ 72 / Dflkp{ g(q,».,:“z =+ 1.;_(',)} (130)
Vvl — g T, H(- 4t}

Clearly the solution ¢ = R is lost reflecting the absence of svinmetry between
teacher and student. In fact for ~ < 1 one has alwayvs ¢ > R and there is a
critical training set size a, at which ¢ — 1 with @ = R, < 1. Performing
the limit ¢ — 1 in the above saddle point equations by using the asymptotic
behaviour of the H-function one finds after some integration

% m = arccos(v ) (131)

and

11 i
— = —arceos(~ ) = 2, (R) (132)
G, 7
from which R, and . can be easilv determined numericalls.

A qualitatively similar behavionr resulis for the case of ontput noise. Now
the presence of the y-variables gives vise 10 the veplacement [, 6(ur®) —
((T1, O(nueA®))), in the expression (51) for the energetic part and the saddle-
point equations assume the form

. ) 2
g— R a/ - Rt expi -5}
=— [ Dt — + (- _ (133)
1—gq e { 2 qu —R? Hz(_\//'t_(iﬁt)
and
RVG=F o [ esp{- 50 + 75
Ave- & _ o / Dt tal L. ! {134)
Vavl-g oo T Hi=\ /5
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Figure 11: Critical training set size ¢, above which no student can be found
who reproduces all examples perfectly. Results for input or weight noise
of intensity v defined in (125) (full line) and output noise characterized by
strength a (cf. (120}) (dashed line) respectively.

Again ¢ > [t for @ < 1 and performing the limit ¢ — 1 as above we arrive at
the following equations determining o, and R,

v 1— 1 | —a ,
i = A Arcceos . (135}
and
1 iy — 71)? o

It is intuitive that the critical training set size o, is reached when the product
of prediction error and training set size approaches 1. The dependence of a,
on v is shown in fig. 11 for hoth types of noise.

For v — 1 and ¢ — 1 respectively the intensity of the noise tends to
zero {cf.{125)} and accordingly o, — ~x. The value of .. for output noise is
always smaller than thar for weight or input noise. This is i accordance with

16
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the fact that output noise infroduces some “gross errors” into the training
set whereas weight and input noise only give vise to misclassifications at the
decision boundary of the teacher resulting in an “almost realizable” problem
for the student.

In order to investigate the generalization hehaviour for « > . we cannot
use the above methods resting on averages over the version space because
the latter is empty. Nevertheless it is still possible to study the performance
of the student that minimizes the training error 7, by using the canonical
phase space analysis introduced in the previous lecture with the training
error as cost function. The minimum of = is found by performing the zero-
temperature limit .3 — oc that is accompanied by the limit ¢ — 1 giving rise
to the new order parameter & = J(1 —¢). The replica syminetric caleulations
are again straightforward modifications of those performed before. They
result in the case of input and weight noise in the saddle point equations

0
‘ ' ‘ ~ Rt
1- R =2 Dt *H(— e ) (137)
"
and
R ( T _
—\/TT——;TRZ = ”-; (1 - (‘.\D(T——"E—Rz)) (138)

which fix the order parameters [ and & and the expression

8]
1 1~ R? ' IRt t
= —arccos(vR) — — 42 Dt Hl—————= {7 — 1
T arccos( 1) 2eer " / (‘ q— ~2R? )(2.1.' 1 (139)

=
which gives the typical training error =, as a function of R and 2. Note that
for z = oc equations {131} and (132) for R, and «a, are reproduced as it
should be since for @ < . the minimum of 2, is not unique and ¢ remains
smaller than 1 even if 3 — ~. The results of the numerical solution of
(129),(130),(137). and (138) are shown in fig.12 and give a complete picture
of the generalization behaviour in the presence of weight and input noise.
Equivalent calculations for output noise give rise to
il

1 - R =2a /DH2 b It

+uaHi~ ) (140)
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Figure 12: Generalization (full) and training error ilong dashed) as well as
the order parameiers R (dashed dotred) and ¢ (dashed) as functions of the
training set size « for T = (} Gibbs-learning in the presence of input or weight
noise of intensity v = .8. The vertical dotted line marks the critical training
set size .. The inset shows an cularged pare of the ={a)-curve around o,
displaying the overfitting preceeding criticality.

and
R - (1 1 i A
vl U L (141
as saddle point equations for the order parameters 7 and o and
) 3 o
l—-a « 1 - i ' - Ri t
£y = —;-—r— + —arceos 7 — )71 + 2 /])f 5 “ 4 aH (- —)| (=— —
2 T 200 S 2 Vg~ R? 2
—v2r
(142)

as expression for the tvpical training error. Again we recover for r = o0 {135)
and (136) determining /. and a0 Figo 13 gives the cowplete information
on the generalization performance of zevo temperature Gibbs-learning in the
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presence of output noise. Qualitatively the bebaviour is similar to the case
of input or weight noise.

1.0 v

Figure 13: Generalization (full) and rraining error (long dashed) as well as
the order parameters R {dashed dotied) and ¢ (dashed) as functions of the
training set size v for T = 0 Gibbs-learning in the presence of output noise of
strength a = 8. The vertical dotted line marks the critical training set size
.. The inset shows an enlarged part of the z{a)-curve avonnd o, displaying
the overfitting prececding criticality.

It is finally interesting to investigare the asvmptotic behaviour of the
error measures for a — . Remarkably for all kinds of nolse considered
an asymptotic analysis of the saddle poiur equations gives £ -+ 1 implying
e = 0 for o — ~¢. This means that the student is able 1o perfectly decipher
the rule behind the examples even if these ave corrupted by random noise.
Using the asymptotic behaviour of the order parameters o the expression
for the training and prediction error one finds that both converge to the
respective residual error for large training set sizes as expected.

The detailed dependence of the generalization error for large « is, how-
ever. different for weight or inpur noise on the one hand and output noise on

19



the other hand. In the former case one fnds from (137) and {138)

R T N
“\fﬁ?( ﬁ._;_) o (143)

which is much slower than the decay = ~ 625/ found for Gibbs learning
from an errorfree example set. On the other hand for ourpur noise (140),(141}
yield the asymptotic result

g —— (144)

where the dependence of the prefactor € on the noise paruneter a has to be
determined numerically. One finds C — 623 in the zero noise limit a — 1
and C' — oc for a — 0. It is remarkable that. contrary ro weight or input
noise, output noise does not change the qualitative character of the asymp-
totic decay of the generalization error but just increases the prefactor. The
reason for that is the same that makes o, racher small for output noise: For
large training sets the corrupted examples are typically so evidently incon-
sistent with the rest of the set that it is easv for the student to detect them
as being “obvious nonsense”. ln the case of weight or input noise the sit-
uation is quite different. If ¢ is already rather small the student needs in
particular reliable classifications of examples near the decision houndary of
the teacher to make further progress and these are vororionsly ditieutt to get
in the presence of input or weight naoise.

From both fig.12 and 13 we ¢ moveover realize a tvpical feature of
zero temperature learning. Slightly below the critical training set size a,. the
generalization error stops to decrease and even increases as can be clearly
seen in the insets. This is another example of overfitting where the student
tries to imitate the teacher perfectly by using. however. the wrong concept.
In trying to reproduce the noisy training set exactly the student spoils his
understanding of the rule. One may therefore suspect that a noisy student
that also below . uses a learning rule with non-zero training error mav
be able to avoid overfitting and could cousequently be more successful in
grasping the rule hidden in the exaunples. Whether this is reallv true will be
investigated in the next section.

To complete the T = 0 analvsis we have finally to note that for e > a,
a techntcal complication shows up that we have gnored so far. As turns
out the replica symumetric saddle-point {60} we have heen using throughout
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becomes unstable [16] and the results (137)-(1-44) have to be considered as
mere approximations. From related problems it is. however, known that these
approximations are quite good so we will nor discuss here which modifications
oceur if replica symmetry breaking is inchided.

4.4 Learning with errors

In a situation where the trainings set is free of noise it is reasonable to try to
reproduce all classifications exactly in order to approximate the target rule
as well as possible. On the other hand it the training set contains mistakes
we have seen that insisting on zero training error can be misleading. In this
case it may be more advisable for the student to “imitate” the teacher also
with respect to her errors. l.e. (o use a fecarning rule that gives non-zero
training error from the start and hence does not reproduce the training set
exactly. A simple possibility to do this is given by Gibbs learning at non-zero
temperature 7' > 0 as introduced in the previous lecture that characterizes
the typical performance of a student perceptron with given training error ;.

Let us briefly discuss what happens in this case by using again variants of
the statistical mechanics treatment. We will only consider the case of output
noise explicitly. Using a straightforward generalization of (85) and (86) the
order parameters foliow from

_R2 ‘ _ ' oxpd 12
q___—l R -E/Df 1_)”'4—(11"1(— ‘;?' R-] - I lq/_}_ 5
—q T = y — I- SR ¥ S
v - Himy 1_qt)}
{145)
and
RV - I? expl = )
ave— 8 / Dt Aty T_'J J (146)
VivT=a |+ HE-
whereas the tvpical training crvor results from (87):
. H(\/ et)
1—n R \ oL-e
51:2/ Dt — = +aH(— —— . (147)
2 Vi— R 1 () - l)h’{—\/?—j—(—It)
a1l



The results of a numerical solution of these equations are shown in fig.14.
The main differences 1o the corresponding hehaviour for T = 0 as displayed
in fig.13 are that ¢ < 1 for all values of ¢ and 7, > 0 from the start. Note
also that there is no overfitting since B and consequently ©oare moenotonous
functions of .

1.0

Figure 14: Generalization (full} and training crror (long dasbed) as well as
the order parameters B (dashed dotted) and ¢ (dashed) as functions of the
tramning sef size o for Gibbs-learning with temperature 7 = 2 i the presence
of output noise with parameter ¢ = 8.

The gencralization behaviour for T > 0 is compared with that at 7 = 0
in fig.15. Tt is clearly seen that in the presence of noise in rhe training data a
non-zero temperature i rhe learning rule is advantageous for learning from
examples. A larger training error allows a stialler generalization error since it
enables the student o ignore those classifications of the training set which are
probably due to the noise and therefore misleadine i his 1ask ro reproduce
the pure target rule. The difference hetween = for 7 = Gand T = 0 displayed
in fig.15 is asymproticallv due (o diferent prefactors of the 1/0-behaviour
since even in the abseuce of noise the same asvimprotics holds.



B L

& £

LERE

N 1

12t

1

11!

it

Figure 15: Generalization and training error as functions of the training set
size o for T = 0 (dashed) and T = .2 (full} Gibbs-learning in the presence of
output noise with parameter ¢ = .8.

Remarkably also in the case of input and weight noise Gibbs learning
with general temperature T > 0 does not qualitatively alter the, in this
case very slow. asymptotic decrease of the generalizarion error. Here a more
substantial improvement would have been desitable. In the next section we
will investigate whether more can be gained by tuming thie training error or
equivalently the learning temperature to the intensity of the noise present in
the training set.

4.5 Refinements

The optimal performance of a student in learning from examples clearly de-
pends on the overall information he gers. [n the previous section we have
seen that if this information includes besides the training set per se also
the hint that some of the teachers classifications are nureliable he can im-
prove by using a learning rule with non-zero nraining ervor. 1t in addition he

!
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also happens to kuow the type and infensity of the noise that corrupted the
training set a further improvement is possible. The question what he can
optimally gain from the available information is a typical problem of mathe-
matical statistics and the answer is most clegantly derived i the framework
of Bayesian density estimation [18. 3], ¢f. also the lectures of Sara Solla. Al-
though the improvements that can be obtained are often roo small to matter
in practical applications the lower bounds for the generalization error that
follow are of principal interest.

We will discuss the question of optimal performance here only briefly and
in a rather qualitative manner. Let us consider the case ol output noise. The
clue lies in the relation between the order parameters P and ¢ describing the
similarity between teacher and student and between two students respec-
tively. If there is no noise at all we found iu lecture 2 that Gibbs learning
is characterized by ¢ = R. This svmmetry between teacker and students is
in general lost in the presence of noise. If the learning cemperature of the
student is very high we find that ¢ < [ and the student overestimates the
error rate of the teacher. On the other hand for rather low temperature we
have ¢ > R, the student takes the teacher too seriously and risks overfitting.
It turns out that the optimal T is characterized by ¢ = I? in which case the
training error of the student is exactly equal to the fraction of wrong clasifi-
cations in the training set. From (143} and (146) we infer that the symmetry
between teacher and student is restored if

1+«

3 =1In {148)

} — !
This gives indeed the optimal temperature the student should choose if he
knows that the training sct is blurred by ontpur noise with parameter a
(18]. For a = .8 the curve for =(a} that results tor the corresponding value
£ 222197 from the numerical sulution of the saddle point equation is hardly
distinguishable from the curve for 4 = 3 given in fg. Ll Asymptotically
again only the prefactor is slightly reduced.

More can be gained in the case of input or weight noise. If the student
knows that the examples are corrupted by such a kind of noise he may use a
modified cost function that changes the asviuptotic decay of the generaliza-
tion error from ¢ ~ a1 to 2~ a7 see [5] for details.

Learning a rule from examples is henee possible also in the situation where
the training set classifications are corrupted Ly varions tvpes of random noise.
For anv noise type and intensity there is a critical size i of the training

a4



set beyond which the version space hecomes cmpty and auy learning rule
has a non-zero training error. Nevertheless. since the noise is uncorreletad
with the examples the student s able to filter it out and hence succeeds in
approximating the pure teacher 1o any desired accuracy.

The detailed generalization behaviour can be analvzed in the two per-
ceptron scenario using statistical mechanics techniques. Two general types
of noise impact can be distinguished. Either the local fickl of the reacher
is disturbed (resulting from input or weight noise) giving rise to erroneous
classifications of inputs near her decision boundary or the teacher outputs
are simply flipped at random with a given rate (output noise) resulting in
“gross errors” completely at variance with the underlving rule.

At the beginning of the generalization process. Le. for small ex. Inputs with
large local field of the teacher are important and correpondingly output noise
is more deteriorating. This shows up in a smaller value of o, for comparable
noise strengths. The asymptotic decay of the generalization error for large
values of «, on the other hand. is determined by inputs near the decision
boundary of the teacher. Now input or weight noise is harder and the 1/a-
decay of noise-free learning is changed into the much slower { /o' -behaviour
in this case. Remarkably. for curput noise the 1/a- law persists with just a
larger prefactor.

The generalization behaviour can be improved by nsing learning rules
with non-zero training error from the start. In fact. trving perfect learning for
o < g results in overtitting that can he overcome by a non-zero training error
as for instance in T>0-Gibbs learning. The training errors allow the student
to ignore those classtfications of the training set that are most probably
due to the noise and hence misleading in the atremp to reproduce the pure
target rule. For output noise the optimal choiee of the training crror further
reduces the prefactor of the asvinptotic 2 (ad-dependence. Tn the case of input
or weight noise even a crossover to a /o' -decay is possible,

Learning from noisv data is a protorype of what is called an unrealizable
learning problemn since no student veeror J exists that is able to reproduce
all classifications. Several other unrealizable situations have heen studied
including a teacher with a threshold # # 0 or with a nou-monotonous activa-
tion function (e.g. the “reversed wedge™ perceperon [29]) as well as situations
in which teacher and student differ in their architecture as for instance an
Ising student J; = £1 trving o learn from a spherical teacher 11770 All these
scenarios share some important features, First, merelv from the definition of
an unrealizable problen. there s a evitical size o, of the training set above



which the version space s cmpiyv. e S {al = Uil a > a,. Then, in all these
cases one observes that trving perfect earning sooner or larer fails by result-
ing in d</do > U meaning overfitting. Therelore in anrealizable sizuations
it is usually advantegeons to use learning rules with non-zevo training error.
Finally, when analvzing an unrealizable learning problem in the statistical
mechanics framework one should he aware of the fact that veplica svimmetry
breaking is likelv to occur.

Besides tryving to huitate a nou-realizable target functions as well as possi-
ble it may also be desirable to simply detect that a problen is non-realizable.
For a perceptron this 1s doue by an algorithm introduced in [20] which learns
a target function if possible and indicates non-linear-seperability otherwise.

There is an important extreme case of learning from o noisy source as
discussed above. It concerns the situation of an crtremely notsy teacher in
which the added noise is so strong that it conmpletely dominates the reacher
output. The task for the student is then to reproduce a mapping with no cor-
relations between input and output so that the notion of a teacher actually
becomes obsolete. The central question is how many input-output pairs can
typically be implemented by an appropriate choice of the couplings J. This is
the so-called storage problen. Its investigation vields a measure for the flex:-
bility of the network under consideration with respect to the implementation
of different mappings between input and output.

The storage problem is interesting for several reasons. Firstly, there is a
historical point: in the phvsics conuity rle storage properties of neural
networks were discussed before cmphasis was on their ability to learn from
examples and several important concepts have been introduced in connec-
tion with these earlier investigations [21. 22]. Secondiv. in several situations
the storage problenn is somewhat situpler to analyse and therefore forms a
suitable starting point lor the wmore complicated investigation of the gen-
eralization performance. Thirdlv. the fiexibility of a network architecture
to the implementation of different nput-output relations also gives useful
information on its generalization behaviour (23, 2.4,
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5 Lecture 5: Variations of perceptron learn-
ing
5.1 Discontinuous learning

The learning scenarios discussed so far were deseribed in the framework of
statistical mechanics as a continuous transtormation of the halance between
energy and entropv. The energy is most naturally given by the sum of the
training errors of the individual inputs. For large training sct sizes the train-
ing and generalization errors are rather similar aid we hence get the scaling
e ~ ae for the energy per coupling in the limit of large a. Being defined as
the logarithm of the available phase space volune €2 the entropy ieasures
the diversity of different couplings that realize the same rraining error. For
a system with continuous couplings §2 is a NV-dimensional volume with linear
extension ¢ and the scaling of the entropy per coupling is hence s ~ Ineg
for large a. The balance between encrgy and entropy is inathematically de-
scribed by the minimum condition for the free energy f = s/.3—e. For small
a those couplings with large a-priori measure dominate the version space and
the entropic part in the free energy f = s/J — ¢ is the decisive one. With
increasing « this balance is shifted more and more to the energetic part and
for large o most couplings Lhave been eliminated fromn the version space and
only those with small values of « remain. Using the above stared asymptotics
of energy and entropy we find by minimizing the free energy:

0 :M = ,(l(ln s = 37) (149)

5 )=

1
= (g

resulting in the ubiquitous L/a-decav of the generalization error £ for large
training set size o Different learning rules just give different prefactors to
this avmptotic law.

If the coupling space of the network under cousideration is. however. not
continuous. the behaviour of the entropy for small generalization error can
be quite different. An instructive example is given by the so-called Ising
perceptron the coupling components J; of which can only assume the values
+1. Simple combinatorical arguments show that the entropy of couplings J
that realize a certain overlap R with a reacher vector T of the same type is



given by:

PR = s A S ‘15
s( R 5 in 5 ) In 5 (150]
which by using = = arccos /7 gives rise 1o
2
sy e 0 s =
s{z) = 5 Iy (151)

for £ —» 0. The minimization of the free energy now results in
2
)= -7m2lns —a (152}

to be contrasted with (149). For lage o rhis equation has no solition in-
dicating that the minimum of f does nor lie inside the interval of allowed
values of £ but at the boundary. In this case a continnous decrease of the
generalization error with increasing training set size is not 1o be expected,
It is hence interesting to investigate the teacher-student perceptron sce-
nario for the case in which both teacher and student are Ising perceptrons.
The statistical mechanics analysis is a slight vartation of the procedure out-
lined in lecture 2 and we onlv quote here the main differences and the fnal
results. The energetic part Gg(g®. B is the same as i the case of continu-
ous couplings and hence again given by {(51). For the entropic part one finds
by replacing the integral Dy a suni and ondirting the spherical constraint in

(50)
Gs(q Ry =In Y expl=i > ¢l =N ey (153)

{J“T,Il} "l

Assuming replica svmmerry this gives rise 1o the following result for the
quenced averape of the phase space volume [231:

%((hlﬂ(ﬁ’". T}y = extr [_(—i((; -1 = RI + / Dz ln 2:‘1)511(;\/a+ [Aﬂ
i g SR .

' fit T
) va oo I \, I —q

Note that contrary to the case of the spherical perceptron tle conjugated
order parameters cannot be eliminated anadviicallv. Nevertheless. due to the
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teacher student symumetry there is again the solution ¢ = It and ¢ = R so
that we are finally left with rhe two equations

R= / Dzranh(: \/1'?4—}” (155)
('\p —”—f}

V1 - R = / —_— (156}
H(v T

The results of the numerical solution of these equations are shown in figure
16.

Figure 16: Generalization error (thick fine) and quenched entropy (thin line)
as a function of the training set size e for an Ising student perceptron learning
a classification provided by an Ising teacher. The dashed parts of the lines
correspond to unstable solutions. The inset shows the quenc hed entropy as
a function of the teacher-student overlap B for o = L.2.a, = 1.245, and
a=1.3.

The most remarkable feature is that at a finite value o, = 1.245 of o there
is a discontinuous transition to the state of perfect generalization character-
ized by R = 1.2 = 0. Hence. if a large Ising perceprron classifies 1.245N ran-
dom inputs it the same way as a teacher pereeptron of the same architecture

oY



it will do so (with probability 1) for aff the 2% possiblie inputs. Technically

speaking this is due to a first order phase transition as is apparent from the
behaviour of the quenched entropy as a function of the overlap shown in the
inset of fig.16. The couplings dominating the version space are those with
overlap R maximizing the entropv. As is clearly seen this optimal value of
R jumps at & = «, from & = 00695 to [{ = [. Note that this transition
oceurs exactly at the point where the entropy becomes zero. In fact contrary
to a sytem with continnons phase space a svstem with diserete degrees of
freedom can never have a negative entropy {(ef. (151}). At rhe point where
the entropy of the replica synimetric solution turns to become negative there
must hence be a transition to another state for which the entropy is equal or
larger than zero.

Discontinuous learning of the described tipe is as a rule always present
when at least some of the adjustable parameters have a discrete nature.
Another interesting example is given by mulrilaver networks where the binary
internal representations serve as discrete degrees of freedom and may result in
a cascade of first order transitions in the generalization hehaviour [26]. Note,
however, that these discontinuous transitions are not a trivial consequence
of the discrete nature of the phase space: The minimal non-zero overlap
occuring in the Ising scenario is £ = 0695 and therefore much larger than
the minimal possible non-zero overlap R, = | — 2/N of two Ising vectors
Jand T.

In view of the above results discontinnons learuing to perfect general-
ization looks extremely attractive. However. it turns ont that the learning
process itself. i.e. determining the appropriate coupling veetor J on the basis
of examples is an exteremely hard problenn. I fact it lias been shown to be
a NP-complete problem of algorithinic complexity 127] which roughly means
that no numerical procedure is known at present that could solve the problem
in a time that only grows like a power of its size V. From the point of view of
learning theory it is nevertheless very interesting. also because discontinuous
transitions can natuarally be described as first order phase transitions in a
statistical mechanies rreatment but seem to he maceessible ro many of the
alternative approaches to learning problems.

5.2 Queries

In the simple example of the first lecture we have vealized thar the initial
efficiency of learning fron examples is surprisingly high. Practicallv every

fit)
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new example cuts the version space in 1wo almost equal halfs so that its
volume decreases verv quickly. On the other hand. in the later stages of the
learning process when the student is already fairlv aligned with the teacher
most of the new examples do not convey any new information since its per-
pendicular hyperplane rarely cuts the. by then already rather small, version
space. This can be explicitely seen from the behavionr of the information
gain /{c) shown in fig.8: For o — > it converges to zo10. As 2 result the
final approach to perfect generalization is onlv algebraic with £ ~ /o It
is hence tempting to modify the learning scenario in a way that avolds the
presentation of many redundant examples at the later stages and to realize
in this way a more constant How of informarion to the student. In fact, if ev-
ery input label received from the teacher would convey the maximal possible
information of one bit about the teacher the version space would decrease
in size like ~ =0 giving rise to a generalization error decreasing likewise
exponentially with the size of the training set.

Clearly. what has to be done is a modification of the distribution of inputs
by introducing correlations with the actual state of the learning process. This
on the other hand means nothing bur allowing the student to pose special
questions {queries) that he feels are most helpful at the particular moment.
A simple idea is to choose a new example £ at random from the subspace
perpendicular to the present student vector J# [28]. ie. the student asks for
the classification of inputs ke is at the moment most uncertain about.

A mathematical analvsis of this idea is relatively simple for the Hebb-rule.
Then

!
J"J = J'“ -1 -+ —,_.\_T(T'}I-g'“ (157)

¥,
and

Juotgr =0 (158)
We are interested in the evolution of the overlap p# = TJ#/N. Multiplving

(157) with T we find

I |
Nipht =) = = I TE (159)
v

and by iteration

o h - |
Wl S T (160)



With the thermodynamic limit N — x. p — x witha = p/ N finite in mind,
we now consider the limit / — >, but with //N = do — (. In this limit,
plays the role of a continuous time variable. with {160) presceribing the small
change of p* = p(«) during a small increment da of time 7. The rhs. of
(160) is then a sum of a large number of independen random variables and
we can replace it by the average to he raken with respect to the training
examples. On the other hand. the Lhas, is cleariv equal 10 the derivative of
p versus time a. We can thus wrire

dp ] TEr s
g = T (161)
and have finally to calculate the average on the r.h.s.

To this end we first note that in complete analogv with the above reason-
ing we can get an equation describing the evolution of the norm = VI/N
by observing that in view of {138}

(J) = (J* e (162)
and hence
(A
Loroy (163)
do

Using Q(a = 0) = 0 this gives () = \/a. Therefore the angle hetween teacher
and student vector is given by 6% = arccos{p*/\/a). Since the examples
are perpendicular to the student the angle hetween reacher and examples is
(m —6") and using the central limit theorem it is casy o show that T4/ VN
is a Gaussian random variable with zero mean and vivianee sin? #%. This in
turn entails

(| TE ) = 2 e - /2 /T— 1k (164)
RVAY A T FaV 0
and we finallv find the evolution cquation for the overlap as
dp o {1)?
LA 165
do ~ YV~ e (165)

"This procedure will be discussed i detai] in the leetures of Michaeol Biehl.
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This differential equation has to be solved nunmerically and from the solution
ple) we can determine the generalization error as usual via 7 = 6/7. The
solution shows that the generalization evror is for all vaines of « simaller than
for randomly choosen examples. For smali o the asvmptotic behaviour 18
the same in both cases. which is reasonable. for large o one finds that the
generalization error for queries is only half that of learning from unselected
examples.

It is reassuring that also in the special case of the Hebb-rule learning
with queries is superiour to learning fron: raudom examples. however, the
improvement found is rather modest. As discussed in the beginning of this
section one would expect for a constant How of information that the general-
ization error would decrease exponentially with the size of rhe training set.
It turns out that the Hebb-rule is not able to use the advantages of query
learning adaquately. Using more sophisticared learning rules results indeed
in an exponential decrease of < for large « {291,

The above investigated query algorithun refies on the simple geometrical
interpretation of perceptron classificarions. In the case of more complicated
learning machines it might be non-trivial to find a criterion according to
which queries should be generated. In this case one cun use the properties
of the system itself. Consider an ensemble of students learning the same
teacher and receiving the same inputs. Then use as queries those inputs for
which there is mazimnal disagreeiment between the students. I the number
of students gets very large this clearly produces gueries that always bisect
the version space. But even with only two students this algorithm of query
by committce works already rather well and gives vise 1o an exponential de-
crease of the generalization crvor [30]. The price to pay is that it becomes
increasingly hard to find a new query. After all the probability to find an
input on which the two students disagree is for Gibbs learning proportional
to the generalization error irself and hence docreases guickly with o, Query
by committee is hence suitable ilit is cheap to generare new inputs but costly
to receive their respective teacher classifications.

5.3 FEasy guestions first!

Complimentary to the previous sectioi it may also be interesting to investi-
gate the implications of correlations between the training examples and the
teacher instead of those with the student. Ty particular we may ask whether
it might be advantegeous for the learning process i the exanples are selected

(33



by the teacher. An intuitive suggestion is that tlie teacher avoids examples
that are “difficult™ in the sense that thev lie very near 10 her own decision
boundary [31].

In this case the distribution of rhe examples wonld avain deviate from the
uniform one. Introducing a normalized weight function f it can in general
be written as

e b & TE
PtEJ—(zﬂ)%mp( 2')‘“\/?' (166}

and the only modification of the calculations performed in lecture 2 is that
the distribution of the teacher alignment v = TE/V' N is now of the form

oy 1 - e
Plu) = ors r,.\p(—?)f(u) (167)

instead of the simple Gaussian for f = 1. Proceeding as there we hence end
up with the following expression for rhe quenched entropy:

fyg

/ !

\f’l—q)
(168)

1 — I , e '
5= e;fjttr 3 In{l —¢) + %—_—q) + Z2a /) Du,f(u)/[)f In H (-

Assume now that the teacher avoids examples in the rraining that seem too
difficult to her. i.e. for which v < w,,,. This correspondes to avoiding a
fraction 1 — 2H (i) of randomly generated examples. Then

H(i”i - ”m.m.)

~ (169)

M= g

and solving the saddle-point equations for the order purameters 2 and 7
corresponding to (168} the perfornance of such o learning scenario can be
analyzed. The results show that (or small o the ohverlap I increases more
rapidly than in the general case and hence learning gers more effective. The
reason is easy to understand. For the unrestricted ensemble most examples
lie in the hyperplace perpendicutar to the teacher vector. Their classification
cuts the version space but does not improve the alignient witl the teacher.
If these inputs are avoided evers example carvies more information on the
direction of the teacher and inercases the overlap & with the student. On the
other hand for larger values of o the improvement of the senceralization ability

£
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is slowed down by such a kind of input selection and asvinptotically one finds
the extremelv slow decrease = ~ LI/vIna. du view of onr investigation of
query learning this is also no surprise: At laier stages of the generalization
process the student uceds in particular inforation on the classification of
inputs that are near the decision boundarv. e, exactly of those difficult
questions the teacher suppresses. Note. however, that it is possible to learn
the teacher perfectly also on the basis of the restricted input set only! The
reason is the different scaling of B and w. Despite the fact that u < Upun for
all examples there are for large N alwavs sone with arbitrarily small angle
f = arcsin TE/N with the decision hvperplane of the teacher.

Teaching easv questions first is henee a sensible concept in order to accel-
erate the learning process 5. 1t helps the student in the early stages to grasp
the concepts of the teacher. Later it should be abandoned in order not to
mask the fine points the student needs for final improvement. This concept
camn, e.g. be implemented by using a varying threshold i, (@) in (169) the
optimal dependence on o can be determined variationally {31].

5.4 The reversed wedge perceptron

The reversed wedge perceptron classifies inputs £ according to their pro-
jection on the coupling vector J just as the nsial perceptron. however the
simple sgn-function between local ficld and ourpat is replaced by

a=sgn{(A — )M+ (170)

The most remnarkable feature of this activation fnnetion is that it is non-
monotonous. see g 17, As a result inputs that are classified by o = +1 may
have either stabilities larger than ~ or in the rerval (=~ 0) and a similar
ambiguity holds. of course, for inputs classified as 1. There is hence an
additional internal degree of freedon, which may be called internal represen-
tation for each input. specitving the internal vealization of the classification.

The reversed wedge perceprron looks rather artilicial and i fact rhere
seems to be no biological indication that nenrons witli non-nmonotonous acti-
vation functions exist. However the ocenrrence of an internal representatlon,
which are the trademark of muitilaver networks. gives rise 1o some new and
interesting storage and generalization properties thai are wort hwhile to study
in some detail. Becanse the reversed wedge perceptron is ou the other hand

Bef. also the vrganization of these lectres!
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Figure 17: Non-monotonous activation function of the reversed wedge per-
ceptron. There are two types of inpurs that realize positive ontput. those
with local field larger thau ~ (internal represcutarion “+7) and those with
local field between —~ and zevo (internal representation =2

not much more difficult to analvze than rhe sitple perceptron it may serve
as a nice tov model for the more complex multilayer nets.

A straightforward investigation of the storage problem for a reversed
wedge perceptron reveals that due to the possibility of different internal rep-
resentations the Gardner volhinine is not necessarilv conncected and lience
replica svimmetry breaking is necessary for a reliable caleulation of the stor-
age capacity [320

As for the generalization abilities we will only consider 1he simple realiz-
able case where a reversed wedge perceptron with coupling veetor J is trying
to infer the coupling veetor T of another reversed wedge pereeptron with the
same wedge parameter ~ from labeled examples. Using the statistical proper-
ties (22) of rhe Jocal fields of teacher and student we find for rhe dependence
of the generalization crror = on the teacher-student overlap B now

o I RTY P R nli — -
o= 2 / DU. 4 J[)” [!1’ | e = ] - [’][ e ]+ [1'{1-'—)
g J- vi— Y VR R vi1-— R?

(171

generalizing (9) which Is recovered for hoth ~ =0 and v = ~x. Performing
the statistical mechanics analvsis as derailed o lecture 2 for the present

case, assuming replica svonnerry. which, for the generalization problem. can
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be shown to he reliable [33]. and wsing the teacher-student synunetry giving
rise to R = ¢ one ends up with the following expression for the quenched
entropy:

)

1 , { '
§ = max [5 in(l - K+ ;— + 20 / DiH. (1) In . (1) (172}

with

VRt + VIt VRt —

Hﬂ,(t):H(w—l\/_:_?)—H(A——HH( ) (173)

v1—R v1i-1R
Solving the self-consistent equation corresponding to (172) numerically one
finds that for tvpical values of = there is an interval of a-values for which
two local maxima of the entropy (172 exist . This gives rise ro the following

0.5

0.4

03 r

Q0.2

0.1 r

0.0

Figure 18: Generalization ervor of a reversed wedge perceptron learning from
examples labeled by another reversed wedge pereeptron with the same wedge

size v as a function of o for ~ = 1.5~ =~ = V2In? ~ 1177 and ~ = 4
(from left to right).

generic scenario [33] ¢f. fig.18. For small values of o the svstem always starts

By



in a phase with relatively poor generalizion abilitv in which the generalization
error decays only slowly from irs pure guessing value = = 5. This phase is
characterized by a large mistit between the internal representations of teacher
and student that holds despite the agrecent on the fual classification of the
inputs. With increasing o the entvopy of this phase decreases more rapidly
than the one of the other phase and correspondingly theve is at a cortain value
g Of o a discontinuons transition 1o the well generalizing phase with large
similarity between the internal representations ol teachier and student. The
final decay of the generalization error tollows than the usual 1/a-behaviour.

ann

Figure 19: Anncaled entropy of au Ising reversed wedge perceptron as a
function of the generalization error 2 for different valnes of the training set size
g g

a. The cusp at = = .5 s specific for the eritical wedge paramerer ~, = /2 1n 2.
A special situation oceurs il ~ = ~, = 21In2 In this case one Ands

that R = 0 is a solution of the saddle-point equation corresponding to (172)
for all . Consequentiy the poorly generalizing phase is characterized by
a constant value = = 0 of the ceneralization ervor. Ou the other hand one
finds from (172) thar this phase 1s characterized by s = —aln 2! In the initial
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learning phase the version space is hence bisected by every new example
which correspondes to an optimal reduction of its volume. nevertheless the
student gains no information at all about the reacher. This is again due
to the large misfit in internai representations. Only later rhere is a sudden
“Eureca” phenomenon that puts the student on the right track and starts a
final stage of continuous learniug.

This transition is even more dramatic in the case of reversed wedge per-

ceptrons with Ising couplings. i.e. T, = =1 and J, = =1, Oune then finds
that for v = 7, the generalization error remains at its initial value £ = .5 for
all & < 1 and then jumps discontinnously to = =0 ar oy =1 [34]. There is

hence a transition from learning nothing at all to perfect generalization! In
fact this can already be anticipated from the annealed approximation. Fig.19
shows the annealed entropy as a function of = for this situarion {cl. also fig.7).
The cusp at ¢ = .5 arises because ol Dz /ORI = 0.~ = ~.] = 0 as can be
easily verified from {171). This ensures that s has alwavs a local maximum
at & = .5. Hence student vectors with £ = 0 dominate the phase space up to
the point ag = 1 at which s(f? = )} becomes negative and the transisiton to
perfect generalization (¢ = 0) occurs. Note that og =1 is in fact the smallest
possible threshold for which a transition to perfect generalization is possible:
the teacher has N unknown binary couplings and hence at least N bits are
necessary to pin them down. It is remarkable that the reversed wedge Ising
perceptron can saturate this informarion theoretical hound.
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