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An appropriate extension of the recently derived double-Beltrami, self-organizing equilibria re-
produces the essential observational features of the thin shear-layer associated with the -mode
tokamak discharges. Natural consequences of the theory are that the length scale of the shear-layer
is of the order of the poloidal gyro-radius, and that the velocity achieves the poloidal Mach number

of order unity.
52.55.Fn,52.30.-q,52.55.Dy,47.65.+a

Extending the framework of the recently developed
magneto-fluid theory [1] (in which the velocity field is a
fundamental determinant of the final state and is treated
nonperturbatively) by embedding the charged fluid in a
strong external field, we investigate the structure of a rel-
atively thin sclf-organized shear-flow layer at the plasina
cdge. This layer represents a self-organized equilibrium
state obtained by a simultaneous solution to the force
balance and the induction equations and culiinating in
the form of coupled Beltrami conditions supplemented by
correspanding Bernoulli relationships.

It is remarkable that such a self-organized states, in
its essential aspects, resembles the shear-flow layer which
develops when a tokamak plasma makes a transition to
the high confinement mode (H-mode) [2-7}. The defining
characteristics of an H-mode shear layer are: {1} There
is a relatively large plasma flow, {2} The flow is highly
sheared in that the characteristic length scale (the layer
width) on which the velocity field builds up is rather
short;it is found to be typically of the order of a poloidal
gyro-radius and (3) There is a precipitous fall in the
plasma. density and pressure as we go across this thin
layer.

It stands to reason, then, that an appropriate descrip-
tion of such a layer would require an equilibrium model
in which the Rows play an essential role, the flows and
the magnetic fields produced by the currents in the layer
are self-consistently determined, and in which the pres-
sure drop in the layer is somehow related to the build-up
of the velocity field. A subclass of structures investigated
in [1], and reproduced below in a tokamak like setting, is
precisely of this kind. The linking together of the veloc-
ity and the magnetic fields is brought about by the Hall
term which also introduces a short characteristic length
scale (A;, the ion skin depth) to the otherwise scale-less
magnetohydrodynamics (MHD).

For simplicity, we consider a quasineutral plasma with
singly charged ions. Neglecting the small electron inertia,
the electron equation of motion is



1
E+V.xB+_—Vp. =0, (1)

where V', and p, are, respectively, the flow velocity and
pressure of electrons, E and B are, respectively, the clec-
tric and magnetic fields, e is the clectron charge, and n
is the number density. The ion velocity V' obeys

a €
EZV"'(V'V)V H(E+VxB) Vp., (2)
where M is the ion mass (M > electron mass), and p, is
the ion pressure.

Using V. =V —j/(en), = ug 'V x B {j is the clec-
tric current), and E = ~0A/0t — V¢, where A (¢) is
the vector (scalar) potential, and choosing the normal-
izations: coordinate & = LyZ, B = BB, t = (Lo/VA)F,
p = (B/1), and V = VoV, where Ly and By are
arbitrary, and V4 = Bp/VieMn is the Alfvén speed,
equations (1) and (2) transform to

SA=(V-cUxB)xB-9(3-), @

f_aﬁ(g‘?-i-ﬁ) =V x (§+£€’x 17)
at
-9 (5V2/2+sﬁ, +$). (4)

where the scaling coefficient € = A;/Lg is a measure of
the ion skin depth A = ¢fwye = VaJwe = M/ {(pone?).

Here, for simplicity, we have assumed the density n to
be constant. This is, of course, not true for the H-mode
layers where the density falls sharply. It turns out that
the effects of the variation of n (even when the variation
is on the scale of the layer), though profound in deter-
mining the details of the ficlds in the layer, do not make a
qualitative difference in the total change suffered by the
observables as we go across the layer. Thus the essential
features of the theory, which depend upon the jump con-
ditions across the layer (separating the core plasma from
the edge region), will be accessible within the constant n
assumption. The details will be given in future work.

The Hall term e(V x B) x B of (3), which may be
regarded as a singular perturbation to the conventional
MHD equations, plays an essential role in determining
the structure of a thin shear-flow layer which may ap-
pear at the edge of a high-temperature plasma. We now
choose the length scale Ly = A; (and hence, € = 1), and
simplify the notation by dropping the ™ on the normalized
variables.

We shall consider the most basic stationary (or slowly
evolving) structures of the electromagnetic fields and the
associated flows which we can explore in the framework of
the coupled Beltrami conditions {1]. To apply the theory
to a tokamak plasma which is embedded in a strong ex-
ternal magnetic field, it is appropriate to decompose the
magnetic field B into the sum of the self-field component
B, and the externally rooted component B;. The B,



is produced by the plasma current j in the region of our
interest, while the B, is current-free (curl-free, and thus
“harmonic”) in that region. From now on, the dynamical
part of the field, B,, will be normalized by its represen-
tative value B3,. The velocities are, then, nornalized by
the corresponding Alfvén velocity V..

We consider a one-dimensional system where the ficlds
vary only in the “radial® direction, perpendicular to the
magnetic surfaces implying By, - V = 0. We also assume
that V is incompressible (V -V = 0). Then, we find
V x {V x B) =0, which nllows us to write

V x By = VP, (5)

with some potential field ;. In a usual tokamak-like
equilibrium, V is primarily the diamagnetic ion current
V = —(Vp, x B)/B?. Plugging this expression in (5), we
obtain VP, = (B - By, /B?)Vp,. We may, thus, estitnate

By - B, + B?
B'Z

Similarly, we can write

I po=0dp, d=0(B./B). (6)
Vex B,=(V-VxB)xB,=-VP7, (7)

with
Pc =—P1‘.'_Bh‘Bu (8)

which primarily represents the zero-order diamagnetisin,
We may, now, rewrite the system (3) and (4) as

;—)rA, = (V -VxB,)x B, +Veg., {9)
gt-(V+A,)=Vx(B,+VxV)
-V {p: + V¥/2), (10)
where V x A, = B,, and
ee=pm—Pi+¢ ¢.=pe—Fe—¢, (11)

represent the effective potential fields (the static electric
potential and the “residual’ pressures; see (6)) experi-
enced, respectively, by the ion and electron fluids.

Taking the curl of (9) and (10), we can cast them in a
system of vortex-dynamics equations

d ,
EEQJ—VX(UJXQJ)=0 (J=1.2) (12)

in terms of a pair of generalized vorticites ¥ = By,
1, = B, + V x V, and the corresponding effective flows
U, = V-V x B, U; = V. The coupled Beltrami
conditions [1,8] demand the alignment of the vorticites
with the corresponding flows, i.e., U; = u,; with some
scalar functions g; (j = 1,2). Writing ¢ = 1/4 and
b = 1/ua, and assuming that a and b are constants, the



Beltrami conditions translate to the simultaneous linear
equations

B, =a(V -V x B,), (13)
B, +VxV=hV. (14)

As a dircct consequence of the Beltrami (13)-(14) and
equilibrivm conditions {9)-(10), we obtain a set. of gener-
alized “Bernoullt conditions”

1
@i + §V2 = constant, (15)

e = constant, {16)

We note that the constancy of the energy density (the
sum of the potential and the kinctic energy) implied in
{15)-(16) refors to the directions perpendicular, as well
as parallel, to the streamlines of V. This is an essential
difference from the conventional Bernoulli condition.

The Beltrami  conditions  represent  the  contral
paradigm of the present argument of “self-organization”.
The physical justification of this “homogencity™ (or equi-
librium} of encrgy density in the transverse direction of
the ambient streaunlines relies on an implicit assumption
of existing Hluctuations whicl average out intensive vari-
ables. An interesting consequence that follows is the ap-
pearance of a non-trivial “structure” (with a character-
istic length scale) in some physical quantities creating a
thin boundary layer separating two regions, and enhanc-
ing the state of thermal non-equilibrium.

Combining (13) and (14) yiells a second order partial
differential equation

Vx(VxV)I+aVxV +gV =0, {17)

where ¢) = (1/a) - and €3 = 1 —~b/a. Denoting the curl
derivative Vx by “curl”, {17) becomes

{curl — A )(curl — A_)V =0, (18)
where

Ay = % [—c. F (- 4(.'2)1/2] . (19)

Since the operators (curl — Ay) commute, the general
solution to the “double curl Beltrami equation” (18) is
given by the linear combination of two Beltrami fields
G, satisfying (curl — AL )Gy, =0, ie,

V=CiGu, +C.Gy_, (20)

where C. are arbitrary constants. The corresponding
magnetic field is given by

B, =(b—Ay)CiGhr, +(b-A)C-Gy_.  (21)

These interrelated flow and magnetic fields represent the
structure of a “thin layer" which may be generated at



the boundary of a plasma where a shock-like jump in the
pressure emerges.

Let us work out an analytic solution in slab geome-
try (the coordinate z is radial, y is poloidal, and z is
toroidal). We casily find that the sheared vector field

Ga = '(0, sin(Az +8), cos(Az + 7)) (22)

is a Beltrami field solving V x Gp = AG, (# is an arbi-
trary constant). A coupled Beltrami field is given by a
linear combination of two of such Beltrami fields.

We consider a boundary layer 0 < £ < A in contact
with a “core plasma” contained in x < 0. The exterior
region x > A is scraped-off by a physical boundary, The
layer thickness A is to be determined by the theory. We
have the following boundary and “jump” conditions. In
the core plasma, we assutne Vo = 0 (possibly in some
inertial system). Since B, is the magnetic ficld generated
hy the current in the layer, the poloidal (toroidal) eld
must vanish at the inner (outer) boundary [9]. We thus
have

Vy(0} =0, DB,,{0)=0, (23)
V:(0)=0, B,.(A)=0.

The dimmagretic cquation (8) yields a relation between
the magnetic ficld and the pressure jummps across the

layer. Denoting [f} = f(A) —~ f(0), we have

1] = ipi + pe)
= {P+ P =—-{B;-B,]~ -B[B,..]. (24)

The ion Bernoulli condition (15) yields
2[pi) = -V (25)

Using the boundary condition B, .(A) = 0 and setting
p(A) = 0, we can write (24) as B, (0} = p(0)/B. We
use this value to normalize B,, ie, we set B, ,(0) = 1,
and identify

© _&8 :

7 = -2—B, (26)
where 3 is the conventional core plasma beta evaluated
at the boundary z = 0. Since A is an unknown variable,
we could treat B, ;(0) = 1 as a boundary condition, and
use B, :{A) = 0 to determine A. It is appropriate to set
= (A) = 0. Then, {25) yields V?(A) = 2¢,(0). For the
energy deusity to have a monotone-decreasing profile in
the layer, which may parallel the entropy condition in the
shock problem, the peak of V2(z) must not appear inside
the layer. The thickness of the layer is maximized when
V{x)? achieve its first peak at x = A. This condition,
together with V?(A) = 2y,(0), determines the required
set of Beltrami parameters a and b (equivalently, As).
The theory, then, will be parameter free; the known ex-
perimental quantities would be enough to describe the
state.

B, =



For an explicit calculation, we start with V =
CiGa, +C_Ga_. Choosing 6 = 0 in (22) satisfics the
boundary conditions Vi,{(0}) = B, (0) = 0. The other
boundary conditions demand

C+ +C_ = 0, C+ = r‘_—]\j (27)
Using these relations, we obtain
V2(z) = 4C% sin?[x (A~ - A4)/2). (28)

Since V2(x) must be maximized at z = A, we obtain

- ¢

A T (20)
This A must also satisfy B, .(A) = 0 (see (23)) which is
possible only if b = 1/a. ’Ih(-n we have Ay = A =
VIR =1, Cyp = 1/(2V88 = 1), and VI(A) = 1/(b2 - 1).
When th(- houndary value V‘(A) is given, all parameters
are determined. Figure 1 shows the profiles of V oand B,
inx>0.

By relating the boundary value V2(A) = 2p,(0) with
the plasma pressure, we find a fascinating scaling for
A and the flow velocities. Combining (27) and (29),
we obtain A = #|Cy|. Using (28), we observe C? =
V3(A)/4 = ¢.(0)/2. Assuming ¢(0) = 0 {10}, and us-
ing (26), we obtain ,(0) = (B./B)p; = (B/B.)3./2 =
B3/B8 = T;/Ti + T, (B is the ion beta ratio). Thus the
layer width A(= AX;) in physical units is of the order
Ai. More conventionally,

. 2,{0) mihVa _mpe  ompyy,
A=/l == (50)
V23w VB /B,

where py) = Virfweyy is the jon gyro-radius (poloiclal
gyro-radius) and Vr = /3;/2V,4 is the ion thermal
speed. Since, typically, /B, = O(1), the layer width
is also of the order of the poloidal gyro-radius.

The peak velocity Vinaz = |V(A)| (Vinar in physical
unit) is given by (cf. (26))

7 /23
Vmu:: = V;Tm;r VA. = 2(,9,(0)‘/'4, = B VT

IQBB B B )
B2 BPVT = ‘/ﬁp—g’iVT. {31)

In standard nomenclature, (31) implies that the peak
velocity corresponds to the “poloidal Mach number”
(V/(Vr(B,/B))) of order /B, = O(1).

In summary, we have derived a self-consistent mode!
of a self-organized shear-flow layer which can be gener-
ated at the edge of a core plasma. The theory resembles
a shock model because the jump conditions character-
ize the solution. The field distribution inside the thin
layer (which is regarded as a jump in a coarse-grained

-



model) is governed by the “collision-less” singular por-
turbation which stems from the Hall effect in the two-
fluid MHD. The generalized Bernoulli conditions yield
a self-consistent relation between the effective potential
and the flow-kinetic energy. Across the shear-flow layer,
the plasma pressure suddenly falls. The thickness of the
layer and the flow velocity are uniquely determined by
the magnetic field and the core plasma pressure. “The
predicted values are in good agreement with the experi-
mental observations of the shear-flow boundary layers in
the H-mode tekunak plasmas, A detailed comparizons
of the present theory (including density gradients) with
the H-mode phenomenclogics will be discussed later.
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FIG. 1. Profiles of (a) the shear flow and (b) the
sell-magnetic field (V; = 0). Here, we assume @ = 0.5 and
b = 1/a. The radial coordinate r is in the unit of the ion skin
depth A,. The solution continues to oscillate as z increases,
We cut ofl = at A (dotted line). Figure (¢) shows the profile
of the kinetie energy V2/2,
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