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Secondary Instabilities in E/ITG
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Gyrokinctic equation (GKE)

Instability from clectron temperature gradient
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Main secondary instability: Keclvin-Helmholtz
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— KH for corrected HM (ITG)

Numnerical simulations
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Gyrokinetic Equation

Gyrokinetic equation appropriate for small ampli-
tude fluctuations with
- w k. 6f ed® 6B
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Gyrokinetic equation describes evolution of perturbed
distribution function h. For Fy = Fy(c, ¥):
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The total derivative is

dh Oh ¢

dt —5}; ) {Xa h’}

The drift frequency iw! = ngcF, /0¥, where ng is
the toroidal mode number of the perturbation and
¥ is the equilibrium poloidal magnetic flux enclosed
by the magnetic surface of interest.

The perpendicular drifts (curvature, grad-B) are

wqg =k, -Bg x (mvﬁﬁ . Vb + pVBO) /(mBof,),

The fields arc represented by

v, 0B
x = Jo(7) (‘I’ - _Au) + Ji(y)—= klu

Here, vy =k,v, /..



Gyrokinetic Maxwell Equations

¢ Fields determined by Maxwell equations, neglecting
displacement current.

e Poisson’s equation (neglecting Debye term for now):
Z / d’vq [ @

where L = (vxb-k,)/Q. accounts for the gyrophase
dependence.

© + hewp (iL)] =0,

e Preferred velocity space coordinates are (e, &, ), so

that B [dedud
/d3’0= 2/ €af 5
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e Integrate over the gyrophase to find
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e Similarly, Ampere’s equation provides the two com-
ponents of the perturbed magnetic field:

47 27rB ded
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ETG Instability

Analogue of ITG instability. Roles of electrons and
lons reversed.

Typical ETG instability has k, pe ~ 1, w ~ kgpevie /L <
Qe;.

Ions respond to perturbations adiabatically because
kip: > 1.

Principle differences from ITG: magnetic well physics,
magnetic flutter physics, details of adiabatic response,
zonal flow physics.

Nonlinear simulations dramatically different. It is
sufficient to consider the electrostatic limit.



Hasegawa-Mima Equation

Nonlinear Hasegawa-Mima equation is starting point
for many studies of plasma turbulence.

Derived in the T; /T, < 1 limit

Ion continuity equation, ignoring parallel ion inertia,
is

on
En +V.i-lno(vE+vp)] =0
¢
Polarization drift is
1 5,
Vp = 0.5 —EVJI) — (.VE V)V, 2|.
E xB drift is ..
VE = Eb X VO

Electrons assigned adiabatic response, n = |e|®/T..

Quasineutrality then gives

(1-p2V2) %—(f + iw, ® — —; {®,V29} =0



From Gyrokinetic Equation to
Hasegawa-Mima

e Irieman and Chen derived HW from electrostatic,
nonlinear gyrokinetic equation (1982).
q 8J0<I>

d - . :
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e It is convenient to work with the non-adiabatic part
of the ion distribution function, f = h— farle|Jo®/T;.

e Integrate over velocity to find density evolution; cold-
1on limit allows neglect of most FLR terms. Neglect-
ing the ion-sound term:

dn

i Wee P + 1w, P = 0.

e Llectrons assigned adiabatic response, n, = |e|®/Ts.

e Find density from Poisson’s equation:

/dB’l)Jof“I—(Fo—l)lejl:I) = |;L(I)

For T;/T. < 1,y ~ 1 —k?p? and fd3'u Jof =mn, so
that

e|d
n=(-pvi) L
e In summary:
(1- ngi) %(? — WP + iw, P — I;— {(I),Vi@} =0



Gyrokinetic Hasegawa-Mima

Note that the guiding center ion density in the gy-
rokinetic theory may be naturally identified with the
ion vorticity:

n=(-pvi)

Curvature term identified, o twq.®.

However, most importantly, both Hasegawa and Mima
and Frieman and Chen mistreated the electron re-
sponse! Adiabatic electron response is not correct
for disturbances with &, = 0.

Electron adiabaticity can be found from Ohm’s Law
(which can be obtained from [ d°vv, moment of
GKE):

0A,
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In isothermal, electrostatic limit, second term im-
plies

+b-V(le]® —pe.) = 0.

|6|q) = 'neTo + f(\I’)

The integration constant f(¥) is missing from the
HM equation, but is very important for the sec-
ondary Kelvin-Helmholtz instability, which deter-
mines the turbulence saturation level.



Flux-Surface Averaged Electron
Response

e Integration constant f(J) is free function related to
initial equilibrium conditions.

If the initial equilibrium has no radial electric field,
then the appropriate choice for f(¥) is

f(@)=lel <>

where < --- > represents the flux-surface average
(which annhilates b - V). Thus, the perturbed fux-
surface averaged electron response is initially zero
and remains zero, which is appropriate, since adia-
batic electrons correspond to no radial transport of
electrons.

In general, one may take other values of f(\), allow-
ing, for example, for a sheared radial electric field.
However, such a field must also be included in the

GKE.
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Ion Response for the ETG Mode

For the ETG mode, the ion response is adiabatic,
because k. p; > 1.

The gyrokinetic form of Poisson’s equation allows
one to examine this statement closely.

Ie’Z"i(I?_
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Here, b; = (k. p;)?. The function [y (d) = Io(b)e~?,
in which I,(b) = ¢ "J,(ib) is the modified Bessel

function.

The gyrophase independent component of the ion
density is 7i; = [ d3v Jo(7) f; =~ 0, which is negligible
for perturbations with &k, p; > 1.

Similarly, Io(b;) < 1 for b; > 1.

Upon summing over species (and assuming the dif-
ferent ion components have equal temperatures) one

finds
Z Zntt = —7(|le|®/T.),

where 7 = eﬁ‘Te/n.

A stronger adiabatic ion response reduces the ETG
growth rate. Thus, higher Z.g is stabilizing, and
higher T; /T, is destabilizing.



Secondary Instabilities

Linear toroidal (E)ITG eigenmodes typically have
v(k;) peaked at zero. Corresponds to “ballooning”
structure.

At the outboard midplane, the perturbed quantities
are basically sinusoidal, with poloidal wavelength

satisfying kgpe ; ~ 0.4.

There are therefore exponentially growing poloidal
gradients of temperature, density, potential, etc.

Conjecture: Most potential secondary instabilities
are not able to grow because of strong ExB shear
from poloidal gradients of ®.

However, sheared flow itself may be unstable to Kelvin-
Helmholtz type mode.

Question: Does the difference in adiabatic response
affect the stability properties of the secondary insta-

bilities?

Answer: Yes. The Kelvin-Helmholtz stability is par-
ticularly affected. The difference is qualitatively con-
sistent with the simulation results.



Basic Secondary Kelvin-Helmholtz

Instability

Consider the model equation:

on

To recover the standard K-H instability, use

n=-V%o

“Linearize” around the exponentially growing eigen-
mode. For a quantity f, this implies

n=n®(y) + én(z,y)

Note: we do not assume that the perturbed quantity
is slowly varying in time. (Different from Diamond,
et al.)

The “linearized” equation becomes

dén . :
S5+ {80} = yon + ik, (n5® — 2(én)

Define ¥ = v — z'l::x(I)gE,O). Then,

%5%”- +{®,n} = F6n + ik;n{) @



Secondary Kelvin-Helmholtz
Continued

One may get an analytic answer in the long wave-
length limit. Consider the case §2/8y? > k2. To
zeroth order, the LHS must vanish, so that

Gy = const

The eigenvalue can be found at next order by aver-
aging over one wavelength in the y direction:

1
kz <y >=0; = k2 Vo

where Vp = |&{"].
The growth rate of the secondary instability is

v = kak,®©.

When this growth rate is comparable to the linear in-
stability’s growth rate, expect nonlinear saturation.

This implies
e

=,
kJ_

which is an unsurprising result.

q)sa.t ~
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Secondary Kelvin-Helmholtz for

ETG

‘The calculation proceeds along exactly the same lines,

except that now

n=—(T—)\2Vi)<I>

The presence of the “7” term changes the stability
properties of the KH mode.

The predicted saturation level increases significantly:

B, ~ T
sat ki

NOTE: This calculation is only qualitative, and can-

not really predict the nonlinear state. However, since

the peak of the nonlinear fluctuation spectrum oc-

curs for small k,, this calculation suggests that the

ETG/HM/FC system saturates at a large level.

It is interesting to explore the modified Hasegawa-
Mima,/Frieman-Chen equation, to see if the long wave-
length KH instability remains suppressed.



Secondary Kelvin-Helmholtz for

ITG

¢ The modified Hasegawa-Mima/Frieman-Chen non-
linear equation is the appropriate equation for the
consideration of ITG modes.

e Question: Does the inclusion of the lux-surface av-
eraged component of the electrostatic potential change

the stability of the KH mode?

o Answer: Yes! The stability properties revert to the
classic KH case in the long-wavelength limit.

o Why? The equation reduces to:

9 [ ,0G] ., o

e Surprisingly, setting G = const to make the LHS
vanish also causes the new term on the RHS to van-

ish, since <y >=< ¥ > and < G >=G.

e The eigenvalue is that of the classic Kelvin-Helmholtz
instability.

e Finally, the predicted saturation level is

Ye

q)sat ~ Ez"'
L

which is (to us) a surprising result.
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Simplified ETG Physics

Unlike ITG modes or other long-wavelength drift
waves, the simplest nonlinear ETG-like equation does
correspond to the Frieman-Chen generalization of
the Hasegawa-Mima equation.

Consider limit of p; > Ap > pe. Then, one must
retain the Debye shielding term in Poisson’s equa-
tion:

—V2® = 47p

Since the ion response is adiabatic, this equation
yields:
ne = —(T —ApV2)®

This has the same mathematical form as the 1on vor-
ticity. Only the normalizations are different. Note
that there is no complicating flux-surface averaged
component.

The electron GKE has the same form as the ion
GKE. Thus, one finds

®
(1 — A*V?) %{ — iwge® +iw,® — A2 {B,VIP} = 0.
where A = Ap/pe, lengths are normalized by p., and

time is normalized by L., /v¢e.
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Summary

ITG and ETG systems are virtually identical math-
ematically. The only difference is in the details of
the response of the adiabatic species.

Long wavelength, secondary Kelvin-Helmholtz in-
stabilities are suppressed in the ETG system, but
not in the ITG system.

One expects from this observation that the ITG mode
should saturate at a lower level than the ETG mode.

This is found in gyrofluid and gyrokinetic simula-

tions.

The Hasegawa-Mima equation is missing important
physics in the limit in which 1t was derived. The
Frieman-Chen generalization is likewise deficient.

The Frieman-Chen generalization is, however, math-
ematically equivalent to a simplified description of
ETG physics if one renormalizes all the terms of the
equation to reflect the short wavelength nature of
ETG modes.



