

the

abdus salam international centre for theoretical physics

SMR 1161/21

AUTUMN COLLEGE ON PLASMA PHYSICS

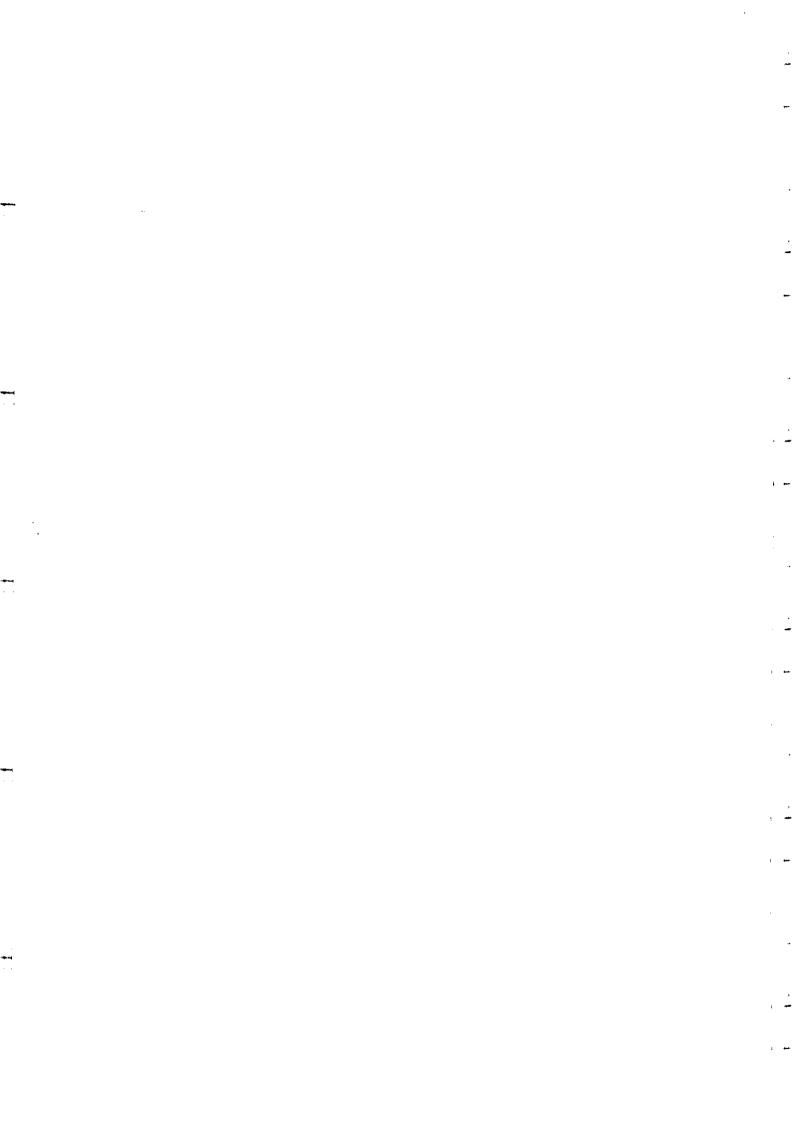
25 October - 19 November 1999

Secondary Instabilities in Temperature Gradient Driven Turbulence

W. DORLAND

University of Maryland College Park, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.



Secondary Instabilities in Temperature Gradient Driven Turbulence

William Dorland
Barrett Rogers
University of Maryland, College Park

Secondary Instabilities in E/ITG Turbulence

- Gyrokinetic equation (GKE)
- Instability from electron temperature gradient
- Relationship between GKE and Hasegawa-Mima (HM)
- Main secondary instability: Kelvin-Helmholtz
 - Physical picture
 - Standard KH
 - KH for HM (ETG)
 - KH for corrected HM (ITG)
- Numerical simulations
- Implications

Gyrokinetic Equation

• Gyrokinetic equation appropriate for small amplitude fluctuations with

$$rac{\omega}{\Omega_c} \sim rac{k_{\parallel}}{k_{\perp}} \sim rac{\delta f}{f} \sim rac{e\delta \Phi}{T} \sim rac{\delta B}{B} \sim rac{
ho}{L} \ll 1$$

• Gyrokinetic equation describes evolution of perturbed distribution function h. For $F_0 = F_0(\epsilon, \Psi)$:

$$\left(\frac{d}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla + i\omega_d + C\right) h = i\omega_*^T \chi - \frac{q}{m} \frac{\partial F_0}{\partial \epsilon} \frac{\partial \chi}{\partial t}.$$

• The total derivative is

$$\frac{dh}{dt} = \frac{\partial h}{\partial t} + \frac{c}{B} \left\{ \chi, h \right\}.$$

- The drift frequency $i\omega_*^T = n_0 c \partial F_0/\partial \Psi$, where n_0 is the toroidal mode number of the perturbation and Ψ is the equilibrium poloidal magnetic flux enclosed by the magnetic surface of interest.
- The perpendicular drifts (curvature, grad-B) are

$$\omega_d = \mathbf{k}_{\perp} \cdot \mathbf{B}_0 \times \left(m v_{\parallel}^2 \hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} + \mu \nabla B_0 \right) / (m B_0 \Omega_c),$$

• The fields are represented by

$$\chi = J_0(\gamma) \left(\Phi - \frac{v_{\parallel}}{c} A_{\parallel} \right) + J_1(\gamma) \frac{v_{\perp}}{c} \frac{\delta B_{\parallel}}{k_{\perp}}.$$

Here, $\gamma = k_{\perp} v_{\perp} / \Omega_c$.

Gyrokinetic Maxwell Equations

- Fields determined by Maxwell equations, neglecting displacement current.
- Poisson's equation (neglecting Debye term for now):

$$\sum_{s} \int d^{3}v \, q \left[q \Phi \frac{\partial F_{0}}{\partial \epsilon} + h \exp{(iL)} \right] = 0,$$

where $L = (\mathbf{v} \times \hat{\mathbf{b}} \cdot k_{\perp})/\Omega_c$ accounts for the gyrophase dependence.

• Preferred velocity space coordinates are (ϵ, μ, ξ) , so that

$$\int d^3v = \frac{B}{m^2} \int \frac{d\epsilon \, d\mu \, d\xi}{|v_{\parallel}|}$$

• Integrate over the gyrophase to find

$$\sum_{s} \frac{2\pi B}{m^2} \int \frac{d\epsilon \, d\mu}{|v_{\parallel}|} q \left[q \Phi \frac{\partial F_0}{\partial \epsilon} + J_0(\gamma) h \right] = 0.$$

• Similarly, Ampere's equation provides the two components of the perturbed magnetic field:

$$k_{\perp}^2 A_{\parallel} = \frac{4\pi}{c} \sum_{s} \frac{2\pi B}{m^2} \int \frac{d\epsilon \, d\mu}{|v_{\parallel}|} q v_{\parallel} J_0(\gamma) h$$

$$k_{\perp}^2 \delta \! B_{\parallel} = -4\pi \sum_{\rm s} \frac{2\pi B}{m^2} \int \frac{d\epsilon \, d\mu}{|v_{\parallel}|} m v_{\perp}^2 \frac{J_1(\gamma)}{\gamma} h$$

ETG Instability

- Analogue of ITG instability. Roles of electrons and ions reversed.
- Typical ETG instability has $k_{\perp}\rho_{e} \sim 1$, $\omega \sim k_{\theta}\rho_{e}v_{te}/L \ll \Omega_{ci}$.
- Ions respond to perturbations adiabatically because $k_{\perp}\rho_{i}\gg 1$.
- Principle differences from ITG: magnetic well physics, magnetic flutter physics, details of adiabatic response, zonal flow physics.
- Nonlinear simulations dramatically different. It is sufficient to consider the electrostatic limit.

Hasegawa-Mima Equation

- Nonlinear Hasegawa-Mima equation is starting point for many studies of plasma turbulence.
- Derived in the $T_i/T_e \ll 1$ limit
- Ion continuity equation, ignoring parallel ion inertia, is

$$\frac{\partial n}{\partial t} + \nabla_{\perp} \cdot [n_0 (\mathbf{v}_E + \mathbf{v}_p)] = 0.$$

• Polarization drift is

$$\mathbf{v}_{p} = \frac{1}{\Omega_{ci}B} \left[-\frac{\partial}{\partial t} \nabla_{\perp} \Phi - (\mathbf{v}_{E} \cdot \nabla) \nabla_{\perp} \Phi \right].$$

• **E**×**B** drift is

$$\mathbf{v}_E = \frac{c}{B}\hat{\mathbf{b}} \times \nabla \Phi$$

- Electrons assigned adiabatic response, $n = |e|\Phi/T_e$.
- Quasineutrality then gives

$$\left(1 - \rho_s^2 \nabla_\perp^2\right) \frac{\partial \Phi}{\partial t} + i\omega_* \Phi - \frac{c}{B} \left\{ \Phi, \nabla_\perp^2 \Phi \right\} = 0$$

From Gyrokinetic Equation to Hasegawa-Mima

• Frieman and Chen derived HW from electrostatic, nonlinear gyrokinetic equation (1982).

$$\left(\frac{d}{dt} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla + i\omega_{d}\right) h = i\omega_{*}^{T} J_{0} \Phi + \frac{q}{T} \frac{\partial J_{0} \Phi}{\partial t}.$$

- It is convenient to work with the non-adiabatic part of the ion distribution function, $f \equiv h f_M |e| J_0 \Phi / T_i$.
- Integrate over velocity to find density evolution; coldion limit allows neglect of most FLR terms. Neglecting the ion-sound term:

$$\frac{dn}{dt} - i\omega_{de}\Phi + i\omega_{*e}\Phi = 0.$$

- Electrons assigned adiabatic response, $n_e = |e|\Phi/T_e$.
- Find density from Poisson's equation:

$$\int d^3v J_0 f + (\Gamma_0 - 1) \frac{|e|\Phi}{T_i} = \frac{|e|\Phi}{T_e}$$

For $T_i/T_e \ll 1$, $\Gamma_0 \sim 1 - k_{\perp}^2 \rho_i^2$ and $\int d^3 v J_0 f = n$, so that

$$n = \left(1 - \rho_s^2 \nabla_\perp^2\right) \frac{|e|\Phi}{T_e}$$

• In summary:

$$(1 - \rho_s^2 \nabla_{\perp}^2) \frac{\partial \Phi}{\partial t} - i\omega_{de} \Phi + i\omega_* \Phi - \frac{c}{B} \left\{ \Phi, \nabla_{\perp}^2 \Phi \right\} = 0$$

Gyrokinetic Hasegawa-Mima

• Note that the guiding center ion density in the gyrokinetic theory may be naturally identified with the ion vorticity:

$$n = \left(1 - \rho_s^2 \nabla_\perp^2\right) \frac{|e|\Phi}{T_e}$$

- Curvature term identified, $\propto i\omega_{de}\Phi$.
- However, most importantly, both Hasegawa and Mima and Frieman and Chen mistreated the electron response! Adiabatic electron response is not correct for disturbances with $k_{\parallel} = 0$.
- Electron adiabaticity can be found from Ohm's Law (which can be obtained from $\int d^3v \, v_{\parallel}$ moment of GKE):

$$\frac{\partial A_{\parallel}}{\partial t} + \hat{\mathbf{b}} \cdot \nabla \left(|e| \Phi - p_e \right) = 0.$$

• In isothermal, electrostatic limit, second term implies

$$|e|\Phi = n_e T_0 + f(\Psi)$$

• The integration constant $f(\Psi)$ is missing from the HM equation, but is very important for the secondary Kelvin-Helmholtz instability, which determines the turbulence saturation level.

Flux-Surface Averaged Electron Response

- Integration constant $f(\Psi)$ is free function related to initial equilibrium conditions.
- If the initial equilibrium has no radial electric field, then the appropriate choice for $f(\Psi)$ is

$$f(\Psi) = |e| < \Phi >$$

where $\langle \cdots \rangle$ represents the flux-surface average (which annhilates $\hat{\mathbf{b}} \cdot \nabla$). Thus, the perturbed flux-surface averaged electron response is initially zero and remains zero, which is appropriate, since adiabatic electrons correspond to no radial transport of electrons.

• In general, one may take other values of $f(\Psi)$, allowing, for example, for a sheared radial electric field. However, such a field must also be included in the GKE.

Ion Response for the ETG Mode

- For the ETG mode, the ion response is adiabatic, because $k_{\perp}\rho_i \gg 1$.
- The gyrokinetic form of Poisson's equation allows one to examine this statement closely.

$$n_i^{\mathrm{tot}} = \bar{n}_i - n_{i0} \left(1 - \Gamma_0(b_i)\right) \frac{|e|Z_i \Phi}{T_i}.$$

Here, $b_i = (k_{\perp} \rho_i)^2$. The function $\Gamma_0(b) = I_0(b)e^{-b}$, in which $I_n(b) = i^{-n}J_n(ib)$ is the modified Bessel function.

- The gyrophase independent component of the ion density is $\bar{n}_i = \int d^3v J_0(\gamma) f_i \simeq 0$, which is negligible for perturbations with $k_{\perp} \rho_i \gg 1$.
- Similarly, $\Gamma_0(b_i) \ll 1$ for $b_i \gg 1$.
- Upon summing over species (and assuming the different ion components have equal temperatures) one finds

$$\sum_{i} Z_{i} n_{i}^{\text{tot}} = -\tau(|e|\Phi/T_{e}),$$

where $\tau = Z_{\text{eff}} T_e / T_i$.

• A stronger adiabatic ion response reduces the ETG growth rate. Thus, higher Z_{eff} is stabilizing, and higher T_i/T_e is destabilizing.

Secondary Instabilities

- Linear toroidal (E)ITG eigenmodes typically have $\gamma(k_x)$ peaked at zero. Corresponds to "ballooning" structure.
- At the outboard midplane, the perturbed quantities are basically sinusoidal, with poloidal wavelength satisfying $k_{\theta}\rho_{e,i} \sim 0.4$.
- There are therefore exponentially growing poloidal gradients of temperature, density, potential, etc.
- Conjecture: Most potential secondary instabilities are not able to grow because of strong $\mathbf{E} \times \mathbf{B}$ shear from poloidal gradients of Φ .
- However, sheared flow itself may be unstable to Kelvin-Helmholtz type mode.
- Question: Does the difference in adiabatic response affect the stability properties of the secondary instabilities?
- Answer: Yes. The Kelvin-Helmholtz stability is particularly affected. The difference is qualitatively consistent with the simulation results.

Basic Secondary Kelvin-Helmholtz Instability

• Consider the model equation:

$$\frac{\partial n}{\partial t} + \{\Phi, n\} = 0.$$

• To recover the standard K-H instability, use

$$n = -\nabla_{_\perp}^2 \Phi$$

• "Linearize" around the exponentially growing eigenmode. For a quantity f, this implies

$$n = n^{(0)}(y) + \delta n(x, y)$$

- Note: we do not assume that the perturbed quantity is slowly varying in time. (Different from Diamond, et al.)
- The "linearized" equation becomes

$$\frac{\partial \delta n}{\partial t} + \{\Phi, n\} = \gamma \delta n + ik_x \left(n_y^{(0)} \delta \Phi - \Phi_y^{(0)} \delta n \right)$$

• Define $\bar{\gamma} = \gamma - ik_x \Phi_y^{(0)}$. Then,

$$\frac{\partial \delta n}{\partial t} + \{\Phi, n\} = \bar{\gamma} \delta n + i k_x n_y^{(0)} \delta \Phi$$

Secondary Kelvin-Helmholtz Continued

• One may get an analytic answer in the long wavelength limit. Consider the case $\partial^2/\partial y^2 \gg k_x^2$. To zeroth order, the LHS must vanish, so that

$$G_0 = \text{const}$$

• The eigenvalue can be found at next order by averaging over one wavelength in the y direction:

$$k_x^2 < \bar{\gamma}^2 > = 0;$$
 $\gamma^2 = \frac{1}{2} k_x^2 V_0^2$

where $V_0 = |\Phi_y^{(0)}|$.

• The growth rate of the secondary instability is

$$\gamma = k_x k_y \Phi^{(0)}.$$

• When this growth rate is comparable to the linear instability's growth rate, expect nonlinear saturation. This implies

$$\Phi_{
m sat} \sim rac{\gamma_\ell}{k_\perp^2},$$

which is an unsurprising result.

Secondary Kelvin-Helmholtz for ETG

• The calculation proceeds along exactly the same lines, except that now

$$n = -\left(\tau - \lambda^2 \nabla_{\perp}^2\right) \Phi$$

- The presence of the " τ " term changes the stability properties of the KH mode.
- The predicted saturation level increases significantly:

$$\Phi_{
m sat} \sim rac{\gamma_\ell}{k_\perp^4}$$

- NOTE: This calculation is only qualitative, and cannot really predict the nonlinear state. However, since the peak of the nonlinear fluctuation spectrum occurs for small k_{\perp} , this calculation suggests that the ETG/HM/FC system saturates at a large level.
- It is interesting to explore the modified Hasegawa-Mima/Frieman-Chen equation, to see if the long wavelength KH instability remains suppressed.

Secondary Kelvin-Helmholtz for ITG

- The modified Hasegawa-Mima/Frieman-Chen nonlinear equation is the appropriate equation for the consideration of ITG modes.
- Question: Does the inclusion of the flux-surface averaged component of the electrostatic potential change the stability of the KH mode?
- Answer: Yes! The stability properties revert to the classic KH case in the long-wavelength limit.
- Why? The equation reduces to:

$$\frac{\partial}{\partial y} \left[\bar{\gamma}^2 \frac{\partial G}{\partial y} \right] = \bar{\gamma}^2 k_x^2 G + (\gamma \bar{\gamma} G - \bar{\gamma} < \delta \Phi >)$$

- Surprisingly, setting G= const to make the LHS vanish also causes the new term on the RHS to vanish, since $<\gamma>=<\bar{\gamma}>$ and < G>=G.
- The eigenvalue is that of the classic Kelvin-Helmholtz instability.
- Finally, the predicted saturation level is

$$\Phi_{
m sat} \sim rac{\gamma_\ell}{k_\perp^2}$$

which is (to us) a surprising result.

Simplified ETG Physics

- Unlike ITG modes or other long-wavelength drift waves, the simplest nonlinear ETG-like equation does correspond to the Frieman-Chen generalization of the Hasegawa-Mima equation.
- Consider limit of $\rho_i \gg \lambda_D \gg \rho_e$. Then, one must retain the Debye shielding term in Poisson's equation:

$$-\nabla_{\perp}^2 \Phi = 4\pi \rho$$

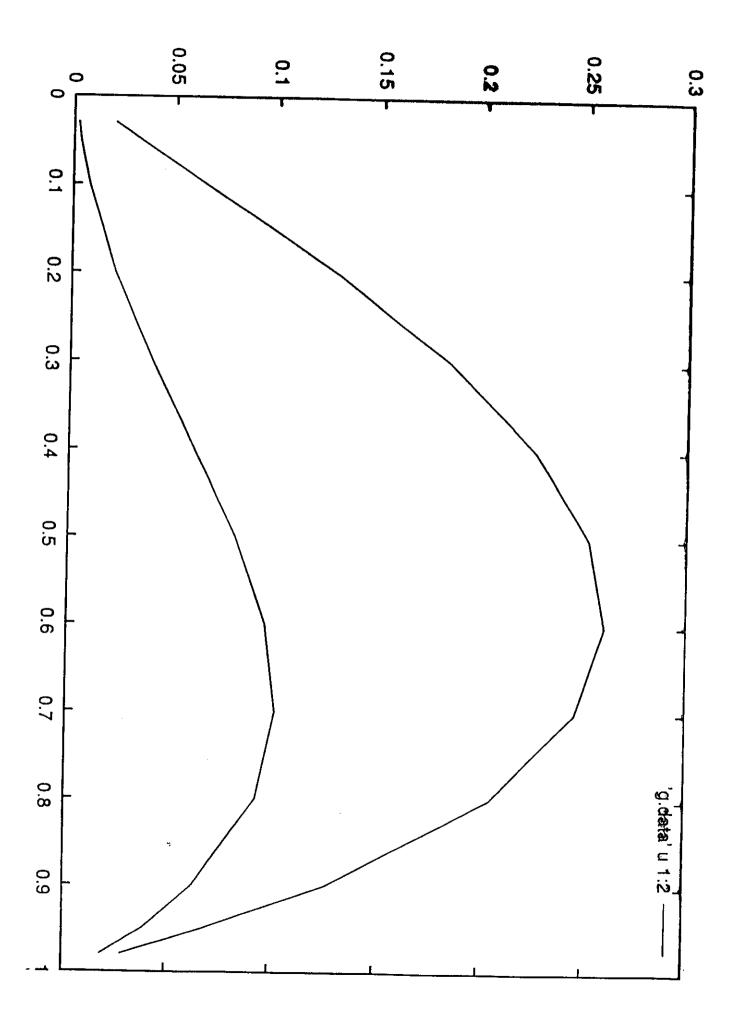
• Since the ion response is adiabatic, this equation yields:

$$n_e = -(\tau - \lambda_D^2 \nabla_\perp^2) \Phi$$

- This has the same mathematical form as the ion vorticity. Only the normalizations are different. Note that there is no complicating flux-surface averaged component.
- The electron GKE has the same form as the ion GKE. Thus, one finds

$$\left(\tau - \lambda^2 \nabla_{\perp}^2\right) \frac{\partial \Phi}{\partial t} - i\omega_{de} \Phi + i\omega_* \Phi - \lambda^2 \left\{\Phi, \nabla_{\perp}^2 \Phi\right\} = 0.$$

where $\lambda = \lambda_D/\rho_e$, lengths are normalized by ρ_e , and time is normalized by L_n/v_{te} .



Summary

- ITG and ETG systems are virtually identical mathematically. The only difference is in the details of the response of the adiabatic species.
- Long wavelength, secondary Kelvin-Helmholtz instabilities are suppressed in the ETG system, but not in the ITG system.
- One expects from this observation that the ITG mode should saturate at a lower level than the ETG mode. This is found in gyrofluid and gyrokinetic simulations.
- The Hasegawa-Mima equation is missing important physics in the limit in which it was derived. The Frieman-Chen generalization is likewise deficient.
- The Frieman-Chen generalization is, however, mathematically equivalent to a simplified description of ETG physics if one renormalizes all the terms of the equation to reflect the short wavelength nature of ETG modes.