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Sheared E X B Zonal Flows Play an

Important Role in the Turbulent Dynamics

T'?]I!lllllllllll!l;

10 - -]

T x3
r

g
O

e Zonal flows are constant on a flux surface, but vary radially. Also called radial
modes [Watrz, et ol (1994)]. Potential leads to raflially sheared perpendicular
E x B flow.
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e Have small radial scales ~ turbulent scales, not equilibrium

o Flows are nonlinearly generated by the turbulence [Haskcawa & WAKATANI
(1987)], [CarRERAS, et al. (1991)], [Diamonn & Kim, (1991)]

e Sheared flows stretch turbulent eddies, decreasing radial correlation and reg-
ulating the turbulence [BicLARI, DiamMonD, TERRY, (1990)]
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An Incomplete History of Zonal Flows

Zonal flows are kp = () convective cell, lots of early refs: Okuda, Cheng, Lee...

1979 Hasegawa, et al., 2D sims of Hasegawa-Mima eqns

— predicted condensation of fluctn energy in zonal flow (ks = 0)
— but Hasegawa-Mima eqns have incorrect adiabatic response
1987 Hasegawa & Wakatani
— 3D, better electron response, but still very reduced fluid egns
— cylindrical plasma, so only weak classical flow damping
1991 Carreras et al., Diamond et al. resistive edge turbulence

— also see strong zonal flow generation, but suggest only very near the

edge. Still cyclindrical.

1993 Hammett, et al., gyrofluid simulations

(4

_ Dorland: correct adiabatic electron response amplifies low-k, flows, saw
strong effect of flow generation in slab simulations
_ Beer: flux-tube, toroidal effects introduce collisionless damping, zonal

flows still very important
1994 Dimits, saw large effect of zonal flows in GKP flux-tube simulations
1995 Cummings et al., Sydora et c!. (GKP full torus)
— added correct k; = 0 adiabatic response, but saw little effect
1998 Rosenbluth & Hinton

— emphasized linearly undamped flow component
— predicted undamped flow would ~ Vi

1998 Lin, et al. (GKP full torus)

— with broad profiles, recovers flux-tube limit
— with narrow profiles, recovers previous full torus limit
— including neoclassical collisional damping of “undamped” component



Three Important Characteristics of Zonal Flows

Aren't zonal flows just another component of the turbulence?

Three features make them unusual:

e Adiabatic electrons can't respond to kj = 0 zonal flow component, so polar-
ization amplifies low k., k) = 0 component of potential relative to k # 0
for the same 7;

Ne = T

ed ed _ ed
Tie (-'T— — (_T— ) =N; — TLiQ(l — FO)"?_,_

in polarization density, I'p =~ 1 — k2p? for small ks p;
So for zonal flow, with ky =0 and n = (:
ed n; 1
T, " o K2

but for other modes k # 0 :
ed "y T 1
T, - 50 Ti/Te +1 =T

e Other modes also cause convective decorrelation, but zonal flows do it over
the whole flux surface, not locally

e The fact that kj = 0 and ky = 0 makes their evolution somewhat simpler
and very different (no other mode has kj =0 and w, = 0)



Importance of Linear Zonal Flow Damping

e Two phases: fast collisionless damping & slow collisional damping. Depends
on initial flow conditions

® In [Beer, Ph.D. Thesis (1995)] showed that our gyrofluid equations accurately
model the fast linear collisionless damping for t < ¢R/v;+/¢. Argued that
long time linear flow dynamics are not important, nonlinear effects will dom-
inate long term nonlinear flow evolution.

GKP (Z.Lin)
gyrofluid

time (qR/v,)

e [Rosenbluth & Hinton, PRL (1998)] emphasized a linearly undamped flow com-
ponent. This “residual” flow damped by collisional effects. Argued that
nonlinearly, residual component should grow in time ~ /% in collisionless
limit. Modeled nonlinear drive term as a white noise source.

e Since our original gyrofluid eqns underestimate residual component, if resid-
ual component is important nonlinearly, gyrofluid simulations would under-
estimate EE x B flow levels and overpredict y;.
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Zonal Flows Fluctuate on Turbulent
Time and Space Scales

Time history of the flux surface averaged potential, (®(r,¢)), from the saturated
phase of a nonlinear run for DIIID #81499 parameters at p = 0.5: § = 776
g—14, 1 =311,¢,=045 T, =T,

H
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Time Averaged Flow Spectrum

Spectrum of saturated flux surface averaged potential |®(k,)| obtained by Fourier
Transforming in 7 and averaging in &.
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Shearing rate peaks at high k.: vehear = k2| ®(k-)| dr

While highest k, shearing rates are large, they have small correlation times and
thus small effect on turbulence (HanM, DiAMOND).

Maximum ~;,, = 0.1

Using simulation zonal flow spectrum and using simulation zonal flow time history
to calculate 7., (%), we estimate the time dependent effective shearing rate wyg

[Hahm]| and find close to i/ vN
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Flow Correlation Functions

After transforming in r, the correlation function can be obtained from the time
series ®(k,,1):
Ct) = [ dte ™' d(w)

A least squares fit to the numerical data of the form C(t) = e~*/™ is also shown
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Simulation 7oy Similar to Expt

Teorr VS. K, similar to measurements by Coda [APS 1997]:

15 S I AL A S S S S S S
: —e— T, (nonlinear) i
”\ ~6— Tgamp (linear) ]
10 1 — 1/k, fit -

T, (aR/vy)

Te 72 Taamp except for small k., where 7. > Tqamp.

Te > Tdamp implies that finite spectral width of nonlinear source S(w) is domi-
nating 7.

. S?
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(w — w, )2 + 12
= NL Source is not white at low ;.



Physics of the Undamped Flow Component

Since vg - VFy = 0 for the zonal flows, they obey a simplified collisionless
electrostatic toroidal gyrokinetic equation:

%,
-8_{ + v,V f +iwaf + i(eFo/T)wa® + v (eFo/T)V,® =0,

where iwg = V4 - V, = i(kypi /v R) (V] + v2/2)sin 6.

Rosenbluth and Hinton found a general equilibrium solution:
f = —(e®/T)Fo + h(E, u)e"kfp'(qﬂﬂ"tl/fﬂvtl,

where h(E, i) is arbitrary but satisfies Bh/0l = 0. The vy in the exponential
keeps f non-Maxwellian. ¢

In this equilibrium, parallel variations in f balance the velocity dependent cross

field drifts.

Expanding for small banana width krp,-q/e < 1
B
f=—(e®/T)Fo+h(E.p)L - ik, pi 0,
GB’Ut

we see that moments of f will be supported by radial gradients of higher moments,
e.g. u, is driven by k,p,, analogous to Pfirsch-Schiuter flow:

. qB
noly = deU vf= -1kr,0i;—§::—t[d3v vﬁh(E,u)
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New Closures for Zonal Flows
Which Retain Residual Component

If we choose R(E, i) to be a perturbed Maxwellian with no n perturbation:

mu‘a 3 H[l—ik,p;@ﬂ
2T0 T ¢ B,

we can integrate this and find equilibrium g, and ¢, moments:

f = —(e®/T)F + Fy (

(B()

ql(l ) = Jik,pi= B o7 and O) = ¢k ,’)z ; (ST

Generalizing to non-isotropic h leads to:

[

: q B q By
ql(lo) = Jek,p; B T, and g0 l =1k, [),‘—B T..

Our old parallel closures damped ¢, and g, to zero, but now we replace:

\/ﬁDliiknW” — \@D“|k”|(q“ — ql(lo)) in the ¢y eqn
\/QDﬂkuifh — \@Dl(k“(qi — q(L‘U)) in the q, eqn

We also have to modify the toroidal closures in the p, and p, eqns to support
this equilibrium. We have not found a completely satisfactory way to do this.
Two possibilities are:

closure (a): vy =1y =13 =vy; =10, or

closure (b): vy = (0,-3), 1 = (0,1}, v3 = (0,0), 11 = (0,-3/2), and g =
q(LO) = (), which makes less physical sense but doesn’t do too poorly.

Both with v5-1o=0.

Because our flux-tube code is spectral, we can modify these evolution eqns for
the zonal flows without changing the k; # 0 components.
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Comparison of Gyrokinetic and Gyrofluid
Residual Component vs. ky

New closures don't do so well for other k.'s:

1

|'_ T T 1 T | T T T 1 T T T I ]
 kinetic (D&K) j_
- GF moedel (g ]
_os8 FGF model (b) -
r.(a " —
g j -
T 06 |- -
m i —
O
= ol :
8 0.4 B
3 I
> .
0.2 N
0 1 L ] I ST B J_j
0 0.5 1 5

1f(r pi

Closure {a) does slightly better at low &, which seems to be more important.
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Nonlinear Tests of Importance of Residual Flow

For parameters from DIlI-D shot 81499 (the Cyclone base case, with R/Lp; =
6.9), we repeat nonlinear runs with the new closures (a) and {b), both including
undamped components of the zonal flow.
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With residual flows, flux drops by up to about 35%, for this case

Nonlinear effects (¢.g. turbulent viscosity) keep linearly undamped residual com-
ponents from growing indefinitely
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Time Averaged Zonal Flow Spectra
with New Closures

Low k, zonal flows are larger with new closures

25 T 7 T l T T T T
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Since low k&, residual component is too small for our new closures, might expect
more of an effect as we improve model further
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Zonal Flows Can Cause Bursting
Near Marginal Stability

Nearer marginal stability (R/Lp, = 1), with the old closures we find intermittent
behavior:

12_F]]I111]]|I!][['[|Iil

10

X; (p2v,/L..)
@]
I

4 -

R -

()E\LJ_LLlIIIEIlJJtliJll!FI
0 200 400 600 800 1000 1200

time (v,/L..)

Turbulence ( ;) drives zonal flows ({®};1;5) which then damp turbulence. Flows
then slowly damp and turbutence grows again.

Bursting is on 1ms time-scale, similar to Mazzucato's fluctuation measurements
in RS, which are likely near marginal stability

Zhihong has now seen this bursting with a more realistic neoclassical damping of
the flows.
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Lero-flux State Near Marginal Stability
With Undamped Residual Flow Component

Repeating this marginal stability case (R/Ly; = 4) with the new closures, we
find that the turbulence drives one burst of flow which is now undamped. Leads
to nonlinear upshift in critical gradient (DivITS, SHERWOOD 1998)

15 R I T T | 17 { T T 7 ' 7T T T1T7T 7
- TTT—— —
“fiok S
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S ]
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i Too i
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/ _
O ﬁ_‘*l 1 [ i l\mL\ | l b I I | I N

0

200 400 600 800 1000 1200
time (v,/L..)

This is in the collisionless limit. A realistic amount of collisions would damp the

zonal flows on a time scale 7y = 1.5¢/v;; (RosensLuTH, APS 1997) and would
likely lead to bursty behavior or a turbulent steady state

Possibly an artifact of initial conditions. We could initialize arbitrarily large flow
and get zero flux for any R/Lp;
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Gyrofluid /Gyrokinetic Comparisons:
€ scan to test Residual Flow Effects

Amount of residual flow after an initial flow perturbation has damped away is
controlled by ¢ = r/R, as given by Rosenbluth & Hinton and verified by Dimits

(¢ = 0.625):

Residual flow component can be turned off by taking ¢ — 0.

Dimits reported an ¢ scan for the NTP test case parameters in his IAEA (1994)

|

VEf _

cvelq?

v 1+ cvVel g

paper which we repeated with GF simulations.
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Gyrofluid /Gyrokinetic Comparisons:
¢ scan to test Residual Flow Effects

3 T T T [ 1 T T 1] T T i T T T
: —e— SimulationS:
i —-— HR theory? i
2 |
- // =
5. T
<+ // :
™~ /
é — -
><—. I~ r
L / i
O 1 1 i l i 1 I ‘ I 1 L I 1 1 I\ ]
-0.2 0 0.2 0.4 0.6
c=r/R

Ratio ygr/Xcx does not change as residual flows are turned off.

Evidence (?) that residual flow> are not dominant source of GF vs. GKP discrep-
ancy, and that turbulent viscosity is keeping residual components from growing
to large amplitudes
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— 20-33% change in predicted temperature gradient
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¢ Dimits (LLNL): good convergence in his gyrokinetic particle simulations

o New neoclassical gyrofluid closure significantly improves GF/GK comparison.

o Turning this plot around; for a fixed amount of heat flux x xV7, the tem-
perature gradient predicted by the original gyrofiuid-based IFS-PPPL model is
20-33% low. But P;,., < 77, and so may increase by x2 or more.

¢ Nonlinear upshift in critical gradient may depend on: Rosenbluth-Hinton un-
damped zonal flows 7 with elongation (W. Dorland), | with weak collisions (Z.
Lin), | ?2? with non-adiabiatic electrons [may limit inverse cascade that drives
zonal flows (Diamond, Liang, Terry-Horton, Waltz, ...) and 1 turbulent viscosity].
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Conclusions

e New gyrofluid closures derived which retain linearly undamped residual zonal
flow components

e Agreement at low k, is not great, further closure modifications being inves-
tigated

® Nonlinear comparisons show that including residual component has 30%-40%
effect for Cyclone DIII-D base case

o Might expect larger effect as low k, behavior is improved
e Near marginal stability system can bifurcate into all flow, zero flux state

o When undamped flow effect is important, a small amount of collisions may
Increase y;.

— collisional flow damping will be important here. Zhihong's resuits indicate
that x; ~ v;; near marginal stability.
— intermittent or bursty behavior seen with some flow damping

¢ |n strong turbulence regimes nonlinear effects appear to saturate residual flow

component, (turbulent viscosity keeps residual components from growing
indefinitely)

e Nonlinear GyroKinetic Particle (GKP) vs. GyroFluid (GF) comparisons:
— GF/GKP discrepancy is typically 2-3.

- Differences in linear zonal flow dynamics may account for some of the
GF/GKP discrepancy, especially near marginal stability

— Adding additional physics (e.g. TE's, collisions) may move system farther
from marginal stability and improve agreement

e Future work

— Investigate collistonality and |C dependence of flux near marginal stability

— Perhaps move to more flexible frequency dependent closures (Mattor)
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