

the

abdus salam

international centre for theoretical physics

SMR 1161/25

AUTUMN COLLEGE ON PLASMA PHYSICS

25 October - 19 November 1999

Gravitational Instability "Jeans Swindle" for Self-Gravitating Astrophysical Plasmas

V.M. CADEZ

Sterrekunding Observatorium Universiteit Gent Belgium

These are preliminary lecture notes, intended only for distribution to participants.

Introduction

We start from the following facts regarding a self-gravitating cloud:

- 1. A self-gravitating plasma cloud in a static equilibrium cannot be uniform on large scale: There is always the gravitational force present which makes the cloud intrinsically nonuniform.
- 2. The standard harmonic analysis of small perturbations in a uniform cloud is meaningful only if the wave-lengths of perturbations do not exceed the typical length of nonuniformity due to self-gravitational effects.
- 3. In the Cartesian geometry, a strict treatment of linear perturbations is possible only in **one-dimension**: Along the direction of gravitational force.
- 4. 2-D and 3-D analyses in Cartesian geometry are correct provided the wave-lengths perpendicular to the direction of gravity are sufficiently small as compared to the typical length of nonuniformity.

Basic Model in Cartesian Geometry

The self-gravitating plasma cloud is considered a perfect gas that is also:

- In a static equilibrium,
- isothermal $(T_0 = \text{const})$ with
- the gravitational force and the gradients of physical quantities along the z-axis, i.e. $\nabla = \vec{e}_z \partial/\partial z$,
- of uniform composition but non-uniform density $\rho(z)$,
- ullet permeated by a nonuniform magnetic field $ec{B}_0 = B_0(z) \hat{e}_x$ with
- ullet nonuniform plasma flow $\vec{U}_0(z)$ along $\vec{B}_0(z)$.

The strength of the magnetic field $B_0(z)$ varies with z in such a way that the ratio of the gas pressure $p_{g0} = R_g T_0 \rho_0$ to the magnetic pressure $p_{m0} \equiv B_0^2/(2\mu_0)$ is constant, i.e. $\beta \equiv p_{g0}/p_{m0} = \text{const.}$ Consequently, both the Alfvén speed v_A and the speed of sound v_s are constant

$$v_A^2 \equiv \frac{B_0^2}{\mu_0 \rho_0} = const, \quad v_s^2 \equiv \gamma R_g T_0 = const.$$

Here μ_0 is the magnetic permeability of free space, $R_g \equiv R/M$ is the gas constant for the cloud, R is the universal gas constant, M is the mean molar mass for the cloud, ρ_0 is the plasma density in the cloud and γ is the ratio of specific heats and hence $\gamma > 1$.

The constancy of v_A also means that the magnetic field is assumed stronger in the region with a higher plasma density ρ_0 and weaker where the density is lower. Such a distribution of the magnetic field in the cloud is rather realistic and may be found in highly conductive plasmas with frozen-in magnetic fields.

Magneto-hydrostatic Equilibrium

The initial unperturbed state of the isothermal self-gravitating plasma is determined by three equations:

• The equation of magneto-hydrostatic equilibrium:

$$-\nabla p_{g0} - \rho_0 \nabla \phi_0 + \frac{1}{\mu_0} (\nabla \times \vec{B}_0) \times \vec{B}_0 = 0,$$

which reduces to

$$\left(1 + \frac{1}{\beta}\right) \frac{dp_{g0}}{dz} = -\rho_0 \frac{d\phi_0}{dz}.$$
(1)

• The Poisson equation for the gravitational potential ϕ_0 ,

$$\frac{d^2\phi_0}{dz^2} = 4\pi G\rho_0,\tag{2}$$

where G is the gravitational constant.

• The perfect gas law

$$p_{g0} = R_g \rho_0 T_0, \tag{3}$$

Profiles $\rho(z)$ and $B_0(z)$

The solution for the density profile of the cloud follows from Eqs (1)-(3) as

$$\rho_0 = \frac{\rho_{00}}{\cosh^2 Z}, \text{ where: } Z \equiv \frac{z}{H}, \quad H^2 \equiv \frac{1+\beta}{\beta} \frac{v_s^2}{2\pi\gamma G \rho_{00}}$$
 (4)

where, ρ_{00} is the density in the center of the cloud and it can be related to the total mass \mathcal{M} per unit surface in the xy-plane:

$$\mathcal{M} \equiv \int_{-\infty}^{+\infty} \rho_0 dz = 2H\rho_{00}. \tag{5}$$

The magnetic field distribution follows from the initial assumption $\beta = const$ as

$$B_0 = \frac{B_{00}}{\cosh(z/H)}$$
, where: $B_{00} \equiv \left(\frac{2\mu_0}{\beta\gamma}v_s^2\rho_{00}\right)^{1/2}$ (6)

Here, B_{00} is the field strength at the center of the cloud and its value is prescribed by β and ρ_{00} .

Linearized Equations for Perturbations

We start from the following linearized set of equations for the perturbed quantities:

• Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho_0 \vec{v}) + \nabla \cdot (\rho \vec{U}_0) = 0, \tag{7}$$

• Momentum equation:

$$\rho_0 \frac{\partial \vec{v}}{\partial t} + \rho_0 \vec{v} \cdot \nabla \vec{U}_0 + \rho_0 \vec{U}_0 \cdot \nabla \vec{v} = -\nabla p - \rho \nabla \phi_0 - \rho_0 \nabla \phi$$
$$+ \frac{1}{\mu_0} (\nabla \times \vec{B}_0) \times \vec{B} + \frac{1}{\mu_0} (\nabla \times \vec{B}) \times \vec{B}_0,$$
(8)

• Induction equation:

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}_0) + \nabla \times (\vec{U}_0 \times \vec{B}), \tag{9}$$

• Poisson equation:

$$\frac{d^2\phi}{dz^2} = 4\pi G\rho,\tag{10}$$

• Adiabaticity condition:

$$\frac{\partial p}{\partial t} + \vec{U}_0 \cdot \nabla p + \vec{v} \cdot \nabla p_0 = v_s^2 \left(\frac{\partial \rho}{\partial t} + \vec{U}_0 \cdot \nabla \rho + \vec{v} \cdot \nabla \rho_0 \right). \tag{11}$$

Fourier Transformed Equations

Taking $\nabla = \vec{e}_z \partial/\partial z$ in (7)–(11) and Fourier transforming them in time, one obtains the following set of scalar equations:

• Continuity equation

$$i\omega \frac{\rho}{\rho_0} = \frac{dw}{dz} + \frac{d\ln \rho_0}{dz} w,$$

• The x-, y- and z-component of the momentum equation:

$$i\omega u = \frac{dU_0}{dz}w - v_A^2 \frac{d\ln B_0}{dz}b_z,$$

$$\omega v = 0,$$

$$i\omega w = \frac{1}{\rho_0}\frac{dP}{dz} + \frac{d\phi}{dz} + \frac{\rho}{\rho_0}\frac{d\phi_0}{dz},$$

• The x-, y- and z-component of the induction equation:

$$i\omega b_x = \frac{d\ln B_0}{dz}w + \frac{dw}{dz} - \frac{dU_0}{dz}b_z,$$

$$\omega b_y = \omega b_z = 0,$$

• Poisson equation

$$\frac{d^2\phi}{dz^2} = 4\pi G\rho,$$

• Adiabacity of perturbations:

$$i\omega p - \frac{dp_0}{dz}w = v_s^2 \rho_0 \left(i\omega \frac{\rho}{\rho_0} - \frac{d\ln \rho_0}{dz}w\right),$$

Here:

- $P \equiv p + v_A^2 \rho_0 b_x$ is the total pressure perturbation,
- $\vec{v} = (u, v, w)$ and
- $\bullet \ \vec{b} = \vec{B}/B_0.$

Equations with New Variables

Introducing the Lagrangian displacement ξ in the z-direction and a new variable η by

$$w \equiv -i\omega\xi, \qquad \eta \equiv \rho_0\xi,$$

we obtain:

$$u + \eta \frac{1}{\rho_0} \frac{dU_0}{dz} = 0,$$

$$\frac{d\phi_0}{dz} \frac{d\eta}{dz} + \omega^2 \eta = \frac{dP}{dz} + \rho_0 \frac{d\phi}{dz},$$

$$v_f^2 \frac{d\eta}{dz} = \eta \left[\frac{d \ln \rho_0}{dz} \left(\frac{v_A^2}{2} + \frac{\gamma - 1}{\gamma} v_s^2 \right) \right] - P,$$

$$\frac{d^2 \phi}{dz^2} = -4\pi G \frac{d\eta}{dz},$$
(12)

where $v_f^2 \equiv v_A^2 + v_s^2$.

The non-uniform flow speed enters only in the first of the above equations and the only effects it causes are induced harmonic motions with speed u in the x-direction.

Final Equation for η

Integration of Poisson equation gives

$$\frac{d\phi}{dz} = -4\pi G\eta$$
 with the boundary condition $\frac{d\phi}{dz}\Big|_{\eta=0} = 0$.

Equations (12) reduce to a single one:

$$\frac{d^2}{dZ^2}(\eta \cosh Z) + \left(\frac{\omega^2 H^2}{v_f^2} + \frac{2}{\cosh^2 Z} - 1\right) \eta \cosh Z = 0, \tag{13}$$

where

$$Z\equivrac{z}{H},\quad H^2\equivrac{1+eta}{eta}rac{v_s^2}{2\pi\gamma G
ho_{00}}.$$

Equation (13) yields proper global solutions for small perturbations in a self-gravitating isothermal plasma cloud.

Instead, if the standard procedure based on the assumption of a **uniform self-gravitating plasma** is performed, one obtains a significantly different equation

$$\frac{d^2\eta}{dZ^2} + \frac{H^2}{v_f^2} \left(\omega^2 + 4\pi G \rho_{00}\right) \eta = 0.$$
 (14)

Local Solutions

1. Standard approach - starting form a uniform plasma and Equation 14:

$$\frac{d^2\eta}{dZ^2} + \frac{H^2}{v_f^2} \left(\omega^2 + 4\pi G \rho_{00} \right) \eta = 0.$$

with constant coefficients has harmonic solutions

$$\eta \sim \exp ikz/H$$

which yields the known dispersion relation

$$\omega^2 = v_f^2 k^2 - 4\pi G \rho_{00}$$

This relation allows for gravitational instability if

$$k \le \frac{2}{v_f} \sqrt{\pi G \rho_{00}}, \qquad \omega^2 < 0$$

2. Non-uniform plasma and equation 13:

$$\frac{d^2}{dZ^2}(\eta \cosh Z) + \left(\frac{\omega^2 H^2}{v_f^2} + \frac{2}{\cosh^2 Z} - 1\right) \eta \cosh Z = 0$$

can be treated locally provided the Z- dependent term is negligible:

$$\frac{\omega^2 H^2}{v_f^2} - 1 \gg \frac{2}{\cosh^2 Z}$$

In this case, the local dispersion relation is

$$\omega^2 = v_f^2 k^2 + \frac{v_f^2}{H^2}$$

in which $\omega^2 > 0$ always. is satisfied.

Eigen-solutions

General properties of the eigen-problem

- The considered self-gravitating system can oscillate as a whole at certain allowed eigen-frequencies ω .
- Eigen-solutions for the displacement $\xi(z)$ have to be anti-symmetric with respect to the center z=0 of the cloud:

$$\xi(z) = -\xi(-z)$$

- The energy of the system is finite and conserved.
- Consequently, the perturbations have to be localized, i.e. the energy density of the perturbations has to tend to zero at sufficiently large |z|/H.
- For example, the kinetic energy density E_k of perturbations has to satisfy the condition

$$\lim_{|z/H| \to \infty} E_k \sim \lim_{|z/H| \to \infty} \xi^2(z) \rho_0(z) = 0$$

Condition for Anti-symmetric Solutions

Since the eigen-solution of Eq (13) for $\xi(z)$ is anti-symmetric everywhere in the z-space, we can consider it at the limit $|z/H| \to \infty$ where the local anti-symmetric analytical expressions are readily obtained as

$$\xi^{(-)} = -e^{\kappa z/H} \cosh(z/H), \quad \text{if } z < 0,$$

$$\xi^{(+)} = e^{-\kappa z/H} \cosh(z/H) \quad \text{if } z > 0.$$
 (15)

where

$$\kappa \equiv \left(1 - \frac{\omega^2 H^2}{v_f^2}\right)^{1/2}$$

CONCLUSION

Frequencies of eigen-modes are real and they satisfy the condition for κ being a real quantity:

$$\omega \le \frac{v_f}{H} \equiv \omega_0.$$

Perturbations having frequencies $\omega \geq \omega_0$ are propagating non-localized waves that carry energy away.

References

References

- [1] Avinash K., Shukla P.K., 1994, Phys.Lett. A 189, 470.
- [2] Bliokh P., Sinitsin V., Yaroshenko V., 1995, Dusty and Self-gravitational Plasmas in Space, Dordrecht, Kluwer.
- [3] Boss A.P., 1987, ApJ 319, 149.
- [4] Čadež, V.M., 1990, A&A 235, 242.
- [5] Čadež, V.M., Verheest, F., Jacobs, G., 1999, Ap&SS, submitted.
- [6] Chandrasekhar S., 1954, ApJ 119, 7.
- [7] Corona-Galindo M.G., Dehnen H., 1989, Ap&SS 153, 87.
- [8] Horányi M., 1996, ARA&A 34, 383.
- [9] Jeans J.H., 1929, Astronomy and Cosmogony, Cambridge University Press, Cambridge.
- [10] Lacey C.G., 1989, ApJ 336, 612.
- [11] Mendis D.A., Rosenberg M., 1994, ARA&A 32, 419.
- [12] Meuris P., Verheest F., Lakhina G.S., 1997, Planet. Space Sci. 45, 449.
- [13] Radwan A.E., 1989, Phys. Scripta 39, 284.
- [14] Spitzer L., 1941, ApJ 93, 369.
- [15] Spitzer L., 1978, Physical Processes in Interstellar Medium, Wiley, New York, Chichester, Brisbane, Toronto, p. 321.
- [16] Verheest F., 1996, Space Sci. Rev. 77, 267.
- [17] Verheest F., Meuris P., Mace R.L., Hellberg M.A., 1997, Ap&SS 254, 253.
- [18] Verheest F., Hellberg M.A., Mace R.L., 1999, Phys. Plasmas 6, 279.
- [19] Vranješ J., Čadež V.M. 1990, Ap&SS 164, 329,

