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Introduction

We start from the following facts regarding a self-gravitating cloud:

1. A self-gravitating plasma cloud in a static equilibrium cannot
be uniform on large scale: There is always the gravitational force
present which makes the cloud intrinsically nonuniform.

9 The standard harmonic analysis of small perturbations in a uni-
form cloud is meaningful only if the wave-lengths of perturba-
tions do not exceed the typical length of nonuniformity due to
self-gravitational effects.

3. In the Cartesian geometry, a strict treatment of linear perturba-
tions is possible only in one-dimension: Along the direction of
gravitational force.

4. 2-D and 3-D analyses in Cartesian geometry are correct provided
the wave-lengths perpendicular to the direction of gravity are suf-
ficiently small as compared to the typical length of nonuniformity.



Basic Model in Cartesian Geometry

The self-gravitating plasma cloud is considered a, perfect gas that is
also:

® In a static equilibrium,

¢ isothermal (7 = const) with

e the gravitational force and the gradients of physical quantities
along the z—axis, i.e. V = €,0/0z,

o of uniform composition but non-uniform density p(z),
¢ permeated by a nonuniform magnetic field éo = By(z)é, with

* nonuniform plasma flow Uy(z) along By(z).
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The strength of the magnetic field Bo(z) varies with z in such a
way that the ratio of the gas pressure pg = R, Typo to the magnetic
pressure pmo = B3 /(2p) is constant, i.e. B = pgo/pmo = const. Con-
sequently, both the Alfvén speed v4 and the speed of sound v; are
constant

= const, vf = vR,Ty = const.

Here j is the magnetic permeability of free space, R, = R/M is the
gas constant for the cloud, R is the universal gas constant, M is the
mean molar mass for the cloud, py is the plasma density in the cloud
and ~ is the ratio of specific heats and hence vy > 1.

The constancy of v4 also means that the magnetic field is assumed
stronger in the region with a higher plasma density pp and weaker
where the density is lower. Such a distribution of the magnetic field
in the cloud is rather realistic and may be found in highly conductive
plasmas with frozen-in magnetic fields.



Magneto-hydrostatic Equilibrium

The initial unperturbed state of the isothermal self-gravitating plasma

is determined by three equations:

® The equation of magneto-hydrostatic equilibrium:

1 - -
— Vipgo — Vo + —(V x By) x By = 0,

1o
which reduces to
1\ dpyo doy
14 =) 2y ¥Y0
( + ﬁ) dz Po dz

¢ The Poisson equation for the gravitational potential ¢,

H

d*¢q
dz?
where G is the gravitational constant.

= 47 G py,

e The perfect gas law

Pgo = LRypoTh,
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Profiles p(z) and Bo(z)

The solution for the density profile of the cloud follows from Eqs
(1)-(3) as

po = atl where: Z = —, H®= 1+5_ v (4)
0 COSh2 Z . - H’ N 8 271”‘y’G,000

where, poo 15 the density in the center of the cloud and it can be related
to the total mass M per unit surface in the ry—plane:

+2¢
M = [_x podz = 2H pyo. (5)

The magnetic field distribution follows from the initial assumption
3 = const as

By 210 2
By = ——~_O—(——) where: BUU = (—B—F}'L',fp(_)(]> (0]

cosh(z/

Here. By is the field strength at the center of the cloud and its value
is prescribed by 3 and pgo.




Linearized Equations for Perturbations

We start from the following linearized set of equations for the per-
turbed quantities:
o Continuity equation:

8 -
5%9 + V- (pov) + V- (pUp) = 0, (7)

® Momentum equation:

4

O . - —~ -
Pogr + ot VUo + poly - Vi = —Vp — pVeg — pyV¢

1 . L1 L
+—(V x By) x B4+ —(V x B) x By,
Ho Ho

¢ Induction equation:

B _ T
%IVX(HXBQ)—I—VX(UUXB), (9)
e Poisson equation:
d%¢
— =4 1

¢ Adiabaticity condition:

op = dp =
5§+U0-vp+ﬁ-vp0=v§(a—f+rfo-vp+ﬁ-vp(.). (11)
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Fourier Transformed Equations

Taking V = €,8/0z in (7)—-(11) and Fourier transforming them in
time, one obtains the following set of scalar equations:

¢ Continuity equation

. p _dw  dlnpg
wpo_ dz+ dz

e The x-, y- and z-component of the momentum equation:

e _pgdz dz Po dZ’

e The x-, y- and z-component of the induction equation:

dln Bo dw dUg

why = — — —b.,
" dz W dz dz =
wby = wb, =0,
e Poisson equation
d*¢
dzé = 47(p,

e Adiabacity of perturbations:

: dpy 5 . p  dlnpg
zwp—f:uw—vspo 'Zu.)bg———d—j“w .

Here:
e P = p -+ v4pob, is the total pressure perturbation,
o 0 = (u,v,w) and

ob E/BO.



Equations with New Variables

a new variable n by

= —wé,
we obtain:
n 1dU,
u ——— =0,
po dz
doy dn 2 _ dP
dz dz dz + P
- fdz dz 2
d*¢ dn
= 4G
dz? WGdz’

where v7 = v} + 02,

Introducing the Lagrangian displacement € in the z—direction and

= poé,

(12)

The non-uniform flow speed enters only in the first of the above
equations and the only effects it causes are induced harmonic motions

with speed u in the z—direction.
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Final Equation for 7

Integration of Poisson equation gives

1 d
de — —47Gn with the boundary condition ae = (0.
dz dz r]:O
Equations (12) reduce to a single one:
d? w*H? 2
7 (ncosh Z) + ( o Ly e 1] ncosh Z =0, (13)
where
Z7=2 H'= 1+ v :
H 3 2mvGpoo

Equation (13) yields proper global solutions for small per-
turbations in a self-gravitating isothermal plasma cloud.

Instead, if the standard procedure based on the assumption of a
uniform self-gravitating plasma is performed, one obtains a sig-
nificantly different equation

d*n  H*,
2 g (W AmGem) (14)
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Local Solutions

1. Standard approach - starting form a uniform plasma
and Equation 14:

d2n H? 5

152 + ;?*— (w +4TerOO) n=20.

with constant coefficients has harmonic solutions
n~exptkz/H

which yields the known dispersion relation

w? = vf:kQ — 471G pgy

This relation allows for gravitational instability if

2. Non-uniform plasma and equation 13:

d—(gg(n cosh Z) + (w‘;gfg + C—(éz — 1) ncosh Z =0
can be treated locally provided the Z— dependent term is negligible:
w?H? s 2
v cosh® Z
In this case, the local dispersion relation is
w? = 'U)%lc2 + 2—%

in which w? > 0 always. is satisfied.
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Eigen-solutions

General properties of the eigen-problem

e The considered self-gravitating system can oscillate as a whole at
certain allowed eigen-frequencies w.

e Eigen-solutions for the displacement £(z) have to be anti-symmetric
with respect to the center z = 0 of the cloud:

e The energy of the system is finite and conserved.

e Consequently, the perturbations have to be localized, i.e. the en-
ergy density of the perturbations has to tend to zero at sufficiently

large |z|/H.

e For example, the kinetic energy density Ej. of perturbations has
to satisfy the condition

lim Ep~ lIm &(z)p(z) =0
|z/H|—=ox k \3/H1—>x-£ ( )p(}( )

12



Condition for Anti-symmetric Solutions

Since the eigen-solution of Eq (13) for £(z) is anti-symmetric ev-
erywhere in the z—space, we can consider it at the limit lz/H| - o0

where the local anti-symmetric analytical expressions are readily ob-
tained as

£00) = _one/H cosh(z/H), if z <0,
(15)

) = gre/H cosh(z/H) if z > 0.

where
wiH? 1z
K= (1 —— )
vy

CONCLUSION

Frequencies of eigen-modes are real and they satisfy the condition
for x being a real quantity:

v

Sy

w‘S = wy.

s

Perturbations having frequencie
waves that carry energy away.

wn

W 2 wg are propagating non-localized
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