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PIC Overview

The Particle-in-Cell technique grew out of electron trajectory simulation in
the 1950s, lead by O. Buneman [4] and J. M. Dawson [6]. The self-consistent
PIC method was formalized and codified in the 1960s-1980s by C. K. Birdsall
and A. B. Langdon [2], and R. W. Hockney and J. W. Eastwood [12].

The PIC model has been used to simulate a wide variety of applications:

basic plasma physics: waves and instabilities

magnetic fusion

gaseous discharges (pressures ranging from mTorr to 720 Torr)
electron and ion optics

microwave-beam devices

plasma-filled microwave-beam devices

Range of validity:

low pressure discharges (or pd < 0.1 m-Torr)
kinetic

nonlinear

time-dependent

self-consistent

fully relativistic

electrostatic or electromagnetic

often can include full macroscopic physics models - few approximations
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Figure 1: Flow chart for an explicit PIC-MCC scheme.

2 PIC-MCC Flow Chart

The PIC scheme is shown schematically in Fig. 1. Particle and field values are
advanced sequentially in time, starting from initial conditions. The particle
cquations of motion are advanced one time step, using fields interpolated from
the discrete grid to the continuous particle locations. Next, particle boundary
conditions such as absorption and emission are applied. If the model is
collisional, the Monte Carlo collision (MCC) scheme is applied (see below for
details). Source terms, p and J, for the field equations are accurmnulated from
the continuous particle locations to the discrete mesh locations. The fields
are then advanced one timestep, and the timestep loop starts over again.

3 Particle Equations of Motion

The Newton-Lorentz equations of motion can be written:

gt-'ymv:qu(E—i—va) and (1)
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Figure 2: Schematic leapfrog integration.

where

1 2
'r=1fl—_('w= 1+ (u/c), (3)

©® = Yv. (4}
Often integrated using the leapfrog integrator:
e Second order accurate
e Requires few operations
e Pequires minimal storaze
e Stable for wpAt < 2

In 6nite difference form the leapfrog method yields:

w2 a2 g aitBuy2 o yt-ot/2
= (E x B* 5
At m ( + 2 ) (5)
tHAL |yt gtEAL2 ]
At = 7£+At/2 ( )
An efficient technique for integration of Eq. 5 is due to Boris [3]:
t
— _ oAt qAtE ”
u u + o ( )



P | .... ...............

At

wpAt

Figure 3: Leapfrog solution for simple harmonic motion.

u':u"‘+u‘xt' (8)

o, ott
WUt X e (®)

AtE
w2 =y I (10)

with A
t' = Btan (Q—QTt—B‘) . (11)
y'm

Note that Eqs. 8-9 represent a rotation only, ie. u”-u” = ut . ut.

Stability of the leapfrog mover can be demonstrated for simple harmonic
motion. Consider the simple harmonic oscillator

d*z
o7 = —wi (12)



Finite difference using a center difference (leapfrog):

It+ﬁl _ 2$f- 4 It_At

AR = —wpz' (13)
Solutions are of the form
zt = Cexp (—iwt}, (14)
8t = Cexp (—iw (t + At)). (15)
Using Euler’s Eq., the finite difference becomes
sin (ﬁ%-\‘_t) = :f:woé_\t, (16)

so w has an imaginary component for wolt > 2, indicating numerical insta-
bility. Expanding Eq. 16 for wAt < 1:

WAt 1_l wAt "’+O wAt)?
2 6\ 2 9

we find the phase error is quadratic.

L:JDA!'Z
2 )

(17)

3.1 Cylindrical Coordinates

For cylindrical coordinates, the anguiar momentum must be considered.
Boris [3] proposed a solution involving a transform to Cartesian coordinates,
followed by a rotation of the coordinate system, and translation back to the
cylindrical coordinate system. Note that the advance in z is identical to the

Cartesian advance.
For a particle with position x‘, velocity vi+8t/2 the coordinate system

(z',y') is created such that # = ¢ and § =@ for x*. Then

:L"l =T (18)

y, =0 (19)

Next, the particle is advanced in the (:1:', y') system:
2, =71 + v At (20)

7



Figure 4: Rotated coordinate system for cyclindrical position advance and
velocity vector rotation. -

Yo = 'UglAt (21)

Converting to cylindrical coordinates in the (;r", y") system:

ro= () + () (22)

=6, +a (23)

Converting the velocity using a rotation into the new coordinate system:

Urg = Urj COS @ + Upp SID ¢ (24)
Ugz = —Uy) SIN Q@ + Ugy COS (25)
sina = %2 (26)

T2

zl’
cosq = =2 (27)

T2

When r; — 0, let cosa = 1, sina =0 (all momentum radial).

8
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3.2 Particle Boundary and Initial Conditions

Figure 5: Reflection at a boundary.

3.2.1 Absorption

Conductor: absorb charge, add to the global o (floating vs. circuit)

Dielectric: deposit charge, weight g locally to mesh

bookkeeping: repack particle arrays

noise — hard vs. soft (gradual absorption) bc [14]

3.2.2 Reflection

e Physical Reflection: reverse Tye —Z — Tpc + I, -Vz — Uz

e Symmetry Boundary: also reverse vy and v, to preserve sense of mag-

netization

e Specular Reflection — 1st order error [14]

,UI—AL/Qt —

E /2|t —zx
_Uz-m/2+2__( | be

m [ut=ae/2]

_ m)

(28)

Note that average error is zero, but there is net heating due to the

phase space diffusion:

(29)
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Figure 6: Distribution function, f (v}, and cumulative distribution function,

F(v), for a Maxwell-Boltzmann distribution.

3.2.3 Loading Initial Distributions

Maxwell-Boltzmann distribution:

£E) = foexp (—%)

1 3

In one dimension: )

&
f(‘Uz‘) = foexp ('——2)
Vi
1 1
Invert the cumulative distribution function,

" exp (—v?/v?) dv
_ Jo t

PO = oo (At ay

10

(30)

(31)

(32)

(33)

(34)
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Figure 7: Flux distribution function, vf (v}, and cumulative Aux distribution

function, F'(v), for a Maxwell-Boltzmann distribution.

Box-Muller method [21]: choose 2 pseudo-random numbers, 0 < 1y, <

1. Discard if R? = v} + v > 1. Then

In { R?

vy =1 -

?}

In (R?
R2
Eq. 34 must be inverted numerically for general cutoffs.

L

Vg = Vay] —

3.2.4 Injection

Cumulative distribution for thermal flux:
[ vexp(—v?/v})dv

Uet

fort vexp (—v?/vf) dv -

F(w) =

v = /v + vd, — v} n (Rexp (v} /v}) + (1 — R)exp (v2,/v2))

11
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(36)

(37)

(38)



without cutoffs,
vi = v/ —In(R) (39)
For drifting Maxwellian:

S vexp (= (v — wg)? /vE) dv

cl

Flo) = L vexp (= (v — v)* /02) dv

=R (40)

(v~ w)?/u? _ glvi—vo)?/v? VT2 (Brf ((v; — vo) /ve) ~ Erf ((va — ) /0t))

e(vca—voJ /vE — glucu—vo)?/u? \/_—!1 (Exf ((vew ~ o) /ve) — Erf ((vg — vo) Ju))
(41)

which must be inverted numerically.

3.2.5 Photoemission

energy
A

conduction
band

I  potemnay

barrier

valence
band

metal-vacuum interface

Figure 8: Potential energy schematic at a metal surface.

» Work function: ¢, = ®(£ =0) —Ep = 2~ 5 V.
e Irradiation energy hw > @,

* Ejected electron carries away additional energy £ = hw — @

w

12
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3.2.6 Thermionic Emission
e Electrons are heated to £ > £ + @y,
e Current given by Richardson-Dushman Equation (7]:
J = 1207 exp (—e®,,/kT) A/cm?
e T = absolute temperature of cathode.

o Typical current densities J < 100 A/cm?.

3.2.7 Fowler-Nordheim Field Emission
o Fowler Nordheim Law {9]:

AE? — Bu(y)®3/
S ZET\ T Y A/m?
Jrn F.20) exp ( I /m

e F = normal component of electric field at surface
e B = 6.8308x10°
o A= 15414x10"8

e v(y) = 0.95 -3
e y=2379x 10"3EY2/,

3.2.8 Child’s Law Field Emission

e Current given by Child’s Law over first cell:
460 2_6_ (—EUQA:L‘)S/Q

Jor = 9 m Ax?

o Eyyp= normal field at the first half cell
e Az = width of the first cell normal to the surface

Jer, — 0 when the field reverses

13

Does not allow self-consistent formation of virtual cathode

(42)

(44)

=
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Figure 9: Schematic of Ist cell near Gauss’s law field emitter.

3.2.9 Gauss’s Law Field Emission

Attempts to inject space charge sufficient to obtain £ — 0 at the
emitter surface

(Ejpr + Ej101)
2

QJ = D. dS = Ej+l/2,k1dsj+1/2|kl (45)

cell

(; = the space charge to inject in the cell
dS;11/2 = surface area normal to the cell

initial position chosen just inside surface (many authors place randornly
in the first half cell)

3.2.10 Secondary Emission

The process of electron impact secondary emission is a key element of a num-
ber of processes related to high power microwave tubes. Secondary emission
plays a pivotal role in depressed collectors, single- and two-surface multi-
pactors, and beam interception. In this section, a secondary emission model

14
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is outlined, and the implementation in the XOOPIC PIC-MCC code {34] is
described.

Electron impact secondary emission occurs when an electron impacts a
surface, which may be a conductor or a dielectric, and ejects electrons from
the surface. In PIC codes, it is not possible to model the quantum mechanical
details of the process, which involves interaction of the incident electron
with conduction or valence band electrons in the surface medium, due to
the time and space scales involved. Instead, it is more efficient to employ a
phenomenological model.

This work is based on the secondary model due to Vaughan (31] and
later experimentally verified by Shih [26], and improved by Vaughan [32]
and later {10]. The secondary electron coefficient, defined as the ratio of
ejected to incident electrons, has both energy and angular dependence:

L 6(E,6) = bumuxo (1 + k,,sgi:r-) (wexp (1 — w))¥. (46)

Here, the incident energy is given by &, the angle with respect to the surface
normal is 8, ks is a surface smoothness parameter described below, & is 2
curve-fit parameter also described below, and &, is the peak coefficient,
which occurs at normal incidence at the energy Enexo. The energy dependence
appears implicitly in the right hand side of Eq. 46 through the normalized
energy, w, given by:

£E-&

47
Ernaxo (L + kau2/27) — & (47)

uw =

where & is the secondary emission threshold and k.., is a surface-smoothness
parameter similar to k,s. Both k. and k., vary between 0 for very rough
surfaces and 2 for polished surfaces. Typical values are close to 1. The
exponent k in Eq. 46 is given by:

k={0.62,w<1 (48)

0.25, w=>1

The energy dependence of the secondary emission coefficient is shown in
Fig. 10. The angular dependence of the secondary emission coefficient is
shown in Fig. 11. Note that the secondary emission coefficient, which can be
obtained by multiplying the energy dependent part by the angular dependent

15
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Figure 10: Normalized secondary emission coefficient as function of normal-
ized energy at normal incidence, with Emaxo/Ep = 40, and k,, = 1.

1.4

13 -

8(8)/3(0)

wh
—h
T T T

1 PPN T ST SRS R
-90 -60 -30 0

6 (degrees)

Figure 11: Angular dependence of the secondary emission coefficient normal-
ized to the coefficient at normal incidence to the surface. Here kss = 0.
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Figure 12: Schematic diagram of the secondary emission spectrum versus
the ratio of the emitted energy of the secondary to the incident energy of the
primary.

part, is largest at £ = Enaxo and 6 = 90. The peak normal secondary emission
in copper is 6maxo = 1.2, With Emaxe = 400 eV, and & = 15.

The energy and angular distribution of the emitted secondarics were
treated by Spangenberg [27], and are also treated by Vaughan [31]. The
emission spectrumn has three regimes, as shown in Fig. 12. Incident elec-
trons reflected at the surface of the secondary emitting material are called
reflected primaries. Reflected primaries comprise about 3% of the emitted
electron population. The energy of the reflected primary is approximately
the same as the energy of the incident primary, £ = £;. The primary is
reflected specularly in angle, 8, = —§;, where # is measured from the surface
normal at the point of impact.

Backscattered primaries are electrons that impact the surface, and scat-
ter off of several lattice atoms and/or impurities. Typically backscattered
primaries comprise about 7% of the emitted electron population. These
electrons re-emerge from the impact surface with energies in the range 0 <
&, < £. Within this energy range, all energies are taken as equally probable,
&, = RE;, where 0 < R < 1 is a uniformly distributed random number. The

17



angle of emission is taken to be specular, just as in the case of the reflected
primaries. A more detailed treatment might consider a distribution of an-
gles resulting from quanturn mechanical treatment of scattering in the lattice
potentials in the secondary emission medium.

True secondaries are electrons that are emitted from the conduction or va-
lence bands of the atoms comprising the impact surface. The emitted electron
population contains about 90% true secondaries. Energy is imparted to the
lattice electrons over some time long compared to the elastic collision time,
so the electron energy distribution can be modeled as a Maxwell-Boltzmann
distribution. The electrons are emitted with energies from a thermal distri-
bution of temperature T

£ =&
16) = e (). (49)

where kg is Boltzmann’s constant. Due to the timescale of the emission
process, the angle of emission can be taken to be isotropic:

_cos(6) -
g9(8) = ——. (50)

The secondary model described above has been implemented in part in
the XPDP1 code [33], and in full in the XOOPIC code [34]. In the scheme
described above, the secondary emission coefficient can indicate that a frac-
tional number of electrons must be emitted. The above codes emit fractional
electron yields statistically, using a random number. Another technique is
to accumulate fractional particles until a sufficient level is achieved to emit a
particle. Variable particle weighting can also be used to represent fractional
clectron emission {23]. The secondary electrons are typically computed after
each electron is absorbed at a surface, at the end of a timestep, and advanced
into the simulation in the next timestep (XPDP1). Riyopoulus [24] has noted
a banding effect when emitting at the end of a timestep, due to an average
emission delay of At/2. This was repaired by computing a fractional step for
ernission which accounts for the time within the timestep that the particle
impacted the emission surface. XOQPIC is capable of advancing each par-
ticle the remaining fraction of the timestep, eliminating this problem. The
banding effect is observed only for large timesteps, w,;At/2 =~ 1, where w, 7
is the driving frequency of the multipactor in the Riyopoulus study.

18
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Figure 13: Charge density and electrostatic potential on a grid. Electric
fields, not shown, are co-located with the potentials.

4 Electrostatic Field Model

Assume we have a gridded system with charge density pjx known at the
nodes. We wish to obtain the potentials and fields at the nodes using Pois-
son’s equation (from Gauss’s law, V - ¢E = p, and E = -V ®}):

V- eVO(x,t) = p(x,t) (51)

This can be solved in finite difference form in a number of ways. Using a
center difference in a 1d linear homogeneous isotropic mediurn, we obtain

<I>,-+1 - 2@1 + ‘I’j_l _ ._Ei

= 2
Az? € (52)

19



Physically, the boundary conditions can be complicated [33]. For a fully
bounded systerm, the charge is conserved:

f(sE-dS:/pdV+j§(ao+aJ)dSEO (53)
s v s

In general, the electric field is assumed to be zero beyond the electrodes, so
that just inside the system (Gauss’s law),

=20 (54)
£
gy
E;=-Z 55
)= -2 (55)

Mathematically, a Dirichlet boundary condition is required for a unique so-
lution; often one chooses a reference potential of zero at one of the electrodes
(e.g. ®;=0).

For a non-uniform orthogonal Cartesian mesh in two dimensions, Eq. 51
can be center differenced: '

Pkt 20, B, 5y

— — — +
/—\Ik+1/2AIk AIA-+1/2/—\Ik—1/2 AIk—lfzfi\Ik

b, 20 D,
i+l.k _ 1k + j-1k _ (56)
ij+1/2ij ij+1/2AIj—1/2 ijhl/Zij
- _Fuk
E ¥
with
ATpyyy0 = T — T (57)
Az + Az

ATy = k+1/2 5 ko1/2 (58)

and likewise for other subscripts and components. A Taylor expansion gives
the truncation error:

Azpp1y2 — Doz Ayiriye — Ayi_iz

v2q) - lv2(I)e:rm:t = 3 q):z:;r:: + 3 (I)!."!J“!l
A 2_A Az 179+ (Azp_1/0)?
+( Tit1/2) Ik+1/;2 Te-172 + (Azp_yyo) B,end59)
+(ij+1/2)2 — AYip1728Y5-172 + (ij—lfz)zq)yyyy e
12

20



a2

1t

1Rt

which contains first order terms for Azxi1/2 # Azk_172. Ona uniform mesh,
only the second order error terms remain.
The potential can be separated into a Poisson and Laplace parts [29):

b =¢p + Z Py, (60)
boundartes

V- eVdp=—p (61)

V . EV‘I’L,' =0 (62)

The boundary conditions for Eq. 61 become ¢ = 0 on all boundaries. For
each boundary with a Dirichlet condition, Eq. 62 is solved for ®; = 1 on the
equipotential surface, and ¢ = 0 elsewhere. The resulting &, can be stored
and multiplied by a constant if the potential on the boundary is specified as
a function of time or the result of an external circuit equation. Neumann
boundary conditions are included through ®p. This method neglects charge
induced by a driven electrode on other boundaries which are connected to an
external circuit. This problem is avoided, at the expense of increased matrix
size, when solving the full Poisson equation with boundaries and circuits
using the method of Verboncoeur [33].

4.1 Electrostatic Boundary Conditions: External Cir-
cuit

The boundary conditions for the field equations in one dimension can be
considered as a circuit. See [33] for additional details.

e Short Circuit (ideal voltage source): $o(t) is specified, P, =0
e Open Circuit (floating electrode): from Gauss’s Law,

oL — &t oh + phAz/2
E1/2 = OA 1 = 0 pO / (63)
xz £

5
J(ll = Ué_A£ - ,[A Jpla.snwdt (64)
t—At

e Voltage Driven Series RLC Circuit: Voltage drop around an RLC can
be written using the Kirchhoff voltage law:

(fzigt) + Ricfi_it)_ + @ = V(t) + ‘I’J(t) - (I’O(t)- (65)

21
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Figure 14: Schematic one-dimensional bounded plasma with external circuit.
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Figure 15: Roots of the characteristic equation in the limit L — 0. The

scheme can only follow the RC time when At < RC/2.

One second order difference is

_ V(t) + o, — $f — K*
e '

Qt
where

Kt — ath—At + ath—QAt + a3Qt—3At + a4q2t-—4ﬂt,

9 L 3 R 1

©TIRE TN T T

L R
*="03p " *ar
poUL 1R

2 A2 T 2At
L
Qg = —Qm,
w1l
4 A2
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The circuit is coupled to the Poisson equation using conservation of
charge at an (’ectrode:

t L _ At

06 = ag" % — / Jplasmadt + Q- f (73)
t—-AL

Stability of the circuit with L — 0 is given by the characteristic equa-
tion: oA

t
234+ <) -4 +1=0
¢ (34 RC) £+ (74)

The characteristic equation for the full RLC circuit is given by

(9467 +417) ~ €2 (24 +87y) +£2(22+27,) ~ 86 +1 =0, (75)

T = T‘ (76)
At
T2 = \/T? (77)

5 Electromagnetic Field Model

‘The solution to Maxwell’s equations typically involves solving finite-difference
time-domain (FDTD) discretizations on a Yee mesh, with the fields defined as
shown in Fig. 16. In addition, the electric field is known at integral multiples
of the timestep, while the magnetic field is known at t = (n 4+ 1/2) At, where
n is an integer. Even for an electromagnetic simulation, the initial conditions
may require solution of the Poisson equation, V - eV® = —p. In addition,
initial magnetic fields due to external magnets and coils may be prescribed
analytically or in tabular format, and must satisfy V- B = 0.

Once the initial conditions are computed, the electric and magnetic fields
are then advanced in time using finite-differenced forms of Faraday’s law and
Ampere’s law. The remaining Maxwell equations, V-B =0and V-D = i
remain satisfied in time when satisfied by the initial conditions.

Starting with Ampere’s law,

oD

EZVXH—J, (78)
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Figure 16: Fields defined on the Yee mesh. Currents, not shown, are co-

located with the corresponding electric field components. Exploded view
shows an integration surface.
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we can write a general finite-difference form relation for advancing all com-
ponents of the electric flux:

8:D; = 6;Hy — 6 Hj, (79)

where i, j, and k denote the indices of an orthogonal right-handed set of
coordinates. The full set of difference equations for Ampere's law is formed
by cycling over these indices. In Eq. 79, 6, denotes some finite-difference
operator with respect to the variable gq.

Faraday’s law can be evaluated in the same fashion, starting from the

differential form,
oB

ot

to form a general finite difference form of Faraday’s law:

= -VxE, (80)

6. B; = —§jEk + 5};Ej. (81)
The constitutive equations couple Egs. 79 and 81:

D =¢E, and
B = uH. (82)
The most commen implementation of Eqs. 79 and 81 in PIC codes uses
a center difference for §, and places the fields on the mesh as shown in Fig.
16, called the leapfrog algorithm [2]. That is, D, E and J are defined at the
midpoints of the segments connecting mesh nodes, while 3 and H are defined
similarly on a mesh displaced by one half cell in each dimension. The center
difference form of Ampere's law on a uniform orthogonal mesh becomes:

_ t—At)2 t—ALf2 t—Atf2 t-At)2
Df - Df ot _ Hk,x,+A::_,/2 - Hk,:,--axjfz__ Jae+OTL /2 i Te—AT, /2 __J_t—At/2
At AIJ' A.’.Ek ' )
(83)
Here, only subscripts pertaining to the direction of the derivative have been
included for compactness. Similarly, the center difference form of Faraday’s

law on a uniform orthogonal mesh becomes:

Bf+m/2 . B;-A:/2

t — J t _— t
i — Ek,a:j+A:z:j/2 Ek,:_,‘—-—AI,‘/Z + Ej,zk+Azk/2 Ej,xk—A:k/Q

At AIj ./_\.‘Ilk

(84)
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Thus, the curl equations can be advanced in time after closing with the
constitutive relations, Eq. 82. These equations are solved consecutively, so
that the fields leapfrog forward in time. The leapfrog algorithm is considered
explicit in that the field updates only depend upon past field values. This
scheme is second order accurate in both time and space for uniform celis.

5.1 Dispersion of Wave Equation

The stability of the center difference for the wave equation describes its accu-
racy and stability properties. Consider the wave equation in one dimension:

0% _ 20 (85)

a2 = o2

Center differencing,

oo = (BL) (o 2w e s (s

For sinusoidal waves,
¥(z.1) = expi (wt - k) (57)
! = exp [z’ (wt - i—jax)] (88)

with £ the numerical wavenumber.
Combining Eqs. 86 and 88:

exp (iwAt) = (ci—i)z [exp (—wilEA:r) —2+exp (i!—:A:c)} +2—exp (—iwAt)

(89)
exp (wAt) + exp (—iwAt) At 2 fexp (z’kA:r) + exp (—z’!ch) ) s
2 ~\“az 2
(90)
Then the dispersion equation becomes:
At ? -
cos (wAt) = (c-A—:E) [cos (kAz) - 1] +1 (91)
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Figure 17: Vacuum dispersion curve for leapfrog difference scheme for wave
equation.

For cAt/Az = 1, the numerical wavenumber is k = 4w/c = k. Similarly, for
At — 0 and Az — 0, k = tw/c = k.

For cAt/Az > 1 (the Courant-Levy stability condition), a rapidly grow-
ing imaginary root is given by

wAr Az -1 At\?
— = EEECOSh [(C—A-;) [cos (kAz) — 1) + 1‘ , (92)
which occurs for
kAz > cos™! [1—2 Az 2 (93)
cAt )

In multiple dimensions the Courant-Levy stability criterion on the time step

given by:
—-1/2
1 1
At < — , 94
= ¢ (Z (A:Ct)z) ( )

i

where the index 7 sums over the coordinate indices, and Az; denotes the grid
spacing in the ith coordinate direction.
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5.2 Electromagnetic Boundary Conditions
» Conductors: set £y = 0 along ideal conductors.

e 1st order Surface Impedance Boundary Condition [2]: (SIBC) Relates
tangential field components. In frequency domain the impedance is
given by:

E; (w) :
Z(w)=—"2—*% = R+iwlL, 95
©) = 5 (95)
where f1 is the resistance and L is the inductance. A similar relation
exists for the other tangential field components. In the time domain,

E;(t) = RH (t) + L%Hk (t). (96)

Note that free space is given by L = 0, R = ppc = 1207 ohms. For a
boundary in the j, k plane, the finite difference form becomes

H:fm/z _ H,i:m/z
At '

E; = RH, +L (97)

where the * refers to the fact that H must be co-located with the electric
field. The magnetic field at the integral timestep is approximated by:

ch‘:mﬂ + Ht:At/2

t
= 8
Hkt 9 (9 )
Then Eq. 97 becomes:
R L R L _
e (8, L t+AL/2 L graye
& (2 * At) He =+ (2 At) ke (99)

The magnetic field on the boundary is obtained from the Ampere-
Maxwell relation:

Az Dﬁ-ﬂnt _ Dt
L+ ALf2 t+ALf2 i 7 7 L+ALS2

This method is first order accurate in Ax.
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e 2nd order SIBC: same as the first order, except that the Ampere-

6

Mascwell relation is taken at Az/4 in from the edge:

A
2 o) o

At ’

+OL/2 __ prt+ALf2 Az,
H’“ - Hk.r,'+A:|:J-/2 + 2 (

where the j* terms are evaluated at Az;/4 using second order estimates:

1 3
St = Tt i 7%, and (102)
DL-}-AI — 1Dt+At 3Dt+At 103
5o = g¥iazge + 30 (103)

The values of D?, can be stored from previous timesteps.

Many other electromagnetic boundary conditions are possible.

Coupling Fields to Particles

The particle and field algorithms described above are coupled together through
the source terms in Maxwell’s equations.

6.1 * Electrostatic Coupling
o Nearest Grid Point (NGP) Weighting — fast, simple bc, noisy
o Linear Weighting — relatively fast, simple bc, less noisy
e Higher Order Weighting Schemes — slow, complicated bc, low noise
e Self-Force: asymmetric weighting (“energy conserving scheme”) results
in self-force
Define

wW=X; — Xjk-m, (104)

where x; refers to the position of the ith particle, and Xjim is the position
of the nearest lower mesh node.
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Figure 19: Particle shapes for nearest grid point (NGP), linear spline (LS),
quadratic spline (QS), and cubic spline (CS) particle weightings.
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Algorithm | 7pyn | TH To/ Teun
NGP-NGP |10 |1.0 1.0
LS-NGP* 1.26 | 0.62 | 0.49
LS-LS 1.63 | 38.4 | 23.6
QS-LS* 2.31 | 10.0 ]4.33
QS-QS 2.68 | 168.9 | 63.0
CS-QSs* 3.23 | 1083 | 33.5
CS-CS 3.71 | 456.6 | 123.1

Table 1: Performance and heating rates for a number of weightings [15].
Energy conserving schemes are marked with an “*’. Note that the run times
here, Trun, were computed in a periodic system; the higher order weightings
are more costly in a bounded system.

Then the linear weighting algorithm would result in the charge of a single
particle being weighted to the surrounding nodes:

Qjkm = ¢ (1 —w;) (1 — we) (1 ~ wm),

Qi+t hm = qw; (1 — we) (1 — wm),

Qjk+rm = ¢ (1 — wy) wy (1= wm),

Qikm+1 = ¢ (1

— w;) (1 — wk) W,

Qi+ h+1,m = Tw;wg (1 — wn),

Qj+1,kme1 = Gw; (1 — wi) W,

Qj,k+1,m+1 =g (l- wj) WrWm,

Qj+1.k+1,m+1 = QiUWjWeWm .

(105)

(106)
(107)
(108)
(109)
(110)
(111)
(112)

The charge is accumulated in this manner for all particles. The charge density
is computed using pjkm = Qjxm/Vikm, where Vjy . is the volume of the

cell centered on the j, k, mth mesh node.

6.2 Electromagnetic Coupling

e Charge conserving schemes

e Symmetric current weighting (e.g. bilinear)
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Figure 20: Current elements for a multi-cell particle motion.

Current can be weighted using either a charge conserving method, or an
algorithm equivalent to the charge density weighting algorithm. When the
latter scheme is employed, charge is not identically conserved on the mesh,
so periodic explicit enforcement of Gauss's law is required to reduce buildup
of dipoles.

Using the definition of w given in Eq. 104, and also defining

Aw = witB _ w' and (113)

w = (WAt wh) /2, (114)

we can write the two-dimensional charge conserving currents generated in
the first cell due to the particle motion shown in Fig. 20:

gtz e = ) Azbwn (1= ), (115)
i _
Il,::j-+A::j/2,zk+A:rk - -A_tAwIWZ: (116)
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gi -
I2,:_,-,zk+Azk/2 = E (1 - wl) Aw21 (117\

L2424 Bz /2 = %Eiﬁlﬂwz- (118)
When cell edges are crossed, the above set of equations is applied for each
cell traversed, using the segments of movement falling within the respective
cell. This method is equivalent to Morse and Nielson {18] for particle mo-
tion within a single cell; for multiple cells it is equivalent to the method of
Eastwood {8] and Villasefior and Buneman [35].

A non-charge conserving scheme, such as bilinear weighting, would have
the same form as the charge weighting scheme outlines in Eqs. 105-112, with
g; replaced with ¢;v - J, where J is the coordinate direction of the relevant
current component. Non-charge conserving schemes require a correction to
avoid build-up of charge dipoles.
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6.2.1 Charge Conservation

Charge conserving current weighting methods weight one order higher in the
transverse direction (e.g. NGP along J, linear transverse to J ). For the
low order (efficient) weightings, this can introduce noise into the system.
Higher order (e.g. linear-quadratic) current weighting is expensive, and the
boundary conditions are more difficult.

Non-charge conserving methods (e.g. bilinear) can violate the continuity

equation {16],
dp

J ==t 1
v-J ETE (119)
in turn causing errors in the irrotational part of E.
The Boris correction [2):
Ecor = E—V§0 (120)
V €Epr = p (121)

where E,, Is the corrected field satisfying Gauss's Law, E is the uncorrected
field computed from the curl equation, and V&® is the correction to apply.

V.e(E—-Véd) =p (122)

so 6P must satisfy
V-eVéd =V - -cE — p, (123)

which can be solved by any number of direct or iterative schemes.
The Langdon-Marder correction [13}:

eEL, = cE' + AtV [d (V- cE! - pt)] (124)

where d is the diffusion parameter, stable for

1 Az Ay?
< = dpar 125
T 2A¢ (A.‘L‘2 + Ay? (125)

Since both corrections are the gradient of a scalar, the corrections are
irrotational (V x V§® = 0).
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10" cm=3, M/m = 40000, T; = 1.87 eV).
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7 Plasma Model

The standard particle-in-cell (PIC) model has always included the capability
to model ions. Recent work in the simulation of gas discharges has added
the ability to include charged-particle interactions with neutral atoms and
molecules using a Monte Carlo collision (MCC) model [30]; the enhanced
model is often called PIC-MCC. In addition to the Monte Carlo collision
model, a number of other advances are described which have made it pos-
sible to model the disparate timescales that occur when including ions and
background gases, including subcycling of particles and fields, noise filtering,
and particle splitting/coalescing.

7.1 Monte Carlo Collision Model

The MCC model statistically describes the collision processes, using cross
sections for each reaction of interest. An electrostatic MCC model used for
gas discharges {30] is adapted for relativistic electromagnetic simulations.
The general scheme for the PIC-MCC is shown in Fig. 1.

Consider a set of particles incident on a second set of targets. For the ith
incident particle of energy &; = %mvf , the probability, F;, of a collision event

can be written
F;=1—exp[-ng (x) or(&)mArt], (126)
where the total cross section is the sum over all processes, o7 (&;) = 25 o5&
Here ny(x) is the spatially varying target density, v; is the incident speed,
and At is the time interval.
For a pure Monte Carlo method [20], the probability is inverted to solve
for the time interval between collisions for the ith particle:

(1 -R)
ng (x) or{&:)v:’

At; == (127)

where 0 < R < 1is a uniformly distributed random number. The equations of
motion can then be integrated for At; before applying the collision behavior.
While this technique has the benefit of taking the longest possible timestep,
resulting in maximum computational efficiency, it is evident that the particles
are no longer synchronized in time. This method can only be applied when
space charge and self-field effects can be neglected, and may be useful in
iterative gun code calculations, for example. Nonetheless, once a collision
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event does occur, the resulting dynamics are computed in the same manner
as in PIC-MCC.

There is a finite probability that the ith particle will undergo more than
one collision in the time interval At. For nearly lossless collisions, such as
elastic scattering with a massive target, the probability of n collisions in a
time interval At is PP, so the total number of missed collisions can be written

ey PP=—o (128)

IfP <l = Pf provides a measure of the under-representation of the
collision operator. Hence, traditional PIC-MCC codes are constrained by
vr.maxAt & 1 for accuracy, where vy max = max[n, (X) or(€i)ui] is the maxi-
mum collision frequency in space and energy. XOOPIC [34] does not suffer
from this limitation, modeling multiple collisions per particle per timestep.

Computing the collision probability for each particle each timestep is
computationally expensive, since it involves computing the particle energy,
a square root to obtain the speed, and either interpolation of tabled cross
sections or computation of a curve fit for each process for every particle. The
cost of the MCC can exceed significantly the cost of integrating the equations
of motion, so we seek a more efficient method.

Defining a maximum collision frequency in space and energy,

Pinax = mf-x (ng(x)) m?'x (UT(S)'U) ’ (129)

we can write a total collision probability independent of particle energy and
position, Pr = 1 — exp (—VuaAt) . The physical interpretation is shown in
Fig. 23. The collision frequencies are incrementally summed for electron
impact on neon, with v, representing elastic scattering, i, representing all
excitations summed, and vy representing electron impact ionization. The
area between vy and vy + 1, + v3 represents the null collision event.

The fraction of particles undergoing a collision each time step is now
given by Pr, and the particles can be chosen at random from the particle list.
Depending upon the implementation, duplicates may be discarded, resulting
in the error described in Eq. 128. A more accurate method is to allow
a particle to be chosen multiple times at random, applying each collision
sequentially. Once the particles undergoing collisions have been selected,
the type of collision for each particle is determined by choosing a random
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Figure 23: Summed collision frequencies for the null collision method.

number, 0 € R < . 12 is mapped onto the collision frequencies shown in
Fig. 23. This method is called the null collision method, because an energy
dependent null collision frequency has been added in order to form the energy
independent probability which eliminates the computation of energies and
cross sections for all particles each timestep.

Next, we consider the collision dynamics of electron-neutral collisions.
A number of electron-neutral collision events are possible, including elastic
scattering (e + A — e + A), excitation (e + A — e + A*), and ionization
(e4+ A — e+ AT +e). Here, e represents an electron, A represents a neutral
atomn, A* is an excited state of 4, and A% is the singly ionized state of A.

I'irst, consider electron-neutral elastic collisions. The differential cross
section is required to compute the final velocity of the incident electron. For
elastic scattering of electrons in argon, one possible cross section is [28):

O’(E,‘,X) _ (9;‘
a(&) 4r [1 + &;sin®(x/2)] In(1 + &)’

(130)

with incident electron energy &; in eV,and y is the scattering angle. It should
be noted that many other choices are possible; for example, see [11] for
differential ionization cross sections in a number of gases. The cumulative
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Figure 24: Scattering angle distribution for a range of energies.

distribution function is:

Joxa (€, x)} sin xdx
R= . 131
Jomo (€, x) sin xdx (131)

If R is a uniformly distributed random number 0 < I < 1, the scattering
angle becomes:
2+ & —2(1+&)°
& '
The scattering angles for electrons incident on argon are shown in Fig. 24.
The angular distribution varies from isotropic at 10 mV to small-angle dom-
inated at 10 kV. The azimuthal angle is uniformly distributed, 0 < 8 < 2.
Once the scattering angle is specified, the fractional energy loss in the
scattering cvent can be computed by classical collision mechanics [17]:

(132)

cosy =

2
AE = ——A?—(l - cos x)&;. (133)

Next, we consider electron-neutral inelastic collisions, such as excitation
and ionization. For ionization, the energy balance is £ = & — & + & —
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1000 eV.

£, — &z, where & and &; are the initial and final primary electron energies,
&7 is the energy of the ionization electron, £x is the neutral energy, £, is
the ion energy, and &, is the ionization threshold. Since the mass of the
clectron is small compared to the mass of the neutral, m < M, we neglect
the momentum change of the neutral, so that £y = £,. For excitation, the
cnergy balance becomes &5 = &; — £,,, where £,, is the excitation threshold.

For ionization at low &;, a differential cross section may be chosen of the
form [19]

0::(E) B(E)
arctan {[£; — £..]/{2B(E)]} (€3 + BY(&))

S(E,6) = (134)

Here, B(&;) is a known function for many gases. Similar differential ionization
cross sections for a series of gases are given in [11]. Inverting the distribution,

E% ’ '
0 ? S(Eil <’5‘2)‘182

2 (135)
0T (e £) e
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gives the energy of the ionization electron:

£ = B(£,) tan [R arctan (%—g(—fj-)] . (136)
Although the primary and ionization electrons are indistinguishable, we have
chosen the convention that the more energetic electron is the primary. In Fig.
25, the energy of the ionization electron normalized to the maximum energy,
E2 max = %(&——5‘:), is plotted for a number of incident electron energies. The
energy is distributed uniformly at low energies, and the normalized ionization
electron energy is reduced significantly at higher energies.
In the high-energy regime, the first Born approximation predicts the dif-
ferential cross section [25]:

o0

2m 1 . o r
_h_zm f rV(r) sin (2k; sin (x/2)) dr (137)
0

9 (x) =
where k; is the incident clectron wavenumber, V(r) is the interaction poten-
tial. Using a potential appropriate to the collision of interest, one can obtain
the energy and angular distributions as discussed above. For the Coulomb
potential, V(r) = Z,Z5¢e*/r, the differential cross section becomes the classi-
cal Rutherford scattering cross section:

do 1 zlzzezy’ 1
Q16 E ) sin'(x/2)

Ion-neutral collisions are similar to electron-neutral collisions, except the
collision mechanics must be performed in the rest frame of the neutral since
the momenta are similar, v; ~ vn. Examples of ion-neutral collisions include
elastic scattering (At + A — A* + A), and charge exchange (A* + 4 —
A+ A*). Here, A represents the neutral atom and A* represents the singly
ionized state of A. Many other reactions are possible, but are not addressed
here.

First, the velocity of the ion is converted to the rest frame of the neutral
using v; = v; — vy. The ion energy is then computed using &; = M,-v: v, /2.
For elastic scattering, the scattered ion energy can be written:

QM,‘MN
Er=i{l—-——m—= (1~ 0) } & 139
1= (17 o (1 cos0)) (139)

(138)
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where cos x = v/1 — R for isotropic scattering, and © is the scattering angle
in the center of mass frame. The subscripts i and N refer to the incident ion
and neutral respectively. For M; = My, © = 2y, where y is the scattering
angle in the laboratory frame, and the scattered ion energy becomes & ;=
£, cos? x. The azimuthal angle is chosen randomly, and the scattered velocity
in the rest frame of the neutral is constructed using the angle © and the
random azimuthal angle in conjunction with the magnitude satisfying £ g ==
Miv} : v} /2. The resulting velocity is then converted back to the laboratory
frame using vy = v} + V.

Charge exchange uses the same process for computing the probability,
but the neutral velocity is chosen from a prescribed analytic distribution.
The neutral identity is then exchanged with the ion.

7.2 Subcycling

The wide variation of timescales requires use of a number of techniques to ac-
celerate the computation. The cost can be reduced to that of fastest species
(electrons) by subcycling the slower species; that is, advancing the slower
species less frequently than the faster species and the fields using propor-
tionally larger timesteps. The maximum subcycling ratio is given by:

A e _ [M (140)
Ata Wi m

The efficiency becomes = (N, + N,-Atc/Att-)_l, where N, and N, are the
number of clectrons and ions, respectively, and At, and A¢; are the electron
and ion timesteps, respectively. For N, = N; 50% < 1 < 99.6% for argon.
A narrow band instability occurs for wpAt, =~ Im, so it is important in
discharge-type problems avoid the instability in the areas where particles are
trapped [1]{5].

The fields can be advanced on the electron timescale, At,, or they can
be subcycled on a faster timescale, At,. Subcycling of particles and fields is
shown schematically in Fig. 26.

8 Noise Attenuation Schemes

PIC simulations are generally reasonably low in noise for low density plas-
mas. However, the noise scales unfavorably with the number of particles,
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proportionally with v/N, where N is the number of computer particles. If
it is desired to reduce the noise level, either to observe smaller amplitude
signals or to reduce the numerical heating [2], a number of noise attenuation
techniques exist.

8.1 Fourier Space Filter

Fourier space filtering for PIC codes is described in detail in Birdsall and
Langdon [2]. Generally, the method involves attenuating or boosting various
wavelength components in Fourier space by operating on the charge density:

5 (k) = p (k) S (k) (141)
where S (k) is the smoothing function. One method proposed by [2] is:
S(k) = exp (a, sin® (kAz/2) — a, tan* (kAz/2)). (142)

Here, a; > 0 compensates for the errors in the dispersion relation for kAz <
1, and ay > 0 provides smoothing of short wavelengths.

8.2 Electrostatic Digital Smoothing

This smoothing method applies a digital filter to the charge density distri-
bution. A common digital filter is the binomial or 1-2-1 filter, expressed in

one dimension as:
r_ Pt 2p; + piv1 (143)

Py 4
The filter may be applied in multiple passes; each pass produces cos® (kAzx)
filtering. As the number of passes approaches infinity, the binomial flter
approaches a Gaussian filter. More gencrally,

o Wpoii+pi +Wpoin

| 144
& 1+ 2W ’ (144)

where W = 0.5 is the binomial filter. Schemes with W < 0 produce a
compensating filter; W = —1/6 produces a compensation that cancels the
attenuation of O [( kAz)ﬂ of the binomial filter. Efficient techniques to apply
the filters in place without duplicate storage are described in [2).
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8.3 Electromagnetic Damping Scheme

A technique for temporal filtering of the electromagnetic fields can reduce
the noise [22]:

Erl=(1-¢QE"+(¢E"?% 0<(<1/2 (145)

E™! = E* + cAtV x B™12 — eAtJv 2 (146)
B"3/2 = B™? _ cAtV x (147)
[(1+¢/2)E™ —E"/2+4 (1-() E*1/2]. (148)

Here E defines a lag-averaged electric field, and ( is the damping parameter.
This method allows a reduction of the number of particles per Debye sphere,
Npo/Np. s ~ 10, for equivalent numerical heating.

9 Numerical Parameters

PIC codes are primarily concerned with the physical parameters of the model.
However, some numerical parameters must be considered. These inciude the
grid spacing, Az, the timestep, At and the number of physical particles per
computer particle or particle weight, W,,. Although each method is slightly

different, and a number of techniques
A common sequence fcr selecting the numerical parameters is as follows.

e Choose Az to resolve the smallest important physical feature (e.g. Ap,
Arf, Tr, boundary feature, etc.)

o If electromagnetic, require:

-1/2
1 1
At < (Z ('A:v,-)2) : (149)

]

e Require At < Az/Umay for all species ( “particle Courant”) for accurate
sampling of fields.

¢ Require At < 0.2/w, for accuracy when space charge forces are impor-
tant.

46



e Require At < 1/v when collisions are important in the standard MCC
model (modified models like XOOPIC relax this constraint to At <

1/u).

o Require W, < nlAza/N,, where #i is a typical density, a is the dimen-
sionality of the problem, and N, is the desired number of particles per
cell corresponding to the noise level and numerical heating. For typical
simulations, 10 < N, < 100, where the higher range corresponds to

~

simulations where particles remain trapped for long times.

e Run time becomes: 7., = (ALa/W, x T, + La/Aza x T,) X tgau/Af,
where L is the system length, T, and T; are the computer time per par-
ticle and cell respectively, and tg,, is the end-time for the simulation.

10 PTSG Codes
10.1 XPDP1 4.0

10.1.1 Features
¢ 1 spatial dimension (3 velocities), Cartesian (PDCl=cylindrical, PDS1=spherical}

¢ uniform mesh

. électrostatic

e RLC, short, open and current driven external circuits

» homogeneous magnetic field at arbitrary angle

e particle subcycling

e spatial ﬁltering of charge density

e Monte Carlo collision package (He, Ar, O, Ne, Xe, etc.)

s erission (drifted Maxwellian flux) and absorption

e initial drifting Maxwellian plasma

o Currently runs on DEC Alpha, Pentium (Pro) Linux, Sun OS, Solaris,
HP/UX, IBM RS6000
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10.1.2 Demonstrations

e numerical instability
s virtual cathode

e crossed field diode

¢ dc discharge

o rf discharge

10.2 XOOPIC 2.51
10.2.1 Features
Physics Features

2 dimensions (3/d; = 0), r —zandz —y

e Orthogonal, non—unifonﬁ mesh

e Electrostatic or full electromagnetic fields

» High frequency EM filtering scheme

e Arbitrary static magnetic fields (eqn. or file}
e Boltzmann and/or inertial electrons

o Fully relativistic particles

e Monte Carlo collision (MCC) package, multiple simple gases (He, Ne,
Ar, Xe)

e Arbitrary subcycling of fields and particles
e Arbitrary volumetric plasma sources

e Particle emitters and absorbers

e Secondary electrons from any surface

e Bilinear charge weighting
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Bilinear or charge-conserving current weighting

Poisson and Langdon-Marder current corrections

Flexible be, MKS units or grid units

Configurable particle and field diagnostics (grid and boundary)
Orthogonal and stepwise oblique bc

Flexible diagnostics setup from input file (histories, averaging, striding)
Input file reads equations (evaluator)

Magnetic field, time-dependent bc, initial cond., plasma source via eval-
uator

User-definable input file variables

Currently runs on DEC Alpha, Pentium (I, Pro, II) Linux, Sun OS,
Solaris, HP/UX, IBM RS6000, MPI-based parallel computers

Boundary Conditions (electrostatic)

Equipotential surface
Diclectric

Currently 1deal voltage suurce circuit

Boundary Conditions (electromagnetic)
Time-dependent beam emitter (constant or radial particle weights)
Time-dependent field emitter

Ideal conductor

Dielectric

Gap with time-dependent driving voltage
Wave launchers (TEM, TE, TM)
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Wave absorbers (TEM, TE, TM)

Current loops

Contact Information

Code and manuals available via the internet
http://ptsg.eecs.Berkeley.EDU

Custom support, maintenance and installation available from Research
Institute for Science and Engineering: rise@langmuir.eecs.Berkeley.EDU

10.2.2 Demonstrations

charging dielectric ring

dc discharge

clectron gun

beam focused in background gas
cavity and waveguide modes

Cerenkov maser

e klystron
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