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Chapter 1

Introduction

Self-organization is one of the most important, key notions in various fields such as plysical sciences, life
sciences and even in social sciences. Formation of sell-organized structures in magnetized plasinas hag
been a topic since studics of such colierent, structures may give a scenario common to sell-organization
in complex systems as well as transport plienomena in plasmas. In fact coherent, structures have been
recently observed in laboratories [1-5] and are subject, to theoretical analysis for understanding underlying
physics,

Two dimensional turbulen: fluids and plasmas have been widely recognized to sell-organize into large
scale coherent, structures 16-21]. One of sueh examples is given in Fig 1.1 which shows that Lhe collisiona]
drift wave instability evolves into a dipole vortex 22 This kind of self-organization has been observed
in nwnerous systems like geostrophie Muids, planctary atinospherie Nuids, and guiding center plasmas, A
huge number of works have been done on relaxation of twe ditnensional turbulence to organized motions
and it is belioved that a far understinding of seil-organization in Lo dimension has been achioveds the
fundamental phenotena e e explained Ly the scenario of ofiher selective decay hypothesis [6-10] or
maxiinal entropy principle (1 1-20]. Therelore three dimensional turbulence is olten emphasized 1o Le
studied instead. However (here are still important problems Jef, unsolved in two dimensional turbulence,
In & course of time evolution of sell=orsanization 1he number of vortices decreases, According 1o ex-
periments and numerical simulations the number of vortices deeays gebraically, which is not, properly
utlerstood. The emergence of self-~organized motjons has been observed experitnentally jn a magneti-
cally confined pure electron columus by K. S. Fine, A. C. Case, W. G. Flynn and C. [ Driscoll [2] and
numerically in decaying and force-driven drift wave turbulenee by N. Kurkhakin, 8. A, Orszag and V.
‘akhot. [25] and T Witanabe ef, af 126]. Both observations are commonly coneerning long-lived ordered
motions [t_‘rysf,:lllizur.ion) ol well defined vortices, suggesting that the relaxation 1o Lhe ordered siates
may be deseribed by miroducing point vortiees (27251 with which partinl differentin equantions desiyned
Lo describe vortical motions are comverted Lo a sel of ordinars difforensial equations. In luer, dynamics

based on point vortices is shown M recover almost the sune dynamical behaviors ohtained by solving
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Figure L.I: (a) The time evolution of the spatial structure of the potential obtained by solving eq.(18)
in Sec. 2 for k = = 0.3 and § = 0.1. The contours of the potential are normalized by the maximum
amplitude at each time step. The solid and dotted contours represent the pesitive and negative parts
of the potential, respectively. (b) The time evolution of the spectrum of the potential for the same

parameters as those in {a}). The amplitudes are normalized by the maximum value at each time step.

the partial differential equation for the collisional drift, wave instability {27-35]. Another example of the
emergence of self-organization is spiral structures which have been observed in both ECR plasmas {4]
and gun-produced plasmas 15]. The cominon feature of the observed spirals is a two-arm structure. Al-
though therc is an effort [36] to understand the physics behind the vortex crystallization by modifving the
maximal entropy principle, these lindings such as vortex crystallization and spirals need new approaches

which seetn beyond the scope of the existing scenarios,

In the next chapter the emergence of organization through turbulent, states in the course of time
evolution of the collisional drilt wave instability is discussed and the scenarios of selfcorganization are
reviewed and a scaling theory is formulated to explain the decwy of the number of vortices in chapter
3. In chapter 4 based on the point vortex description dynamical properties of vortices such as collision
processes, the vortex collapse and diffusion process is studied dynamically and statistically. In chapter 5
the dynamics of the drift, wave vortices in eylindrical plasmas is studied and in chapter G the collective
behaviors of vortices are cxamined. In chapter 7 spiral structures in ECR plasmas will be discussed

associated with the collisional drift, wave instability.
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Chapter 2

Collisional drift wave instability and

formation of dipole vortex

Nonlinear dynamics of drift. waves has been subject to intensive studics since these waves are regarded
as responsible for anonalous transport, in plasmas. Hasegawa and Mima (1] derived a model equation to
explain the high level of density fluctuations and the broad frequency spectrum observed in a tokamak
2], Since then, many propertics of drift, wave turbulence have been revenlod: the spectrumn evolution
is characterized by an inverse cascade 3], the wavennmber spectrum obeys the Kolgomolov-Kraickinan
law A= [1.3], the broad frequency spectrum is demonstrated in several wiys based on such a soliton gas
model [6,7] and a truncated modescoupiing model exhibiting chaos [8.9]. the saturation in an unstable

system s initiated by the E x B drift [10]. enc.

On the other buud, the Hasegawa-Mima equation is known to have vortex-pair solutions {1 These
dipole vortices have been shown to be fairly stable agaunst collisions and perturbations [12,13), although
i the strict sense they are not as stable as solitons. This the Haseaawa-Mia cquation is anticipatod
fo link strong turbuletee ro self-organized motions. Similar phenomena of self-organization have been
demonstrated in two-dimensional hydrodyiumnie wurbulence [ L1 15] and in magnetohydrodynamic turbu-

lence [16-17).

In this chapter, we study the lormation of a coherent structure vir turbulence in the course of noniinear
development of the collisional drift wave instability. In Sec.2.1, we exrend the Hasegawa-Mima equation
50 as 1o be applicable to an unstable systems, Nmmerical sinndations based on the model cquation are
performed it See.2.2 1o establish o seenivio for +he instabillny evolntion: lnear srowth is lollowed by o
parametrie instability that exeires soall seale voriices. These vortices then fse into barger vortices as a
results of an inverse caseade. Toading [nally 1o w Livge sinsle dipole vorrex, The inst seetion 2.3 is devotod

1o disenssion.



SCHAPTER 2. COLLISIONAL DRIFT WAVE INSTABILITY AND FORMATION OF DIPOLE VORTENX
2.1 Derivation of the model equation

The dynamical equation describing the evolution of the electrostatic potential 9(r, t) is obtained from a

two-fluid model:

anc | —_—

5 TV (neve) =0, (2.1)

n,m(g—t +ve: Vive = —-Vp, - eno(E + -‘% xB) +R, (2.2)

on;

i) Anave) = 2.3

T + V- {n;vy) =0, (2.3)

niM(é% +vi-V)vi = -Vp;, + eny(E + % xB)+R-V.-1I, (2.4)
(25)

with the quasineutrality condition

Neg 1 = n.
The magnetic field is homogeneous and in the z direction,while the background density gradient is in the
x direction specified by p = —(d/dr)Inng = const. The [rictional force R and the stress tensor TI are
given by Braginskii [18]. The electron viscosity is neglected because of its smallness. In the [ollowing,
we consider the case where both electron and jon temperature are homogenecus and electrostatic waves
propagate almost perpendicular to the magnetic field (&b, > A1) Then the motions perpendicular to

the magnetic field are

I

Ve vE Ve, (26)

Vi = vpbvp Vp, (2.7)

l

where vg, vp and vp are the E x B drift, dizmagnetic drift, and polarization drilt, respectively. These

are given by

ve = (Vi xz)/B, (2.8)
VDo = —sgn{ca) Q“’(m M, x2), (o= e}, (2.9)
Vo = Ao, Vidus ok —— v 11 2.10

PO o £TYL Ve Rk (2.10)

where

Ui =VgE+ Vo,

Substituting eqs.(2.6) and (2.7) into the continuity equations, we obtain

)

(;—!-ne (Ve ViIne + Tylngry) = 0, (2.11)
7

r;_f.m Ve Ve Vo (nvy) Vi (g} = 0, (2.12)

For the ion motion parallel to B. we may negleet the viscosity and have

i 1 c ' '_
m\«"il\ +{vi- V)V;‘,‘; = _-_‘__mi‘\'f v_\"}')g - ﬁv;li!', (2.13)



2.1. DERIVATION OF THE MODEL EQUATION 9
Since the electron inertia is so small, the electron parallel velocity may be approximated as
&
Ve = D) VM(# = Inng), (2.14)
€

where Dy = T,/mue. Then eq.(2.11) is linearized with respect, to the fluctuation to give the electron
density fluctuation in terms of the potential after an iteration. This is based on the fact, that the deviation

of the electron density from the Boltzman distribution may be assuined small:

- 4 1 a d ., ey
e 2 o[l ~ RD; (c')—t + ’“Deag)]rj—.e‘- (2.15)

Invoking the quasineutrality condition anc retaining the terms up to £ £ = p/Ln, p=0C,/, C, -
(T/M)Y2 Q, — eB/Mece, and L1 = (2/87) Inng|, we obtain the model equations describing the nonlinear

evolution of the collisional drift, wive instability:

a.. 0 & d & . 9]
Vo R (5 4 =)~ (o + 2 s T2 4 Do, . 2
[( ’"at)(at + Uy} ((.)t b o vSVHVA Y + 570 = X Viy) -V Vig,  (2.10)
: d
ETh + a—_’/’ ==(zxV_ ¥) Vv, (2.17)

where the following replacements are used:

c, z 3 L, " T,
g I — 5 = =L
DLA'ﬁLn’ c,«’ e
with the normalizations
T — pr f L L”! o i il L
_—#J;_Z——;l;’_—>v,_—‘———i“!ﬁ'—-—>‘:
. no~ C_, 1 fe CJ‘.‘

When collisions and viscosity are neglected, a sol of equiations is shown by Meiss and Horton [2G] 1o
have dipole solutions as stationary solutions. This may suggest that the evolution of the collisionai drift
wave instability governed by eqs (216} and (2.17) eventually feads o the formation of dipole vortices,
tlowever, three-dimensional dynamics wre scemingly qnite complicated. In the following, we vestrict onr
attention to evolution in a two-dimensional system for which the ion inonion in the 2 diveetion is negleeted
ineqs (2. 16) and (2.17). This reduction of the dimensionality phyvsically colresponds Lo the case where jon
acaustic waves are decoupled from the drify, waves, and s verified when 4, 5o Ay Purtherinore, invoking
the result, that /8¢ 1 9/0y ~ 0 Tor waves with o long wavelengily, the collisional term responsible for
the instability, x2/0¢ is replaced by —ré/dy. Thus cqs.(2. 16) is decoupled from (2.17) 10 give a single

nottlinear equation:

& . & & “? o) g .
T v R A T AL AN Y. S B . 7.
(')I.(l Ve 4 h.UU)I,. F E(r')y E f)y"‘) (((,)U PV = [(z < Vo ) VIV, (2.18)

which is the IMasegawa-Aima cquation extended to deseribe drift waves in an unstable syvstem.
The dispersion refation of a linear wive js obrtaled from eq.(2, 13) for the real frequency as

/\', Il ., 2 5
wlk) = e ) g R2J A welnidy, = vdk"), {2.19)

(U a2y azgd |



-

WCHAPTER 2. COLLISIONAL DRIFT WAVE INSTA BILITY AND FORMATION OF DIPOLE VORTEX

W LN
-0.0404 6

Figure 2.1: The growth rates against, ky for fixed kz/ho =0 =7 in the case of & = 1 = (0.3 and 6 = 0.].

and for the instability growth rate as

k2 :
v(k) = (17 1272 gz IRl = )k — 183 (1 4%, (2.20)

which are compared with those used by Terry and Horton [8] with the out-of-phase component for
Ritre < 17 [20]. In Fig.2.1 the growth rate y(k) is depicted against &y, for various values of &, ab
K =1 =03 and ¢ = 0.1 The speetral structure of Lhe growth rale is characterized by the finite
bandwidth for the instability, which itsclf manifests a possibility of Jorming a coherent. structure.
A stalionary solution of Fe. (2. 18}, with & = 1 = & = 0 referred to s o dipole vortex, is given by
ack (8r/a)
v 0) = ([: :(_’(?72 v G20 (yr/a)
! :F)E L)

cosfl, forr>a
(2.21)
Jcost), for r < q,

where 7% = 2% 4 (y - )2, cos = rir, 3= all— /)% and aand ¢ are parameters characterizing
the size and speed of the dipole vorlex, respectively. The Jy and K are the Bessel function of Lhe first
kind and the modified Bessel lunction of the second kind. Here v is determined through the following

equation
Ka) _ ()
K (8) yi{v)’

which gives an infinite number of v for o fixed 4. The dipole vortex solution is given for the smallest,

(2.22)

value of . For larger values of v the number of nodes inereases, giving excited states shown in Fig.2.2(a).
Althoughy the stationary solution with the smallest, 7 is known stable, the excited states are unstable and

throw the dress off to become to the dipole vortex as they propagate shown il Fig.2.2(b).

2.2 The simulations

In solving cq.(2.18), we used the agorithin developed by Gourlay and Maris (21]. The number of mesh

points is 128 x 128 and the periodic boundary conditions are imposed, The stability of the numerieal



2.2. THE SIMULATIONS 1

Figure 2.2: (a) Excited states of stationary solutions (b} the time evolution of the excited stale with

Ta-

scheme is ensured by monitoring changes in conserved quantitics ol eq.(2.18) without the collision
viscosity, that is, the Hasegawa-Mima cquation. For eq.{2.18) we launched many waves atb the ingtia)
moment. and confirtmed that, the observed growth rate spectra agree well witl) the theoretical linear growth
rade speetrias Simulations with o higher resolution (256 x 256 arids) performed for several parameters
confirmed the results in the 128 x 128 stinulations. This is beeause, as a resull, of the viscosity in cq.(2.18),
short, waves are heavily damped and play no role in the physics.

The initial condition is chosen as
Wi,y t = 0) = Yysin(b,z - ky 1),

(;"L:;‘.y) = (2;‘-0:4;“0)? ('I‘U - T“/IGJ:

with the amplitude ¥y = G001 for ~ = v =03 wnd & = 0.1, The course of development, is shown in
Fig. 1.1, in which the contour of the potentisl and the spectrum are depicted, respectively, The inaximum
amplitudes of Lhe potential ad the speelrum ad cach tne step are used for the normadization. The wave
grows al the lincar growth rate v ~ 0.023, followed by an excitation of bigher harnonies. Around ¢ = 300,
when the amplitude of the initiatly kamched waves excesds o cortain vl ge of about et ~ .99, energy
travsler Lo many modes oceurs abruptly (lrom ¢ = 290 to £ = 310 in Fig. 1.1(L) ), leading Lo Lhe breakup
of the wave into a train of small vortices. ‘This sccondary instability is identificd with the parametric
instability as follows. By Fourier translorming eq.(2.18), we oblain

17,
ot

(57 H i) = 700100k = S Ag(i, KiK' )ik, (2.23)

k'-l—k”:l{
where w{k) and (k) are given by eqs.(2.19) and {2.20). respoctively, and

| (i % k") 2

7 /
W = S e

(K7 — iy, (2.24)
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Taking the initially launched waves k = (2ko, 4ko) and (—2kp, —4ko) as a pump since they already have
grown up to the finite amplitude, the conventional analysis for the parametric interaction yields the

growth rate I' and the frequency shilt {2 as

D= Sha)+ 20k - k)] £ —=[(A7 + BY2 + A2, (2.25)
2 V2
1
Q = £—[(A%+ BY)Y2 ~ A]/2 2.26
\/5[( ) | (2.26)
where
1
A = H{brlkn) =y~ ko)l ~ A%} + [1o*RG, (2.27)
1
B = gAlv(a)-alk-k)|+ o l*QG, (2.28)
A = wk)—wk) —wk —ky), (2.29)
(k' x k") -z]2(k* — k%)
= TR P R— . 2,
¢ (14 &2 4 inky)[1+ (k — k1)? +in(k = k)] (2.30)
Since (k) is of the order of x, the threshold for the instability is roughly estimated by
AZ
2 et ——
[‘wolfh - ERG” (2-31)
which is meaningful only when G > 0, that is,
min|k¥ (k — k))?] < &% < maz|k, (k — k)7, (2.32)

A set of the wavenumber ky satislying the relation (2.32) for the k = (2ks,1ky), is shown by solid
points in Fig.2.3, which, together with the points symmetric with respeet to the origin for the pump of
(—2ko, =k}, reproduces the observed structure of the spectrum.  The small vortices excited as a results
ol the parametric instability then interact to [nse into larger ones. The inverse cascade of the wave energy
on the spectrumn clearly observed in Pig 1.1 is responsible lor the fusion of vortices. PFinally, one large
dipole vortex is formed and propagates in a rotating manmer. In Fig.2.4 the contour and spectrum of
the vortex pair at the {inal stage are compared with those of the dipole vortex, eq.(2.21) with a = 14.8
and e = =0.56. The spectrim of the dipole vortex whose synmunetry axis is at the angle of n/:4 to the y
axis is given as the sum of the spectrum of Fig.2.4(d) and that obtained by interchanging k, and &, in
Fig.2.4(d}, which is quite simnilar to the spectrum in Fig.2.4(b). Thus the dipole vortex at the final stage
may be identified with the dipole vortex.

The amplitudes of the dipole vortex in the final stage are determined by assuming a stationary
energy flow fromn the linearly unstable modes to the damped ones. Sinee the energy is mainly contained
in (kg/ko, ky/ha} = (21,00, {0, £1), and (X1, £1) as is scen in Fig.2.5(a), we may look for stationary

solutions of the truncated equation derived from eq.(2.23):

, 1
EP 231
(1, 03 T (2.33)

]

T
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Figure 2.3: A set of wavenumbers subject to the

pariunctric instability when the pump wave is taken to
be (k:, )'\Ty) = (2){‘0.‘”\'0).

Figure 2.1: Spatial and spechral structures of the observed vortex pair and the stalionary solution. (a)

the contour of the potentinl observed sl the finad stage of the simutation for & = 1 = 0.3 and & = 0.1,

(L) the speetral structure for the cose of (), {c) the contonr of Lhe stidionary solution for ¢ = 1.8 andd

¢ = =000, and {d} the spectruny in the cose of {¢1).
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Figure 2.5: The time evolution of (a) the spatial structure wnd (b) the spectral structure of the potential

for x =0.4,1r = 1.0, and § = 0.1 when many waves are initially launched.

&
W, D) ~ 2% (2.34)
4h;
8
AL D2 o~ 20 2.35
(1, £1)| 20 {2.35)

The magnitude of the mmplitades given by ¢qs.(2.33)-(2.35) is of the saumne ovder as that observed in the
simulation. It is comparable Lo the saturition amplitude obtained by Terry and Horton [22] (e /T, ~
10/,2 = p/Ly), which is claimed oo high by Biskamp and Kaifon [ The reason for this might be
related to the negleet of the coupling with ion acoustic wives 19].

Then many waves are initially launched for the parameters £ = 0., = 10, and 8 = 0.1, small sealed

vortices are readily fornned since the linear mstability is dominated in the initial stage of the evolution.
The wave number spectrum of the poLtential resembles that of the linear growth rate. Apparently the

parametric instability cannol be identified. The fusion of simaller vortices into lurger ones becomes the

main process of the evolution, The timne developments of the potential and the wave speetrur are shown

in Figs.2.5(a) and (b).

2.3 Discussion

We have studied the formation of a1 coherent structure throush trbulence in the course of nonlinenr

developinent, of the collisional drift, wave instability. We derive a model equation which is the Hasegaw:-

Mima equation with the effeet of collision il viscosity. The lincar instability is Jollowed Ly a parametric

”
P
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instability to allocate the wave energy to many waves whicl, in turn, cause the destruction of the sinusoidal
wave pattern into a random ensemble of small vortices. The small vortices are then lused to form larger
vortices because of an inverse cascade. The [usion process is repeated to give a single large dipole vortex
identified as a stationary solution of the [Tasegawa-Mima equation.

Although many efforts have been devoted to establishing a scenario for nonlinear development. of
the drift, wave instability, so far the scenario is terminated by the saturation of the instability and the
resultant turbulence. Ifere we find that there js another stage beyond the turbulence state, that is, the
onsel and development, of self-organized motions. In conclusion, the Hasegawa-Mima equation seetns

capable of describing a variety of nonlinear wave dynamics.
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Chapter 3

Scenarios of self-organization

The emergence of organized states in turbulence was initiated by Montgomery and has been intensively
studied by his group [1-11]. Through those efforts the scenarios of sell-organization were alnost estab-
lished as long as two dimensional turbulence in fluids and plastas is concerned. These are the selectjve
decay hypothesis and maxiimal entropy principle. However transient, dynamical properties sucl as a decay
of the number of vortices 1s not understood by the scenarios. In this chapter we review the scenarios of
self-organization and give a scaling theory to describe a transient, process like a decay in the number of

vortices.

3.1 Equations for two dimensional dynamics

First we derive equations describing dynamics of two dimensional fluids and plasmas. For ideal fluids wo
have as the equation of vorticity w = ¥ x v,
i)
T kv Ve =) (31
A
where ¢ is a stream Dunction wnd velocity is given by v = z « V. This equation is rewritten as

o, R .
%FV“O + !O, V‘zoj =}, (32
M

where |-+ -+ ] s a Poisson bracket. It stould be noted than sinee @ is o llamiltonian, any wexpressed
as an arbitrary function of ¢ is a stationary sobution, implying there are infinite number ol invariants,

]

Among them physical invariunts are energy £ and enstrophy
- ! ol = . 2 ‘.
r = E/dr 0? = g fee(le, )7, (3.3)
l D ") 2 ‘
0 = 3/‘#1“ w? o E A e (l, 0. {30

For electron plasmas we stars witl, the olectron CONLINUTLY cqiation

dn

o FV{nv) =0, {3.5)

I7
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the electron cross field velocity

V=g §1:1 n), (3.6)
and the Poisson equation
Vi = 4ren, | (3.7)
which are combined to give
g-t-qub + (¢, V2g) = 0. (3.8)

This is exactly the same as that for two dimensional Euler equation (referred to as 2DNS equation in the
following).
For low frequency fluctuations in plasmas, we start with equations {or ion continuity and ion cross

filed velocity, and the Poisson equation where electrons obey the Boltzmann distribution:

dn
3 + V(nv} =0, (3.9)
¢
v = —B;Z x Ve, (3.10)
V¢ = dmwe(npe®®’T — n), (3.11)
from which we have
%)
5 = V)~ v. - Vo~ [5, V0] = 0,
K= Cs v. = K2z x Vlan (3.12)
T ApQY T o e

ITere » denotes a sereening eifect, by the eloctrons s V. is a diamagnetic drift velocity due to an
inhomogencous background density. This equation is often referred to s the Charney-ITasegawa-Mima

equation (CHM equation). Invariants are given by

E

fdr{ﬁg(bQ + (Vo)) = D (w® + k2 plk, ), (3.13)

0 = /dl‘{h:g(VC'})z + (V)2 = ZA-?(H? R bk, PR (3.1:4)

o) — b2 —

For dynamical systems with several invariants all of the it s are not necessarily relevint, Some of
them are poorly conserved when infinitesimally small dissipation is introduced. Then the most probable
state may be obtained by extremizing the poorly conserved inviniants subject to the constraint that

relevant, invariants ave kept, constant.,

3.2 Selective decay hypothesis

I order to distinguish relevant, invariants from trrelevant ones, suppose that a system is in an equilibrium
state. Then the probability distribution funetion of the stationary state is expressed in terms of invariants

as

PUCRGIE G = 12y = Qoo

e Sotas3rhieck?
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where a and § are Lagrangean multipliers. From this an expectation value of the energy spectruin is
calculated as

1
< [o(k)]? >= .
F >= = (3.15)
Here a and 8 are determined from expectation values of <E>and <>
<B» = 1 ! 3.16
T2 Z a + ,()‘kz ’ (3.16)
<> = 3.
2 Z o+ ,(J‘L‘ (3.17)
For a large system we have
k
mex 1 + gL
<L> = 39 dk:——lr—~—1'ﬁ 3.
‘ ”1 o+ Bz ‘2,(3 %% Io+mfm ’ (3.18)
Lmux A.3 2
< > = —_— = Y b >, S0
Q 2?"‘/’;"’“ a + ’[#\zd Q’f “’mur ;‘rrun 2a E \j (r} I())
The effective temperature a and 4 could be negative, but not, botj simultancously since e +Ok% > 0. In

order to determine which could be negative, let kg, go to infinity for fixed < £ > and < ) > [1]. Then

from eq.(3.19) 3 becomes infinity and from eq.(3. 18) which is rewritten as

L? 82ﬁ<E> 112

a=-—pf "unez,a<E> 7 e,
we obtain
o = “'{'?nmﬁ
Thus we have
< ek s ;PT]AE— bwin = o l/ A (3.20)
nin

This implies that, the energy tends to coneentrate af tie longest allowed wavelength while since the extra

factor of &% appears in the expression of the enstrophy:
Pr I P

5 " A l .
O = t21)
: T Minin

the enstrophy TALZES up 10 by where dissipation becormes important,

So far we discuss a stationary spectrum distribution. When eneroy s supplied at a finite wavenumber
which is between Fonin ol £y, the energy cascades Lo astmall wavenumber region {inverse cascade)amd
the enstrophy cascades 10 o lavger wave number region (normal casead . While the enstrophy cascades
to a larger wavenumber and js dissipated strongly, the energy is alinost, conserved. This is the scenario
for the selective decay of enstrophy, Thus we look for a stale so as for the enstrophy to be minimun

under the condition that the energy s constant, A variational problem is formulated us
- N = &fg(vz(,ﬁ)‘-’ = MV e = 0, (3.22)
where \ is a Lagrange muhiplicr, This gives

Vi + Ag = 0, (3.23)
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which is nothing but one of the stationary solutions of eq.(3.2). The solution of eq. (3.23) is given by
@(r) = o cos(ky ) cos(kyy). (3.24)

This state is characterized by a single wavenumber which is the smallest allowed by a boundary condition.

3.3 Maximal entropy principle

Maximal entropy principle is to determine a probable state from entropy. For that, purpose we need

discrete degrees of freedom which can be introduced by point vortices. Point, vortices are defined through

Vi =" 4;68(r (1)), (3.25)
b
which is substituted into 2DNS equation to give
z x (r; —rg)
= . 3.
Z"" -—r»l*’ (3.26)

The point vortex system is a Hamilton system which is confirmed by

dey _ 1OH dy _ 10K

dt oy dy de T Ty dy (3.27)
where
=~ Z’Yi"/j In fl'i —_ I‘j'. (328)
iZy

Since = and 5 are canonical conjugate in this system, the configuration space is nothing but the phise
space. This is essentiaily dilferent, from ordinary Hamilton systems where the eonfliguration space is a
sub-space of the phase space, Suppose that the fluid enelosed by & boundary so that the vortices are

confined to an area A. Then the voinme of the phase space is given by .

/dQ = (f drdy)Y = AV = finite. (3.29)

On the other hand the eneray of the system expressed by oq. (3.28) can range from —co 1o co: when the
vortices of the same sign coincide the energy becomes co, while when the vortices of the opposite sign

coincide the energy becomes —ec. The phase volume which corresponds to energy less than a given value
D)

H{ry,y, o rn,un) < B,

is a differentiable function of the energy:

I
\II(E):/ dQ:] W(EVE (3.30)
Haol2 -0
with
Pl—co) =0, U(co)= AV, (3.31)
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The second condition comes from the fact that the vortices are confined in a finite area, the phase volutne
has to level off. Since V(E) is a monotonically increasing lunction of £ and levels off for £ — 00,
UE) = W'(E) cannot. increase monotonically and must have g negative slope for £ larger than a finjte
Em, that is, ¥/(E) is maximum at Lopand Y(E)Y<Qfor E> Eq. From the definition of temperature

1 _9S _, QUE) . W(E)
;f = (E = Ag-ﬁ(—E‘)— = AB"IJ’—(E‘—)-, (3.32)

temperature is negative for £ > E,,. In this region the entropy decreases witly increasing £, that is, a
higher level of organization corresponds to the higher energy state. For an equilibrium state characterized
by the Boltzmann factor exp(—E/kgT), the state with the highest, energy is most realizable since the
temperature is negative. The state of the highest cnergy is realizid when the same sighedd vortices cone
close together, which corresponds to the state with the highest order. Therefore vortices of the sume sign
will tend to cluster.

In order to determine a realizable state, let the entropy be maximize under the constraints that the

energy and the number of vortices of positive and negative polarization are constant, which is formulated

as follows
é/dr{nf logny +n_logn_ +ain, +a_n_ + pde(r)(ny —-n_)} =0, (3.33)
where oy, a_, and 4 are Lagrange multipliers. From this we have
ny = ¢ s
where 1+ ay = 1+ a_ = o has been nused. Substituting these cquations into the vorticity equation

Vi = Mny ~ no), vy =q. = L,
a realizable state is given by
V234 2T~ sinh(5¢) = 0. (3.34)
For small ¢ the above equation reduces Lo that given by the seenario of selective decal hypothesis, For

large ¢ the difference beeomes significant,

3.4 Test of scenarios

According to above mentioned scenarios a realizable state is miven by either
Vi = —Ag, (3.35)
or
Vi = -0+ \Zsinh(f9) (x — 0 for 2DNS). (3.36)
The scenario can be checked by comparing a scatter plot of the vorticity V2o versus the strem n fanetion
@ given from namerical data with theoretiea relations. This kind of check has been done by Seyler [13])
who showed that imaximel cntropy principle gives beiter resulis than selective decay hypothesis in two

dimensional wurbulence,
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3.5 Scaling theory of algebraic decay of the number of vortices

In the course of self-organization the number of vortices decreases algebraically,

N(t) = No(3)%, (3.37)

where the exponent £ is given as nearly 1 for experiments on electron plasmas [12], 0.70 - 0.75 for numerical
simulations on the 2DNS equation [9], and 0.4 - 0.5 for numerical simulations on the CHM equation [14],
For the 2DNS equation dimensional analysis gives

@~ ?, (3.38)

where £ and ¢ are a scale length and a characteristic time, respectively. Then the energy is expressed as
2 e
E= / (Vo) ~ ¢ e (3.39)
Since the energy is conserved during the cascade process, we have
£ tV2, (3.40)
The scale length £ can be regarded as an average inter-vortex distance, giving

N(t)~e %~ gt (3.41)

which agrees well with the experimental result but differs a bit from numerical results.

For the CHM equation with a condition & >> k, dimensional analysis gives

bR (3.42)

and
6810

E= fa’r(rczg')z H(V9)) iy (3.43)
Then this time we have again invoking the conservation of the energy
N(t) 72 o 725 (3.44)

which fairly agrees with the numerical results.
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Chapter 4

Point vortex description of drift

wave vortex dynamics

Studies on dynamics of drift wave vortices have mainly been performed numerically based on the Hasegawa-
Mima equation [1] which is diflicult to solve analytically. In this chapter we derive point vortex equations
of motion for the vortex core in the point, vortex Himit from the Hasegawa-Mima equation and study
the elementary processes of interaction of the vortices, through the ordinary dynamical equations. The
dynamical equations for the interacting vortex cores provide a clear understanding of the dynamical
propertics of diift, wave vortices as well as stationary propertics of the associated plasma transport.

An advantage of introducing point, vortices is 10 convert, & nonlinear partial differential equation into
asystem of ordinary differential equations which are ensior to solve. while wave phenomena are neglected.
A crucial difference of the Hasegawa-Mima equation lrom Euoler’s equation is the existence of the drift
term giving rise Lo dispersive waves, which requires that the vorticity artached to cach point vortex no
longer be constant, but Lo vary in space and Lime, in contrast with the point vortex deseription of Ruler's
equation characterized by constant strength vorticities. This modulated point, vortex model was [irst,
mtroduced by Kono and Yiumagira [2] based on the fact tha e Hasegawn-Mina equation conserves the
vorticity along the trajectory, then later by Zabusky and McWillians [3]) who sticlicd the configurations
of the vortices correspouding to a stationary solution of the Hasegawa-Mima equation and stability of
the configurations.

In See. 4.1 we rederive the point, vortex cquation [or the Hasegawa-Mima cquation. In See.d.? an
exact solution for a vortex pair is obtained and is shown to recover the dynamical properties of the drift,
wave vortices revealed by numerical simulations. In Seecl3 collision processes of two vortex pairs are
studied. In Sec.d.d a statistical theory of a many-vortex syvstem is formulated where the vortex dilfusion
coeflicient is analytically derived to give the empirical forinula given by Horton [11. Discussions are given

in the last seetion.



2 CHAPTER 4. POINT VORTEX DESCRIPTION OF DRIFT WAVE VORTEX DYNAMICS
4.1 Point vortex mode]

Starting with the Hasegawa-Mima equation

dy v
—(,)T+[¢,7r]+v.-a—y=0, (4.1)

where [, | denotes the Poisson bracket and
T=1 -V, (4.2)
we introduce the vortices through
m(r, ) = Zh—,,(z)vﬂ(r —ra (1)), (4.3)
o

where 1, (r — r,(¢)) is a localized Tunction at r = ra(t) and ra(s) is determined by the characteristics of

eq.(4.1);

dry(t) ; o 4
-~ [lra t)ra] = 0. (4.4)
Substituting eq.(4.3) into eq.(4.1), we obtain
driolt) | e . s :
DTG = a0V (G =2 x Vy(e, )} ~ (1) = g 1), (4.5)

Since Vi, (r — r {t)) is a function localized around r = ta(t), we may replace the Arguments r appearing

i the coeflicients of V, (r — o) with v, (1), and then the second term of the left-hand side of eq.(4.5)

vanishes according 1o eq.(4.1). Then we have

S el ) = )—),( 1. (1.6)

ot

Multiplying both sides of eq.{LG) by V(e — re{t)) and integrating with respoct, to r. where we may

approximate the overlap integral as follows:

/dﬂkﬁ-rdﬂﬂﬂr—nﬂﬂﬁﬁw, (1.7)
then we obtain
Ak dr,,
—_— =, . 4.8
i ‘ it (1.8)

When the localized function Va{r — 1, (1)) is approximated by a delta funetion é(r — ro(t)), that is, the
vortex is assumed a point vortex, we have from eqs.(4.2) and (1.3)

O = S S k(0 Ko~ a0}, (1.9)

P
[as

where Ky is the modified ossel fhnetion of the second kind In the ﬂ)iluwmg . is assumed possitive arwd
constant:

N N S A S A {(-1.10)
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where Kq ¢ is a constant. Then eq.(4.4) becoines

dr 1
T.f =5 > (Kgo + vaxs)z X Vs Kolrap), (4.11)
B#n

where rag = |rq — rp|. Equation has the same form as that introduced by Kono and Yamagata first
and then later by Zabusky and McWilliams who introduced the name modulated point vortex for the
variation kg = Koo + tuTo. The simple case of constant k. valid when v. = 0 is studied by Hasegawa et,
al [5].

There are two conserved quantities for the Hasewgawa-Mima equation; one is the energy

E= é—fﬂ’r[‘y’)2 + (V¥)?] = %/drtjﬂ', (4.12)
and the other is the enstropy
l 1 ,
W = E]dr[(wf + (V3)?) = —Efdr(vz-w)fr. (4.13)

In the point vortex description the energy and enstrophy arc expressed as

. i
£ = :l—; Z(Kno + '["--Ta)(f\'-ﬁo + ?I..’i[';j-,‘)f(c,(?"(_,:ﬁ)1 {,114)
oy
1
W = e (g:j(h'ao + v (ko + varg) [Kolras) + Ka(raz)l, (1.15)

where the self-energy has been subtracted since it diverges. Although eqs.(1. L) and {{.15) are not,

conserved in general sinee

dE 1 Do
=5 S e A (0,
DA (Fec. ) (L 16)
and
a1 B )
e Y e L S L 117
a2 gy Ve (1.17)

this does not mean that the poin. vortex description is invalid. The discrepaney comes from the fact
eqs. (L 12) wnd (L13) take into seconnt contribntions from both vortices and waves, while eqs. (L 1) and
(1.15) are based on vortices only. Therclore for the vortex pairs corresponding to the stationary solution
of the Hasegawa-Mina cquation. that is, for those propagating straight. in the ¥ direction, egs. (-1 L) and
(1.15) are certainly constants of motion since the waves are never excited. In general, however, changes
in energy and enstropy of the vortex system in the course of time evoluiion may oceur whenever waves
are involved in the fundamental processes of the vortices such as emission or absorption of waves by the
vortices, which is observed in numerical experiments (6.7} based on the Hasegawa-Mima equation.
Eqguation (1. 1) is not a Hamitonian of the dynamical svstem ol the vortices. Instead the Hamiltorian

is wiven by

7 Z*’“‘“' 1. (4. 18]

(43
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from which we have

dr, oH 1 -~ Ya

& T T T Zﬂj(nso + v,zg) Y0 T Kalrap), (4.19)
dye  OH

E T Z(hﬂo + . Tﬁ)_TKI(Taﬁ) (4.20)

Since H is translationally invariant along the y axis, the translational momentum in x is conserved:

P = Z(N&O + ’b‘.l‘a)?- (4.21)

4.2 Vortex-pair solution

Now we solve eqgs.(4.19) and {(4.20) for two vortices. In this case, in addition to eq.(1.21), the relative

distance of the vortices is a constant of motion,

e = (T — w2l 4 (1 — y2)? = 12, (4.22)
which leads to
%(‘Oﬁﬂ = :EM VA 4 cos0)(B — cost){1 — cos? (), (4.23)

where 7 — 13 = rpeost), A = (V2P + (K20 — k10 N/vere, and B = [V2P — (K20 — K10)]/v.10. Equation
(4.22) is readily integrated 1o vield a solution expressed in terms of the Jacobi elliptic function. The

solution is given by

s 0 — 1.2
o e aZsap?{wt, k) ( )
where for v.rg 4 |kyo — Kanl = V2P 0 e — [k1a — woall
> L+ 13 ; 3 -
. = 4.2
aq T i (1.25)
T =sgn{Rig — maa) (1.25)
» V2OTT ) (1.2
koo O B 3 . (4128}
and for V217 2 feorg = I - w0l
Ao
o B e e (1.20)
14 f3
Yoo =Asgn(kie — Aga), (:1.30)
..]’ - .
wo= S A1yt :‘W(’“). (4.31)
ko= R4 BT+ O F B (4.32)
Fauations for the center of gravity are ajven by
l ool RIS et oo
3(.[“‘ |r_3) 7T:—1!‘.](.’. Jm e 7-’]""—‘_ (!)‘)
J ” (j] ER TR A fh o R b rore cos ) cos (131

Am
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(a)

(b)

(c)

Figure 4.1: Trajectories of an opposite signed vortex pair of x/v. = 2.0 and 19 = 0.4: solid lines and
dotted lines indicate a positive and negative vortex, respeetively. Angles 0y between the symmetry axis

and the x axis are (a) 0, (b) 7/, (c) 0.8976, (d) n/2, and (e) 2r/3.

27
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Figure 4.2: {a) Tilted angle versus the size of the vortex pair for non-propagiting vortex pair of k /v, = 2.0,

and (b) non-propagating vortex pair of x/v. = 2.0, 75 = 5.0 and ¢y = L.G755.

whose explicit solutions are readily obtained by using eq.(1.24).

It must be noted that a vortex pair (k1o + ~20 = 0) propagates in the v direction without oscillation
in the orbit do{= 0(t = 0}) = nr (integer) and with oscillation for fy # nw as is shown in Fig.4.1, which
has been numerically observed by Makino et al [8] based on the Hasegawa-Mima equation. Computations
are monitored by keeping I constant within ten effective figures. Recently, Nycander and Isichenko [9]
derived the equation for the center of gravity of a vortex pair from the momentun cquations of the
Hascgawa-Mima equation and obtained the frequency of the trajectory which is also well fitted to the
results by Makino et al. A non-propagating solution shown in Fig.4.1(c) is realized for such initial angles

of the symmetry axis of the vortex pair to the axis that the velocity of the vortex pair given by

1 | PR g
5= g,,‘(.'}l ) = m] t!t—\g(r;m — kg -k terg cos ) cos 0, {(4.35)
a . [ D =y
E(R) K (O
= V3P~ 21{((!\')))—.1-:—1) = e (1.36)
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{a)

x [(®

Y
Figure 4.3: Trajectories of a like-signed vortex pair: (a) equal vorticitity strength (k1,11) = (ky,7y) =

(20,2) and (b) strong-weak vortices (k1,71) = (50,4) and (x, ) = (20, 2).

is zero where K(k) and L(k} are the complete elliptic integral of the first and second kind, respectively.
Figure 4.2(a) shows the initial angle versus the size of the usn-propagating vortex pairs for the case of
Ko/v. = 2.0. Another exatnple of a non-propagating vortex pair is given by Fig.4.2(b}.

Two like-signed vortices (K10 = Ka2g) are mutually trapped, rotating around the center of gravity
which is easily seen [rom eqs.(4.28) and (4.29) (Fig.4.3). This mutual trapping leads to a coarse graining
of the corrclation over dircctions and may be considered a mechanism behind the fusion of vortices in
the sense that, a group of point vortices positioned sufliciently near oue another act at large distances
as a single vortex with the sumn mtensity, xp 2 Yo8,. A voalescence of like-vortices and a long-lived
monopote numerically observed by lorton may be interpreted by this mutual trapping process. The
inverse cascade of the energy is also regarded in the vortex representition as a trapping and as a kind of

snowballing process.

4.3 Collision processes of two vortex pailrs

Collision processes of Lwo vortex Pirs are shown to recover those observed smerically [6,7, 10 lor elastic
cases with zero {IMig.d .4} and nonzero (Fig.d.5) impact parameters.  Sinee our point vortex model does not,
take into accouns the effects of interaction with the wake fields, the inelastic collisions with an crnission of
wake fields observed by Me\Williamns and Zabusky [10] cannot be deseribed by the vortex field component,
in eq.{4.9) alone. However, the position dependence of the vorticity gives the vortex system studied here a
variety of complicated behaviors inciuding an exchange scattering and a boomerang scatiering (Fig.d.6),
indicating that our point vortex system is likely to become turbulent when many vortices are involved.
However, the potential sireetire constracied from o (L9} i quite orderly as is shown in Fig 4.7, which
corresponds Lo Fig A5 mutually trappoed voriices belive as o single vortex though the dyvhamics of
constittient point vortices is very complicared. Therefore the complication of the dynatnics of the point,

vortiees is rather analogous to complicated behaviors of consttuent particles in an ordinary gas or flujd
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4.3. COLLISION PROCESSES OF TWO VORTEX PAIRS

Figure 4.4: llead-on collision between two opposite signed vortex-pairs with zero imp

N
N
I ®
e

act parameter.

(a)

(e)

x [(C)

Y
Figure 4.5 1ead-on collision between two opposite signed vortex-pairs of Ky /v, = —1.0,rofv, =
LO,ka/ee = 2.0, and ng/ee =2 .0 with the initial positions: 71 = o+ Ar|, 19 = —7yy + Ary,aq =
T+ Arp, T4 = —ryy o+ Dry, Ty = 0.25,m0 = 050, = 4y = —z = —ya = A0, with (Ary, Aq) =

(a)(0.0,0.0), (5)(0.15, 0.0, (€}{0.15,0.15), (d)(0.25, 0.25), (£)(0.25, 0.50), (£)(0.50, 0.50).

31



32 CHAPTER 4. POINT VORTEX DESCRIPTION OF DRIFT WAVE VORTEX DYNAMICS

X
Y
Figure 4.6: Trajectorics of four vortices K/v. = —xz /v, = Kafte = —Kefve = —9.0 with initial positions
M= =T == =030, =y = =y = —yy = 0.2,

dynamics aud aweraged propertics may be of primary importance al though the dytnical properlics of
the point vortex system are acadoemically interesting since the chaotic behavior wmay be characterized by
intermitient structures and clusters of vortices in which local order is o prefemed state because of the
short range interaction force belween potul vortices. The vange of Lhe interaction g, = c(m T el s

given by the parallel electron motion shiclding the charge separation in Lhe Buler VOThex.

4.4 Vortex collapse revisited

When the diunaguetic drift is neglected the equations for the motion of vortices are given by

zl-q = 2” th} ll Irt - I J') ll(ir(x . 1-;}”_ (11‘37)

r:_ljl

The short range nature of the interaction between the vorlices stems from bhe shiclding cflect. This
mnplies that the distance between the vortices is short cnough for Lhe shielding Lo be neglected, the

dynawical behavior of vortices is deseribod by the following equation:

i Z o e ) (1.38)

Uo —rg[?

which are the point vortex cquations corresponding to Euler's equation.  There are three couserved

quanlilics associated with g, (4.38),
G = an,ra, (:1.39)
x
L = Z’ialra[‘zn ('IIIU)
L = :ZZN,,.-;L,KO(]FQ - rgl). {1.41)
a3
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44. VORTEX COLLAPSE REVISITED

N
® &
) g =
A /]

o
@. &
&

Figure .70 Contouwrs of stremwnfunction oblained from cq.(<.9)
Figld(c).

using Lhe point vortex trajectories in
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Many studies [10,11] have been reported on solutions of eq.(4.38). Among them are also remarkable works
concerned with the vortex collapse for which three vortices converge sell-shinilarly, For the collapse to
occeur, suitabie initial conditions have to be satisfied in addition to the condition that gy x, +Hhakg b Rgng =
0 [11]. Depending on the sign of vorticities Kq, {a = 1,2 and 3} the vortices can also diverge {12]. This
type of "explosive” motion can be considered as an "inversion” of the collapse,

The vortex collapse is algebraically unstable: a small deviation [rom the condition no longer leads to
the collapse. In those cases three vortices first converge to some extent, and then turn to diverge. Qnce
they start to diverge, they keep diverging as long as eq.(4.38) is applicable. This i is, however, not, the case
for eq.(4.37). When they diver ge, two of them are to form a pair to travel togethier and the third one
is left. behind, because of the short, range nature of the interaction. However since the vorticitics of two
vortices travelling together are opposite in sign and have to be different, in tnagnitude, the two vortices
perform a circular motion. They eventually return to the place where the third one remains. At the
time they cone to the position where the two sides of the triangle become equeal, the pair is renewed by
changing the partner. The new bair travels in a similar way as before nnkil it, comes back to the place
and again, exchange its partner.

Introducing complex variables Za = Ta -+ iYa representing the vortex position rq = (14, ya), eq. (1.37)

is rewritten as

d Zp .
e Z g |1\1 Iza = 25(). (4.42)

With the aid of the eyelic permutation, tie set, of equations (4.42) Tor three vortices reduces to

7 o, IO (L
7= D s, (1:43)
a o K
:f—? = %{ —17(—) ~ Ky (p)]sin b, (dAd)
where
mmmo=pct, <z =y o' (1.45)

d= - C=lz1—zf =

From Eqs.(.1.39) and (1.45), we have for &y ¢ Kg -k kg /O

1 ; ; \
T T T W b et e - G (1.46)
S
i
o= . {Rine™ 4 () + ry)pe® + G}, (4AT)
1 2
! .
o= s {K1me'® — wypct? 4 G} (4.48)

The constants of motion L and [ are now expressed by

! 5 ‘. oy | 2
{Hlf\j_n'," -+ Fakg e o Fugki hp” L ‘f(;‘—}. (JJO)

KB Ry A Fg

I Mk /\’U(/,') -+ MoK f‘fl]{ﬂ) -+ Mk /\’0 (T,I). (15{))
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With the use of eqs.(4.49) and (4.50), either eq.(4.43) or (4.44) is enough for obtaining the solution in
principle. However eq.(4.50) is not. convenient. to use. Therclore we consider eqs.{4.43) and (1.44) with
eq.(4.49).

First we review the collapse {or which the modified Bessel function can be approximated as
Ko(r) ~ =0577T+In2—Inx  for z << 1. {4.51)

For the collapse the solutions are self-similar in time and may be expressed in terms of (p, 7, £) =
(Po, 0, £o) f(t}, for which the conserved quantities are given by
L [H]Ngﬁg + th’;;,ﬂg + K:;Nlng}f(f.)z,
L~ (K]N.z +H2N;;+N;;H])lll [f(ﬂ”
Therefore for the collapse to occur the following conditions have to hold:
L=0 and Nikg + Kokyg + Kyky| = 0, (452)

where G is chosen to be zero. The first condition of eq.(d4.52) is explicitly written as

Ny 2 K1 2 2
%+ =13, 4.53
o _2fo Ny _2770 Q- ( )

where gg, o and £p are their initial values. Equation(4.53) gives the relation among the initial positions
of the three vortices for the collapse to occur,

Then eqs. (443} and ({L-4d) become

dp AR
o - TwET —Isin g, {4.54)
dn Ke  p L
— = (== — Z)sin, Bk
T QTr({_" p)c;m , {1.55)
which are combined to give
dp p -
i (-1.56)
Thus we have
) )
Lol (4.57)
no

FFor this case W is also constant:
Ka(kz + ary)

s = 4.
cos \f Ryeve (1.58)
Then eq.(4.55) reduces to
dn (a® = Dryry A
- sin\f = — d.0!
dil 2malk; + afrpiy = n’ (1.:59)

which gives

no= \/7,13 + 241, (1.60)

poo= an, (1.61)
fo= \/_ _H:‘_ {ry + k). {1.62)

MR2
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From the imaginary part of d(22 — z3)/dt we have

d0

p+ncos¥
i 7 Ki(8) — Ki(n) cos U]}

= —%0-{(!{2 +H3)K1(P)+Hl[

-~ ____l_ Ko + Ky . Ip-{-ncoslll cos W
- 2rp p ! g 7 I}
N B
= m, (463)
leading to
B g+ 24t
0= —Int— """ 14 4.04
7 n| 7 | + 8, (4.64)
where
bR+ Ky Kirg(a + cos )
B = - — A /]
27ra{ 5 il wa(Ky F afag) eos b} (1.65)

Equations(4.60) - (4.64) give a selfsimnilar solution which diverges or converges depending on the sign of

A, that is, o — 1 except for the following two cases:

(G-) a = [th‘z + \/—th'gh'.;;(hil + Kz -F N;;)], (4.66)

—K1K3

) o = 1, (1.67)

The case (a) comes from sin W = 0. The both cases correspond Lo a rigid rotation.

4.5 Boomerang interaction of three vortices
Now we relax one of the conditions [or the collapse given by eq.(4.52), that is,
LAD and wiky + Koka b sgrg = 0. {4.68)

First, in order 1o see the effect of e (1.63) on the converging collapse solution, we may use the
approximate expression oq.(£.51) for the vortices with short distances. Under the eonditions eq.(4.G8),

the conserved quantitios cas. {LA0) and (4.50) are rewritten os

th':_gfz -+ NQH;;[JZ - H;;HIT,IQ = £, (‘C\q)
£ T

A (4.70)
g

where € = (k) + kg katl and G s chiosen zero. The £a, pa and 1y are their initial values, respectively.

For simplicity, in the follnwing, we consider a special case:
(Ky,Ra, ky) = (kK —/2), (4.71)

whicl: satisfles one of the conditions given by eq.(L63). Then eq. (L70} simply becomes
2 i3 -
~ {1.72}

Mmootk
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The solution is singular with respect to 2

g is equal to n, which is easily seen from eq.(41.73).

interaction obtained by solving ca.(:1.37) is depicted |
genee or explosion. gives unbounded vortoex motion, w

is. alter all, @ result which was 1o be ex pected. We o
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which is combined with eqs. (1.69) and (4.45) to give
£ +n* =20 + % = Q, (4.73)
2 P _p? C €
cos ¥ = oy =-3 Pt (4.74)
Then from eqs.(4.54),(4.55) and (4.72) we have
d K
a’ = EalC* ~ DU - - B)E - B\ - B) e - ey, (4.75)
where
¢ e C = 2 ¢ 20
a.666y=(—-= Y £ < € 20 ¢ 7
{662,065 C—1&2’C+1N2’2+CN2’C—2N2}’ (4.76)
with
el >0 > £y > &y, (47?)

Equation (4.75) gives the same solution as eqs.(4.60}, (4.61) and (4.62) for & = 0. The solution to eq.(4.75)

is given by

g )"{V +2: ﬂ{' (—[—ﬁ‘—)zb} 5 \/(02-1(4—02)5 (4.78)
1

where

VO = F(¢}k)a Vl = H(érﬁzv!")
1

— 2 oy _2_!,2.‘
i A~ g =y B (8 - )

) . . . Y snuen i dnou
(26007 267 — A 3 TS g2k - _
H F e : i, ) 1 — 32 sn* b

72 2 2 2
— il (/—2_[-74)('{r *[l) - el A
¢ = sin \/(ff — fz)([rz —ay nou = sine,
,12 - '{}f B (’j ,'j'.! — ['2 ,]n)
(.".Z . {"2’ 1 [.{
oo oA 2

51 =
2 2 5 I s
0 =1 VG

= and does not smoothly continue to the collapse solution. At

the point. where 72 becomes minimum, that, is,

. ) c oz ,
Bl g o (1.79)

This is the point where the partner of the bootnerang

Jowrney is exchanged.

The boomerang interaction is shown in Fig.L.8(a) as well as the vortex collapse in (b). The bootmerang

in Fig L9, Thus, for unshiclded vortices, the diver-
hich beeomes bounded 1 w the shielding effect. This

mphasize that three unshiclded vortices can also
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Figure 4.8: (a) the " boomerang interaction” of three

vortices and (b) the vortex collapse

al . ‘b 1
). a) 0d ., ) o of;) ®
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b)|a = |b 1
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Figure .9 Ninmerical simulation ol the

"hoomerang mberaction™. (a} potential and (b} vorticity

VORTEX DYNAMICS
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perform a bounded or localized motion, given a proper choice of vortices and initial positions, but these
parameters will then not give a collapse by inversion. The vortex collapse is thought to provide a key to
understanding of fundamental processes of strong turbulence. As discussed for instance by Novikov|11]
and Novikov and Sedov[12], the collapse accounts for energy being systematically transferred into small
scales, and [or vortex dispersion, or "explosion”, energy cascades into the large scales. The boomerang
effect described here, an effect, which owes its existence to the shielding effect (x # 0), consequently

corresponds to a "sloshing” of energy between large and small scales.

4.6 A statistical theory of point vortices and vortex diffusion

Here we turn to be a statistical system with N point vortices and derive an equation for vortex diffusion.
Introducing a distribution [unction of vortices of j species by

Fa(r,t) =3 8(r —x{(1)), {4.80)

2

we immediately obtain the Klimontovich equation {14] for vortices using eq.(4.37):

-,(?-Fq+sz(I>-VF,, =10, (1.81)
3l
I
b(r,1) = 5~ § :fdl"(xno + vz ) Ko{r — ') Fafr'). (4.82)

The average distribution function is defined by the average over the ensemble of initial data:

< Folr t) > = fffl'xodl‘zo e dr g P (o, o rvo ) IFa{r, 1), {1.83)

while the fluctnation part of the distribution function is simply given

falv ) = Folr, )= Folr.t) v (4.84)

which includes fluetuations «due to the interactions of the vortices and the dicreteness of the vorlices.

Taking the ensemble average of oq.(181), and subtracting the result [rom ea (1.81), we obtain

‘()_)r > 42XV <d > Vo F, 2= = czx VbV, >, (:1.85)
L
and

g;fn—%zxV(<tll>+l5)-Vf“:mszJ)-V<Fa>. {4.86)

Introducing the Green's luction
& -
{] tzx V(<& 40} VG e ) = §(r = v)&(e = ), {4.87)
¢
eq. {(4.80) is formally solved in term ol G by

Jalr, i) = fu'r'u't’(f(r, L e St 1y - fdr’r!t’(l(r, ' e w VbV Ry o (1.88)
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where 8 f is an initial condition. The Green's [unction is given by a solution of the characteristic equation
of eq.(:1.87) as
G, tl', ') = §(r —r{t;r, 'y, {4.89)

where

4
r(;r', ¢y = ¢ +/ dt"z x V[< &(re(t"), t) > +B(r(t"), "]
v
= v+ Ugt - )+ 20, 1), (41.90)

Thercfore the average Green’s function is expected in terins of cumnulants with respect, to i

< G‘(r, Lll‘l, z") e Zeik-(r—l“—Us(t—t'))eZ“ Cn(kf).‘ (‘l.gl)
k

where Cr(k - ') denotes the cumulants and the first two terms are given by

Cifk-F) = —i<k.-F>, (1.92)
Colk - F) = —%{< (k-F)? > —Cy(k - 7)2) (4.93)

Since our vortex system is characterized by complicated dynamical behavior of the constituent, point
vortices, the fluctuations are likely to deviate from the Gaussian, implying that, the higher order cumulants
do not vanish. However, we may assume, as a model, that the sccond order cumulant dominates over the

others. Then eq.(4.91) is approximated by

< Gr te!, ) ey Zemp{ik- [r—r" —Ug{t -t} -k -D-k(t - 'y}, (4.5:4)
k

where
! (3¢ - ~
D- 2/ dv <z x V() 1) 2 x Vdb(r{t — ), 1 - 1y >, {£.05)
9
and we have assumed that the correlation time of the fluctuntions s short. Substituting eq. (| B8) inlo

o). (<1.85), we have

;—)[«.:1-;,:-+zxv-<q):- NV >=V-D-V o> tA. Ve o>, (1.96)
where
o - Z/ i R e Rkl (s
A s o Z f ;: DZ::: hih_o(lf) [;:)z (f]&{l%/fﬁ;) , (1.8)
Akow) = 14 ﬁ 3 ff(ioiki j"[}z')(i’ic‘_/g‘fik 2 XV < I (r) > (1.99)

k
and Ng s the Fourier transform of Kallr]}. The second Lerm on the right-hand side of eq.(LIG) is o drag

term die to the eimission of wake felds by the vortices becanse of thoir diseretencss:

g rgf(l‘, Pf)(‘f(l"‘, f.,) Pty 1(1 f,)z((l‘ - l'f)lf":f. — f.’).
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Since the characteristic {requency of the vortex fluctuation is simply the vortex turnover time, that is

. |

w ~ k- Ug which is given by =(k,w) = 0, we may evaluate the vortex diffusion from eq.(4.97) as

1 - 2 = "
D~ 3 19wl ~ 3 &0k, w)P, (4.100)
k,uw K
which by eq.(4.82) with xg < v,y approximalely reduces to
D~ Nuvarg, (4.101)

where rp is the average size of the vortices. The idea behind eq.(4.100) is illustrated in the following way.
The quasilinear approximation for the vortex diffusion is to take into account the agitation of the orbit
of a test vortex under the fluctuations induced by the other vortices that are assumed o be in a free

motion, and it is given by

L
D) —— G T (1.102)

However, the vortices causing the Huctuations are themselves subject to diffusive motions. Therefore a
self-consistent, diffusion is given by replacing w in the above expression by w -+ ik? D, leading to cq.(4.100).

From numerical experiments on the vortex collision, lHorton found that the rross section o for strong
inelastic collisions is peaked at the impact parameter compatible 10 ry where o, ~ 2rg. Taking the

average vortex speed as ¢ > v., he estimated the vortex-vortex collision frequency as
oo a0 e 20y, {-1.103)
This leads to an effective diffusion 2 of the vortices
D~ oerd oo Norg, (110

which is the same result as that obtained in eq (L 101} by the statistical theory for point vortices.

[t is worthawhile 1o point onn thiat the point vortex systemn introduced in this seetion may be subjeet. to
a phase transition to form a vortex lattice. since the interaction force between the point vortices is short,
range and a local order is likely to be formed. We suggest than further sudies of the packing fraction
Sp = nemrg and the vortex-vortex corrclation luneiion be used to distinguish between the turbulent states

described as vortex gas [15], a vortex liquid and a density packed system approaching a vortex laitice,
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Chapter 5

Drift wave vortices in a cylindrical

plasma

The Hasegawa-Mima equation [1] in a eylindrical plasmi is writien as

Aall
N By : . N —
rmn Flo T b ve - Oy = 0,

where ¥ is an clectrostatic potential and

I = v- vy,
V. = Tr%z XV lnn
- = 0 L nng.

When the background densi Ly is assmined 1o be

vortex model gives a set. of equations

a Gaussian, ng oc crp(—7

(5.1)

(5.2)
(5.3)

#/r8). then the modulated point,

as

dr 1 . 2 w2 X {ry =1y} i

= R R R L 6.0
. " JFe o

where kg is the vorticity abtached Lo the

Bessel funetion of the second kinel. Equation {5.1)

P Sl = G = 2P,

o

which is related to the faet that 0q.(5.4)

5.1 Dynamics of a vortex pair

For the system of two vortices, the rel

the translation: momentum,

e = (= 1) 4 (- g)? = s

43

vorex 9, el is given by o, - v Il

ative distance of thoe VOrLices [s o const

»and A s the modificd

his a constant, of motion

(5.5)

is invariant under the azimuthal rotation,

ant of motion in addition to

(5.0)
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with which eq.(5.4) is reduced to

% = 1( ro) —— f(R,0,¢}sin{0 ~ ), (5.7)
do K

z = -E%g(m, (58)
d R

T o= B 0o 2 ), (5.9)

where 7y —xy = rgcos 0, Ut —y2 =rgsind, (x, + 72)/2 = Rcos Y, (n +m)/2= Rsiny, and

JR0,9) = ryg—wyo — 2u.ro[Rcos(f — 1) — Ry cos(fy — o)), (5.10)
g(R) = Ko+ Kgp — 20, (R2 - RS) (5}])

Here, R, 0y and g are the initial values, repectively. Note that F(R,0,4) and 9{1t) satisly the following
condition:
SR 0,9) + 6% (R) = op = 2(Kig 1 K2 (5.12)
The dynamics of vortices is sensitive to their initjal configuration and the magnitude of the value of
V., K1 and Kog .
Introducing a new variable ¢ = ¢ — ¥, eqs.(5.7)-(5.9) reduce to

dn K, T‘o)

i ———=f(R, &) sin ¢, (5.13)
do ]{I( ro) ., ot .
-(}T juien ﬁm[j(}f) -} THI(h Q)(.Uf\(ﬁ[)”. (.)ll}

First, we consider the fixed points of the above equations, which are determined by
sing =10, g(R)+ j’(]{ Pleos g = 0, {5.15)
21’
The fixed points are given from eq.(5.15) for the case that s rag 0 as
, . Koo — Ao o _ .
W=y s, K= By = (- — {5.16)
Kio 1 Rag 2
These lixed points correspond to a vertex-pair IMOVING on Lwo concentric ofrelos:

0o =[Ny (re)imralnng wKao)lt, and o= 0 — .

The stability of these fixed points is examined by linearizing eqs. (5. 13) and (5. L) around the fixed points,

being given by

d ]\,1(7'0}]?0

TR = o (kg b ma ) S, 7
da 2mro (K10 -+ rao)&! (5.17)
d K (rs) § , ,J

10T g e b ks e (RS R, (5.18)

. . ) . ‘ Y
which shows that 1he fixed points are sunble for (s, 4 sl b sy - GRS - e s 0 and unstable
otherwise. The unstable orbits are shown in g 5 1(hy =10 and correspond to those of vortex-pairs in o

slab geometry whose symnmenry axis is nitially tidred [2-31 Special somtions are siven for xyg = wyp by
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5.1, DYNAMICS OF A VORTEX PAIR

x
(a} (]
x
1] [CH
" 1
5] n
Figure 5.1: The motion of a vortex pair (1= Thong = =13, and eo = 1)

for a stab plasmiae The angle between the symmelry axis of the vortex-pair sl the di

Is (a) 0, (b) 7/12, (¢) 7/, (1) 7/2, () 3x /4, and () 7.

corresponding Lo the observed

amagneLic direction
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Figure 5.2: The periodic solution of a vortex-pair with kg = —xy = 20 and . = 5 for an initial condition

(Thyl) = (390) and (-Tz, UZ) = (_l{})

R o= Ilo=0, (5.19)
d¢ K
Ei: = - \2;{:;) [2810 — var2(cos ¢ — cos @) cos ¢, (5.20)

which is integrated for ¢y = (n + 1/2)r to give

201 ~ v, 12 Ky (n 3
tang = —-]gTil r_un(\/wa(Qh'm -, rS)T;r(;z—)i + —i) (5.21)

For 285(2k0 — ©,12) <2 0, tan of Lhe right, hand side of ¢q.(5.21) is replaced by coth. In this case the two

vortices rotale on the saune circle,

When the following conditions hold, that is,

Ko = Kug -+ 2e.rofg cos ¢ = (), {5.22)

G320 = 20, r2 (ko b wgo -+ 20, Ry = 0, (5.2:3)

periodic solutions awre given by

— | — sn?{ut b V2P — g
q = fzjr) 1 n ( * ) !. g2

N S T S L = S 0.2
Lt slan?(we, &) V2P g (5.24)
where
_ [{1 (To) - \/—3
= e VVIP = g)(V2P ), (5.25)
ANy
(1—g2)V2P 1 g c o
= - 1 (‘)20)
(1 = g1)V2P + g,
Tz = vad kSO 2P = 2003 (ko 1 rigg + 20, 13, (5.27)
One of the periodie solutions is shown in Fig. 5.2 When the condition does not hold, the solutions are

quasiperiodic with two characieristic frequencies of rotations, One is associnted with the motion around

the center of mass and the other is around the weds of the cvlinder,
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(a) {b)

Figure 5.3: The head-on collision: (a) Zero impact, paramcter (v, = 1.0}, the vortices with »; = 11 of the
initial position (z1, 1) = (3.25,0) and & = —15 of the initial position (rz, y2) = (~2.75,0) are denoted
by thick, solid and dotted lines, and those with sy = —1 L, ya) = (=3.25,0) and g = 13, (74, ya) =
(=2.75,0) arce by thin, solid, and dotted lines. (b} Nonzero impact paraneter, the vortices with x; = 11 of
the initial position {ry,y1) = (3.25,0) and k2 = — 13 of the initial position (g, y2) = (2.75,0) are denoted
by thick, solid and dotted lines, and those with sy = =10, (za, 43} = (=3.0,0) and w4 = 12, (14, 1) =

(=2.5,0} are by thin, solid, and dotted lines.

5.2 Collision processes of vortex-pairs

In a slub geometry head-on collisions s over-taking collisions e clastic for opposite-signed vorlex-
pairs with zero impact parauncler, that is, the vorlex-pairs preserve their identisy through collision like
soliton. This situation changes for a eylindrical plastna. Figure 5.3(s) shows the head-on collision of
two vorlex-pairs with zero Impact parameter, Alter the collision they start to oscillate propagating in
the azimuthal dircetion as if they started Trom tilted positions. Thus the collision as with zero impact,
parameter for a cylindrical plasing correspond Lo those with finile impact, parameters for a slab plasima
Certainly, collisions with finite impact, parainclers for a cylindrical plasia are very much cotplicated
perforting as exchange scallering, rapping, and detrapping as is shown in Fig.5.3(b). In fact at the
secotid round of the collision in Iig.5.3(a) the exchange scatlering is observed, A common characteristic

of collision process s au large radiad exeursion which may be acause of anomalous cross field transport.

5.3 Dynamics in a bounded region

Introducing a complex variable = = 7 4 iy, an equation for point vortex dynwmics is generally rewritien
as
dz, Az,

LI 5.28
t e ( )
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=
X
D

— (q) — ()

@

Figure 5.4: The trajectorics of a vortex-pair (k| = ~kz = <.0) initially symmetric with respect to the
origin (11, 1) = (~rg, —1p) = (312/10,0.1): (a) v. = 0, (b} v. =0.005, (¢) v. = 0.5, and (d} v. = 2.5.
where W is a complex potential and = s the complex conjugate of 2. Now a boundary condition is
readily included. When the plasma is conlined in o conducting vessel of radius R, the effeet. of the wall is
represented by mirror images of vortices in the vessol, According to the circle theoremn [4] the potentiat
¥(z) is replaced by

w(z) = Wz} + I (]Lf) . {5.29)

Sinice the complex potential w is real on the cirele 2 = B%/3, the stream function is zero on this cirele,
and the seleeted boumsdary condition is automatically satisficd, Then the equation in a cylindrical systom

Is given by

dz, 1 2y S 23
—_ = - g — ]z N {lz, — =
7 5 D (K — vz )lla - ] al)
JEn :
I Z IR I RE e, < sy, )
. . -t | =" —_— — T T g e oo
S jJn(hr} | o | ):f, PEAFSMENE Pz =50, (5-30)

where we have assumoed a Gaussinn profile in o radiad coordinate for the background density, The numer-
ical solution is given in Fig 5.0 for different vades of .. The dyianical behavior becomoes complicated
when o, s increased.

The dynamics for Euler’s vortices iy i bonnded region has been intensively studicd [5-7].
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