car Py

I} the

eduun:rr'\l:lmjn:"n:::;: abdus salam
aremaen international centre for theoretical physics
(&)
mv.em::eo:\:yl':';ir:;; SM R 1 1 6 1 / 32

AUTUMN COLLEGE ON PLASMA PHYSICS

25 October - 19 November 1999

MHD Waves in Solar Coronal Structures

V.M. NAKARIAKOV

University of Warwick
U.K.

These are preliminary lecture notes, intended only for distribution to participants.



A RX

1R

1 B



Magnetohydrodynamic (MHD) Waves

in Solar Coronal Structures

Valery M. Nakariakov

MENS| TAT
l AGI |MOLEN '
p— A

— e

University of Warwick

UK.



11!

N N3

L 3

“Busy old fool, unruly Sun, Why dost thou thus?”
- John Donne (1572-1631) “The Sun Rising”
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1 Introduction

1.1 What is the solar corona and why do we study it?

The corona of the Sun is the upper, hottest and magnetically dominated part
of the solar atmosphere.
Main physical {acts about the corona:

e Temperature is over 1 MK (c.f. Tporosphere < 6000 K.

» Plasma is mainly hydrogen and is almost fully ionized, n = § x 101 =",

 Plasma-f (ratio of kinetic and magnetic pressures) is low (0.001-0.01).
The plasma is “cold”™!

e Plasma is gravitationally stratified, the scale height H is about 50-60 Mm
(c.f. Rg = 696 Mm).

e The origin of the solar wind. (Speeds are up to several hundred km/s at
afew Ry).

Fundamental puzzles of the corona:

» What mechanisms are responsible for heating of the corona up to several
million K7

o What accelerates the solar wind up to measured speeds exceeding
700 km/s?

o What are the physical processes behind solar flares and coronal mass
cjections, magnificent phenomena accompanied by an cnormous enecrgy re-
lease?

1.2 How do we study the corona?

Historically, first observations of the corona were taken during total solar
cclipses. But, the eclipses are rare and last not longer than several minutes.

Main information on dynamical phenomena in the corona come from
space-based UV, EUV and X-ray telescopes, Now, there are SOHO, Yohkoh
and TRACE missions operating in space, which provide us with incredibly
high resolution data in these bands.
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[ Instrument I Spatial Res. | Temporal res. Band“ ]

SOHO: .
EIT <1 > 50 s EUV images
CDS 1" x2" few s EUV
UVvCSs 127 - 5 s—h UV-EUV,WL
LASCO-C1 5.6” 60 s WL

C2 11.47 ‘

C3 56.0”
SUMER 1.2-1.5" >30s EUV
Yohkoh 4” (SXT) few s SX, HX
TRACE 0.5” 30s UV-EUV, WL | immages
SPARTAN-201 22.5" 1-15s (WL) | UV-EUV,WL

(172730 km)

Also, we can observe the coronal plasma in the radio band and by inter-
planctary scintillation.

1.3 Structures in the corona

T

The corona is highly structured: .

stresmers

prominences

e Open structures: coronal holes, streamers, plumes inside the holes.




» Closed structures: loops (R up to 100-200 Mm).
In addition, there are plasma jets of various scales and speeds, promi-

nences, cte.

1.4 Why do we study waves in the corona?

Coronal waves are associated with
1. development of plasma perturbations,
2. transfer of energy and momentum,
3. coronal heating / solar wind acceleration,
4. coronal scismology.

Also, because they are there!

2 Do we see waves in the corona?

MHD waves and oscillations Lave been observed for a long time in radio and
optic bands:

Prominence oscillations

Periodic velocity and intensity oscillations with various periods: c.g. 1
hour, 3-5 min, 30 s. (They are scen {rom the Earth),

(E.g. IAU colloquium 117, 1990)

Radio pulsations (c.g. Aschwanden 1987 for a review).

Roberts, Edwin and Benz 1983: Type IV radio cvents as fast waves
trapped in loops. The idea of coronal seismology.

EUV oscillations
Chapman et al. 1972 using GSFC extreme-ultraviolet spectrohelio-
graph on OSO-7 (spatial resolution was 10 x 20 arcsec, cadence time
was 5.14 s) have found Mg VII, Mg IX and He II emission intensity
periodicities at about 262 s.
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Antonucci et al. 1984 using Harvard College Observatory EUV spec-
trohcliometer on Skylab have detected oscillations in the C 11, O 1V,
and Mg X emission intensity with periods of 117 s and 141 s.

Soft X-ray oscillations

Harrison 1987 with Hard X-ray Imaging Spectrometer on SMM have
detected soft X-ray (3.5-5.5 keV) pulsations of period 24 min (for six
hours).

Very recently, new types of large scale wave motions have been discovered
in the corona:

e Compressive waves in polar plumes
DeForest & Gurman 1998; Ofman, Nakariekov and Delorest 1999:
SOHO/EIT and TRACE:

Outwardly propagating perturbations of the intensity (plasma den-
sity) at 1.01-1.2 R,

Quasiperiodic groups of 3-10 periods,

Periods about 10-15 min,

The duty cycle is roughly balanced,

Vohase & 75 — 150 km/s,

Amplitude 2~ 2 — 4 % and growing with height).

Ofman et al. 1997, white light channel (WLC) of the SCHO/UVCS:
density fluctuations with periods &~ 9 min at 1.9, in coronal holes.

e Compressive waves in long loops
Berghmans & Clette 1999, using SOHO/EIT and TRACE:

Upwardly propagating perturbations of the intensity {plasma density)
(very similar to the previous case, but on the disc),

With speed about 65-165 km/s,
Amplitude is &~ 2% in intensity (=~ 2 % in density),



The heigh growth of the amplitude has not been found,
No manifestation of downward propagation.

Traveling along almost all Joops analyzed.

e Coronal Moreton waves

Thompson et al. 1999: SOHO/EIT

Propertics accumulated from observations of more than 50 events.
(see hitp://umbra.nascom.nasa.gov/bjt/lscd/ for details)

They prefer to propagate radially, stopping at neutral lines and coro-
nal hole boundaries, and distorted by active regions.

Speeds range from 200-600 km /scc.

Active regions distort the waves locally, hending them toward the
lower Alfvén speed regions

They can cause “visible deflection” of coronal magnetic field lines and
probably arc associated with filament oscillations (such as ” Flare-
Initiated Filament Oscillations” Ramscy, H.E. and Smith, S5.F.,
1966 Astron. J. 71, 197-199).

Propagating regions usually consist of only an increase in emission {or
a single frame. The detectable change in emission can extend far
into the corona (1.5 solar radii).

The waves do not show observable signs of propagation into coronal
holes. This may be due to depleted cmission in coronal holes,
or due to an increase of wave speed and subsequent decrease in
amplitude, or both.

“T'win” events {rom the same region show similar propagation paths.
Can cause activity at the coronal hole boundaries - what appears to

be a widening or closing along a hole may also be attributed to a
change in obscuration by coronal ficld lines.

Usually associated with SOHO/LASCO white light observations of
Coronal Mass Ejections (CME).

Speed, intensity of emission, speed, x-ray signature have no apparent
correlation.
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s Post-flare oscillation of loops
Nakariakov et al. 1999, Aschwanden ct al. 1999, TRACE

Decaying kink-like oscillations of coronal loops, excited by a ncarby
flare.
(By a coronal Moreton wave?)

Periods are several minutes {(e.g 256 s),

Displacement. amplitudes are about several Mm for loop radii about
100 Mm,

Decay time about 14.5 min.

Loop displacement and best—flt curve
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e Non-thermal broadening of coronal emission lines.
(Most probably associated with MHD waves).

Ofman & Davila 1997 using SOHO UVCS:
up to 300 km/s unresolved motions at about 1.7 Ii.

Banerjee et al. 1998 using SOHO SUMER:
non-thermal line-of-sight (LOS) velocity increases from 27 km/s at
20 Mm above the limb to 46 km/s at 62 Mm.

Chae ct al. 1998 using SOHO SUMER:
LOS velocities of 20-30 km/s on the disc.

SPARTAN-201
L.OS velocities up to 20-30 km/s.

8



Esser et al. 1999 using SOHQ UVCS:
LOS velocities of 20-23 km/s at 1.35-2.1 R,

e Tornados.

(May be connccted with MHD wzu.fcs). Pike & Mason 1998, SOHO
CDS:

Macrospicule-like (a jet) features have now been identified in the polar
regions both on the limb and disk. These show blue- and red-Doppler-
shifted emission on cither side of the {eature axis. Indication of the
presence of a rotation (a solar tornado). The rotation velocitics (=
150 km/s) increase with height.

3 What are MHD waves?

3.1 Governing equations and assumptions

MHD waves are propagating perturbations of magnetic field and plasia ve-
locity and plasma mass density, described by the MHD (single fluid ap-
proximation) sct of equations, which connects the magnetic field B, plasma
velocity 'V, kinetic pressure p and density p through the equations:

p%— +p(V-V)V = —gradp — iB x curl B+ F, (1)
%—?— = curl[V x B, (2)
?B—It) + div(Vp) =0, (3)

which are the Euler, induction, continuity and adiabatic equations, respec-
tively. The term F is an external force acting on a unit of volume of the
plasma, for example, the gravity, F = —gp, where g is the gravity accel-
eration. Somctimes, it is convenient to supply sct (1)-(4) by the equation

9
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divB = 0, although this condition is implicitly contained in the Euler equa-
tion. .
The applicability conditions are:

1. Speeds are much less than the speed of light. (in the solar corona: V' <
a few thousand km/s)

2. Characteristic times are much longer than the Larmor rotation period
and the plasma period.
In the solar corona: fayyp <1 Hz
with fayeo = 1.52 x 10® x B(G) ~ 1.52 x 10" Hz
and fosma = 9 X n}/2(m=3%) = 2 x 10* Hz,
(for B =10 G and n, =5 x 10" m™%),

3. Characteristic times arc much longer than the collision tur.es.
4. The Hall effect is insignificant:

27 Ca 5 x 102
H= 2 .
WayroA A(m)

(e.g., for A =5 x 10° m, H = 0.001, )

3.2 Linear MHD waves in homogeneous media

Consider perturbation propagating along the z-axis. The straight and ho-
mogencous magnetic field is in the zz-plane and has two componcents:

Bg = By sin axg + By cos azg, (6)

where By is the absolute value of the magnetic ficld, a is the angle between
the magnetic ficld and z-axis:

10
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Characteristic speeds: the Alfvén speed Cy = By(drpy) ™',
the sound speed Cy = (vpo/po) /2.

In this geometry, in the lincar limit, the MHD set of equation (1)-(4)
splits into two uncoupled partial subsets, for the variables V, and ,, and
for p, p, Vi, V2 and B,. The first set describes the Alfvén wave, and can be
reduced to the wave equation

d? , O
(57 - Chgr) o= )

where Cy, = By cos af(drpy)!/?. The Alfvén wave does not perturb the
density p and, consequently, is incompressible (in the lincar limit).

When Byl|zg there can be two linearly polarized Alfvén waves, Vi, B3, and
Ve, DB

Their combination can give us elliptically polarized Allvén waves:

11
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When B = B, the wave is circularly polarized, with |B] = const.

The circularly polarized Alfvén waves (even of finite amplitude) are exact
solution of ideal MHD cquations for an homogencons medium.

The second set of equations describes magnetoacoustic waves and reduces
to the cquation

s : & & 2 O . 'V, ;o=
[("672'—0.42622) (@“0‘55‘2—2) —CAIW V, =40, (8)

where Caze = By sin a/(47pg)'/2. Supposing V, ~ exp(iwt —ikz), we obtain
the dispersion relation for the magnetosonic waves from Eq. (8):

(w? — C% cos® a k?)(w? — C2k?) — Clsin® aw?k® = 0. (9)
There are two magnetoacoustic modes, fast and slow, with quite different

properties.
Polar plot for phase speeds {w/k) for 8 < 1:

12
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Alfvén waves propagate strictly along the magnetic ficld.
Slow waves are also confined to the magnetic field.
Fast wave propagation is almost isotropic.

4 MHD waves in coronal structures. Theo-
retical aspects.

Consider a static one-dimensional plasma inhomogencity, described by po, po,
and Bye, which are functions of the transversal coordinate z. The magnetic
field lines are straight.

13
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Total pressure balance has to be preserved everywhere,
Bi(x
L) = ¢onst.
8T

pml.al(x) = pO(I) +

Such a structure is called a magnetic sleb.
Characteristic speeds: the Alfvén speed

Culz) = ,

(@) 4m po()

the sound speed
Cy(z) = (’WO/PO)I/2

and the tube (or “cusp”) speed

o CCa
G RV

(10)

(13)

Consider perturbation as ¥(z) exp(iwt — ik,y — ik,z) + Boundary condi-

tions in z,
aiming to get the dispersion relations

D(w! kys kZ) [Bg(m),po(.’ﬂ) and Po(l)]) = 0.

(14)

Considering processes in the plane (z, 2z only, 3/0y = 0, but V,,, B, # 0
(2.5D approximation), we have two linearly decoupled sets of MHD modes:

Alfvén waves (V,, B, # 0}, described by
14



[w2 — C'f,('r:)kf] v, =0. . (15)

and magnetoacoustic (inodified slow and fast inagnetoacoustic waves) (V,, Vi, By, Bs, p #
0), deseribed by

f ltE(T') dV:r

- — e\ =
dz | mé(z) de «(7)Ve =0, (16)

where
e(z) = po(x) [wz ~ l.thj(:r:)] :

ma(z) = (E:CY - Uﬂ)(f’stfl - w2).
(C? + C3)(L2CE — w?)

+ appropriate boundary conditions

= an cigenvalue problem.

The cigenfunctions gives us the transversal (in the & direction) structure of
the waves and cigenvalues define dispersion of the waves.

An exact analytical solution of the cigenvalue problem can he found just
for a few transversal profiles of the stationary values By(x), po() and pe(x).
In a general case, equation (16) can have two singularities defined by
conditions £(z) = 0 and mg'(x) = 0. The singularitics take place at the
Alfvén resonant layer where w/k, = Ca(z), and cusp resonant layer at w/k, =

Cry ().

4.1 Magnetoacoustic modes.

Equation (16} can have solutions, evanescent at the infinity, called modes or
trapped or guided (or ducted) waves. The modes arc dispersive.

Dispersion is determined by the ratio of the longitudinal wavelength to
the characteristic spatial scale of inhomogencity.

The modes can have different structures in z direction, which allows us
to classify them. For a localized inhomogeneity (dBy(x)/dx, dpg(z)/dz and
dpo/dz tend to zero for |z| — o) with even profiles of By(z), po{x) and

15



| s

i

po(z), we can distinguish between kink and sausage modes (perturbing or

not perturbing the structure axis, respectively),
Kink mode

Sausage mode

and between body and surface modes (oscillating or evanescent inside the
structure, respectively).
body

In addition, different modes of the same parity and transversal structure
can be distinguished as slow and fast modes.

4.2 Magnetic flux tubes and slabs.

Two most developed models of the inhomogeneity are magnetic fluz slab and
tube. Consider a tube of a uniform plasma of the density pg and pressure
mo, penetrated by the magnetic field B = Bpe, and confined 0 r < a by
an external gas pressure p, and the magnetic ficld B = Bge,. The external

16



plasma is of the density p,. So,

By, r<a Py, r<a
Bo(r) = ' t . - 04 s
olr) { B., r>a, m(r) Pey T > Q. (17)
Tube geometry:
Ar
B,
:B"
£ nop \ ] z
a
\B:' % pe B
Slab geometry:
4 x
£ o
_.a.—-«--..,‘_‘___,—---......yv'
a T, £
- B, .
0 /=
n_a Cd
L T 7

The sound speeds are Cyg and C,,, Alfvén speeds Cug and Cy, and tube
speeds Cro and Cre in the internal and external media, respectively.
At the boundary 7 = a (z = %a):

po + BE /81 = p, + B2 /8. (18)

External and internal solutions of the MHD cquations have to be matchied
by the boundary conditions:

internal external

Drotal (T = ﬂ'.) = Ptotal (T = CL) (19)

17
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and ,
Vz:nturnal(r — (1.) - 1/::xtcnml(,r — ﬂ-) (20)

and

yexternal(p 4 00) = 0 (21)

(Note, that, in the presence of a steady flow, condition (20) has to be
replaced by the continuity of the transversal displacement.)

Similar boundary conditions are in the slab case.

The dispersion relation is

, I (mpa) ' . K (moa)
N 2 2l % k2 2 2 n =0 9
f (w kchlc)n?ﬂ I,L(mga) + PO( zCAO w )mc ](n(”?'(lar) ) ( 2)

WhCI'C 22 2 272 2
TI'Lz — (k’zcso —w )(k:CA('( =W ) (23)
“ (C:?a + C'fla)(l“gcfu - w?) ,

with o = 0, ¢; I,,(z) and K, (z) are modified Besscl functions of order n; the
prime denotes the derivative of a function with respect to its argument. For
the trapped modes, the condition m, > 0 has to be fulfilled. The number n
determines the mode structure:

hY

n>1l

n=0
The similar dispersion relation for the magnetic slab is

tanh
pC(kEszqc — wh)myo { czcl)ltlh } mod + Po(kfcﬁo — W), =0, (24)

where a is the slab semi-width and the tanh/coth terms correspond to the
sausage/kink modes.

Equations (22) and (24) describe both surface (for m2 > 0) and sausage
(m?2 < 0) modes. The strongest dispersion takes place for waves with lengths
about the characteristic length a.

18



Typical examples. Dispersion curves for a coronal magnetic flux tube
(B « 1, the slab geometry):

Coronal case

25 _\' T T S ~ “
- fast
Z.OZ . body ]
© o ~ ]
Q oL \\
a 1o -
o .
g 1 ;
o 1.0 .
_C -
a. - 4
(] TN -
0.0 oo L ) ]

Dispersion curves for photospheric magnetic flux tube (4 = 1, the slab
geometry):
Photospheric case
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4.3 Refractive fast magnetoacoustic waveguides.

When C, <« Cy4 (8 < 1, which is typical for the corona), we can put Cy =0
and significantly simplify description of fast magnetoacoustic weves. Equa-
tion (16) reduces to

d*V, w? 9 .
— +(Cg(x)—k)vz_0,) (25)
Vp(z = £o0) = 0; (26)

The cigenfunctions V,(z) define the transversal structure of the inhomogene-
ity modes. The corresponding cigenvalues connect w and & through disper-
sion relations.

Equations (25) mathematically identifies the gnantuin mechanical prob-
lem of determining a particle’s behaviour in a potential well (the stationary
Schrodinger cquation).

The inhomnogencity considered guides fast magnetoacoustic waves in the
neighbourhood of a rninimum in the Alfvén speed, corresponding to a rmazi-
mum in the plasma density in low-4 plasma.

For several special profiles of py(x), the cigenvalue problemn (25), (26) can
be solved analytically.

A convenient profile of po(x) has been suggested by Nakariakov & Roberts
(1995b)

() = poo + (0 — poo)sech®[(Jz|/d)7], p > 0, (27)

which gives a smoothly varying density structure, varying from py at £ =0 to
Peo a8 |2] = co. For arbitrary power p, cigenvalue problem (25)-(26) recuires
a numerical solution. The profile (27) is of interest because it possesses two
analytically solvable limiting cases: p — oo and p = 1, which are the cases
of the step profile and symmetric Epstein profile, respectively.

20



Refroctive fast MA wavequide
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Solid line - p=1, detted - p=2, doshed - p=8

A typical dispersion diagram for a refractive fast magnetoacoustic waveg-
nide:

normatized frequency w/C,.d

normalized wavenumber kd

4.4 Alfvén wave phase mixing.

Alfvén waves are described by the equation

9 N
(@ - Ci(z)@) v, =0, (26)
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with the solution
V, = ¥(z)f(z F Calz)t) (29)
For a harmonic wave,
[w? - Ca(z)k2] V, = 0. (30)
The structure of the Alfvén wave in the transversal direction x is an arbitrary
function defined only by initial conditions.
k, = const, k; = oo, (31)

This is the cffect of Alfvén wave phase mixing (Heyvacrts & Pricst 1083).

o
Dissipation = ¥ (5; + -a-;;) Vy

o vk2.

Enhanced dissipation. In the developed stage of phase mixing:

2
7 (z) = ry 4 et w?  [dCalz) L3 .
V,(z) = V,(0) exp { 5 (2) [ i LA (32)

v is viscosity or resistivity, but both are very weak...

4.5 Resonant absorption.

When the phase speed of a wave coincides with one of the resonant speeds,
Ca(x) (Alfvén resonance) or Cr(z) (cusp resonance), the wave can be subject
to resonant absorption.

E.g.: Slab geometry, incompressible limit (v — oo, C; — o0). Alfvén
and cusp resonances coincide. Consider a smooth magnetic interface:

2
b} 0,®)
2
wi\.l
2 2
O‘)k ----- h (Dl\yz
) L | ._
-a x, a X
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Governing cquation for the transverse displacement is

d d¢ ] ,
T [Po(w2 - Wi)@] — (k3 + k) po(w® — w?)E = 0, (33)

where w? = (kBo)/ (47 py).
Matching solutions of (33) in the homogencous by the jump conditions:

. signw .
[menl] =0 Ellld li“_”r pﬁﬁ] U‘j + ,;:E)PL()LH.] = 01

we obtain the dispersion relation
2 2 2 2
pi{w® = wiy) + p(w® — wiy)

(w? —wi )w? —wh))

—im(ky + k2)'2py o =0, (34
Z VAN, :
where A = -dw'j/(l:c and x4 is the position of the resonance.
D1 (wr, ]|‘)

Damping cocfficient v = —BD_/OH-’
T wr

where D; and D, are the real and imaginary parts of the dispersion relation
(c.f. Landau damping).

4.6 Effects of spherical stratification.

We consider a spherically stratified atmosphere permeated by a magnetic
field:

23
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The Sun | /

The magnetic ficld is strictly radial,

BU(RO)RQI (35)

r2

Bo(?') =

where Rg is the solar radius and the gravitational acceleration is g = G Mg /1%
Assuming that the plasma is in hydrostatic equilibrium, we have for the
density

() = pollto) exp (2 T2, (30)

where H is the scale height, (H(Mm) & 50T(MK)). From (35) and (36), the
radial profile of the Alfvén speed Cj4 is given by

_ Bo(Re)RE (Ro"'—Re
Calr) = o) P \ZH ™~ r ) (37)

The atmosphere is assumed to be isothermal, with constant teraperature T’
and sound speed C, (Co(Mm/s) = 0.152 TV?(MK)).

24



Normglized Alfven speed
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T

solar radi
solid curve — T=1.3 MK, dotted — 1.4, dashed -~ 1.5

For purely radial propagation, we obtain two unconpled spherical MHD
modes,

the Alfvén wave (perturbes B, and V)

PV Bol(r) 9*
ot Ampg(r)r Or?

and slow magnetoacoustic wave (perturbes p and 1))

2 2
Q_ﬁ — 2:__6_ (7-2@) — .(]-(?-E = ().
ar

[ Bo(r)Vy] = 0, (38)

ot? r2or or

Equations (38) and (4.6) can be solved in the WKB approximation (or
the single wave approximation), ¢ = A/H < 1 and [ < R,

Alfvén Waves:
Following an upwardly propagating wave, and passing to the running
frame of reference,

d -
T =1t Z‘::_;, R= €T, (39)
equation (38) is reduced to
av, IR 1
m— - mew T / = 0 <
ok i@ =" (10)
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with the solution:

R-R
7, = , = 0
Vo = ValRo) exp (=22} (41)
The same result can be obtained by geometrical reasonings:
(Poynting flux), = (B x V x B), ;15 (42)

(an idcal linear spherical wave), on the other hand:
(Poynting flux), oc BV By = V;B;/Ca (43)
Conscquently, BOV‘E /C . is constant, which gives us

Vi o< [Ca(r)/Bo(r)]'/2 = p5 (1), (44)

which coincides with the dependence (41).

The relative Alfvén wave amplitude grows with height. Consequently,
nonlinear effects come into play. Also, this is worth taking into account
dissipative cffects. Assuming that both the nonlincarity and viscosity arc
weak, we can add these effects to the evolutionary equation,

oV, R%L 1 1 01@;’ v 0*V, B

Ve TH1., ) i r
R AT T ICNCE oy or acoe 0 W)

(sce Nakariakov, Ofman & Arber 1999 for the rigorous derivation). Equation
(45) is an analog of the scalar Cohen-Kulsrud-Burgers equation for the case
of spherical geometry.

E.g.. Evolution of the shape of initially sinusoidal Alfvén wave with
height,

20

ve'ocity {am/3)

1 2 i
[} 20 40 (1] 80 109
Time{s)
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(The solid line corresponds to Rg, dotted to 2 Ry, dashed to 5 R, and
dotted-dashed to 9 Iig.)

The wave grows, overturns and, consequently, is subject to nonlinear
dissipation:

Dmlance (solot rodi’)

(The solid line corresponds to A = 25 kin/s, the dash-dotted line to A =
20 km/s and the dashed line to A = 15 kin/s. The dotted curves show the
lincar solution (41).})

The waves of shorter periods are subject to stronger nonlinear distortion
and dissipation:

JDUI- T T T T

I

v

w
=3
S

VE ety {«m/s)

g
=1

B R IR EE b

o . L s 1
2 4 6 8 10
Oislonce (solar rogi)

(The solid line corresponds to I? = 50 s, the dashed line to P = 25 s and the

dotted-dashed line to P =15 s.)
Dependence of the breaking distance of an Alfvén wave upon the wave

period:
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(The curve with triangles corresponds to the amplitude 25 kin/s near the
surface and with diamonds to 35 kim/s. Temperature is 1.4 MK and the
Allvén speed is 1000 km/s near the base of the corona.)

Slow Waves:
Similarly, we can process equation (4.6), taking into account nonlincarity
and dissipation. Passing to the running frame of reference,

E=71—Cit, R =er, (46)

we obtain

2{1+(l+!1(ﬁ)) L1 o 2 O*p

— " _0n
or T \R*acz) "t e " sCmmoe - W)

which is the spherical Burgers equation (sce Ofinan, Nakariakov & Schgal
1999 for the detailed derivation) with the ideal linear solution

p= P(Ro)jl?: exp [-—%} (1 - %)] : (48)

The slow wave amplitude growths with heigh and becomnes more and more
nonlinear:
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(The solid curve corresponds to the solution at R = R,,, dotted at 1.15 R,
dashed to 1.31; and dash-dotted to 1.51,. The initial wave ammplitude is
A = 0.08. The initial wave period is 600 s. The atmosphere is isothermal
with T = 1.4 x 10° K. The normalized viscosity is 7 = 3.2 x 10~%.)

Thus, the slow wave is subject to nonlinear dissipation:

15 s -
12 .
2 .
w o .
£
o
v
= 0h
(8]
®
o4
c.0 . R i
1.0 1.7 1.4 1.6

Bistonce (solor radii}

(The solid line corresponds to A = 107%, dotted line to A = 0.02, dash-dotted
line to A = 0.08 and dashced line to 4 = 0.16.)

However, if the linear dissipation is sufficiently strong, the wave doces not.
rcach nonlincar cffects:
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(The dotted line corresponds to 7 = 71o/CspoolRe = 1071, the solid line
to 7 = 10~%, the dashed line to 7 = 10~* and the dashed-dotted line to
i1=1073)

Actually, the transport cocfficients (viscosity, resistivity and thermal con-
duction) are unknown parameters.

4.7 Thin flux tube approximation

Consider a straight magnetic flux tube or slab of strength By with cross-
sectional arca Ay, filled by a plasma of density pg and kinctic pressure pyg.

A>>a surface
[ modes

The dynamics of long wavelength waves may be described by the thin

flux tube equations, viz.
d (p g (pv
5 (5) 5 (5) -0 (9

dv dv 10p

—é‘t—-i-'l)'c;);:—;a—z, (00)
dp dp dp 6,0
5t T 9. (a: va:) =0 (51)
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BQ
P+ a7 = Pe (52)
Here B(z,t) is the longitudinal component of the magnetic field, v(z, 1) the
longitudinal component of the flow speed and p(z, 1) the plasma density.
The plasma pressure p(z,1) and magnetic pressure B%(z,1)/8r within the
flux tube arc in lateral balance with the surroundings at pressure pel(z,1),
calculated on the external boundary of the tube. The cross-sectional arca

A(z,1) of the tube can be caleulated according to the invariant

BA = constant. (53)

Equations (49)~(52) are an MHD analog of the shallow water theory. In
particular, the equations are very convenient for consideration of nonlincar

elfects.

4.8 MHD solitons in magnetic structures.

Magnetoacoustic modes of plasma structures are subject to dispersion. In
particular, long slow surface sausage waves are weakly dispersive.  In the
cylindric case, their phase speed is

Vi(k,) m Cp = 287k2 Ko (A |k:]), (54)

where

— lp_fc'}(c'?' _ C'/z\c)a2 )\2 _ (C;Z{ _ C}Z)( '31(' - C?) 2
8 0 C;Il , (C’i + rﬁf:)(c"}’z'(: - C’:f')

a,

A
and the undisturbed tube is of radius a. In the case of the slab geometry,
Vi(k.) = Cp — Agmik,], (59)
where

1 Pe (CT)S
s — T — VA Ch 3
2m pg \Ca T

and the undisturbed slab is of width 2a.
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According to the dispersion laws, weakly nonlinear evolution of the waves
is governed, in the cylindric case, by the Leibovich-Roberts (LR) equation,
viz.

Ov ov B e o, 1)d
A / 1 - p— C‘, [
(9 CTO + ﬁnlv + T323 [/\2 + (zr - 3)2]1/2 (06)
and, in the case of the slab gecometry, by the Benjamin - Ono (EQ) equation,
Viz.
Ov v toou(2, 1) f)
. Ao / 22 = 0, 5
at C’ R Rl el el (57)
The famous exact solution of the BO equation (57) is the algebraic soliton,
A‘i()]
v(z,1) = - - o8
( ) 1- [(Z — V:;ul)/Lsol]‘a ( )
z
R AR e e R T -
Lsul
for amplitude Agy, length Ly, and speed Vi related by
Lsol - 4A5/Asolﬁnl: Vsol = C’I’ + Asolﬁnl/4- (59)

Exact solutions of the LR equation have not been found yet.
Ofman & Davila 1997, 1998 have numerically found solitary-like nonlinear
MHD waves in coronal holes.

4.9 Nonlinear stage of phase mixing.

Consider nonlinear coupling of MHD waves on 1D inhomogeneity of a cold
(8 = 0) plasma.
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For Alfvén waves (perturb 1, and B, in the lincar timit):

52 N
50y = Chi(2)55B, =
NA[B:B,). (60)

For fast magnetosonic waves (perturb V,, B,, B, and p in the lincar limit):

o? d? o?
EBI—C’%(.?:) (0 z+ )Bm_—.
NFI"[BEJ + N]A[B;ﬂ (Gl)
where _
By >,

Npa[BY] = Drde
1/\[ y] 8mpg () Dadz Y

If B,(t =0) < B,(t = 0):
e Alfvén wave propagates as in the linear case
e [ast wave is excited by spatial gradients in the Allvén wave

Let B, = f(z — Ca(x)t) (an initially plane wave),
= For fast waves

RHS(61) =

ACi(z )%—-( f [t dt+t (&) f f(& df) (62)
where £ = 2z — Cy(x)t.

SECULAR GROWTH
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If the profile of Cx(x) contains a very sharp, but small change, we may
take the Alfvén velocity as constant everywhere where it is not differentiated,

and then " - .
- ()| e

2 429C4(x) vdif o d2f df
= CyA iz (E d‘fztdt+ @ o 1Edt) (63)

The forced solution of (63)

p(Z,z,7) dI dZ dr
|7 t) =, {64
52 QWCA-[ [ [[C2 t—71)? (3.—:7:)'2—(z—:75)2]'/"' (64)

T is the interior of the circle of radius Ca(t — 7) with centre at the point
p(z, z,t =0), with p is RHS(G3).

Thus, we have an enalytical solution of a nonlincar MHD problem.

Induced longitudinal motions,

1 J .
V, = ————0 ' =—B?,
Sroam) L 07" (65)
do not grow sccularly.
If the Alfvén wave is initially plane and harmonic,
V,(z,2,t) = Acos©, O:w(t— 2 ) 66
II( ) OA(.'L') ( )
RHS(61) =
A*dC

w—,g- 4(z) [wzcos 20 — Ca(z)sin20)]. (67)

ci dr

Secular growth on the second harmonics.
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