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\Conservative form MHD equations|

ou

® general form of a (scalar) conservation law: |— + V - (f(u)) = 0

ot

u: conserved quantity (actually / udV, not u)
|4

f(u): rate of flow (or flux’)

=> expresses that / u dV" can only change due to a flux f(u) through the surface of

v
volume V

= this is the differential form of the conservation law

= derived from the integral form (even more general):

ASSUMING v and f(u) are DIFFERENTIABLE!




Conservative form MHD equations

[Derivation of differential from integral form

® ¢.Q. scalar integral formin 1D:

total change of u in [z}, 2] total flux of u (through boundaries)

>

N t N
/ Lu z,t9) — u(z, tq l dr = 2Lf($1, f(z, t)l di

L

t 1 N

2 Ql—f dt — 6—f dz
, Ot 5 OT

Y

(provided w and [ are differentiablel)

Z2 fl2 9y 6f:|
— +—| dzdt =0
/331 /tl L% Oz

e must hold for all £1, 9, {1, and t9 =

Eﬂu of
ot Oz

-
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Conservative form ideal MHD equations]
i i i pu ]
0
BQ.‘ - - -
P’U pvv+(p+—2-)I—BB
s,
-a-%' ) +V- ={
B 2 — —
L+pe+ (%+pe+p)v—(27><B)><B
. B L
i vB — E7 |

= conserved quantities (in ‘closed’ systems, i.e. with BCs: 7 - U/ = 71 - B = 0):

- pfu2 B ' -
ME/pdV, HE/pﬂdV, H= (———+pe+—) dV, @E/B-'fidE
N Vo v . y o\ 2 s

2

~ J / w -~ s

total mass momentum energy magn?artfc flux
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(Conservation in ideal MHD)

®c.g.

OM %, =
__:f_ﬁdv:_fv.[pﬁ]dvG%SS—j{[pm-ﬁdzvl‘oo
ot v Ot 1%

= M is constant!

e similarly for
- total momentum, 11
- total energy,

- total magnetic flux, P

= extremely powerful representation of nonlinear dynamics of plasmas
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Linearized resistive MHD equations)

= =V oni).
Po%%l = —V(poT1 + p1Tp) + (V x By) x (V x Aj)
—By x (V x (V x Ay)),
Po%} = —pov1 - VIp — (v — 1)poTpV - 0
. +2n(y — 1)(V x By) - (V x (V x A7),
04, = —ﬁoxﬁl_an (Vxﬂl)

o

=> system of 8 PDEs for py, #7, 77, and ﬁl (rem.: V - El = () satisfied)

ou . . , e
of the form: [L e R - 4| with state vector 4 = (p; 7] 17 Aj)
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Three different approaches|

e after spatial discretization of L and R: Eﬁl - r=B-

>
ot

1) steady state approach: i-dependence is prescribed

= lin. algebraic system: (A — ’llde) T = JF

2) eigenvalue approach: {-dependence ~ e)\t

= eigenvalue problem: (A —AB)- =0

3) time evolution approach: {-dependence is calculated

o0z

(f? from BCs (driver))

=> initial value problem: A - & = B - — with &(r,t = 0) given

ot
or  »

=> driven problem: A -7 =5 - Fn + f
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The steady state approach|

Basic discretization techniques)

e recall: MHD equations = PDEs derived from integral equations!

= assuming ‘smooth’ solutions (derivatives exist)!

® BUT: there exist discontinuous solutions too  (e.g. continuum modes, shocks, etc.)
= do not satisfy the PDEs!

= there are two ‘cures’:
- impose ‘Rankine-Hugoniot jump conditions’

- formulate and solve the ‘weak form’ of the equations

8%y .
e ‘model’ problem: 75 = J(z)u|on domain z € [0, 1]
! .

5Cs: w(0) = 0 and au(l) + 5%(1) _F
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The finite difference method (FDM)

e continuous domain |0, 1] = finite number of grid points

0 2% 1
. . i | . i { i 1
e.g. equidistant grid: z; = 1Az = N Xo % X4 X XNy Xy
o functions f(z) = {f; = f(z;),i=0,1,..., N}
® derivatives =  truncated Taylor series expansions, e.g.
Ou 0%u| Az?  u| Az? )
Uj+] = U; = —| Az + =+ + O(Az
LT G ; Oz2| 2l oz3| 3 (Az)
g% = ’U»z+£1m Y%L O(Ax) ‘1st-order forward’
g
% = UZ—_A% + O(Ax) ‘Ist-order backward’
)
= g@ = el O(Az?) ‘2nd-order Central
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® 2nd-order derivatives: substitute 2nd-order Central difference in Taylor series expan-
sion to obtain

+ O(A:B2) (2nd-order)

® higher-order derivatives: similarly

= for model problem equation:
Uj+1 — 2U; + U]

= flz;)u; = tridiagonal system, BUT BCs:

Az?
ou(0) =0 = uyg=
ou, . Ou, . Buy—4uy_1+uy_o
o ou(l) + 65—3—:(1) = [ = use 5:;(1) = AT

® FD equations easy to derive / extend / code / solve

= FDM is very popular in MHD!
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(FDM: MHD examples)

e 2D nonlinear time evolution driven loops (Ofman & Davila)

e 2D eigenvalue problems in coronal arcades (Oliver)

e radial direction in 3D nonlinear time evolution driven loops (Poedts, Goedbioed, Kep-
pens)

e radial direction in many nonlinear stability codes for tokamak plasmas (e.g. Ker-
ner/Jakoby/Biskamp/Luciani/Lerbinger/etc.)




The steady state approach 1-12

[The finite element method (FEM))

® domain discretized as in FDM

® dependent variables: approximated by finite set of local piecewise polynomials hi(z)

N

= |u(z) ~ i(zr) = Zuzhz(a:)

€.g. linear elements:

(Weighted residual formulation)

L 10%
orequire:/ wy |7 — f(z)d| dz =0, [=0,1,...,N
0

h % —

TBS'I?C?’U,GZ
= linear algebraic system for {u, }
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(Galerkin method

e take the ‘shape’ functions h;(x) as weight functions:

L 16%4
;»/ b |28~ f@)a| aw=0 1=0,1,...,N
0 ox

=> linear algebraic system for {u; } u(x) = Z u;h;(z)

Weak form)

e integrating by parts on highest-order derivatives:

aall  [lon o .
h—| — | =—=—dz— | Wf(z)idz=0 [=0,1,...
= [ l@xh | Bz 0 T /0 fl@)ade =0 [=0,1,... N

— allows less ‘smooth’ solutions (continuously differentiable to a lower order)

= closer to integral form of the equation!
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[The (pseudo-)spectral method (SPM))

e similar to FEM but finite set of global shape functions

N
e.g. lu(z) =~ 4(x) = Z ure®2mE| forg € [0, 1]
k=—N

e weighted residual formulation / weak form / Galerkin method

—> 2D complication: coefficient functions also approximated = full matrices!

e disadvantages:

- periodicity =  poor approximation near non-periodic boundaries

- nonlinear. terms: CPU time consuming convolutions  (~ N? calculations)
N [ N |

TORY: _ k2
e.g. f(z)g(x) = f@)gl@) = D | D figp—y| K2

k=—N |l=—N-+k
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e determination quadratic terms in pseudo-spectral method.

~

f(z) and g(z) B(z)(= f(z) - 3(z))

inverse FlFTs L Fourier space
T FTT real space

f(z) and g(z) p(z) = f(z) - 9(z)

=> FFTs require ~ Nlog/V calculations
= for N>1: N?> NlogN

e problem: ‘aliasing’ = de-aliasing techniques
- drop 50% of modes OR do 2 FFTs (one on shifted grid)

= some overhead still but much more acceptable for NV > 1




The steady state approach
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External driving of a plasma by incident waves
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Eigenvalue problems

[Eigenvalue problems|

® MHD spectrum = insightin dynamics (‘MHD spectroscopy’)

. 1-20

® linear MHD waves determine stepsize (At) of explicit and (semi-) implicit schemes for
wave related problems

e definition: X is a (right) eigenvectorof n X n matrix A

with corresponding eigenvalue A it (A - Z = \ 7)

® consequences:

¢ |A — X1| = 0: characteristic equation (n roots)

= there are always n eigenvalues (may be degenerate)

® eigenvalues can be shifted (same eigenvectors):
(A+71l)-Z=A+7)Z

=>  zero eigenvalue has no particular meaning




Eigenvalue problems 1-21

e idem ‘left’ eigenvectorif (£ A = )3

= ‘left’ eigenvalues = ‘right’ eigenvalues
since @l - 1 = X\zT and |A| = |AT))
e X p = matrix with right eigenvectors in columns
X, = matrix with left eigenvectors in rows
= Xp' A X =dag(\,..., )
= special ‘similarity transform’ (A — Z —1.4.7 )
= eigenvalues not affected since

1z A Z= M| =27 (A=-X) - Z|=|Z7Y A=) 2] = |[A =\

=> strategy of modern eigenvalue solvers:

- reduce A to simpler form by similarity transforms
AsPh AP P PTL AP P

- start an iterative procedure
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Ideal MHD stability codes)
® ERATO: 2D ideal MHD / ~ ¢!

- straight field line coordinates: (1, 8, )
- finite hybrid element approach
= A-F=w?B-% with Aand B symmetric, block structured
=> shift: (A—w%B)-f: (wz—wg)B-f
® PEST: 2D ideal MHD / same coordinates: (1), 8, ¢)
- h-direction: combination of linear and constant elements

- O-direction: spectral method Z eimg)
m

- (-direction: spectral method (einw)
® NOVA-W:

- cubic B-spline elements in 1)-direction (4th-order accurate)
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(Resistive MHD spectral codes

e | EDA: 1D resistive cylinder / slab

- r-direction: cubic Hermite and quadratic elements

_0- and z-direction: e tinkz

e CASTOR / POLLUX: 2D resistive torus / loop

- 9)-direction: cubic Hermite and quadratic elements

- f-direction: spectral method (Z eimQ)

m

- (p-direction: spectral method (ein‘p)

=> use different eigenvalue solvers: QR-solver, inverse vector iteration, Krylov subspace
technigues
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® MHD example: resistive MHD spectrum 0.3

of a cylindrical plasma column (from
Poedts et al. '89)

(only Alfvén and slow magnetosonic sub-

spectrum are shown) xxxxx’ﬁ
02 WX x —

=> resistive modes lie on fixed curves in x X

complex frequency plane (independent
of resistivity!)

Im (\)

— ideal continuous spectrum only ap- 0.1
proximated at end points

—> ideal quasi-mode clearly visible! x

- collective mode

- weakly damped 0.0 L xxxﬁ@_ﬂ‘

-0.25 -.0.15 -0.05 0.05
= "easily excited! Re (ML)
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Time evolution schemes|

Time scale problem)

e linear MHD spectrum =  widely separated time scales in resistive MHD!

e for hot, elongated, low-ﬁ plasmas (tokamaks, coronal loops):

a Q
'TfastE,U* %UA, sinceﬁEZp/BZ <<1$’Uf%’UA
- TAlfy = - (L, = 2w Ry in tokamaks), with L. >> a)
Joa?
- Tqiff = -——n—: where 11 << 1 (hot plasmas)

= (Trast < Taltv << Tdiff]

=> wave problems in loops and tokamaks lead to stiff equations!
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[Semi-discretization)

® nonlinear schemes (lect. 3) are ‘fully’ discrete (discretized in space and time)

® semi-discrete methods: first discretize only in space

= PDEs = ODEsintime = solvable by any ODE solver (e.g. Runge-Kutta)

o du o
e.g. after spatial discretization: @—t = f(uﬂ

—

= @' = " + At [ef(ﬁ““) +(1- G)f(ﬁ”)J

6 = %: trapezoidal rule
6 = 0: backward Euler scheme

= useful approach when higher-order accuracy (> 2) is needed or when extending to
two or more spatial dimensions

= powerful: any spatial discretization method to any accuracy can be coupled to any
ODE solver for the time discretization!




Time evolution schemes | 1-27

Linear MHD application]

5,’ -
e semi-discretizaton = |A.d(t) = —t (¢ ﬂ = ODEint

| — - -n+1
® trapezoidal method: avtt = gn + At (1 — ) i +Atad

= (-B+Atad)a i = —[B + At(1 - a) A) -3

~

EA =B

+AL[(1—a) f*+ o fP
=7

#[&-&’”*1:1’?-&’”+ﬂ&

- LU factorization of A (only once!, with LAPACK’s SGBFA)

- solution (typical 10% times, with LAPACK routine SGBSL)
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Snapshots of the V1 L every 5 driving periods.
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Time scales to reach the steady state of resonance dissipation.
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(Selection criteria for numerical methods)

e consistency: approximation should converge to real solution in the limit At, Az — 0

e numerical stability: round-off errors should not grow

e accuracy: approximation should be of higher order in Az and At or, better, in the

Ax Ou 4 Ceu At
——| an =y —
u O Az

dimensionless parameters 0 =

e monotonicity: (locally) monotone solution at ¢ should remain monotonous at ¢ + At,
7.€. at later times

e efficiency: CPU time and memory should be optimized (for a given accuracy)




