

he

abdus salam

international centre for theoretical physics

SMR 1161/34

AUTUMN COLLEGE ON PLASMA PHYSICS

25 October - 19 November 1999

Resonance Heating of Solar Coronal Loops: Advanced Models

Stefaan POEDTS

K.U. Leuven Centre for Plasma Astrophysics Belgium

These are preliminary lecture notes, intended only for distribution to participants.

strada enstiera II - RADIA en esta una con propositione de la casa de la casa

Resonance heating of solar coronal loops: advanced models

Stefaan Poedts

Motivation

MHD model

⇒ equations / waves and time-scales

Side-ways and footpoint excitation of coronal loops

⇒ linear MHD results / 2D and 3D nonlinear dynamics of resonant layer

New self-organizing model

⇒ automatic tuning / consistent with Yohkoh observations

Conclusions and perspective

Introduction / Motivation

- corona: highly inhomogeneous
 in space and time (Yohkoh, Soho)
- structure dominated by magnetic field
- hot material concentrated in loops (loops outline magnetic field)
- \bullet average temperature $2-3\times10^6\,\mathrm{K}$
- \Rightarrow heating mechanism(s)?
- \Rightarrow efficiency / time scales ?

magnetohydrodynamics (MHD): simplest ⇒ most popular

MHD wave dissipation in coronal loops

- heating model requires:
 - energy source + transport device + dissipation mechanism
- source of MHD waves?
 - originally: convective motions ⇒ FMWs, SMWs, and AWs
 only AWs reach corona (Hollweg '84)
 - → when 'slow': twisting & braiding ⇒ reconnection (Parker '72)
 - → when 'fast': MHD waves

$$\begin{array}{c} v_A = B/\sqrt{\mu\rho} \approx \text{ a few } 10^6 \, \text{m/s} \\ 40 \times 10^6 \leq L \leq 400 \times 10^6 \, \text{m} \end{array} \right\} \ \Rightarrow \ \tau_A = \frac{L}{v_A} \approx \ \text{sec to min}$$

2) recently: generated in corona itself (reconnection, wave transformations)

- ullet dissipation AWs? $au_D = \mu l^2/\eta$
 - ⇒ extremely long in solar corona
 - \Rightarrow small l required
 - \Rightarrow resonances!
- ullet width $\Delta \sim \left(rac{\eta +
 u}{\omega_A'}
 ight)^{rac{1}{3}}$

$$\Rightarrow \left(\tau_{RD} \sim \mu(\eta + \nu)^{-\frac{1}{3}} \omega_A'^{-\frac{2}{3}}\right)$$

- $\Rightarrow \tau_{RD} \sim \mu (\eta + \nu)^{-\frac{1}{3}} \quad \Rightarrow \quad \text{much shorter in solar corona } (R_m, R_e \gg 1)$
- \Rightarrow acceptable?, i.e. $au_{RD} \ll 1$ day (= typical life time loops)?
- ⇒ answer requires time-dependent, high-resolution 3D, nonlinear computer simulations!

Side-ways excitation of coronal loops

Physical situation

Configuration

cylindrical model, excited <u>externally</u> by incident waves

⇒ video of linear MHD simulation (Poedts et al., '92)

 \Rightarrow strongly localized AC currents in resonant layer \Rightarrow <u>heating</u>

$$A = 0.001 V_A, R_m = 1.25 \times 10^6, t = 2500 \tau_A$$

ullet heating rate independent of dissipation mechanism! for $\ \eta,
u
ightarrow 0$

Average Ohmic dissipation rate versus time

Main linear MHD results

- \bullet very good plasma-driver coupling: fractional absorption often >90%!
- 'bad quality' resonances: good for heating efficiency!
- acceptable time scales:

	loop radius			
loop density	$10^6\mathrm{m}$	$5 \times 10^6 \mathrm{m}$		
$10^{15}{\rm m}^{-3}$	20 s - 1 h	2 m - 5 h		
$10^{16}{\rm m}^{-3}$	1 m - 3 h	5 m - 14 h		

- ⇒ (viable heating mechanism?)
- \Rightarrow answer requires simulations including, e.g.
 - nonlinearity
 - line-tying

Variation of the background 'equilibrium'

- 1) diffusion of background field \Rightarrow $au_{diff} \sim \eta^{-1}$ \Rightarrow long
- 2) heating at resonant layer \Rightarrow $\tau_{RA} \sim \eta^{-1/3} \Rightarrow$ shorter

 $\omega_A(r)$ for $A=0.001~V_A,$ $R_m=1.25 imes10^6$ at t=0 and average

Stability resonant layer

ullet wave motions produce shear flow \Rightarrow two narrow counterstreams ($\sim\sin(\omega t)$)

 \Rightarrow potentially susceptable to Kelvin-Helmholtz instability (Heyvaerts & Priest '83)!

Nonlinear effects on resonant heating

variation of background \Rightarrow resonance location shifts in time

- good: larger portion of loop heated
- bad: can resonance fully develop?

nonlinear mode coupling $\Rightarrow \Delta_{res}$ wider

- good: larger portion of loop heated
- $\underline{\text{bad}}$: longer $l \Rightarrow$ longer time-scales

Kelvin-Helmholtz instability resonant layer

- good: shorter l created (vortex splitting)
- bad: resonant layer may be destroyed

Footpoint excitation of coronal loops

- Strauss & Lawson ('89): effect of 'anchoring' ('line-tying') and foot point excitation
- Goedbloed & Halberstadt ('94, '95):
 - AWs and FMWs are coupled!

- ⇒ studied <u>rigorously</u>: linear and nonlinear studies, numerical and analytical, steady state approach, eigenvalue approach and time evolution (Poedts et al. '89-'96; Ofman et al. '95, '96; Berghmans & Tirry '96, '97, etc.)
- Beliën et al. '97: effect of variation density and magnetic field strength along the loops
- ⇒ (resonant dissipation is a viable heating mechanism!)

Energetics

• 2D nonlinear MHD simulation (Poedts & Boynton '94)

- HOWEVER: coupling to chromosphere important
 - ⇒ leakage (Berghmans & De Bruyne '96)
 - \Rightarrow evaporation \Rightarrow tuning/detuning

Ofman et al. '98: 1D scaling laws to update density

- Beliën, Martens, Keppens '99: thermal structure along loops included
 - \Rightarrow efficient generation of SMWs
 - ⇒ input energy does not reach corona (only 30% AWs)
 - ⇒ heating much less efficient (but: unrealistic monoperiodic driver)
- Kano & Tsuneta '96: detailed analysis of Yohkoh data
 - \Rightarrow loop tops emit more and are hotter!
 - \Rightarrow 2 types of T profiles: peaked and with 'plateau'
- ⇒ can be compatible with the wave heating model!

A self-organizing mechanism

(Voitenko & Poedts '99)

- line-tied loop, excited by FMWs generated by convection or in the corona itself
- ullet basic (n=1) resonance occurs at

$$\omega = \frac{v_A(r_0)}{r_0}$$

$$\frac{dW}{dt} = \frac{2\pi}{\mu_0} L_y L_z \omega |C|^2 l \quad \text{with } l = \left(\frac{1}{\rho} \frac{\partial \rho}{\partial r}\right)^{-1}$$

with
$$l=\left(\frac{1}{\rho}\frac{\partial\rho}{\partial r}\right)^{-1}$$

$$\bullet |C|^2 = |C_0|^2 P(\omega)$$

ullet simplification: $lpprox \Delta r$ ('sharp nonuniformity')

 \Rightarrow volumetric heating rate (devide by $L_y L_z \Delta r$)

$$Q(\omega) = \frac{2\pi}{\mu_0} \omega |C_0|^2 P(\omega) = A\omega P(\omega)$$

- \Rightarrow repetitive scenario:
 - ullet thermal conduction \Rightarrow T spreads over entire loop
 - \Rightarrow chromospheric evaporation \Rightarrow density coronal part loop rises:

- ⇒ loop *tunes to lower frequency* (more power!)
- \Rightarrow more heating takes place \Rightarrow more evoporation, etc.
- density gradients at loop ends determine cavity in which waves are trapped, i.e. the part of the loop that is heated directly by resonant dissipation
- ⇒ saturation occurs when

$$\frac{\partial Q}{\partial \rho} = \frac{\partial Q}{\partial \omega} \frac{\partial \omega}{\partial \rho} = 0$$

$$\Rightarrow \frac{\partial Q}{\partial \omega} = A P(\omega) + A\omega P'(\omega) = 0$$

$$\Rightarrow \boxed{\omega = -\frac{P(\omega)}{P'(\omega)}}$$

Conclusions

- coronal loop heating: very advanced models
- \Rightarrow effects of
 - nonlinearity
 - leakage (side-ways and at foot points)
 - geometry (.g. flaring out of loops at foot points)
 - flows (Doppler shift & wave transformations)
 - chromospheric evaporation (density affected), . . .

need to be combined in one model

- ⇒ wave heating occurs, depends on input power spectrum & loop structure
 - self-organizing mechanism with automatic tuning
 - would explain observed hot, emitting loop tops

			-
		1	
		•	
			İ